1
|
Qiu M, Hao Z, Liu Y, Liu Y, Chang M, Lin X, Liu X, Dong N, Sun W, Teng X. ROS acted as an initial role in selenium nanoparticles alleviating insecticide chlorpyrifos-induced oxidative stress, pyroptosis, and intestinal barrier dysfunction in porcine intestinal epithelial cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 211:106418. [PMID: 40350231 DOI: 10.1016/j.pestbp.2025.106418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/03/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Chlorpyrifos (CPF), a toxic organophosphorus insecticide, is widely used in agriculture to protect crops (eg., maize) from pests. The use of CPF in crops can result in accumulation in crop seeds, such as corn seeds, which is a primary feed ingredient in pigs. Pigs in China, which is an important source of animal-derived protein in the Chinese diet, account for over 50 % of the raised pig population in the whole world. Therefore, CPF may pose a potential risk to the health of non-target organisms (pigs and humans) through the food chain. However, whether CPF can damage porcine intestine remains unknown. Selenium (Se), an essential trace element, was reported to have antioxidant and anti-toxic effects. Tight junction (TJ) is an important mechanism of intestinal injury and pyroptosis is a new hotspot in the field of toxicology. Hence, we wanted to investigate whether CPF can damage pig intestine and whether selenium nanoparticles (SeNPs) supplement can alleviate CPF-induced pig intestine damage, and to study corresponding mechanism from the three aspects of OS, pytoptosis, and TJ. We established a model of SeNPs alleviating damage caused by CPF in intestinal porcine enterocytes (IPEC-J2 cells), and found that SeNPs alleviated CPF-induced oxidative stress (OS), pyroptosis, and intestinal barrier dysfunction in IPEC-J2 cells. Interestingly, OS, pyroptosis, and intestinal barrier dysfunction had serial relations, and ROS/Nrf2/Caspase-1/Occludin and ROS/Nrf2/Caspase-1/ZO-1 pathways played a role. Notably, ROS and Caspase-1 played an initial and important role, respectively. Our study added new information on pesticides-caused damage to non-target organisms, and provided new idea, insight, and targets to mitigatie pesticides-induced toxic effect on non-target organisms.
Collapse
Affiliation(s)
- Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai 264005, PR China
| | - Na Dong
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Wei Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Diao L, Ma Y, Wang L, Li P, Zhang B, Meng W, Cai J, Meng Y, Zhou Y, Zhai J, Chen H. New Insights into Melatonin's Function on Thiacloprid-Induced Pyroptosis and Inflammatory Response in Head Kidney Lymphocytes of Cyprinus carpio: Implicating Mitochondrial Metabolic Imbalance and mtROS/cGAS-STING/NF-κB Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10574-10588. [PMID: 40238706 DOI: 10.1021/acs.jafc.5c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Thiacloprid (THI) is a synthetic insecticide, the misuse is targeted chiefly to control aphid pest species in orchards and vegetables. Melatonin (MET) is a hormone that plays crucial physiological roles in anti-inflammatory capacities of fish. We explored the function of MET (100 μM) to mitigate the toxicity induced by THI (20 μM) in lymphocytes. Our results indicate that THI led to a notable rise in lymphocyte mortality. Lymphocytes exposed to THI exhibited a heightened incidence of pyroptosis, accompanied by upregulation in expression associated with pyroptosis (NLRP3, GSDMEA, and IL-18). Meanwhile, THI exposure led to a decrease in lymphocyte mitochondrial membrane potential, an increase in mtROS levels, and a reduction in intracellular ATP, DNA, and NADPH/NADP+ levels, indicating an imbalance in the mitochondrial metabolism within the lymphocytes. Additionally, these effects were reversed by MET treatment, where MitoQ treatment showed that the suppression of mtROS reduced the lymphocyte pyroptosis caused by THI via the mtROS/cGAS-STING/NF-κB axis. Importantly, MET provided defense against the immunotoxic impacts of THI by ameliorating pyroptosis and enhancing anti-inflammatory capability via the mtROS/cGAS-STING/NF-κB axis. Our research potentiates the safeguarding of cultured fish from biological hazards caused by THI and highlights the valuable application of MET in common carp.
Collapse
Affiliation(s)
- Lei Diao
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yang Ma
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Liping Wang
- College of Economics and Management, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Peng Li
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Bin Zhang
- Tongliao Animal Quarantine Technical Service Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Weijing Meng
- Tongliao Agricultural and Animal Husbandry Development Center, No. 2349, Jianguo Road North, Horqin District, Tongliao 028000, China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yan Meng
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Yuxun Zhou
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Jingying Zhai
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| | - Huijie Chen
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, 77 Hanlin Road, Jilin 132101, China
| |
Collapse
|
3
|
Fu W, Liu M, Wang Y, Yang H, Ye A, Wu J, Li Y, Yu Z, Qiu Y, Xu L. Nano titanium dioxide induces HaCaT cell pyroptosis via regulating the NLRP3/caspase-1/GSDMD pathway. Toxicol Lett 2024; 402:27-37. [PMID: 39547316 DOI: 10.1016/j.toxlet.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Nano-titanium dioxide (Nano-TiO2) is extensively utilized across various industries and has the capacity to penetrate human tissues through multiple biological barriers. The HaCaT cell line, as one of human immortalized keratinocytes, is usually used as a model for studying skin drug toxicology. The objective was to assess the toxic effects of nano-TiO2 on HaCaT cells and to trigger pyroptosis. We used MTT method to evaluate the effects of three nano-TiO2 particle sizes (15 nm, 30 nm and 80 nm) on cell viability at different concentrations. Subsequently, we used LDH, Hoechst 33342 and propidium iodide (PI) double staining, scanning electron microscopy (SEM), Western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR) to evaluate the effects of different particle sizes on cells at the same concentration. Our findings indicated that HaCaT cell viability diminished with increasing nano-TiO2 concentrations. Moreover, nano-TiO2 increased LDH level in cellular supernatant. Fluorescence double staining, SEM, WB and RT-qPCR showed that nano-TiO2 induced cell membrane damage by activating pyroptosis pathway of NLRP3/caspase-1/GSDMD. These results suggest that nano-TiO2 toxicity in HaCaT cells is influenced by both dose and particle size, and is associated with the induction of pyroptosis. Frequent and large exposures to nano- TiO2 in daily life may cause serious health hazards.
Collapse
Affiliation(s)
- Wanting Fu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Mingxue Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yu Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huimin Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Aoqi Ye
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jianhong Wu
- Wuhan Institute for Drug and Medical Device Control, Wuhan 430075, China
| | - Yang Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zejun Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- School of Animal Science and Nutrition Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lingyun Xu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
4
|
Montanarí C, Franco-Campos F, Taroncher M, Rodríguez-Carrasco Y, Zingales V, Ruiz MJ. Chlorpyrifos induces cytotoxicity via oxidative stress and mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114933. [PMID: 39147357 DOI: 10.1016/j.fct.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Chlorpyrifos (CPF), a widely used broad-spectrum organophosphate pesticide, has been associated with various adverse health effects in animals and humans. While its primary mechanism of action involves the irreversible inhibition of acetylcholinesterase, secondary mechanisms have also been suggested. The aim of the present study was to explore the secondary mechanisms of action involved in CPF-induced acute cytotoxicity using human hepatocarcinoma HepG2 cells. In particular, we investigated oxidative stress and mitochondrial function by assessing reactive oxygen species (ROS) generation, lipid peroxidation (LPO) and mitochondrial membrane potential (ΔΨm) alteration. Results showed that 24-h exposure to CPF (78.125-2500 μM) decreased cell viability in a concentration-dependent manner (IC50 = 280.87 ± 26.63 μM). Sub-toxic CPF concentrations (17.5, 35 and 70 μM) induced increases in ROS generation (by 83%), mitochondrial superoxide (by 7.1%), LPO (by 11%), and decreased ΔΨm (by 20%). CPF also upregulated Nrf2 protein expression, indicating the role of the latter in modulating the cellular response to oxidative insults. Overall, our findings suggest that CPF caused hepatotoxicity through oxidative stress and mitochondrial dysfunction. Given the re-emerging use of CPF, this study emphasizes the need for comprehensive analysis to elucidate its toxicity on non-target organs and associated mechanisms.
Collapse
Affiliation(s)
- C Montanarí
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - F Franco-Campos
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - M Taroncher
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - Y Rodríguez-Carrasco
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| | - V Zingales
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain.
| | - M J Ruiz
- Research Group in Alternative Methods for Determining Toxic Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Spain; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy and Food Sciences, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100, València, Spain
| |
Collapse
|
5
|
Zhang G, Wu S, Xia G. MiR-326 sponges TET2 triggering imbalance of Th17/Treg differentiation to exacerbate pyroptosis of hepatocytes in concanavalin A-induced autoimmune hepatitis. Ann Hepatol 2024; 29:101183. [PMID: 38043702 DOI: 10.1016/j.aohep.2023.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION AND OBJECTIVES MicroRNA-326 is abnormally expressed in autoimmune diseases, but its roles in autoimmune hepatitis (AIH) are unknown. In this study, we aimed to investigate the effect of miR-326 on AIH and the underlying mechanism. MATERIALS AND METHODS Concanavalin A was administrated to induce AIH in mice and the expression levels of miR-326 and TET2 was evaluated by qRT-PCR and western blot, respectively. The percentages of Th17 and Treg cells were evaluated by flow cytometry and their marker proteins were determined by western blot and ELISA. The mitochondrial membrane potential (MMP) and ROS level were tested with the JC-1 kit and DCFH-DA assay. The binding relationships between miR-326 and TET2 were verified by dual-luciferase reporter assay. The liver tissues were stained by the HE staining. In vitro, AML12 cells were cocultured with mouse CD4+T cells. The expression levels of pyroptosis-related proteins were assessed by western blot. RESULTS Concanavalin A triggered AIH and enhanced the expression level of miR-326 in mice. It increased both Th17/Treg ratio and the levels of their marker proteins. The expression of TET2 was decreased in AIH mice. Knockdown of miR-326 could decrease the levels of pyroptosis-related proteins, the ROS level and increase MMP. In mouse CD4+T cells, miR-326 sponged TET2 to release IL-17A. Coculture of AML12 cells with isolated CD4+T cells from miR-326 knockdown AIH mice could relieve pyroptosis. CONCLUSIONS Knockdown of miR-326 exerted anti-pyroptosis effects via suppressing TET2 and downstream NF-κB signaling to dampen AIH. We highlighted a therapeutic target in AIH.
Collapse
Affiliation(s)
- Genglin Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences; Key Lab for Biotech-Drugs of National Health Commission; Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan city, Shandong province 250062, PR China
| | - Sensen Wu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan city, Shandong province 250012, PR China
| | - Guangtao Xia
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University (Shandong Provincial Hospital), No. 324, Jingwuweiqi Road, Jinan city, Shandong province 250021, PR China.
| |
Collapse
|
6
|
Aboulthana WM, Ibrahim NES, Hassan AK, Bassaly WK, Abdel-Gawad H, Taha HA, Ahmed KA. The hepato- and neuroprotective effect of gold Casuarina equisetifolia bark nano-extract against Chlorpyrifos-induced toxicity in rats. J Genet Eng Biotechnol 2023; 21:158. [PMID: 38040926 PMCID: PMC10692062 DOI: 10.1186/s43141-023-00595-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The bark of Casuarina equisetifolia contains several active phytoconstituents that are suitable for the biosynthesis of gold nanoparticles (Au-NPs). These nanoparticles were subsequently evaluated for their effectiveness in reducing the toxicity induced by Chlorpyrifos (CPF) in rats. RESULTS Various hematological and biochemical measurements were conducted in this study. In addition, markers of oxidative stress and inflammatory reactions quantified in liver and brain tissues were evaluated. Histopathological examinations were performed on both liver and brain tissues. Furthermore, the native electrophoretic protein and isoenzyme patterns were analyzed, and the relative expression levels of apoptotic genes in these tissues were determined. The hematological and biochemical parameters were found to be severely altered in the group injected with CPF. However, the administration of Au-C. equisetifolia nano-extract normalized these levels in all treated groups. The antioxidant system markers showed a significant decrease (P ≤ 0.05) in conjunction with elevated levels of inflammatory and fibrotic markers in both liver and brain tissues of the CPF-injected group. In comparison, the pre-treated group exhibited a reduction in these markers when treated with the nano-extract, as opposed to the CPF-injected group. Additionally, the nano-extract mitigated the severity of histopathological lesions induced by CPF in both liver and brain tissues, with a higher ameliorative effect observed in the pre-treated group. Electrophoretic assays conducted on liver and brain tissues revealed that the nano-extract prevented the qualitative changes induced by CPF in the pre-treated group. Furthermore, the molecular assay demonstrated a significant increase in the relative expression of apoptotic genes in the CPF-injected rats. Although the nano-extract ameliorated the relative expression of these genes compared to the CPF-injected group, it was unable to restore their values to normal levels. CONCLUSION Our results demonstrated that the nano-extract effectively reduced the toxicity induced by CPF in rats at hematological, biochemical, histopathological, physiological, and molecular levels, in the group pre-treated with the nano-extract.
Collapse
Affiliation(s)
- Wael Mahmoud Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.
| | - Noha El-Sayed Ibrahim
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Amgad Kamal Hassan
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Wagdy Khalil Bassaly
- Cell Biology Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hassan Abdel-Gawad
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Hamdy Ahmed Taha
- Applied Organic Chemistry Department, Chemical Industries Researches Institute, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, P.O. 12622, Giza, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
7
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Sawicki K, Matysiak-Kucharek M, Kruszewski M, Wojtyła-Buciora P, Kapka-Skrzypczak L. Influence of chlorpyrifos exposure on UVB irradiation induced toxicity in human skin cells. J Occup Med Toxicol 2023; 18:23. [PMID: 37803377 PMCID: PMC10559529 DOI: 10.1186/s12995-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Although chlorpyrifos (CPS) has been banned in many developed countries, it still remains one of the best-selling pesticides in the world. Widespread environmental and occupational exposure to CPS pose a serious risk to human health. Another environmental factor that can adversely affect human health is ultraviolet radiation B (UVB, 280-315 nm wave length). Here we attempt determine if exposure to CPS can modify toxic effects of UVB. Such situation might be a common phenomenon in agriculture workers, where exposure to both factors takes place. METHODS Two skin cell lines; namely human immortalized keratinocytes HaCaT and BJ human fibroblasts were used in this study. Cytotoxicity was investigated using a cell membrane damage detection assay (LDH Cytotoxicity Assay), a DNA damage detection assay (Comet Assay), an apoptosis induction detection assay (Apo-ONE Homogeneous Caspase-3/7 Assay) and a cell reactive oxygen species detection assay (ROS-Glo H2O2 assay). Cytokine IL-6 production was also measured in cells using an ELISA IL-6 Assay. RESULTS Pre-incubation of skin cells with CPS significantly increased UVB-induced toxicity at the highest UVB doses (15 and 20 mJ/cm2). Also pre-exposure of BJ cells to CPS significantly increased the level of DNA damage, except for 20 mJ/cm2 UVB. In contrast, pre-exposure of HaCaT cells, to CPS prior to UVB radiation did not cause any significant changes. A decrease in caspase 3/7 activity was observed in HaCaT cells pre-exposed to 250 µM CPS and 5 mJ/cm2 UVB. Meanwhile, no statistically significant changes were observed in fibroblasts. In HaCaT cells, pre-exposure to CPS resulted in a statistically significant increase in ROS production. Also, in BJ cells, similar results were obtained except for 20 mJ/cm2. Interestingly, CPS seems to inhibited IL-6 production in HaCaT and BJ cells exposed to UVB (in the case of HaCaT cells for all UVB doses, while for BJ cells only at 15 and 20 mJ/cm2). CONCLUSIONS In conclusion, the present study indicates that CPS may contribute to the increased UVB-induced toxicity in skin cells, which was likely due to the induction of ROS formation along with the generation of DNA damage. However, further studies are required to gain better understanding of the mechanisms involved.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | | | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-090, Poland.
- World Institute for Family Health, Calisia University, Kalisz, Poland.
| |
Collapse
|
9
|
Ruiz-Yance I, Siguas J, Bardales B, Robles-Castañeda I, Cordova K, Ypushima A, Estela-Villar E, Quintana-Criollo C, Estacio D, Rodríguez JL. Potential Involvement of Oxidative Stress, Apoptosis and Proinflammation in Ipconazole-Induced Cytotoxicity in Human Endothelial-like Cells. TOXICS 2023; 11:839. [PMID: 37888690 PMCID: PMC10610737 DOI: 10.3390/toxics11100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/28/2023]
Abstract
Triazole fungicides are widely used in the world, mainly in agriculture, but their abuse and possible toxic effects are being reported in some in vivo and in vitro studies that have demonstrated their danger to human health. This in vitro study evaluated the cytotoxicity, oxidative stress and proinflammation of EA.hy926 endothelial cells in response to ipconazole exposure. Using the MTT assay, ipconazole was found to produce a dose-dependent reduction (*** p < 0.001; concentrations of 20, 50 and 100 µM) of cell viability in EA.hy926 with an IC50 of 29 µM. Also, ipconazole induced a significant increase in ROS generation (** p < 0.01), caspase 3/7 (** p < 0.01), cell death (BAX, APAF1, BNIP3, CASP3 and AKT1) and proinflammatory (NLRP3, CASP1, IL1β, NFκB, IL6 and TNFα) biomarkers, as well as a reduction in antioxidant (NRF2 and GPx) biomarkers. These results demonstrated that oxidative stress, proinflammatory activity and cell death could be responsible for the cytotoxic effect produced by the fungicide ipconazole, such that this triazole compound should be considered as a possible risk factor in the development of alterations in cellular homeostasis.
Collapse
Affiliation(s)
- Iris Ruiz-Yance
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Junior Siguas
- Animal Physiology Department, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
| | - Brandy Bardales
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Ingrid Robles-Castañeda
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Karen Cordova
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Alina Ypushima
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Esteban Estela-Villar
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Carlos Quintana-Criollo
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - Darwin Estacio
- Agroforestry Department, Universidad Nacional Intercultural de la Amazonia, Pucallpa 25004, Peru; (I.R.-Y.); (B.B.); (I.R.-C.)
| | - José-Luis Rodríguez
- Pharmacology and Toxicology Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Alqahtani LS, Abd-Elhakim YM, Mohamed AAR, Khalifa NE, Khamis T, Alotaibi BS, Alosaimi M, El-Kholy SS, Abuzahrah SS, ElAshmouny N, Eskandrani AA, Gaber RA. Curcumin-loaded chitosan nanoparticles alleviate fenpropathrin-induced hepatotoxicity by regulating lipogenesis and pyroptosis in rats. Food Chem Toxicol 2023; 180:114036. [PMID: 37714448 DOI: 10.1016/j.fct.2023.114036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
In this study, the probable alleviative role of curcumin (CMN) (50 mg/kg b.wt) or curcumin-loaded chitosan nanoparticle (CLC-NP) (50 mg/kg b.wt) was assessed against the hepatotoxic effect of a widely used pyrethroid insecticide, fenpropathrin (FEN) (15 mg/kg b.wt) in rats in a 60-day experiment. The results revealed that CMN and CLC-NP significantly suppressed the FEN-induced increment in serum hepatic enzyme activities (ALT, AST, and ALP) and hyperbilirubinemia. Moreover, FEN-associated dyslipidemia, hepatic oxidative stress, and altered hepatic histology were significantly rescued by CMN and CLC-NP. Furthermore, the increased TNF-α and Caspase-3 immunoexpression in hepatic tissues of FEN-exposed rats was significantly reduced in CMN and CLC-NP-treated ones. FEN exposure significantly upregulated the pyroptosis-related genes, including GSDMD, Casp-1, Casp-3, Casp-8, IL-18, TNF-α, IL-1β, and NF-κB and altered the expression of lipogenesis-related genes including SREBP-1c, PPAR-α, MCP1, and FAS in the hepatic tissues. Nevertheless, the earlier disturbances in gene expression were corrected in CMN and CLC-NP-treated groups. Of note, compared to CMN, CLC-NP was more effective at inhibiting oxidative damage and controlling lipogenesis and pyroptosis in the hepatic tissues of FEN-exposed rats. Conclusively, the current study findings proved the superior and useful role of CLC-NP in combating pollutants associated with hepatic dysfunction.
Collapse
Affiliation(s)
- Leena S Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 23445, Saudi Arabia
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51511, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519, Zagazig, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sanad S El-Kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S Abuzahrah
- Department of Biological Sciences, College of Science, University of Jeddah, 21959, Saudi Arabia
| | - Naira ElAshmouny
- Histology and Cell biology, Faculty of Medicine, Kafr Elsheikh University, Egypt
| | - Areej Adeeb Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina, 30002, Saudi Arabia
| | - Rasha A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
12
|
El-Din MAEDS, Ghareeb AEWE, El-Garawani IM, El-Rahman HAA. Induction of apoptosis, oxidative stress, hormonal, and histological alterations in the reproductive system of thiamethoxam-exposed female rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:77917-77930. [PMID: 37266787 PMCID: PMC10299933 DOI: 10.1007/s11356-023-27743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
The present study aimed to investigate the oral toxic effects of 1/10 LD50 and 1/5 LD50 of thiamethoxam (TMX), a neonicotinoid insecticide, on the reproductive system of female Wistar rats. Thirty female rats were divided into three groups and supplied orally with either; saline solution, 1/10 LD50 of TMX (156 mg/kg) or 1/5 LD50 of TMX (312 mg/kg). The daily administration was extended for 30 days. Investigating the parameters of oxidative stress, hormonal levels, histopathological alterations, and the apoptotic markers (P53, BAX, BCL-2, and caspase-3) was performed in the uterus and ovary of rats. Results showed significant changes in the body weight gain, and relative weight of the left and right ovaries and uterus. Moreover, luteinizing hormone (LH), estradiol (ED), and progesterone (PG) serum levels were not significantly altered following TMX oral administration. The level of follicle-stimulating hormone in the TMX-exposed group (156 mg/kg) was significantly increased; however, a significant decrease was observed in TMX-exposed animals (312 mg/kg). TMX induced significant oxidative stress in exposed groups by reducing the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT), and elevating malondialdehyde (MDA) levels. Following hematoxylin and eosin staining, the microscopic examination revealed deteriorated luteal cells with vacuolation in the corpus luteum, a follicle containing a degenerated oocyte and degeneration/necrosis of the circular muscle layer with a high rate of apoptotic cells in TMX-exposed animals. TMX induced transcriptional alterations in apoptosis-related genes shifting towards the activation of the intrinsic apoptotic pathway. Collectively, results suggest the toxic effect of the TMX on the reproductive health of female Wistar rats.
Collapse
Affiliation(s)
| | | | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Menoufia, Egypt
| | | |
Collapse
|
13
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
14
|
Elhaj R, Reynolds JM. Chemical exposures and suspected impact on Gulf War Veterans. Mil Med Res 2023; 10:11. [PMID: 36882803 PMCID: PMC9993698 DOI: 10.1186/s40779-023-00449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Gulf War Illness (GWI) encompass a spectrum of maladies specific to troops deployed during the Persian Gulf War (1990-1991). There are several hypothesized factors believed to contribute to GWI, including (but not limited to) exposures to chemical agents and a foreign environment (e.g., dust, pollens, insects, and microbes). Moreover, the inherent stress associated with deployment and combat has been associated with GWI. While the etiology of GWI remains uncertain, several studies have provided strong evidence that chemical exposures, especially neurotoxicants, may be underlying factors for the development of GWI. This mini style perspective article will focus on some of the major evidence linking chemical exposures to GWI development and persistence decades after exposure.
Collapse
Affiliation(s)
- Rami Elhaj
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joseph M Reynolds
- Center for Cancer Biology, Immunology and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
15
|
Ding Y, Ye B, Sun Z, Mao Z, Wang W. Reactive Oxygen Species‐Mediated Pyroptosis with the Help of Nanotechnology: Prospects for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Binglin Ye
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310009 China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery The Second Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province Hangzhou Zhejiang 310009 China
- Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease Zhejiang University Hangzhou Zhejiang 310009 China
- The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province Hangzhou Zhejiang 310009 China
| |
Collapse
|
16
|
Rajak P, Roy S, Podder S, Dutta M, Sarkar S, Ganguly A, Mandi M, Dutta A, Nanda S, Khatun S. Synergistic action of organophosphates and COVID-19 on inflammation, oxidative stress, and renin-angiotensin system can amplify the risk of cardiovascular maladies. Toxicol Appl Pharmacol 2022; 456:116267. [PMID: 36240863 PMCID: PMC9554205 DOI: 10.1016/j.taap.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India,Corresponding author
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | | | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya; Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Govt. College, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
17
|
Trehalose prevents glyphosate-induced hepatic steatosis in roosters by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Vet Res Commun 2022; 47:651-661. [PMID: 36261742 DOI: 10.1007/s11259-022-10021-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 10/24/2022]
Abstract
Glyphosate (Gly) is a globally spread herbicide that can cause toxic injuries to hepatocytes. Dietary trehalose (Tre) exerts cytoprotective effect in numerous liver diseases through anti-oxidant and anti-inflammatory properties. However, it is yet to be investigated whether Tre affords protection against Gly-induced hepatotoxicity. To evaluate the negative effect of Gly in liver and assess the possible protective role of Tre, sixty Hy-line Brown roosters were allocated into three groups: the first group presented the control with a normal diet, the second group fed normal feed containing 200mg/kg Gly, and the third group fed normal feed containing 200 mg/kg Gly and 5 g/kg Tre. Plasma and liver tissues were collected and analyzed after 120 days. Firstly, Gly-elevated serum levels of hepatic injury markers and liver histopathological damages were evidently alleviated by Tre administration. Also, Tre normalized Gly-altered serum and hepatic lipid profiles and Oil Red O-stained lipid levels, suggesting the improvement of hepatic steatosis. The severely accumulated malondialdehyde levels and impaired antioxidant status in Gly-exposed roosters were markedly improved by administration with Tre. Simultaneously, Gly-inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) level and consequent reduced levels of Nrf2-downstream targets in liver were markedly normalized by Tre treatment. Additionally, Tre treatment evidently mitigated Gly-induced inflammasome response via inhibiting NLRP3 inflammasome activation. Overall, these observations provide novel insights that the protective action of Tre against Gly-induced hepatic steatosis is attributed to activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation.
Collapse
|
18
|
Jiang H, Niu C, Guo Y, Liu Z, Jiang Y. Wedelolactone induces apoptosis and pyroptosis in retinoblastoma through promoting ROS generation. Int Immunopharmacol 2022; 111:108855. [PMID: 35905560 DOI: 10.1016/j.intimp.2022.108855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/05/2022]
Abstract
Retinoblastoma is a most frequently occurring primary intraocular tumor in infancy and children, highlighting the requirement to find and develop novel and more effective therapeutic approaches. Wedelolactone (WDL), a nature compound isolated from E. prostrata, exhibits multiple biological activities through regulating various signaling pathways; however, its potential influences on retinoblastoma progression are still unknown, and thus was investigated in our study, as well as the underlying mechanisms. Here, we found that WDL treatments significantly reduced the proliferation of retinoblastoma cells by inducing apoptosis and pyroptosis through increasing Caspase-3, Caspase-1, gasdermin E (GSDME) and gasdermin D (GSDMD) activation. Mitochondrial impairment and reactive oxygen species (ROS) generation were considerably up-regulated in WDL-incubated retinoblastoma cells through a dose-dependent manner. Notably, we found that ROS scavenge significantly abolished the function of WDL to provoke apoptosis and pyroptosis in retinoblastoma cell lines, revealing that ROS was required for WDL to perform its anti-cancer role in retinoblastoma. Moreover, our in vivo experiments indicated that WDL administration significantly reduced the tumor growth in the established retinoblastoma mouse models with undetectable toxicity. Collectively, these findings highlighted the potential of WDL to inhibit the growth and induce cell death of retinoblastoma in vitro and in vivo, and thereby showed promise as a therapeutic agent for the treatment of retinoblastoma.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Chuanqiang Niu
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Yiqun Guo
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Zhenyin Liu
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China
| | - Yizhou Jiang
- Department of Interventional Radiology and Vascular, The Affiliated Hospital of Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou 510060, China.
| |
Collapse
|
19
|
Germano-Costa T, Bilesky-José N, Guilger-Casagrande M, Pasquoto-Stigliani T, Rogério CB, Abrantes DC, Maruyama CR, Oliveira JL, Fraceto LF, Lima R. Use of 2D and co-culture cell models to assess the toxicity of zein nanoparticles loading insect repellents icaridin and geraniol. Colloids Surf B Biointerfaces 2022; 216:112564. [PMID: 35609505 DOI: 10.1016/j.colsurfb.2022.112564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
After the latest dengue and Zika outbreaks, the fight against mosquito vectors has become an emerging area of research. One tool for this combat is repellents; however, these products are composed of different toxic agents. Botanical compounds with repellent potential are an alternative; however these compounds are highly volatile. Thus, the present study aimed to synthesize zein-based polymeric nanoparticles as an efficient carrier system for the sustained release of the repellents icaridin and geraniol and evaluate the toxicity of these nanorepellents comparing two different cell models. In vitro tests were carried out due to current Brazilian legislation prohibiting animal testing for cosmetics (current classification of repellents). The cytotoxicity and genotoxicity of the nanoparticles were evaluated in 2D and co-culture cell models (A549/lung epithelium, HaCaT/keratinocytes, HT-29/intestinal epithelium, and THP-1/peripheral blood monocytes). Cell viability by mitochondrial activity, cell membrane integrity, damage to genetic material, and expression of genes involved in the allergic/inflammatory system were evaluated. The results of cytotoxicity evaluation showed cell viability above 70% in both cell models. No differences were observed in genotoxicity assessment between cells exposed to nanorepellents and controls. In contrast, gene expression analysis showed increased cytokine expression for the emulsion compounds in 2D cell cultures compared to co-cultures. These findings open perspectives that zein-based nanorepellents have potential applications due to the reduced toxicity observed when the compounds are encapsulated and emerge as an alternative for arbovirus control. In addition, the study demonstrated that depending on the analysis, different results might be observed when comparing 2D and co-culture cell models to evaluate the toxicity of new nanosystems.
Collapse
Affiliation(s)
- T Germano-Costa
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - N Bilesky-José
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - M Guilger-Casagrande
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - T Pasquoto-Stigliani
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - C B Rogério
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - D C Abrantes
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - C R Maruyama
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - J L Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil.
| | - L F Fraceto
- Laboratory of Environmental Nanotechnology, São Paulo State University (UNESP), Sorocaba, SP, Brazil.
| | - R Lima
- Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
20
|
Nandi NK, Vyas A, Akhtar MJ, Kumar B. The growing concern of chlorpyrifos exposures on human and environmental health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 185:105138. [PMID: 35772841 DOI: 10.1016/j.pestbp.2022.105138] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CP) and its highly electrophilic intermediates are principal toxic metabolites. The active form of CP i.e. chlorpyrifos oxon (CP-oxon) is responsible for both the insecticidal activity and is also of greater risk when present in the atmosphere. Thus, the combined effects of both CP, CP-oxan, and other metabolites enhance our understanding of the safety and risk of the insecticide CP. They cause major toxicities such as AChE inhibition, oxidative stress, and endocrine disruption. Further, it can have adverse hematological, musculoskeletal, renal, ocular, and dermal effects. Excessive use of this compound results in poisoning and potentially kills a non-target species upon exposure including humans. Several examples of reactive metabolites toxicities on plants, aquatic life, and soil are presented herein. The review covers the general overview on reactive metabolites of CP, chemistry and their mechanism through toxic effects on humans as well as on the environment. Considerable progress has been made in the replacement or alternative to CP. The different strategies including antidote mechanisms for the prevention and treatment of CP poisoning are discussed in this review. The approach analyses also the active metabolites for the pesticide activity and thus it becomes more important to know the pesticide and toxicity dose of CP as much as possible.
Collapse
Affiliation(s)
- Nilay Kumar Nandi
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Akshun Vyas
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
21
|
Zhou J, Wang F, Jia L, Chai R, Wang H, Wang X, Li J, Wang K, Zhang P, Yang H. 2,4-dichlorophenoxyacetic acid induces ROS activation in NLRP3 inflammatory body-induced autophagy disorder in microglia and the protective effect of Lycium barbarum polysaccharide. ENVIRONMENTAL TOXICOLOGY 2022; 37:1136-1151. [PMID: 35099110 DOI: 10.1002/tox.23471] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/26/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) exerts neurotoxic effects; however, its action mechanism remains unclear. Here, we used BV2 cells as a model and divided them into six groups: control group (serum-free medium), lipopolysaccharide (LPS) (1 μg/mL), 2,4-D (1.2 μmol/mL), Lycium barbarum polysaccharide (LBP; 300 μg/mL LBP), LPS (1 μg/mL) + LBP (300 μg/mL), and 2,4-D (1.2 μmol/mL) + LBP (300 μg/mL) with dimethyl sulfoxide as the solvent. Our results showed that 2,4-D treatment decreased superoxide dismutase and glutathione peroxidase activities and increased malondialdehyde content. The percentage of microglial activation (co-expression of ionized calcium-binding adaptor protein-1 + CD68) in the LPS and 2,4-D groups and the levels of tumor necrosis factor alpha, interleukin (IL) 1 beta, IL-6, and IL-18 in the cell supernatant were increased. The protein and mRNA levels of Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein, caspase-1, IL-1β, IL-18, and p62 increased, whereas those of LC3II/I and Beclin-1 decreased in the 2,4-D group. The protein expression and mRNA levels of NLRP3, cleaved caspase-1, IL-1β, IL-18, and p62 decreased significantly, whereas the protein expression and mRNA levels of LC3II/I and Beclin-1 increased in small interfering RNA of NLRP3-treated BV2 cells stimulated with 2,4-D and LPS. In conclusion, 2,4-D enhanced cell migration, promoted oxidative stress, induced excessive release of mitochondrial reactive oxygen species, promoted microglial cell activation, released inflammatory factors, activated NLRP3 inflammasomes, and inhibited autophagy. Meanwhile, LBP reduced inflammation and the release of mitochondrial reactive oxygen species, inhibited NLRP3 inflammasome activation, and regulated autophagy, thereby playing a neuroprotective role.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Faxuan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Ru Chai
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Xiaolan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Jiangping Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
22
|
Singh S, Gautam U, Manvi FV. Protective Impact of Edaravone Against ZnO NPs-induced Oxidative Stress in the Human Neuroblastoma SH-SY5Y Cell Line. Cell Mol Neurobiol 2022; 42:1189-1210. [PMID: 33222098 PMCID: PMC11441218 DOI: 10.1007/s10571-020-01011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
Extensive applications of ZnO NPs (zinc oxide nanoparticles) in daily life have created concern about their biotoxicity. Zinc oxide nanoparticles induce oxidative stress, inflammation, and apoptosis in neurons. Edaravone applies antioxidant agent and anti-inflammatory impacts in the different cells, as evaluated in both in vitro and in vivo experimental models. This study is designed to explore, how edaravone would avert mitochondrial impairment in human neuronal cells against ZnO NPs-induced toxicity. Accordingly, we analyzed here whether a pretreatment (for 24 h) with edaravone (10-100 μM) would enhance mitochondrial protection in the human neuroblastoma cells SH-SY5Y against ZnO NPs-induced toxicity. We found that edaravone at 25 μM averted the ZnO NPs-induced decrease in the amounts of adenosine triphosphate (ATP), just as on the activity of the complexes I and V. Also, edaravone induced an antioxidant activity by diminishing the levels of lipid peroxidation, protein carbonylation, and protein nitration in the mitochondrial membranes. Edaravone blocked the ZnO NPs-induced transcription factor nuclear factor-κB (NF-κB) upregulation. The inhibition of the heme oxygenase-1 (HO-1) enzyme by zinc protoporphyrin IX (ZnPP IX, 10 μM) smothered the preventive impacts brought about by edaravone with respect to mitochondrial function and inflammation. After this examination, it can be concluded that edaravone caused cytoprotective impacts in an HO-1-dependent manner in SH-SY5Y cells against ZnO NPs-induced toxicity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Hajipur, Bihar, India.
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India.
| | - Upendr Gautam
- Vinayaka Mission's Research Foundation, Ariyanur, Tamil Nadu, India
| | - F V Manvi
- K.L.E. Academy of Higher Education & Research, Belagavi, Karnataka, India
| |
Collapse
|
23
|
The Inflammasome NLRC4 Protects against Cryptococcus gattii by Inducing the Classic Caspase-1 to Activate the Pyroptosis Signal. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7355485. [PMID: 35340249 PMCID: PMC8942663 DOI: 10.1155/2022/7355485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cryptococcus is one of the most pathogenic invasive fungi, and its interaction with the host's natural immunity, especially the role of the inflammasome family, has not been fully elucidated. As an important member of the inflammasome family, NOD-like receptor (NLR) family caspase recruitment domain (CARD) containing 4 (NLRC4) has been proven to protect lungs from damage from a variety of pathogens. In this study, we investigated the protective effect and mechanism of NLRC4 on cryptococcal pulmonary infection using NLRC4-/-mice in vivo and NLRC4-/-macrophages in vitro models stimulated by cryptococcal cells. We apply small animal fluorescence imaging to detect the fungal burden in the lungs and living body micro-CT scans of mice and in vitro tissue micro-CT scans to compare differences in infection foci nodules and histopathological lesions, and the activation of caspase-1 and downstream cytokines were detected by Western bolt and ELISA, etc. The results demonstrated that cryptococcal infection can activate the Nod-like receptors of caspase-1 activation and NLRC4 inflammasomes in macrophages and dendritic cells and affect downstream IL-1β and IL-18 release. After cryptococcal infection, the survival rate, lung fungal burden, and histopathological damage of NLRC4−/− mice were significantly impaired. NLRC4−/− macrophages showed a lower release of inflammatory factors, reactive oxygen species (ROS), and lactate dehydrogenase (LDH). Collectively, our results demonstrated that the activation of caspase-1 and downstream cytokines mediated by NLRC4 inflammasome in immune cells during Cryptococcus infection can enhance pyroptosis of macrophages, affect the phagocytic ability of macrophages, and inhibit the intracellular parasitism of cryptococcus, eventually reducing the burden of fungi.
Collapse
|
24
|
Xu D, Zhou X, Chen J, Li N, Ruan S, Zuo A, Lei S, Li L, Guo Y. C1q/tumour necrosis factor-related protein-9 aggravates lipopolysaccharide-induced inflammation via promoting NLRP3 inflammasome activation. Int Immunopharmacol 2022; 104:108513. [PMID: 35008006 DOI: 10.1016/j.intimp.2021.108513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1β (IL-1β) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP). We demonstrated that CTRP9 markedly augmented the activation of the NLRP3 inflammasome, as shown by increased mature IL-1β secretion, triggering ASC speck formation and promoting pyroptosis. Mechanistically, CTRP9 increased the levels of NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS). Suppressing ROS with N-acetylcysteine (NAC) or interfering with NOX2 by small interfering RNA weakened the promoting effect of CTRP9 on the NLRP3 inflammasome. Furthermore, NLRP3 inflammasome activation, pyroptosis and secretion of mature IL-1β were significantly decreased in macrophages from CTRP9-KO mice compared to those from WT mice with the same treatment. In vivo, we established a sepsis model by intraperitoneal injection of LPS into WT and CTRP9-KO mice. CTRP9 knockout improved the survival rates of the septic mice and attenuated NLRP3 inflammasome-mediated inflammation. In conclusion, our study indicates that CTRP9 aggravates LPS-induced inflammation by promoting NLRP3 inflammasome activation via the NOX2/ROS pathway. CTRP9 could be a promising target for NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Dan Xu
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University&Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine
| | - Jiying Chen
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Shiyan Ruan
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Anju Zuo
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shengyun Lei
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Linxi Li
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yuan Guo
- Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
25
|
Miao Z, Miao Z, Teng X, Xu S. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127318. [PMID: 34879549 DOI: 10.1016/j.jhazmat.2021.127318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF), a widely used organophosphorus pesticide has caused water pollution, threatening aquatic organisms. MicroRNAs (miRNAs) highly conserved noncoding RNAs, that regulate various cell death processes, including pyroptosis. To investigate the effect of CPF exposure on epithelioma papulosum cyprini (EPC) cell pyroptosis and the role of the miR-124-3p/CAPN1 axis, we established miR-124 overexpression and inhibition EPC cell models of CPF exposure. The target of the miR-124-3p/CAPN1 axis was primarily confirmed by the double luciferase reporter assay. Pyroptosis was demonstrated to occur in CPF-exposed EPC cells and was accompanied by mitochondrial membrane potential depletion, ROS level elevation and pyroptotic indicator expression upregulation. PD150606 was supplied as a CAPN1 inhibitor, alleviating CPF-induced mitochondrial dysfunction, and alleviating the increased expression of NLRP3, CASP1, IL1β and GSDMD. In conclusion, CPF induces pyroptosis by regulating the miR-124-3p/CAPN1 axis. This study enriches the cytotoxicity study of CPF, and provides new theoretical fundamentals for exploration of miRNA and its target protein response to water contaminants.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiruo Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
26
|
Zheng J, Hu Q, Zou X, Xu G, Cao Y. Uranium induces kidney cells pyroptosis in culture involved in ROS/NLRP3/Caspase-1 signaling. Free Radic Res 2022; 56:40-52. [DOI: 10.1080/10715762.2022.2032021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Xia Zou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Gang Xu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| | - Yunchang Cao
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Zhiyuang Road 1, Guilin city, Guangxi, People’s Republic of China
| |
Collapse
|
27
|
Zhang BH, Liu H, Yuan Y, Weng XD, Du Y, Chen H, Chen ZY, Wang L, Liu XH. Knockdown of TRIM8 Protects HK-2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Inhibiting Oxidative Stress-Mediated Apoptosis and Pyroptosis via PI3K/Akt Signal Pathway. Drug Des Devel Ther 2021; 15:4973-4983. [PMID: 34916780 PMCID: PMC8670861 DOI: 10.2147/dddt.s333372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute kidney injury (AKI) emerges as an acute and critical disease. Tripartite motif 8 (TRIM8), one number of the TRIM protein family, is proved to participate in ischemia/reperfusion (I/R) injury. However, whether TRIM8 is involved in renal I/R injury and the associated mechanisms are currently unclear. Purpose This study aimed to investigate the precise role of TRIM8 and relevant mechanisms in renal I/R injury. Materials and Methods In this study, human renal proximal tubular epithelial cells (HK-2 cells) underwent 12 hours of hypoxia and 2 h, 3 h or 4 h of reoxygenation to establish an in vitro hypoxia/reoxygenation (H/R) model. The siRNAs specific to TRIM8 (si-TRIM8) were transfected into HK-2 cells to knockdown TRIM8. The cell H/R model included various groups including Control, H/R, H/R+DMSO, H/R+NAC, si-NC+H/R, si-TRIM8+H/R and si-TRIM8+LY294002+H/R. The cell viability and levels of reactive oxygen species (ROS), hydrogen peroxide (H2O2), mRNA, apoptotic proteins, pyroptosis-related proteins and PI3K/AKT pathway-associated proteins were assessed. Results In vitro, realtime-quantitative PCR and western-blot analysis showed that the mRNA and protein expression of TRIM8 were obviously upregulated after H/R treatment in HK-2 cells. Compared with the H/R model group, knockdown of TRIM8 significantly increased cell viability and reduced the levels of ROS, H2O2, apoptotic proteins (Cleaved caspasebase-3 and BAX) and pyroptosis-related proteins (NLRP3, ASC, Caspase-1, Caspase-11, IL-1β and GSDMD-N). Western-blot analysis also authenticated that PI3K/AKT pathway was activated after TRIM8 inhibition. The application of 5 mM N-acetyl-cysteine, one highly efficient ROS inhibitor, significantly suppressed the expression of apoptotic proteins and pyroptosis-related proteins. Moreover, the combined treatment of TRIM8 knockdown and LY294002 reversed the effects of inhibiting oxidative stress. Conclusion Knockdown of TRIM8 can alleviate H/R-induced oxidative stress by triggering the PI3K/AKT pathway, thus attenuating pyropyosis and apoptosis in vitro.
Collapse
Affiliation(s)
- Bang-Hua Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China.,Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei, People's Republic of China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
28
|
Zhou J, Li H, Wang F, Wang H, Chai R, Li J, Jia L, Wang K, Zhang P, Zhu L, Yang H. Effects of 2,4-dichlorophenoxyacetic acid on the expression of NLRP3 inflammasome and autophagy-related proteins as well as the protective effect of Lycium barbarum polysaccharide in neonatal rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:2454-2466. [PMID: 34464015 DOI: 10.1002/tox.23358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) has neurotoxic effects, but its mechanism is not clear. In this study, a 2,4-D (75 mg/kg. b.w) exposure model was established in SD rats with colostrum. Lipopolysaccharide (1 mg/kg b.w) was used as the positive control, and Lycium barbarum polysaccharide (LBP, 50 mg/kg b.w) was used as an intervention factor to explore the neurotoxic effect of 2,4-D and the neuroprotective effect of LBP. Our research results show that 2,4-D causes a decrease in the number of hippocampal CA3 pyramidal cells and pyknosis in nuclei with a triangular or irregular shape and that rats show signs of anxiety or depression. In rat serum, superoxide dismutase, and glutathione peroxidase activity decreased, while malondialdehyde content increased. Protein and mRNA levels of TNFα, IL-6, IL-1β, IL-18, NLRP3, ASC, caspase-1, IL-1β, IL-18, and p62 increased, while those of LC3-II/LC3-I and Beclin-1 decreased in hippocampal tissues. In conclusion, 2,4-D increased the oxidative stress level, induced neuroinflammatory response, and decreased the autophagy level in experimental rats. LBP may have upregulated the autophagy level in the body by inhibiting the activation of the NLRP3 inflammasome, thus playing a neuroprotective role.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Honghui Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Faxuan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Hengquan Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Ru Chai
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Jiangping Li
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Leina Jia
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Kai Wang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Pengju Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Lingqin Zhu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
29
|
Gad MF, Mossa ATH, Refaie AA, Ibrahim NE, Mohafrash SMM. Benchmark dose and the adverse effects of exposure to pendimethalin at low dose in female rats. Basic Clin Pharmacol Toxicol 2021; 130:301-319. [PMID: 34738321 DOI: 10.1111/bcpt.13683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Pendimethalin (PND) is a dinitroaniline herbicide widely used to control broadleaf and annual grasses. Although the acute oral toxicity of PND is >5 g/kg b.wt. in humans (LD50 for rats >5000 g/kg b.wt.), it has been classified as a possible human carcinogen. It is still used in agriculture so, agricultural workers and their families, as well as consumers, can be exposed to this herbicide. The present study is the first report investigating the dose-response effect using the benchmark dose (BMD) and the adverse effects of exposure to PND at low dose via apoptosis responses linked to the expression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins; oxidative stress; and DNA and liver damage in female rats. The rats were exposed to PND via drinking water at doses equivalent to no-observed-adverse-effect level (NOAEL = 100 mg/kg b.wt.), 200, and 400 mg/kg b.wt. for 28 days. PND caused the overexpression of Tnf-α, Fas, and Bax; increased the levels of serum liver biomarkers; and increased oxidative stress in the liver and erythrocytes. Furthermore, it induced DNA and liver damage in a dose-dependent manner. The BMD showed that serum alkaline phosphatase (ALP) and total antioxidant capacity (78.4 and 30.1 mg/kg b.wt./day, respectively), lipid peroxidation in liver tissue (30.9 mg/kg b.wt./day), catalase in erythrocytes (14.0 mg/kg b.wt./day), and FAS expression in liver tissue (6.89 mg/kg b.wt./day) were highly sensitive biomarkers of PND toxicity. Our findings suggest the generation of reactive oxygen species as a possible mechanism of PND-induced gene overexpression of tumor necrosis factor-α (TNF-α), FAS, and BAX proteins, oxidative stress, and DNA and liver damage in female rats.
Collapse
Affiliation(s)
- Marwa F Gad
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | | | - Amel A Refaie
- Pesticide Chemistry Department, National Research Centre (NRC), Giza, Egypt
| | - Noha E Ibrahim
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre (NRC), Giza, Egypt
| | | |
Collapse
|
30
|
Weis GCC, Assmann CE, Mostardeiro VB, Alves ADO, da Rosa JR, Pillat MM, de Andrade CM, Schetinger MRC, Morsch VMM, da Cruz IBM, Costabeber IH. Chlorpyrifos pesticide promotes oxidative stress and increases inflammatory states in BV-2 microglial cells: A role in neuroinflammation. CHEMOSPHERE 2021; 278:130417. [PMID: 33839396 DOI: 10.1016/j.chemosphere.2021.130417] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/20/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The exposure to environmental stressors, such as organophosphate (OP) pesticides, has been associated with the development of neurodegenerative diseases. Chlorpyrifos (CPF) is the worldwide most used OP pesticide and one of the most hazardous pesticides as it can cross the blood-brain barrier. Since studies evaluating the effects of CPF on brain immune cells are scarce, this research investigated the oxidative and inflammatory responses of CPF exposure in murine microglial cells. BV-2 cells were exposed to different concentrations of CPF pesticide (0.3-300 μM). CPF induced activation of microglial cells, confirmed by Iba-1 and CD11b marking, and promoted microglial proliferation and cell cycle arrest at S phase. Moreover, CPF exposure increased oxidative stress production (NO, MDA, and O2∙), and upregulated pro-inflammatory cytokines (IL-1β and NLRP3) genes expression in BV-2 cells. Overall, data showed that CPF exposure, at the lowest concentrations, acted by promoting pro-oxidative and pro-inflammatory states in microglial cells. These results provide important information on the potential role of microglial activation in CPF-induced neuroinflammation and add to the expanding knowledge on the neurotoxicity of OP.
Collapse
Affiliation(s)
| | - Charles Elias Assmann
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Audrei de Oliveira Alves
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Micheli Mainardi Pillat
- Department of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Cinthia Melazzo de Andrade
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|
31
|
Jiang L, Luo S, Qiu T, Li Q, Jiang C, Sun X, Yang G, Zhang C, Liu X, Jiang L. Bidirectional role of reactive oxygen species during inflammasome activation in acrolein-induced human EAhy926 cells pyroptosis. Toxicol Mech Methods 2021; 31:680-689. [PMID: 34238121 DOI: 10.1080/15376516.2021.1953204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Acrolein, a known toxin in tobacco smoke, has been demonstrated to be associated with inflammatory cardiovascular diseases, such as atherosclerosis. However, the definite mechanism of acrolein-induced inflammation remains unclear. Here, we report that acrolein induces reactive oxygen species (ROS) production in EAhy926 cells. Additionally, acrolein induces EAhy926 cells' inflammatory response and pyroptosis by activating NOD-like receptor protein 3 (NLRP3) inflammasome. Also, acrolein-induced cytotoxicity could be attenuated by N-acetyl-L-cysteine (NAC). Furthermore, acrolein upregulates the level of autophagy which can be reversed by NAC. Notably, the present study also indicates that autophagy inhibited by inhibitor 3-methyladenine (3MA) and siAtg7 exacerbate acrolein-induced NLRP3 inflammasome activation and pyroptosis. In summary, acrolein induced cytotoxicity by ROS-mediated NLRP3 inflammasome activation, and ROS upregulates the level of autophagy to inhibit the NLRP3 inflammasome excessive activation, indicating the bidirectional role of ROS in acrolein-induced cellular inflammation. Our results may provide novel mechanistic insights into acrolein-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Liping Jiang
- Preventive Medicine Laboratory, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Songsong Luo
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | | | - Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Lijie Jiang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
32
|
Liu C, Li H, Xu F, Jiang X, Ma H, Seeram NP. Cannabidiol Protects Human Skin Keratinocytes from Hydrogen-Peroxide-Induced Oxidative Stress via Modulation of the Caspase-1-IL-1β Axis. JOURNAL OF NATURAL PRODUCTS 2021; 84:1563-1572. [PMID: 33955754 DOI: 10.1021/acs.jnatprod.1c00083] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preclinical and clinical studies support cannabidiol (CBD)'s antioxidant and anti-inflammatory effects, which are linked to its skin protective effects, but there have been limited mechanistic studies reported. Herein we evaluated CBD's protective effects against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocyte HaCaT cells and explored its possible mechanism(s) of action. CBD (10 μM) protected HaCaT cells by alleviating H2O2 (200 μM)-induced cytotoxicity (by 11.3%) and reactive oxygen species (total- and mitochondrial-derived). Several NLRP3 inflammasome-related genes including CASP1 and IL1B were identified as potential molecular targets for CBD's antioxidant effects by multiplexed gene and network pharmacology analyses. CBD treatment down-regulated the mRNA expression levels of CASP1 and IL1B (by 32.9 and 51.0%, respectively) and reduced IL-1β level (by 16.2%) in H2O2-stimulated HaCaT cells. Furthermore, CBD inhibited the activity of caspase-1 enzyme (by 15.7%) via direct binding to caspase-1 protein, which was supported by data from a biophysical binding assay (surface plasmon resonance) and a computational docking experiment. In addition, CBD mitigated H2O2-induced pyroptosis (capase-1-mediated cell death) and apoptosis by 23.6 and 44.0%, respectively. The findings from the current study suggest that CBD exerts protective effects in human keratinocytes via the modulation of the caspase-1-IL-1β axis, supporting its potential skin health applications.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Feng Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
33
|
MiR-599 Protects Cardiomyocytes against Oxidative Stress-Induced Pyroptosis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3287053. [PMID: 33681353 PMCID: PMC7906806 DOI: 10.1155/2021/3287053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 11/17/2020] [Accepted: 01/02/2021] [Indexed: 12/19/2022]
Abstract
Oxidative stress is a crucial factor and key promoter of a variety of cardiovascular diseases associated with cardiomyocyte injury. Emerging literatures suggest that pyroptosis plays a key role in cardiac damages. However, whether pyroptosis contributes to cardiomyocyte injury under oxidative stress and the underlying molecular mechanisms are totally unclear. This study was designed to investigate the potential role of pyroptosis in H2O2-induced cardiomyocyte injury and to elucidate the potential mechanisms. Primary cardiomyocytes from neonatal Wistar rats were utilized. These myocytes were treated with different concentrations of H2O2 (25, 50, and 100 μM) for 24 h to induce oxidative injury. Our results indicated that mRNA and protein levels of ASC were remarkably upregulated and caspase-1 was activated. Moreover, the expressions of inflammatory factors IL-1β and IL-18 were also increased. Luciferase assay showed that miR-599 inhibited ASC expression through complementary binding with its 3'UTR. MiR-599 expression was substantially reduced in H2O2-treated cardiomyocytes. Upregulation of miR-599 inhibited cardiomyocyte pyroptosis under oxidative stress, and opposite results were found by decreasing the expression of miR-599. Consistently, miR-599 overexpression ameliorated cardiomyocyte injury caused by H2O2. Therefore, miR-599 could be a promising therapeutic approach for the management of cardiac injury under oxidative condition.
Collapse
|
34
|
Dong X, He Y, Ye F, Zhao Y, Cheng J, Xiao J, Yu W, Zhao J, Sai Y, Dan G, Chen M, Zou Z. Vitamin D3 ameliorates nitrogen mustard-induced cutaneous inflammation by inactivating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. Clin Transl Med 2021; 11:e312. [PMID: 33634989 PMCID: PMC7882108 DOI: 10.1002/ctm2.312] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nitrogen mustard (NM) causes severe skin injury with an obvious inflammatory response, which is lack of effective and targeted therapies. Vitamin D3 (VD3) has excellent anti-inflammatory properties and is considered as a potential candidate for the treatment of NM-induced dermal toxicity; however, the underlying mechanisms are currently unclear. Cyclooxygenase-2 (COX2; a widely used marker of skin inflammation) plays a key role in NM-induced cutaneous inflammation. Herein, we initially confirmed that NM markedly promoted COX2 expression in vitro and in vivo. NM also increased NOD-like receptor family pyrin domain containing 3 (NLRP3) expression, caspase-1 activity, and interleukin-1β (IL-1β) release. Notably, treatment with a caspase-1 inhibitor (zYVAD-fmk), NLRP3 inhibitor (MCC950), and NLRP3 or caspase-1 siRNA attenuated NM-induced NLRP3 inflammasome activation, with subsequent suppression of COX2 expression and IL-1β release in keratinocytes. Meanwhile, NM increased mitochondrial reactive oxygen species (mtROS) and decreased manganese superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) activities. Mito-TEMPO (a mtROS scavenger) ameliorated NM-caused NLRP3 inflammasome activation in keratinocytes. Moreover, VD3 improved SIRT3 and SOD2 activities, decreased mtROS contents, inactivated the NLRP3 inflammasome, and attenuated cutaneous inflammation induced by NM in vitro and in vivo. The beneficial activity of VD3 against NM-triggered cutaneous inflammation was enhanced by the inhibitors of IL-1, mtROS, NLRP3, caspase-1, and NLRP3 or caspase-1 siRNAs, which was abolished in SIRT3 inhibitor or SIRT3 siRNA-treated keratinocytes and skins from SIRT3-/- mice. In conclusion, VD3 ameliorated NM-induced cutaneous inflammation by inactivating the NLRP3 inflammasome, which was partially mediated through the SIRT3-SOD2-mtROS signaling pathway.
Collapse
Affiliation(s)
- Xunhu Dong
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Ying He
- Department of UltrasoundXinqiao HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Feng Ye
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yuanpeng Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jin Cheng
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingsong Xiao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Wenpei Yu
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiqing Zhao
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Yan Sai
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Guorong Dan
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| | - Mingliang Chen
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Pathology and Southwest Cancer Centre, Southwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
- Institute of Toxicology, School of Military Preventive MedicineThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
35
|
Rand D, Cooper I. Caspase-1: an important player and possible target for repair of the blood-brain barrier underlying neurodegeneration. Neural Regen Res 2021; 16:2390-2392. [PMID: 33907012 PMCID: PMC8374582 DOI: 10.4103/1673-5374.313031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan; Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan; School of Psychology, Interdisciplinary Center (IDC), Herzliya; The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel
| |
Collapse
|
36
|
Wei Z, Nie G, Yang F, Pi S, Wang C, Cao H, Guo X, Liu P, Li G, Hu G, Zhang C. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 273:115919. [PMID: 33497945 DOI: 10.1016/j.envpol.2020.115919] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is an occupational and environmental pollutant, which mainly causes nephrotoxicity by damaging renal proximal tubular cells. To evaluate the effects of Cd on pyroptosis and the relationship between pyroptosis and apoptosis in duck renal tubular epithelial cells, the cells were cultured with 3CdSO4·8H2O (0, 2.5, 5.0, or 10.0 μM Cd), N-acetyl-L-cysteine (NAC) (100.0 μM), Z-YVAD-FMK (10.0 μM) or the combination of Cd and NAC or Z-YVAD-FMK for 12 h, and then cytotoxicity was assessed. The results evidenced that Cd significantly increased the releases of interleukin-18 (IL-18) and interleukin-1β (IL-1β), lactate dehydrogenase (LDH) and nitric oxide (NO), relative conductivity and cellular reactive oxygen species (ROS) level. Simultaneously, Cd also markedly upregulated NLRP3, Caspase-1, ASC, NEK7, IL-1β and IL-18 mRNA levels and NLRP3, Caspase-1 p20, GSDMD and ASC protein levels. Additionally, NAC notably improved the changes of above indicators induced by Cd. Combined treatment with Cd and Z-YVAD-FMK remarkably elevated Bcl-2 mRNA and protein levels, inhibited p53, Bax, Bak-1, Cyt C, Caspase-9 and Caspase-3 mRNA levels and p53, Bax, Bak-1, Caspase-9/cleaved Caspase-9 and Caspase-3/cleaved Caspase-3 protein levels, increased mitochondrial membrane potential (MMP), decreased apoptosis ratio and cell damage compared to treatment with Cd alone. Taken together, Cd exposure induces duck renal tubular epithelial cell pyroptosis through ROS/NLRP3/Caspase-1 signaling pathway, and inhibiting Caspase-1 dependent pyroptosis attenuates Cd-induced apoptosis.
Collapse
Affiliation(s)
- Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
37
|
Jiang Y, Tsoi LC, Billi AC, Ward NL, Harms PW, Zeng C, Maverakis E, Kahlenberg JM, Gudjonsson JE. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5:142067. [PMID: 33055429 PMCID: PMC7605526 DOI: 10.1172/jci.insight.142067] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The skin serves as the primary interface between our body and the external environment and acts as a barrier against entry of physical agents, chemicals, and microbes. Keratinocytes make up the main cellular constitute of the outermost layer of the skin, contributing to the formation of the epidermis, and they are crucial for maintaining the integrity of this barrier. Beyond serving as a physical barrier component, keratinocytes actively participate in maintaining tissue homeostasis, shaping, amplifying, and regulating immune responses in skin. Keratinocytes act as sentinels, continuously monitoring changes in the environment, and, through microbial sensing, stretch, or other physical stimuli, can initiate a broad range of inflammatory responses via secretion of various cytokines, chemokines, and growth factors. This diverse function of keratinocytes contributes to the highly variable clinical manifestation of skin immune responses. In this Review, we highlight the highly diverse functions of epidermal keratinocytes and their contribution to various immune-mediated skin diseases.
Collapse
Affiliation(s)
- Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics and Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole L Ward
- Department of Nutrition and Department of Dermatology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Chang Zeng
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA.,A. Alfred Taubman Medical Research Institute, Michigan, USA
| |
Collapse
|
38
|
Alavi MS, Fanoudi S, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. An updated review of protective effects of rosemary and its active constituents against natural and chemical toxicities. Phytother Res 2020; 35:1313-1328. [PMID: 33044022 DOI: 10.1002/ptr.6894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 01/17/2023]
Abstract
Natural and chemical toxic agents cause severe adverse effects on people's health in a variety of exposing ways. Herbal medications have taken into consideration as alternative safe treatments for toxicities. Rosmarinus officinalis also known as rosemary belongs to the Lamiaceae family. Rosemary and its constituents including carnosic acid, rosmarinic acid, and carnosol have a lot of benefits such as anti-inflammatory, antioxidant, anti-mutagenic, anti-bacterial, antiviral, antinociceptive, and neuroprotective activities. In this literate review, we focused on the protective effects of rosemary and its main compounds against natural and chemical toxicities in both in vitro and in vivo studies. The protective effects of rosemary and its components are mostly mediated through different mechanisms such as the inhibition of oxidative stress, reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), cyclooxygenase-2 (COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Fanoudi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Israelov H, Ravid O, Atrakchi D, Rand D, Elhaik S, Bresler Y, Twitto-Greenberg R, Omesi L, Liraz-Zaltsman S, Gosselet F, Schnaider Beeri M, Cooper I. Caspase-1 has a critical role in blood-brain barrier injury and its inhibition contributes to multifaceted repair. J Neuroinflammation 2020; 17:267. [PMID: 32907600 PMCID: PMC7488082 DOI: 10.1186/s12974-020-01927-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022] Open
Abstract
Background Excessive inflammation might activate and injure the blood-brain barrier (BBB), a common feature of many central nervous system (CNS) disorders. We previously developed an in vitro BBB injury model in which the organophosphate paraoxon (PX) affects the BBB endothelium by attenuating junctional protein expression leading to weakened barrier integrity. The objective of this study was to investigate the inflammatory cellular response at the BBB to elucidate critical pathways that might lead to effective treatment in CNS pathologies in which the BBB is compromised. We hypothesized that caspase-1, a core component of the inflammasome complex, might have important role in BBB function since accumulating evidence indicates its involvement in brain inflammation and pathophysiology. Methods An in vitro human BBB model was employed to investigate BBB functions related to inflammation, primarily adhesion and transmigration of peripheral blood mononuclear cells (PBMCs). Caspase-1 pathway was studied by measurements of its activation state and its role in PBMCs adhesion, transmigration, and BBB permeability were investigated using the specific caspase-1 inhibitor, VX-765. Expression level of adhesion and junctional molecules and the secretion of pro-inflammatory cytokines were measured in vitro and in vivo at the BBB endothelium after exposure to PX. The potential repair effect of blocking caspase-1 and downstream molecules was evaluated by immunocytochemistry, ELISA, and Nanostring technology. Results PX affected the BBB in vitro by elevating the expression of the adhesion molecules E-selectin and ICAM-1 leading to increased adhesion of PBMCs to endothelial monolayer, followed by elevated transendothelial-migration which was ICAM-1 and LFA-1 dependent. Blocking caspase-8 and 9 rescued the viability of the endothelial cells but not the elevated transmigration of PBMCs. Inhibition of caspase-1, on the other hand, robustly restored all of barrier insults tested including PBMCs adhesion and transmigration, permeability, and VE-cadherin protein levels. The in vitro inflammatory response induced by PX and the role of caspase-1 in BBB injury were corroborated in vivo in isolated blood vessels from hippocampi of mice exposed to PX and treated with VX-765. Conclusions These results shed light on the important role of caspase-1 in BBB insult in general and specifically in the inflamed endothelium, and suggest therapeutic potential for various CNS disorders, by targeting caspase-1 in the injured BBB.
Collapse
Affiliation(s)
- Hila Israelov
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Orly Ravid
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Dana Atrakchi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Shirin Elhaik
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Yael Bresler
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Rachel Twitto-Greenberg
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Liora Omesi
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel
| | - Sigal Liraz-Zaltsman
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute for Health and Medical Professions, Department of Sports Therapy, Ono Academic College, Kiryat Ono, Israel
| | - Fabien Gosselet
- UR 2465, Blood-brain barrier Laboratory (LBHE), Artois University, F-62300, Lens, France
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel.,School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel.,Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 52621, Tel Hashomer, Ramat Gan, Israel. .,School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel. .,The Nehemia Rubin Excellence in Biomedical Research - The TELEM Program, Sheba Medical Center, Tel-Hashomer, Israel.
| |
Collapse
|
40
|
He F, Zheng G, Hou J, Hu Q, Ling Q, Wu G, Zhao H, Yang J, Wang Y, Jiang L, Tang W, Yang Z. N-acetylcysteine alleviates post-resuscitation myocardial dysfunction and improves survival outcomes via partly inhibiting NLRP3 inflammasome induced-pyroptosis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:25. [PMID: 32782443 PMCID: PMC7409674 DOI: 10.1186/s12950-020-00255-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Background NOD-like receptor 3 (NLRP3) inflammasome is necessary to initiate acute sterile inflammation. Increasing evidence indicates the activation of NLRP3 inflammasome induced pyroptosis is closely related to reactive oxygen species (ROS) in the sterile inflammatory response triggered by ischemia/reperfusion (I/R) injury. N-acetylcysteine (NAC) is an antioxidant and plays a protective role in local myocardial I/R injury, while its effect on post-resuscitation myocardial dysfunction, as well as its mechanisms, remain elusive. In this study, we aimed to investigate the effect of NAC on post-resuscitation myocardial dysfunction in a cardiac arrest rat model, and whether its underlying mechanism may be linked to ROS and NLRP3 inflammasome-induced pyroptosis. Methods The rats were randomized into three groups: (1) sham group, (2) cardiopulmonary resuscitation (CPR) group, and (3) CPR + NAC group. CPR group and CPR + NAC group went through the induction of ventricular fibrillation (VF) and resuscitation. After return of spontaneous circulation (ROSC), rats in the CPR and CPR + NAC groups were again randomly divided into two subgroups, ROSC 6 h and ROSC 72 h, for further analysis. Hemodynamic measurements and myocardial function were measured by echocardiography, and western blot was used to detect the expression of proteins. Results Results showed that after treatment with NAC, there was significantly better myocardial function and survival duration; protein expression levels of NLRP3, adaptor apoptosis-associated speck-like protein (ASC), Cleaved-Caspase-1 and gasdermin D (GSDMD) in myocardial tissues were significantly decreased; and inflammatory cytokines levels were reduced. The marker of oxidative stress malondialdehyde (MDA) decreased and superoxide dismutase (SOD) increased with NAC treatment. Conclusions NAC improved myocardial dysfunction and prolonged animal survival duration in a rat model of cardiac arrest. Moreover, possibly by partly inhibiting ROS-mediated NLRP3 inflammasome-induced pryoptosis.
Collapse
Affiliation(s)
- Fenglian He
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Guanghui Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Jingying Hou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Qiaohua Hu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Qin Ling
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Gongfa Wu
- Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Hui Zhao
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Jin Yang
- The Second Hospital of Anhui Medical University, Hefei, 230032 China
| | - Yue Wang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China
| | - Wanchun Tang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China.,Weil Institute of Emergency and Critical Care Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang Xi Road, Guangzhou, 510120 China.,Zeng Cheng District People's Hospital of Guang Zhou, Guangzhou, 511300 China
| |
Collapse
|
41
|
Liu J, Tian S, Fu M, He Y, Yu H, Cao X, Cao Y, Xu H. Protective Effects of Anthocyanins from
Coreopsis tinctoria
against Oxidative Stress Induced by Hydrogen Peroxide in MIN6 Cells. Chem Biodivers 2020; 17:e1900587. [DOI: 10.1002/cbdv.201900587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Jianli Liu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Siqi Tian
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Mingyang Fu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yin He
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hui Yu
- Shenyang He Eye Hospital INC Shenyang 110034 P. R. China
| | - Xiangyu Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Yiyang Cao
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| | - Hanyuan Xu
- School of Life SciencesLiaoning University Shenyang 110036 P. R. China
| |
Collapse
|
42
|
Teng JF, Mei QB, Zhou XG, Tang Y, Xiong R, Qiu WQ, Pan R, Law BYK, Wong VKW, Yu CL, Long HA, Xiao XL, Zhang F, Wu JM, Qin DL, Wu AG. Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:193. [PMID: 31941010 PMCID: PMC7017302 DOI: 10.3390/cancers12010193] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Trillium tschonoskii Maxim (TTM), a traditional Chinese medicine, has been demonstrated to have a potent anti-tumor effect. Recently, polyphyllin VI (PPVI), a main saponin isolated from TTM, was reported by us to significantly suppress the proliferation of non-small cell lung cancer (NSCLC) via the induction of apoptosis and autophagy in vitro and in vivo. In this study, we further found that the NLRP3 inflammasome was activated in PPVI administrated A549-bearing athymic nude mice. As is known to us, pyroptosis is an inflammatory form of caspase-1-dependent programmed cell death that plays an important role in cancer. By using A549 and H1299 cells, the in vitro effect and action mechanism by which PPVI induces activation of the NLRP3 inflammasome in NSCLC were investigated. The anti-proliferative effect of PPVI in A549 and H1299 cells was firstly measured and validated by MTT assay. The activation of the NLRP3 inflammasome was detected by using Hoechst33324/PI staining, flow cytometry analysis and real-time live cell imaging methods. We found that PPVI significantly increased the percentage of cells with PI signal in A549 and H1299, and the dynamic change in cell morphology and the process of cell death of A549 cells indicated that PPVI induced an apoptosis-to-pyroptosis switch, and, ultimately, lytic cell death. In addition, belnacasan (VX-765), an inhibitor of caspase-1, could remarkably decrease the pyroptotic cell death of PPVI-treated A549 and H1299 cells. Moreover, by detecting the expression of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD in A549 and h1299 cells using Western blotting, immunofluorescence imaging and flow cytometric analysis, measuring the caspase-1 activity using colorimetric assay, and quantifying the cytokines level of IL-1β and IL-18 using ELISA, the NLRP3 inflammasome was found to be activated in a dose manner, while VX-765 and necrosulfonamide (NSA), an inhibitor of GSDMD, could inhibit PPVI-induced activation of the NLRP3 inflammasome. Furthermore, the mechanism study found that PPVI could activate the NF-κB signaling pathway via increasing reactive oxygen species (ROS) levels in A549 and H1299 cells, and N-acetyl-L-cysteine (NAC), a scavenger of ROS, remarkably inhibited the cell death, and the activation of NF-κB and the NLRP3 inflammasome in PPVI-treated A549 and H1299 cells. Taken together, these data suggested that PPVI-induced, caspase-1-mediated pyroptosis via the induction of the ROS/NF-κB/NLRP3/GSDMD signal axis in NSCLC, which further clarified the mechanism of PPVI in the inhibition of NSCLC, and thereby provided a possibility for PPVI to serve as a novel therapeutic agent for NSCLC in the future.
Collapse
Affiliation(s)
- Jin-Feng Teng
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Qi-Bing Mei
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Rui Xiong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Wen-Qiao Qiu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Rong Pan
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (R.P.); (C.-L.Y.)
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (B.Y.-K.L.); (V.K.-W.W.)
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (B.Y.-K.L.); (V.K.-W.W.)
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China; (R.P.); (C.-L.Y.)
| | - Han-An Long
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Xiu-Li Xiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Feng Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (J.-F.T.); (Q.-B.M.); (X.-G.Z.); (Y.T.); (R.X.); (W.-Q.Q.); (F.Z.); (D.-L.Q.)
- Education Ministry Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
43
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Anderson FL, Coffey MM, Berwin BL, Havrda MC. Inflammasomes: An Emerging Mechanism Translating Environmental Toxicant Exposure Into Neuroinflammation in Parkinson's Disease. Toxicol Sci 2019; 166:3-15. [PMID: 30203060 DOI: 10.1093/toxsci/kfy219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence indicates that complex gene-environment interactions underlie the incidence and progression of Parkinson's disease (PD). Neuroinflammation is a well-characterized feature of PD widely believed to exacerbate the neurodegenerative process. Environmental toxicants associated with PD, such as pesticides and heavy metals, can cause cellular damage and stress potentially triggering an inflammatory response. Toxicant exposure can cause stress and damage to cells by impairing mitochondrial function, deregulating lysosomal function, and enhancing the spread of misfolded proteins. These stress-associated mechanisms produce sterile triggers such as reactive oxygen species (ROS) along with a variety of proteinaceous insults that are well documented in PD. These associations provide a compelling rationale for analysis of sterile inflammatory mechanisms that may link environmental exposure to neuroinflammation and PD progression. Intracellular inflammasomes are cytosolic assemblies of proteins that contain pattern recognition receptors, and a growing body of evidence implicates the association between inflammasome activation and neurodegenerative disease. Characterization of how inflammasomes may function in PD is a high priority because the majority of PD cases are sporadic, supporting the widely held belief that environmental exposure is a major factor in disease initiation and progression. Inflammasomes may represent a common mechanism that helps to explain the strong association between exposure and PD by mechanistically linking environmental toxicant-driven cellular stress with neuroinflammation and ultimately cell death.
Collapse
Affiliation(s)
| | | | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | | |
Collapse
|
45
|
Moloudizargari M, Moradkhani F, Asghari N, Fallah M, Asghari MH, Moghadamnia AA, Abdollahi M. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants. Life Sci 2019; 231:116585. [PMID: 31226415 DOI: 10.1016/j.lfs.2019.116585] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
Exposure to environmental toxicants (ET) results in specific organ damage and auto-immune diseases, mostly mediated by inflammatory responses. The NLRP3 inflammasome has been found to be the major initiator of the associated pathologic inflammation. It has been found that ETs can trigger all the signals required for an NLRP3-mediated response. The exaggerated activation of the NLRP3 inflammasome and its end product IL-1β, is responsible for the pathogenesis caused by many ETs including pesticides, organic pollutants, heavy metals, and crystalline compounds. Therefore, an extensive study of these chemicals and their mechanisms of inflammasome (INF) activation may provide the scientific evidence for possible targeting of this pathway by proposing possible protective agents that have been previously shown to affect INF compartments and its activation. Melatonin and polyunsaturated fatty acids (PUFA) are among the safest and the most studied of these agents, which affect a wide variety of cellular and physiological processes. These molecules have been shown to suppress the NLRP3 inflammasome mostly through the regulation of cellular redox status and the nuclear factor-κB (NF-κB) pathway, rendering them potential promising compounds to overcome ET-mediated organ damage. In the present review, we have made an effort to extensively review the ETs that exert their pathogenesis via the stimulation of inflammation, their precise mechanisms of action and the possible protective agents that could be potentially used to protect against such toxicants.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Asghari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran, Islamic Republic of Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Rodríguez-Luna A, Ávila-Román J, Oliveira H, Motilva V, Talero E. Fucoxanthin and Rosmarinic Acid Combination Has Anti-Inflammatory Effects through Regulation of NLRP3 Inflammasome in UVB-Exposed HaCaT Keratinocytes. Mar Drugs 2019; 17:E451. [PMID: 31374828 PMCID: PMC6722862 DOI: 10.3390/md17080451] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 01/23/2023] Open
Abstract
Excessive exposure to ultraviolet (UV) radiation is the main risk factor to develop skin pathologies or cancer because it encourages oxidative condition and skin inflammation. In this sense, strategies for its prevention are currently being evaluated. Natural products such as carotenoids or polyphenols, which are abundant in the marine environment, have been used in the prevention of oxidative stress due to their demonstrated antioxidant activities. Nevertheless, the anti-inflammatory activity and its implication in photo-prevention have not been extensively studied. Thus, we aimed to evaluate the combination of fucoxanthin (FX) and rosmarinic acid (RA) on cell viability, apoptosis induction, inflammasome regulation, and anti-oxidative response activation in UVB-irradiated HaCaT keratinocytes. We demonstrated for the first time that the combination of FX and RA (5 µM RA plus 5 μM FX, designated as M2) improved antioxidant and anti-inflammatory profiles in comparison to compounds assayed individually, by reducing UVB-induced apoptosis and the consequent ROS production. Furthermore, the M2 combination modulated the inflammatory response through down-regulation of inflammasome components such as NLRP3, ASC, and Caspase-1, and the interleukin (IL)-1β production. In addition, Nrf2 and HO-1 antioxidant genes expression increased in UVB-exposed HaCaT cells pre-treated with M2. These results suggest that this combination of natural products exerts photo-protective effects by down-regulating NRLP3-inflammasome and increasing Nrf2 signalling pathway.
Collapse
Affiliation(s)
- Azahara Rodríguez-Luna
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Ávila-Román
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Helena Oliveira
- Department of Biology, Faculty of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
47
|
Li X, He S, Gao C, Deng H, Liu Y, Li C, Yuan L, Luo Y. Isoorientin attenuates benzo[a]pyrene-induced liver injury by inhibiting autophagy and pyroptosis in vitro and vivo. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1638888] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xueyi Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Shenyuan He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Chunxia Gao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Hong Deng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Cuiqin Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Li Yuan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| | - Ying Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, People’s Republic of China
| |
Collapse
|
48
|
Ameliorative Effect of Beta vulgaris Root Extract on Chlorpyrifos-Induced Oxidative Stress, Inflammation and Liver Injury in Rats. Biomolecules 2019; 9:biom9070261. [PMID: 31284640 PMCID: PMC6681196 DOI: 10.3390/biom9070261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/24/2023] Open
Abstract
Exposure to organophosphorus insecticides causes several health problems to animals and humans. Red beetroot (RBR) is rich in antioxidant ingredients and possesses a promising hepatoprotective activity. This study evaluated the potential of RBR extract to prevent chlorpyrifos (CPF)-induced liver injury, with an emphasis on oxidative stress, inflammation and apoptosis. Rats received 10 mg/kg CPF and were treated with 300 mg/kg RBR extract for 28 days. CPF caused liver injury evidenced by elevated serum levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and bilirubin, along with several histological alterations. Hepatic lipid peroxidation (LPO) and nitric oxide (NO) levels, as well as inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines were increased in CPF-intoxicated rats. RBR prevented CPF-induced histological alterations, and ameliorated liver function, LPO, NO, iNOS and pro-inflammatory cytokines. RBR boosted glutathione and antioxidant enzymes, and increased Nrf2 expression. In addition, RBR diminished Bax and caspase-3, and increased Bcl-2 expression. In conclusion, RBR prevented CPF-induced liver injury via attenuation of oxidative stress, inflammation and apoptosis. RBR enhanced antioxidant defenses, suggesting that it could be used as a potential therapeutic intervention to minimize CPF hepatotoxicity.
Collapse
|
49
|
Zhao YL, Zhang X, Liu WW, Yang YT, Gao ZK, Liu XL, Liu W, Hayashi T, Yamato M, Fujisaki H, Hattori S, Mizuno K, Atsuzawa Y, Tashiro SI, Onodera S, Ikejima T. Reactive oxygen species are responsible for the cell aggregation and production of pro-inflammatory mediators in phorbol ester (PMA)-treated U937 cells on gelatin-coated dishes through upregulation of autophagy. Connect Tissue Res 2019; 60:323-334. [PMID: 30277081 DOI: 10.1080/03008207.2018.1530770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Our previous studies indicate that phorbol 12-myristate 13-acetate (PMA)-treated U937 cells cultured on collagen I-coated dishes express lowered production of pro-inflammatory mediators in parallel through reduced reactive oxygen species (ROS) levels. By contrast, PMA-treated U937 cells on gelatin, the denatured collagen, show enhanced production of pro-inflammatory mediators, mediated by up-regulating autophagy levels. The present study is aimed to investigate the effect of ROS levels in PMA-treated U937 cells cultured on gelatin-coated surface. Material and methods: MTT assay, flow cytometric analysis of ROS and autophagy, biochemical detection of antioxidant levels, enzyme-linked immunosorbent assay, and western blot were used. Results: Gelatin-coating increased ROS levels in PMA-treated U937 cells. Increased ROS levels are involved in the regulation of cell aggregation and the release of pro-inflammatory mediators in gelatin-coated culture. These results lead to the query about the crosstalk between the two positive regulators, the autophagy and ROS. Autophagy induction is attenuated by N-acetyl-L-cysteine treatment, but the treatment with autophagy inhibitor, 3-methyladenine, does not affect ROS levels, suggesting ROS are upstream of autophagy in the regulation axis of differentiated U937 cells on gelatin-coated surface. Further study confirmed that upregulation of autophagy was responsible for ROS-induced cell aggregation and production of pro-inflammatory mediators. Conclusion: The results suggest that gelatin-coating promotes the aggregation of PMA-treated U937 cells and the production of pro-inflammatory mediators by ROS-autophagy signaling pathway.
Collapse
Affiliation(s)
- Ye-Li Zhao
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Xuan Zhang
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei-Wei Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Yu-Ting Yang
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Zhuo-Kun Gao
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Xiao-Ling Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Wei Liu
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Toshihiko Hayashi
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| | - Masayuki Yamato
- b Institute of Advanced Biomedical Engineering and Science , Tokyo Women's Medical University , Tokyo , Japan
| | - Hitomi Fujisaki
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Shunji Hattori
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Kazunori Mizuno
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Yuji Atsuzawa
- c Nippi Research Institute of Biomatrix , Toride, Ibaraki , Japan
| | - Shin-Ichi Tashiro
- d Department of Medical Education and Primary Care , Kyoto Prefectural University of Medicine , Kyoto , Japan
| | - Satoshi Onodera
- e Department of Clinical and Pharmaceutical Sciences , Showa Pharmaceutical University , Tokyo , Japan
| | - Takashi Ikejima
- a China-Japan Research Institute of Medical and Pharmaceutical Sciences , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
50
|
Liao J, Yang F, Tang Z, Yu W, Han Q, Hu L, Li Y, Guo J, Pan J, Ma F, Ma X, Lin Y. Inhibition of Caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:110-119. [PMID: 30822667 DOI: 10.1016/j.ecoenv.2019.02.069] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
The purpose of this study was to investigate the effects of copper (Cu) on hepatocyte pyroptosis and the relationship between pyroptosis and apoptosis in the mechanisms of Cu toxicity. Primary chicken hepatocytes were cultured in different concentrations of Cu sulfate (CuSO4) (0, 10, 50, and 100 μM), N-acetylcysteine (NAC) (1 mM), and Z-YVAD-fluoromethylketone (Z-YVAD-FMK) (10 μM) for 24 h, and the combination of Cu and NAC or Z-YVAD-FMK for 24 h. Cellular morphology and function, cell viability, mitochondria membrane potential (MMP), apoptosis rate, mRNA expression of pyroptosis-related and apoptosis-related genes, and Caspase-1, Caspase-3 proteins expression were determined. These results indicated that Cu markedly induced the mRNA expression of pyroptosis-related genes (Caspase-1, IL-1β, IL-18, and NLRP3) and Caspase-1 protein expression. Furthermore, contents of Caspase-1, IL-1β, and IL-18 in the supernatant fluid of culture hepatocytes were significantly increased in hepatocytes. NAC relieved excess Cu-caused the changes of above genes and proteins. Additionally, Z-YVAD-FMK, caspase-1 inhibitor, which attenuated Cu-induced the increased lactic dehydrogenase (LDH), aspartate amino transferase (AST), alanine aminotransferase (ALT) activities. Furthermore, treatment with Cu and Z-YVAD-FMK could down-regulate the mRNA levels of Caspase-3, Bak1, Bax, and CytC and Caspase-3 protein expression, up-regulate the mRNA expression of Bcl2, increase the MMP and reduce cell apoptosis compared to treatment with Cu in hepatocytes. Collectively, these finding evidenced that excess Cu induced pyroptosis by generating ROS in hepatocytes, and the inhibition of Caspase-1-dependent pyroptosis might attenuate Cu-induced apoptosis.
Collapse
Affiliation(s)
- Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xinyan Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yuyin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| |
Collapse
|