1
|
Yu K, Yang S, Song H, Sun Z, Wang K, Zhu Y, Yang C, Hao R, Cao Y. High-Resolution Tracking of Aging-Related Small Molecules: Bridging Pollutant Exposure, Brain Aging Mechanisms, and Detection Innovations. BIOSENSORS 2025; 15:242. [PMID: 40277555 PMCID: PMC12024821 DOI: 10.3390/bios15040242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Brain aging is a complex process regulated by genetic, environmental, and metabolic factors, and increasing evidence suggests that environmental pollutants can significantly accelerate this process by interfering with oxidative stress, neuroinflammation, and mitochondrial function-related signaling pathways. Traditional studies have focused on the direct damage of pollutants on macromolecules (e.g., proteins, DNA), while the central role of senescence-associated small molecules (e.g., ROS, PGE2, lactate) in early regulatory mechanisms has been long neglected. In this study, we innovatively proposed a cascade framework of "small molecule metabolic imbalance-signaling pathway dysregulation-macromolecule collapse", which reveals that pollutants exacerbate the dynamics of brain aging through activation of NLRP3 inflammatory vesicles and inhibition of HIF-1α. Meanwhile, to address the technical bottleneck of small molecule spatiotemporal dynamics monitoring, this paper systematically reviews the cutting-edge detection tools such as electrochemical sensors, genetically encoded fluorescent probes and antioxidant quantum dots (AQDs). Among them, AQDs show unique advantages in real-time monitoring of ROS fluctuations and intervention of oxidative damage by virtue of their ultra-high specific surface area, controllable surface modification, and free radical scavenging ability. By integrating multimodal detection techniques and mechanism studies, this work provides a new perspective for analyzing pollutant-induced brain aging and lays a methodological foundation for early intervention strategies based on small molecule metabolic networks.
Collapse
Affiliation(s)
- Keying Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Sirui Yang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Hongxu Song
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Zhou Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Kaichao Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Yuqi Zhu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (S.Y.); (H.S.); (Z.S.); (Y.Z.)
| | - Chengkai Yang
- Beijing Friendship Hospital, Capital Medical University, Beijing 100069, China;
| | - Rongzhang Hao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; (K.Y.); (K.W.)
- Beijing Key Laboratory of Environment and Aging, Capital Medical University, Beijing 100069, China
| |
Collapse
|
2
|
Fujita Y, Biswas KB, Kawai Y, Takayama S, Masutani T, Iddamalgoda A, Sakamoto K. Mentha piperita leaf extract suppresses the release of ATP from epidermal keratinocytes and reduces dermal thinning as well as wrinkle formation. Int J Cosmet Sci 2024; 46:972-981. [PMID: 39049707 DOI: 10.1111/ics.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVES To achieve a more beautiful and younger appearance, reducing wrinkles is a key concern. The process of wrinkle formation is complex and the development of truly effective cosmetic ingredients to reduce wrinkles remains a challenge. Recent studies have revealed a close relationship between wrinkles and skin thinning, suggesting that preventing skin thinning could also prevent wrinkle formation. In this study, we examined the role of extracellular adenosine triphosphate (eATP) in the progression of thinning, as eATP reportedly increases skin ageing factors, such as senescence-associated secreted phenotype (SASP) factors in epidermal cells. We determined the effects of Mentha piperita leaf extract on suppressing eATP to reduce thinning and wrinkles. METHODS Adenosine triphosphate (ATP) levels were measured in normal human epidermal keratinocytes (NHEK) in the presence of M. piperita leaf extract. Dryness, high pH, and UVB radiation were used as extrinsic ageing factors. Intrinsic skin ageing was evaluated by comparing cells from adults (AD-NHEK) and newborns (NB-NHEK). A placebo-controlled in vivo study was carried out with a formulation containing 1% M. piperita leaf extract. RESULTS The eATP levels were significantly higher in AD-NHEK compared with that in NB-NHEK cells. M. piperita leaf extract significantly decreased eATP levels in adult cells. Extrinsic ageing factors increased eATP levels in NHEK, whereas M. piperita leaf extract significantly suppressed eATP under all conditions. The active components of M. piperita leaf extract, luteolin glucuronide and rosmarinic acid, also decreased eATP. Moreover, compared with placebo lotion, M. piperita leaf extract-formulated lotion markedly increased dermal thickness and reduced wrinkles associated with crow's feet and the neck area. CONCLUSION We demonstrated for the first time that M. piperita leaf extract containing rosmarinic acid and luteolin-7-O-glucuronide has the potential to reduce eATP release from epidermal keratinocytes. An increase in eATP was observed not only during inflammation but also during natural ageing. Furthermore, the in vivo experiment revealing that 1% M. piperita leaf extract-containing lotion improved dermal thinning and wrinkles across multiple areas is attributed to the amelioration of dermal thinning. Thus, our data suggest the possibility of a novel cosmetic approach for reducing skin ageing by reducing eATP-mediated dermal thinning.
Collapse
Affiliation(s)
- Yukiko Fujita
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Kazal Boron Biswas
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Yuka Kawai
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Satoru Takayama
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | - Teruaki Masutani
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| | | | - Kotaro Sakamoto
- Department of Research and Development, Ichimaru Pharcos Co. Ltd., Gifu, Japan
| |
Collapse
|
3
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Risk Factors for Noncommunicable Diseases: From Basic Concepts to Future Prospective. Diseases 2024; 12:277. [PMID: 39589951 PMCID: PMC11592525 DOI: 10.3390/diseases12110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Noncommunicable diseases (NCDs) are a very important medical problem. The key role of mitochondrial dysfunction (MD) in the occurrence and progression of NCDs has been proven. However, the etiology and pathogenesis of MD itself in many NCDs has not yet been clarified, which makes it one of the most serious medical problems in the modern world, according to many scientists. METHODS An extensive research in the literature was implemented in order to elucidate the role of MD and NCDs' risk factors in the pathogenesis of NCDs. RESULTS The authors propose to take a broader look at the problem of the pathogenesis of NCDs. It is important to understand exactly how NCD risk factors lead to MD. The review is structured in such a way as to answer this question. Based on a systematic analysis of scientific data, a theoretical concept of modern views on the occurrence of MD under the influence of risk factors for the occurrence of NCDs is presented. This was done in order to update MD issues in clinical medicine. MD and NCDs progress throughout a patient's life. Based on this, the review raised the question of the existence of an NCDs continuum. CONCLUSIONS MD is a universal mechanism that causes organ dysfunction and comorbidity of NCDs. Prevention of MD involves diagnosing and eliminating the factors that cause it. Mitochondria are an important therapeutic target.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory of Population Studies, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine;
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine;
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| |
Collapse
|
4
|
Neikirk K, Harris C, Le H, Oliver A, Shao B, Liu K, Beasley HK, Jamison S, Ishimwe JA, Kirabo A, Hinton A. Air pollutants as modulators of mitochondrial quality control in cardiovascular disease. Physiol Rep 2024; 12:e70118. [PMID: 39562150 PMCID: PMC11576129 DOI: 10.14814/phy2.70118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
It is important to understand the effects of environmental factors such as air pollution on mitochondrial structure and function, especially when these changes increase cardiovascular disease risk. Although lifestyle choices directly determine many mitochondrial diseases, increasingly, it is becoming clear that the structure and function of mitochondria may be affected by pollutants found in the atmosphere (e.g., gases, pesticides herbicide aerosols, or microparticles). To date, the role of such agents on mitochondria and the potential impact on cardiovascular fitness is neglected. Here we offer a review of airborne stressors and pollutants, that may contribute to impairments in mitochondrial function and structure to cause heart disease.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Chanel Harris
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Han Le
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Ashton Oliver
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Bryanna Shao
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Kaihua Liu
- Department of Anatomy of Cell BiologyUniversity of IowaIowa CityIowaUSA
| | - Heather K. Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| | - Sydney Jamison
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeanne A. Ishimwe
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Center for ImmunobiologyNashvilleTennesseeUSA
- Vanderbilt Institute for Infection, Immunology and InflammationNashvilleTennesseeUSA
- Vanderbilt Institute for Global HealthNashvilleTennesseeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
5
|
Hosen MHA, Whitworth DJ, Leusch FDL, Yuen N, Bengtson Nash SM. Bioenergetic Shifts in Humpback Whale Fibroblasts Upon Chemical Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12313-12319. [PMID: 38958666 DOI: 10.1021/acs.est.3c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Southern Hemisphere humpback whales accumulate persistent and toxic chemicals, which are transported to Antarctica through distant sources and in situ usage. The extreme seasonal migration-associated fast of humpback whales results in the remobilization of persistent and lipophilic environmental contaminants from liberated fat stores. Mitochondria play a key role in lipid metabolism, and any disruption to mitochondrial function is expected to influence whole-organism bioenergetics. It is therefore of interest to advance understanding of the impact of known contaminants of the Antarctic sea-ice ecosystem upon humpback whale cellular bioenergetics. Using cell line-based in vitro testing, this study employed the Seahorse Extracellular Flux Analyzer to study cellular metabolic activity in live humpback whale fibroblast cells. The assay, based on oxygen consumption rate, provides insights into the cause of cellular bioenergetic disruption. Immortalized skin fibroblasts were exposed to four priority environmental chemicals found in the Antarctic sea-ice ecosystem. Our findings reveal chemical-dependent functional alterations and varying bioenergetic profile responses. Chlorpyrifos was observed to decrease mitochondrial basal oxygen consumption; dieldrin increased basal oxygen consumption; trifluralin's impact was dose-specific, and endosulfan displayed no effect. Our results provide unique insights into environmental chemical mechanisms of action on cellular bioenergetics, generating much-needed taxa-specific chemical effect data in support of evidence-based conservation policy and management.
Collapse
Affiliation(s)
- Md Hafiz All Hosen
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Deanne J Whitworth
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas Yuen
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
6
|
Buzenchi Proca TM, Solcan C, Solcan G. Neurotoxicity of Some Environmental Pollutants to Zebrafish. Life (Basel) 2024; 14:640. [PMID: 38792660 PMCID: PMC11122474 DOI: 10.3390/life14050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The aquatic environment encompasses a wide variety of pollutants, from plastics to drug residues, pesticides, food compounds, and other food by-products, and improper disposal of waste is the main cause of the accumulation of toxic substances in water. Monitoring, assessing, and attempting to control the effects of contaminants in the aquatic environment are necessary and essential to protect the environment and thus human and animal health, and the study of aquatic ecotoxicology has become topical. In this respect, zebrafish are used as model organisms to study the bioaccumulation, toxicity, and influence of environmental pollutants due to their structural, functional, and material advantages. There are many similarities between the metabolism and physiological structures of zebrafish and humans, and the nervous system structure, blood-brain barrier function, and social behavior of zebrafish are characteristics that make them an ideal animal model for studying neurotoxicity. The aim of the study was to highlight the neurotoxicity of nanoplastics, microplastics, fipronil, deltamethrin, and rotenone and to highlight the main behavioral, histological, and oxidative status changes produced in zebrafish exposed to them.
Collapse
Affiliation(s)
- Teodora Maria Buzenchi Proca
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Carmen Solcan
- Department of Preclinics, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania; (T.M.B.P.); (C.S.)
| | - Gheorghe Solcan
- Internal Medicine Unit, Clinics Department, Faculty of Veterinary Medicine, Iasi University of Life Sciences Ion Ionescu de la Brad, 700490 Iasi, Romania
| |
Collapse
|
7
|
Donzelli G, Sera F, Morales MA, Vozzi F, Roos T, Schaffert A, Paparella M, Murugadoss S, Mertens B, Gehring R, Linzalone N. A systematic review and meta-analysis of human population studies on the association between exposure to toxic environmental chemicals and left ventricular dysfunction (LVD). ENVIRONMENTAL RESEARCH 2024; 249:118429. [PMID: 38354889 DOI: 10.1016/j.envres.2024.118429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Exposure to environmental chemicals has been associated with an elevated risk of heart failure (HF). However, the impact on early markers of HF, such as left ventricular dysfunction (LVD), remains limited. OBJECTIVE To establish a foundation of evidence regarding early HF markers and their association with environmental pollutants, a systematic review and meta-analysis was conducted. METHODS The search, conducted on October 13th, 2023, encompassed PubMed, Embase, and Web of Science without filters, focusing on observational studies reporting myocardial geometrical, structural, or functional alterations in individuals without a history of heart disease. This included the general adult population, workers, young people, and the elderly. The risk of bias was assessed using the ROBINS-I tool at both study and item levels. RESULTS The systematic review included 17 studies involving 43.358 individuals exposed to air pollution and 2038 exposed to heavy metals. Approximately 41% of the effect measures of associations reported significant abnormalities in myocardial structure or function. The metanalyses by pollutants categories indicated positive associations between LV systolic and diastolic abnormalities and exposure to PM2.5 [-0.069 (-0.104, -0.033); -0.044 (-0.062, -0.025)] and PM10 [-0.055 (-0.087, -0.022); -0.030 (-0.050, -0.010)] and NO2 [-0.042 (-0.071, -0.013); -0.021 (-0.037, -0.004)], as well as positive associations between lead exposure and LV systolic abnormalities [-0.033 (-0.051, -0.016)]. CONCLUSIONS Existing evidence shows that specific early markers of HF may be associated with exposure to chemical pollutants. It is recommended to include such endpoints in new longitudinal and case-control studies to confirm further risk associations. These studies should consider co-exposures, account for vulnerable groups, and identify cardiotoxic compounds that may require regulation. When examining the link between myocardial abnormalities and environmental exposure, it is also advisable to explore the supportive use of Adverse Outcome Pathway (AOP) approaches to confirm a causal relationship.
Collapse
Affiliation(s)
- G Donzelli
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy.
| | - M A Morales
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - F Vozzi
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| | - T Roos
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - A Schaffert
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - M Paparella
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria.
| | - S Murugadoss
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - B Mertens
- Scientific Direction of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - R Gehring
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - N Linzalone
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy.
| |
Collapse
|
8
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
9
|
Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer - birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol 2024; 21:25-34. [PMID: 37723270 DOI: 10.1038/s41575-023-00841-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Incidence and mortality of colorectal cancer (CRC) are increasing worldwide, suggesting broad changes in the epidemiology of CRC. In this Review, we discuss the changes that are becoming evident, including trends in CRC incidence and mortality by age and birth cohort, and consider the contributions of early-life exposures and emerging risk factors to these changes. Importantly, incidence of CRC has increased among people born since the early 1950s in nearly all regions of the world. These so-called birth cohort effects imply the involvement of factors that influence the earliest stages of carcinogenesis and have effects across the life course. Accumulating evidence supports the idea that early-life exposures are important risk factors for CRC, including exposures during fetal development, childhood, adolescence and young adulthood. Environmental chemicals could also have a role because the introduction of many in the 1950s and 1960s coincides with increasing incidence of CRC among people born during those years. To reverse the expected increases in the global burden of CRC, participation in average-risk screening programmes needs to be increased by scaling up and implementing evidence-based screening strategies, and emerging risk factors responsible for these increases need to be identified.
Collapse
Affiliation(s)
- Caitlin C Murphy
- Department of Health Promotion & Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth Houston) School of Public Health, Houston, TX, USA.
| | - Timothy A Zaki
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Xu S, Liu H, Wang C, Deng Y, Xu B, Yang T, Liu W. Study of ATF4/CHOP axis-mediated mitochondrial unfolded protein response in neuronal apoptosis induced by methylmercury. Food Chem Toxicol 2023; 182:114190. [PMID: 37967789 DOI: 10.1016/j.fct.2023.114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Methylmercury (MeHg) is a widely distributed environmental pollutant that can easily cross the blood-brain barrier and accumulate in the brain, thereby damaging the central nervous system. Studies have shown that MeHg-induced mitochondrial damage and apoptosis play a crucial role in its neurotoxic effects. Mitochondrial unfolded protein response (UPRmt) is indispensable to maintain mitochondrial protein homeostasis and ensure mitochondrial function, and the ATF4/CHOP axis is one of the signaling pathways to activate UPRmt. In this study, the role of the ATF4/CHOP axis-mediated UPRmt in the neurotoxicity of MeHg has been investigated by C57BL/6 mice and the HT22 cell line. We discovered that mice exposed to MeHg had abnormal neurobehavioral patterns. The pathological section showed a significant decrease in the number of neurons. MeHg also resulted in a reduction in mtDNA copy number and mitochondrial membrane potential (MMP). Additionally, the ATF4/CHOP axis and UPRmt were found to be significantly activated. Subsequently, we used siRNA to knock down ATF4 or CHOP and observed that the expression of UPRmt-related proteins and the apoptosis rate were significantly reduced. Our research showed that exposure to MeHg can over-activate the UPRmt through the ATF4/CHOP axis, leading to mitochondrial damage and ultimately inducing neuronal apoptosis.
Collapse
Affiliation(s)
- Si Xu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Haihui Liu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Chen Wang
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, China.
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, China.
| |
Collapse
|
11
|
Bornstein R, Mulholland MT, Sedensky M, Morgan P, Johnson SC. Glutamine metabolism in diseases associated with mitochondrial dysfunction. Mol Cell Neurosci 2023; 126:103887. [PMID: 37586651 PMCID: PMC10773532 DOI: 10.1016/j.mcn.2023.103887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023] Open
Abstract
Mitochondrial dysfunction can arise from genetic defects or environmental exposures and impact a wide range of biological processes. Among these are metabolic pathways involved in glutamine catabolism, anabolism, and glutamine-glutamate cycling. In recent years, altered glutamine metabolism has been found to play important roles in the pathologic consequences of mitochondrial dysfunction. Glutamine is a pleiotropic molecule, not only providing an alternate carbon source to glucose in certain conditions, but also playing unique roles in cellular communication in neurons and astrocytes. Glutamine consumption and catabolic flux can be significantly altered in settings of genetic mitochondrial defects or exposure to mitochondrial toxins, and alterations to glutamine metabolism appears to play a particularly significant role in neurodegenerative diseases. These include primary mitochondrial diseases like Leigh syndrome (subacute necrotizing encephalopathy) and MELAS (mitochondrial myopathy with encephalopathy, lactic acidosis, and stroke-like episodes), as well as complex age-related neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Pharmacologic interventions targeting glutamine metabolizing and catabolizing pathways appear to provide some benefits in cell and animal models of these diseases, indicating glutamine metabolism may be a clinically relevant target. In this review, we discuss glutamine metabolism, mitochondrial disease, the impact of mitochondrial dysfunction on glutamine metabolic processes, glutamine in neurodegeneration, and candidate targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca Bornstein
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA
| | - Michael T Mulholland
- Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK
| | - Margaret Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Phil Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA; Department of Neurology, University of Washington, Seattle, USA; Department of Applied Sciences, Translational Bioscience, Northumbria University, Newcastle, UK.
| |
Collapse
|
12
|
Mendes D, Silva AM, Oliveira MM, Andrade PB, Videira RA. An Experimental Approach to Address the Functional Relationship between Antioxidant Enzymes and Mitochondrial Respiratory Complexes. Methods Protoc 2023; 6:mps6020032. [PMID: 37104014 PMCID: PMC10142429 DOI: 10.3390/mps6020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Mitochondrial dysfunction and cytosolic oxidative stress are pathological biomarkers interlinked in several chronic diseases and cellular toxicity promoted by high-energy radiation or xenobiotics. Thus, assessing the activities of the mitochondrial redox chain complexes and the cytosolic antioxidant enzymes in the same cell culture system is a valuable approach to addressing the challenge of chronic diseases or unveiling the molecular mechanisms underlying the toxicity of physical and chemical stress agents. The present article gathers the experimental procedures to obtain, from isolated cells, a mitochondria-free cytosolic fraction and a mitochondria-rich fraction. Furthermore, we describe the methodologies to evaluate the activity of the main antioxidant enzymes in the mitochondria-free cytosolic fraction (superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase), and the activity of the individual mitochondrial complexes I, II and IV, as well as the conjugated activity of complexes I-III and complexes II-III in the mitochondria-rich fraction. The protocol to test the citrate synthase activity was also considered and used to normalize complexes. The procedures were optimized within an experimental setup to allow that each condition to be tested only requires sampling of one T-25 flask of cells 2D cultured, as the typical results presented and discussed here.
Collapse
Affiliation(s)
- Daniela Mendes
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Maria Silva
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria Manuel Oliveira
- Chemistry Center-Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Trás-os-Montes e Alto Douro, UTAD, 5001-801 Vila Real, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Romeu A Videira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
13
|
Sandys O, Te Velde A. Raising the Alarm: Environmental Factors in the Onset and Maintenance of Chronic (Low-Grade) Inflammation in the Gastrointestinal Tract. Dig Dis Sci 2022; 67:4355-4368. [PMID: 34981314 DOI: 10.1007/s10620-021-07327-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Chronic inflammatory disease of the gastrointestinal (GI) tract is defined by several pathophysiological characteristics, such as dysbiosis of the microbiota, epithelial barrier hyperpermeability, systemic dissemination of endotoxins and chronic inflammation. In addition to well-reported environmental factors in non-communicable disease, such as smoking, diet, and exercise, humans are frequently exposed to myriads more environmental factors, from pesticides to food additives. Such factors are ubiquitous across both our diet and indoor/outdoor environments. A major route of human exposure to these factors is ingestion, which frequently occurs due to their intentional addition (intentional food additives) and/or unintentional contamination (unintentional food contaminants) of food products-often linked to environmental pollution. Understanding how this persistent, diverse exposure impacts GI health is of paramount importance, as deterioration of the GI barrier is proposed to be the first step towards systemic inflammation and chronic disease. Therefore, we aim to evaluate the impact of ingestion of environmental factors on inflammatory processes in the GI tract. In this review, we highlight human exposure to intentional food additives (e.g. emulsifiers, bulking agents) and unintentional food contaminants (e.g. persistent organic pollutants, pesticides, microplastics), then present evidence for their association with chronic disease, modification of the GI microbiota, increased permeability of the GI barrier, systemic dissemination of endotoxins, local (and distal) pro-inflammatory signalling, and induction of oxidative stress and/or endoplasmic reticulum stress. We also propose a link to NLRP3-inflammasome activation. These findings highlight the contribution of common environmental factors towards deterioration of GI health and the induction of pathophysiology associated with onset and maintenance of chronic inflammation in the GI tract.
Collapse
Affiliation(s)
- Oliver Sandys
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anje Te Velde
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AGEM, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Avila-Rojas SH, Aparicio-Trejo OE, Sanchez-Guerra MA, Barbier OC. Effects of fluoride exposure on mitochondrial function: Energy metabolism, dynamics, biogenesis and mitophagy. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103916. [PMID: 35738460 DOI: 10.1016/j.etap.2022.103916] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Fluoride is ubiquitous in the environment. Furthermore, drinking water represents the main source of exposure to fluoride for humans. Interestingly, low fluoride concentrations have beneficial effects on bone and teeth development; however, chronic fluoride exposure has harmful effects on human health. Besides, preclinical studies associate fluoride toxicity with oxidative stress, inflammation, and apoptosis. On the other hand, it is well-known that mitochondria play a key role in reactive oxygen species production. By contrast, fluoride's effect on processes such as mitochondrial dynamics, biogenesis and mitophagy are little known. These processes modulate the size, content, and distribution of mitochondria and their depuration help to counter the reactive oxygen species production and cytochrome c release, thereby allowing cell survival. However, a maladaptive response could enhance fluoride-induced toxicity. The present review gives a brief account of fluoride-induced mitochondrial alterations on soft and hard tissues, including liver, reproductive organs, heart, brain, lung, kidney, bone, and tooth.
Collapse
Affiliation(s)
- Sabino Hazael Avila-Rojas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| | | | - Marco Antonio Sanchez-Guerra
- Department of Developmental Neurobiology, National Institute of Perinatology, Montes Urales 800, Lomas Virreyes, Mexico 1100, Mexico.
| | - Olivier Christophe Barbier
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. Departamento de Toxicología (CINVESTAV-IPN), Av. IPN No. 2508 Col., San Pedro Zacatenco, México CP 07360, Mexico.
| |
Collapse
|
15
|
Bourke JP, Ng YS, Tynan M, Bates MGD, Mohiddin S, Turnbull D, Gorman GS. Arrhythmia prevalence and sudden death risk in adults with the m.3243A>G mitochondrial disorder. Open Heart 2022; 9:openhrt-2021-001819. [PMID: 35393351 PMCID: PMC8991061 DOI: 10.1136/openhrt-2021-001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
AIMS To define the prevalence of non-sustained tachyarrhythmias and bradyarrhythmias in patients with the m.3243A>G mitochondrial genotype and a previously defined, profile, associated with 'high sudden-death risk'. METHODS AND RESULTS Patients at high risk of sudden death because of combinations of ventricular hypertrophy, mitochondrial encephalopathy, lactic acidosis and stroke-like episodes family phenotype, epilepsy or high mutation load, due to the m.3243A>G mutation, were identified from a mitochondrial cohort of 209 patients. All recruited had serial ECG and echo assessments previously according to schedule, had an ECG-loop recorder implanted and were followed for as long as the device allowed. Devices were programmed to detect non-sustained brady- or tachy-arrhythmias. This provided comprehensive rhythm surveillance and automatic downloads of all detections to a monitoring station for cardiology interpretation. Those with sinus tachycardia were treated with beta-blockers and those with ventricular hypertrophy received a beta-blocker and ACE-inhibitor combination.Nine consecutive patients, approached (37.2±3.9 years, seven males) and consented, were recruited. None died and no arrhythmias longer than 30s duration occurred during 3-year follow-up. Three patients reported palpitations but ECGs correlated with sinus rhythm. One manifest physiological, sinus pauses >3.5 s during sleep and another had one asymptomatic episode of non-sustained ventricular tachycardia. CONCLUSIONS Despite 'high-risk' features for sudden death, those studied had negligible prevalence of arrhythmias over prolonged follow-up. By implication, the myocardium in this genotype is not primarily arrhythmogenic. Arrhythmias may not explain sudden death in patients without Wolff-Parkinson-White or abnormal atrioventricular conduction or, it must require a confluence of other, dynamic, proarrhythmic factors to trigger them.
Collapse
Affiliation(s)
- John P Bourke
- Department of Cardiology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research & NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle University and NUTH NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Margaret Tynan
- Department of Cardiology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Matthew G D Bates
- Department of Cardiology, James Cook University Hospital, Middlesbrough, UK
| | - Saidi Mohiddin
- Department of Cardiology, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Doug Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne S Gorman
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Department of Neurology, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK,Wellcome Trust Centre for Mitochondrial Research, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
In Silico Investigation of Some Compounds from the N-Butanol Extract of Centaurea tougourensis Boiss. & Reut. CRYSTALS 2022. [DOI: 10.3390/cryst12030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioinformatics as a newly emerging discipline is considered nowadays a reference to characterize the physicochemical and pharmacological properties of the actual biocompounds contained in plants, which has helped the pharmaceutical industry a lot in the drug development process. In this study, a bioinformatics approach known as in silico was performed to predict, for the first time, the physicochemical properties, ADMET profile, pharmacological capacities, cytotoxicity, and nervous system macromolecular targets, as well as the gene expression profiles, of four compounds recently identified from Centaurea tougourensis via the gas chromatography–mass spectrometry (GC–MS) approach. Thus, four compounds were tested from the n-butanol (n-BuOH) extract of this plant, named, respectively, Acridin-9-amine, 1,2,3,4-tetrahydro-5,7-dimethyl- (compound 1), 3-[2,3-Dihydro-2,2-dimethylbenzofuran-7-yl]-5-methoxy-1,3,4-oxadiazol-2(3H)-one (compound 2), 9,9-Dimethoxybicyclo[3.3.1]nona-2,4-dione (compound 3), and 3-[3-Bromophenyl]-7-chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-acridinedione (compound 4). The insilico investigation revealed that the four tested compounds could be a good candidate to regulate the expression of key genes and may also exert significant cytotoxic effects against several tumor celllines. In addition, these compounds could also be effective in the treatment of some diseases related to diabetes, skin pathologies, cardiovascular, and central nervous system disorders. The bioactive compounds of plant remain the best alternative in the context of the drug discovery and development process.
Collapse
|
17
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
18
|
Mayorga-Weber G, Rivera FJ, Castro MA. Neuron-glia (mis)interactions in brain energy metabolism during aging. J Neurosci Res 2022; 100:835-854. [PMID: 35085408 DOI: 10.1002/jnr.25015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Life expectancy in humans is increasing, resulting in a growing aging population, that is accompanied by an increased disposition to develop cognitive deterioration. Hypometabolism is one of the multiple factors related to inefficient brain function during aging. This review emphasizes the metabolic interactions between glial cells (astrocytes, oligodendrocytes, and microglia) and neurons, particularly, during aging. Glial cells provide support and protection to neurons allowing adequate synaptic activity. We address metabolic coupling from the expression of transporters, availability of substrates, metabolic pathways, and mitochondrial activity. In aging, the main metabolic exchange machinery is altered with inefficient levels of nutrients and detrimental mitochondrial activity that results in high reactive oxygen species levels and reduced ATP production, generating a highly inflammatory environment that favors deregulated cell death. Here, we provide an overview of the glial-to-neuron mechanisms, from the molecular components to the cell types, emphasizing aging as the crucial risk factor for developing neurodegenerative/neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gonzalo Mayorga-Weber
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Laboratory of Stem Cells and Neuroregeneration, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Maite A Castro
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Janelia Research Campus, HHMI, Ashburn, VA, USA
| |
Collapse
|
19
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
20
|
Hiding in Plain Sight: Modern Thiamine Deficiency. Cells 2021; 10:cells10102595. [PMID: 34685573 PMCID: PMC8533683 DOI: 10.3390/cells10102595] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Thiamine or vitamin B1 is an essential, water-soluble vitamin required for mitochondrial energetics—the production of adenosine triphosphate (ATP). It is a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points and at critical junctures for the glucose, fatty acid, and amino acid pathways. It has a very short half-life, limited storage capacity, and is susceptible to degradation and depletion by a number of products that epitomize modern life, including environmental and pharmaceutical chemicals. The RDA for thiamine is 1.1–1.2 mg for adult females and males, respectively. With an average diet, even a poor one, it is not difficult to meet that daily requirement, and yet, measurable thiamine deficiency has been observed across multiple patient populations with incidence rates ranging from 20% to over 90% depending upon the study. This suggests that the RDA requirement may be insufficient to meet the demands of modern living. Inasmuch as thiamine deficiency syndromes pose great risk of chronic morbidity, and if left untreated, mortality, a more comprehensive understanding thiamine chemistry, relative to energy production, modern living, and disease, may prove useful.
Collapse
|
21
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Salin J, Ohtonen P, Syrjälä H. Teachers' work-related non-literature-known building-related symptoms are also connected to indoor toxicity: A cross-sectional study. INDOOR AIR 2021; 31:1533-1539. [PMID: 33729611 DOI: 10.1111/ina.12822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
A previous study showed that classical building-related symptoms (BRS) were related to indoor dust and microbial toxicity via boar sperm motility assay, a sensitive method for measuring mitochondrial toxicity. In this cross-sectional study, we analyzed whether teachers' most common work-related non-literature-known BRS (nBRS) were also associated with dust or microbial toxicity. Teachers from 15 schools in Finland completed a questionnaire evaluating 20 nBRS including general, eye, respiratory, hearing, sleep, and mental symptoms. Boar sperm motility assay was used to measure the toxicity of extracts from wiped dust and microbial fallout samples collected from teachers' classrooms. 231 teachers answered a questionnaire and their classroom toxicity data were recorded. A negative binomial mixed model showed that teachers' work-related nBRS were 2.9-fold (95% CI: 1.2-7.3) higher in classrooms with highly toxic dust samples compared to classrooms with non-toxic dust samples (p = 0.024). The RR of work-related nBRS was 1.8 (95% CI: 1.1-2.9) for toxic microbial samples (p = 0.022). Teachers' BRS appeared to be broader than reported in the literature, and the work-related nBRS were associated with toxic dusts and microbes in classrooms.
Collapse
Affiliation(s)
- Janne Salin
- The Departments of Infection Control, Oulu University Hospital, Oulu, Finland
| | - Pasi Ohtonen
- Division of Operative Care, Oulu University Hospital, Oulu, Finland
- Research Unit of Surgery, Anesthesia and Intensive Care, University of Oulu, Oulu, Finland
| | - Hannu Syrjälä
- The Departments of Infection Control, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
23
|
Lin YT, Lin KH, Huang CJ, Wei AC. MitoTox: a comprehensive mitochondrial toxicity database. BMC Bioinformatics 2021; 22:369. [PMID: 34266386 PMCID: PMC8283953 DOI: 10.1186/s12859-021-04285-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Background Mitochondria play essential roles in regulating cellular functions. Some drug treatments and molecular interventions have been reported to have off-target effects damaging mitochondria and causing severe side effects. The development of a database for the management of mitochondrial toxicity-related molecules and their targets is important for further analyses. Results To correlate chemical, biological and mechanistic information on clinically relevant mitochondria-related toxicity, a comprehensive mitochondrial toxicity database (MitoTox) was developed. MitoTox is an electronic repository that integrates comprehensive information about mitochondria-related toxins and their targets. Information and data related to mitochondrial toxicity originate from various sources, including scientific journals and other electronic databases. These resources were manually verified and extracted into MitoTox. The database currently contains over 1400 small-molecule compounds, 870 mitochondrial targets, and more than 4100 mitochondrial toxin-target associations. Each MitoTox data record contains over 30 fields, including biochemical properties, therapeutic classification, target proteins, toxicological data, mechanistic information, clinical side effects, and references. Conclusions MitoTox provides a fully searchable database with links to references and other databases. Potential applications of MitoTox include toxicity classification, prediction, reference and education. MitoTox is available online at http://www.mitotox.org.
Collapse
Affiliation(s)
- Yu-Te Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Ko-Hong Lin
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chi-Jung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
24
|
Goyal S, Tiwari S, Seth B, Tandon A, Shankar J, Sinha M, Singh SJ, Priya S, Chaturvedi RK. Bisphenol-A inhibits mitochondrial biogenesis via impairment of GFER mediated mitochondrial protein import in the rat brain hippocampus. Neurotoxicology 2021; 85:18-32. [PMID: 33878312 DOI: 10.1016/j.neuro.2021.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/22/2022]
Abstract
Mitochondrial biogenesis relies on different protein import machinery, as mitochondrial proteins are imported from the cytosol. The mitochondrial intermembrane space assembly (MIA) pathway consists of GFER/ALR and CHCHD4/Mia40, responsible for importing proteins and their oxidative folding inside the mitochondria. The MIA pathway plays an essential role in complex IV (COX IV) biogenesis via importing copper chaperone COX17, associated with the respiratory chain. BPA, an environmental toxicant, found in consumable plastics, causes neurotoxicity via impairment in mitochondrial dynamics, neurogenesis, and cognitive functions. We studied the levels of key regulatory proteins of mitochondrial import pathways and mitochondrial biogenesis after BPA exposure in the rat hippocampus. BPA caused a significant reduction in the levels of mitochondrial biogenesis proteins (PGC1α, and TFAM) and mitochondrial import protein (GFER). Immunohistochemical analysis showed reduced co-localization of NeuN with GFER, PGC-1α, and TFAM suggesting impaired mitochondrial biogenesis and protein import. BPA exposure resulted in damaged mitochondria with distorted cristae in neurons and caused a significant reduction in GFER localization inside IMS as depicted by immunogold electron microscopy. The reduced levels of GFER resulted in defective COX17 import. The translocation of cytochrome c into the cytosol and increased cleaved caspase-3 levels triggered apoptosis due to BPA toxicity. Overall, our study implicates GFER as a potential target for impaired mitochondrial protein machinery, biogenesis, and apoptosis against BPA neurotoxicity in the rat hippocampus.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow, U.P, 226 028, India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Computational Toxicology Facility, CSIR-IITR, Lucknow, India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Priya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
25
|
Pascual F. Reframing the Question: Does Mitochondrial Damage Set the Stage for Future Inflammation? ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:64001. [PMID: 34143672 PMCID: PMC8212939 DOI: 10.1289/ehp9598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
|
26
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
27
|
Valencia M, Kim SR, Jang Y, Lee SH. Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology. Biomol Ther (Seoul) 2021; 29:605-614. [PMID: 33875624 PMCID: PMC8551733 DOI: 10.4062/biomolther.2021.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.
Collapse
Affiliation(s)
- McNeil Valencia
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeseul Jang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
28
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
29
|
Seydi E, Mehrpouya L, Sadeghi H, Rahimi S, Pourahmad J. Luteolin attenuates Fipronil-induced neurotoxicity through reduction of the ROS-mediated oxidative stress in rat brain mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104785. [PMID: 33771263 DOI: 10.1016/j.pestbp.2021.104785] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Luteolin (LUT) as a natural compound found in vegetables and fruits has various pharmacological effects. Fipronil (FPN), as a pesticide, has been considered for its effect on the antioxidant system and induction of oxidative stress. This study was designed to investigate the protective effects of LUT against the oxidative stress and mitochondrial toxicity induced by FPN on the rat brain. Several parameters such as mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) collapse, mitochondrial swelling, cytochrome c release, mitochondrial glutathione (GSH), lipid peroxidation (LPO) and Adenosine triphosphate (ATP) levels were assessed. Results indicated that the administration of LUT (25 μM) significantly improved oxidative stress and mitochondrial damages induced via FPN (6, 12 and 24 μM) in isolated mitochondria from the brain. These results show that LUT exerted protective effects against FPN-induced neurotoxicity in vitro through improving oxidative stress and mitochondrial damages.
Collapse
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran; Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Mehrpouya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadiseh Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Rahimi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Yao Y, Lawrence DA. Susceptibility to COVID-19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants. J Biochem Mol Toxicol 2021; 35:e22626. [PMID: 32905655 PMCID: PMC9340490 DOI: 10.1002/jbt.22626] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022]
Abstract
SARS-CoV-2 is a novel betacoronavirus that has caused the global health crisis known as COVID-19. The implications of mitochondrial dysfunction with COVID-19 are discussed as well as deregulated mitochondria and inter-organelle functions as a posited comorbidity enhancing detrimental outcomes. Many environmental chemicals (ECs) and endocrine-disrupting chemicals can do damage to mitochondria and cause mitochondrial dysfunction. During infection, SARS-CoV-2 via its binding target ACE2 and TMPRSS2 can disrupt mitochondrial function. Viral genomic RNA and structural proteins may also affect the normal function of the mitochondria-endoplasmic reticulum-Golgi apparatus. Drugs considered for treatment of COVID-19 should consider effects on organelles including mitochondria functions. Mitochondrial self-balance and clearance via mitophagy are important in SARS-CoV-2 infection, which indicate monitoring and protection of mitochondria against SARS-CoV-2 are important. Mitochondrial metabolomic analysis may provide new indicators of COVID-19 prognosis. A better understanding of the role of mitochondria during SARS-CoV-2 infection may help to improve intervention therapies and better protect mitochondrial disease patients from pathogens as well as people living with poor nutrition and elevated levels of socioeconomic stress and ECs.
Collapse
Affiliation(s)
- Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, New York
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, New York
| |
Collapse
|
31
|
Young CKJ, Wheeler JH, Rahman MM, Young MJ. The antiretroviral 2',3'-dideoxycytidine causes mitochondrial dysfunction in proliferating and differentiated HepaRG human cell cultures. J Biol Chem 2021; 296:100206. [PMID: 33334881 PMCID: PMC7948951 DOI: 10.1074/jbc.ra120.014885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus infection, and their use can cause mitochondrial toxicity, including mitochondrial DNA (mtDNA) depletion in several cases. The first-generation NRTIs, including 2',3'-dideoxycytidine (ddC), were originally and are still pursued as anticancer agents. NRTI-sensitive DNA polymerases localizing to mitochondria allow for the opportunity to poison proliferating cancer cell mtDNA replication as certain cancers rely heavily on mitochondrial functions. However, mtDNA replication is independent of the cell cycle creating a significant concern that toxicants such as ddC impair mtDNA maintenance in both proliferating and nonproliferating cells. To examine this possibility, we tested the utility of the HepaRG cell line to study ddC-induced toxicity in isogenic proliferating (undifferentiated) and nonproliferating (differentiated) cells. Following ddC exposures, we measured cell viability, mtDNA copy number, and mitochondrial bioenergetics utilizing trypan blue, Southern blotting, and extracellular flux analysis, respectively. After 13 days of 1 μM ddC exposure, proliferating and differentiated HepaRG harbored mtDNA levels of 0.9% and 17.9% compared with control cells, respectively. Cells exposed to 12 μM ddC contained even less mtDNA. By day 13, differentiated cell viability was maintained but declined for proliferating cells. Proliferating HepaRG bioenergetic parameters were severely impaired by day 8, with 1 and 12 μM ddC, whereas differentiated cells displayed defects of spare and maximal respiratory capacities (day 8) and proton-leak linked respiration (day 14) with 12 μM ddC. These results indicate HepaRG is a useful model to study proliferating and differentiated cell mitochondrial toxicant exposures.
Collapse
Affiliation(s)
- Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Joel H Wheeler
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.
| |
Collapse
|
32
|
Donatienne d'Hose, Danhier P, Northshield H, Isenborghs P, Jordan BF, Gallez B. A versatile EPR toolbox for the simultaneous measurement of oxygen consumption and superoxide production. Redox Biol 2020; 40:101852. [PMID: 33418140 PMCID: PMC7804984 DOI: 10.1016/j.redox.2020.101852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
In this paper, we describe an assay to analyze simultaneously the oxygen consumption rate (OCR) and superoxide production in a biological system. The analytical set-up uses electron paramagnetic resonance (EPR) spectroscopy with two different isotopically-labelled sensors: 15N-PDT (4-oxo-2,2,6,6-tetramethylpiperidine-d16-15N-1-oxyl) as oxygen-sensing probe and 14N-CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine, a cyclic hydroxylamine, as sensor of reactive oxygen species (ROS). The superoxide contribution to CMH oxidation is assessed using SOD or PEGSOD as controls. Because the EPR spectra are not superimposable, the variation of EPR linewidth of 15N-PDT (linked to OCR) and the formation of the nitroxide from 14N-CMH (linked to superoxide production) can be recorded simultaneously over time on a single preparation. The EPR toolbox was qualified in biological systems of increasing complexity. First, we used an enzymatic assay based on the hypoxanthine (HX)/xanthine oxidase (XO) which is a well described model of oxygen consumption and superoxide production. Second, we used a cellular model of superoxide production using macrophages exposed to phorbol 12-myristate 13-acetate (PMA) which stimulates the NADPH oxidase (NOX) to consume oxygen and produce superoxide. Finally, we exposed isolated mitochondria to established inhibitors of the electron transport chain (rotenone and metformin) in order to assess their impact on OCR and superoxide production. This EPR toolbox has the potential to screen the effect of intoxicants or drugs targeting the mitochondrial function. OCR and superoxide production are crucial to assess mitochondrial (dys)function. The EPR toolbox analyzes simultaneously the OCR and superoxide production. The EPR toolbox was validated in enzymatic system, cells and isolated mitochondria. The EPR toolbox has the potential to screen compounds altering mitochondrial function.
Collapse
Affiliation(s)
- Donatienne d'Hose
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Danhier
- Nuclear and Electron Spin Technologies (NEST) Platform, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Heidi Northshield
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pauline Isenborghs
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
33
|
Wang Z, Karkossa I, Großkopf H, Rolle-Kampczyk U, Hackermüller J, von Bergen M, Schubert K. Comparison of quantitation methods in proteomics to define relevant toxicological information on AhR activation of HepG2 cells by BaP. Toxicology 2020; 448:152652. [PMID: 33278487 DOI: 10.1016/j.tox.2020.152652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
The application of quantitative proteomics provides a new and promising tool for standardized toxicological research. However, choosing a suitable quantitative method still puzzles many researchers because the optimal method needs to be determined. In this study, we investigated the advantages and limitations of two of the most commonly used global quantitative proteomics methods, namely label-free quantitation (LFQ) and tandem mass tags (TMT). As a case study, we exposed hepatocytes (HepG2) to the environmental contaminant benzo[a]pyrene (BaP) using a concentration of 2 μM. Our results revealed that both methods yield a similar proteome coverage, in which for LFQ a wider range of fold changes was observed but with less significant p-values compared to TMT. We detected 37 and 47 significantly enriched pathways by LFQ and TMT, respectively, with 17 overlapping pathways. To define the minimally required effort in proteomics as a benchmark, we artificially reduced the LFQ, and TMT data sets stepwise and compared the pathway enrichment. Thereby, we found that fewer proteins are necessary for detecting significant enrichment of pathways in TMT compared to LFQ, which might be explained by the higher reproducibility of the TMT data that was observed. In summary, we showed that the TMT approach is the preferable one when investigating toxicological questions because it offers a high reproducibility and sufficient proteome coverage in a comparably short time.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Henning Großkopf
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
34
|
Tang W, Chen J, Hong H. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training. CHEMOSPHERE 2020; 253:126768. [PMID: 32464767 DOI: 10.1016/j.chemosphere.2020.126768] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Humans and animals may be exposed to tens of thousands of natural and synthetic chemicals during their lifespan. It is difficult to assess risk for all the chemicals with experimental toxicity tests. An alternative approach is to use computational toxicology methods such as quantitative structure-activity relationship (QSAR) modeling. Mitochondrial toxicity is involved in many diseases such as cancer, neurodegeneration, type 2 diabetes, cardiovascular diseases and autoimmune diseases. Thus, it is important to rapidly and efficiently identify chemicals with mitochondrial toxicity. In this study, five machine learning algorithms and twelve types of molecular fingerprints were employed to generate QSAR discriminant models for mitochondrial toxicity. A threshold moving method was adopted to resolve the imbalance issue in the training data. Consensus of the models by an averaging probability strategy improved prediction performance. The best model has correct classification rates of 81.8% and 88.3% in ten-fold cross validation and external validation, respectively. Substructures such as phenol, carboxylic acid, nitro and arylchloride were found informative through analysis of information gain and frequency of substructures. The results demonstrate that resolving imbalance in training and building consensus models can improve classification rates for mitochondrial toxicity prediction.
Collapse
Affiliation(s)
- Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
35
|
Acin-Perez R, Benador IY, Petcherski A, Veliova M, Benavides GA, Lagarrigue S, Caudal A, Vergnes L, Murphy AN, Karamanlidis G, Tian R, Reue K, Wanagat J, Sacks H, Amati F, Darley-Usmar VM, Liesa M, Divakaruni AS, Stiles L, Shirihai OS. A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO J 2020; 39:e104073. [PMID: 32432379 PMCID: PMC7327496 DOI: 10.15252/embj.2019104073] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi‐site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90–95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ilan Y Benador
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Anton Petcherski
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michaela Veliova
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Gloria A Benavides
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sylviane Lagarrigue
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arianne Caudal
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Laurent Vergnes
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, CA, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA, USA
| | - Karen Reue
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jonathan Wanagat
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Medicine, Division of Geriatrics, University of California, Los Angeles, CA, USA
| | - Harold Sacks
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Victor M Darley-Usmar
- Department of Pathology and Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Orian S Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
36
|
Mejia-Vergara AJ, Seleme N, Sadun AA, Karanjia R. Pathophysiology of Conversion to Symptomatic Leber Hereditary Optic Neuropathy and Therapeutic Implications: a Review. Curr Neurol Neurosci Rep 2020; 20:11. [DOI: 10.1007/s11910-020-01032-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Ibtisham F, Zhao Y, Nawab A, Liguang H, Wu J, Xiao M, Zhao Z, An L. The Effect of High Temperature on Viability, Proliferation, Apoptosis and Anti-oxidant Status of Chicken Embryonic Fibroblast Cells. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Y Zhao
- Guangdong Ocean University, China
| | - A Nawab
- Guangdong Ocean University, China
| | | | - J Wu
- Guangdong Ocean University, China
| | - M Xiao
- Guangdong Ocean University, China
| | - Z Zhao
- Guangdong Ocean University, China
| | - L An
- Guangdong Ocean University, China
| |
Collapse
|
38
|
Young MJ. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance. Front Mol Biosci 2017; 4:74. [PMID: 29214156 PMCID: PMC5702650 DOI: 10.3389/fmolb.2017.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/31/2017] [Indexed: 12/17/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus (HIV) the cause of acquired immunodeficiency syndrome. Development of severe mitochondrial toxicity has been well documented in patients infected with HIV and administered NRTIs. In vitro biochemical experiments have demonstrated that the replicative mitochondrial DNA (mtDNA) polymerase gamma, Polg, is a sensitive target for inhibition by metabolically active forms of NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs). Once incorporated into newly synthesized daughter strands NtRTIs block further DNA polymerization reactions. Human cell culture and animal studies have demonstrated that cell lines and mice exposed to NRTIs display mtDNA depletion. Further complicating NRTI off-target effects on mtDNA maintenance, two additional DNA polymerases, Pol beta and PrimPol, were recently reported to localize to mitochondria as well as the nucleus. Similar to Polg, in vitro work has demonstrated both Pol beta and PrimPol incorporate NtRTIs into nascent DNA. Cell culture and biochemical experiments have also demonstrated that antiviral ribonucleoside drugs developed to treat hepatitis C infection act as off-target substrates for POLRMT, the mitochondrial RNA polymerase and primase. Accompanying the above-mentioned topics, this review examines: (1) mtDNA maintenance in human health and disease, (2) reports of DNA polymerases theta and zeta (Rev3) localizing to mitochondria, and (3) additional drugs with off-target effects on mitochondrial function. Lastly, mtDNA damage may induce cell death; therefore, the possibility of utilizing compounds that disrupt mtDNA maintenance to kill cancer cells is discussed.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL, United States
| |
Collapse
|
39
|
Chan SSL. Inherited mitochondrial genomic instability and chemical exposures. Toxicology 2017; 391:75-83. [PMID: 28756246 DOI: 10.1016/j.tox.2017.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There are approximately 1500 proteins that are needed for mitochondrial structure and function, most of which are encoded in the nuclear genome (Calvo et al., 2006). Each mitochondrion has its own genome (mtDNA), which in humans encodes 13 polypeptides, 22 tRNAs and 2 rRNAs required for oxidative phosphorylation. The mitochondrial genome of humans and most vertebrates is approximately 16.5kbp, double-stranded, circular, with few non-coding bases. Thus, maintaining mtDNA stability, that is, the ability of the cell to maintain adequate levels of mtDNA template for oxidative phosphorylation is essential and can be impacted by the level of mtDNA mutation currently within the cell or mitochondrion, but also from errors made during normal mtDNA replication, defects in mitochondrial quality control mechanisms, and exacerbated by exposures to exogenous and/or endogenous genotoxic agents. In this review, we expand on the origins and consequences of mtDNA instability, the current state of research regarding the mechanisms by which mtDNA instability can be overcome by cellular and chemical interventions, and the future of research and treatments for mtDNA instability.
Collapse
Affiliation(s)
- Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, United States; Neuroene Therapeutics, Mt. Pleasant, SC 29464, United States.
| |
Collapse
|
40
|
Roubicek DA, Souza-Pinto NCD. Mitochondria and mitochondrial DNA as relevant targets for environmental contaminants. Toxicology 2017; 391:100-108. [PMID: 28655544 DOI: 10.1016/j.tox.2017.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The mitochondrial DNA (mtDNA) is a closed circular molecule that encodes, in humans, 13 polypeptides components of the oxidative phosphorylation complexes. Integrity of the mitochondrial genome is essential for mitochondrial function and cellular homeostasis, and mutations and deletions in the mtDNA lead to oxidative stress, mitochondrial dysfunction and cell death. In vitro and in situ studies suggest that when exposed to certain genotoxins, mtDNA accumulates more damage than nuclear DNA, likely owing to its organization and localization in the mitochondrial matrix, which tends to accumulate lipophilic, positively charged molecules. In that regard, several relevant environmental and occupational contaminants have physical-chemical characteristics that indicate that they might accumulate in mitochondria and target mtDNA. Nonetheless, very little is known so far about mtDNA damage and mitochondrial dysfunction due to environmental exposure, either in model organisms or in humans. In this article, we discuss some of the characteristics of mtDNA which render it a potentially relevant target for damage by environmental contaminants, as well as possible functional consequences of damage/mutation accumulation. In addition, we review the data available in the literature focusing on mitochondrial effects of the most common classes of environmental pollutants. From that, we conclude that several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies, including mechanistic ones, are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure.
Collapse
Affiliation(s)
- Deborah A Roubicek
- Dept. of Environmental Analyses, São Paulo State Environmental Agency, CETESB, Av. Prof. Frederico Hermann Jr, 345, 05459-900, São Paulo, SP, Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-000, Brazil.
| |
Collapse
|
41
|
Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology 2017. [PMID: 28627407 DOI: 10.1016/j.tox.2017.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708-0328, USA.
| | - Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA; Neuroene Therapeutics, Mt. Pleasant, SC 29464, USA.
| |
Collapse
|