1
|
de Souza RA, Díaz N, G. Fuentes L, Pimenta A, Nagem RAP, Chávez-Olórtegui C, Schneider FS, Molina F, Sanchez EF, Suárez D, Ferreira RS. Assessing the Interactions between Snake Venom Metalloproteinases and Hydroxamate Inhibitors Using Kinetic and ITC Assays, Molecular Dynamics Simulations and MM/PBSA-Based Scoring Functions. ACS OMEGA 2024; 9:50599-50621. [PMID: 39741831 PMCID: PMC11684173 DOI: 10.1021/acsomega.4c08439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025]
Abstract
Bothrops species are the main cause of snake bites in rural communities of tropical developing countries of Central and South America. Envenomation by Bothrops snakes is characterized by prominent local inflammation, hemorrhage and necrosis as well as systemic hemostatic disturbances. These pathological effects are mainly caused by the major toxins of the viperidae venoms, the snake venom metalloproteinases (SVMPs). Despite the antivenom therapy efficiency to block the main toxic effects on bite victims, this treatment shows limited efficacy to prevent tissue necrosis. Thus, drug-like inhibitors of these toxins have the potential to aid serum therapy of accidents inflicted by viper snakes. Broad-spectrum metalloprotease inhibitors bearing a hydroxamate zinc-binding group are potential candidates to improve snake bites therapy and could also be used to study toxin-ligand interactions. Therefore, in this work, we used both docking calculations and molecular dynamics simulations to assess the interactions between six hydroxamate inhibitors and two P-I SVMPs selected as models: Atroxlysin-I (hemorrhagic) from Bothrops atrox, and Leucurolysin-a (nonhemorrhagic) from Bothrops leucurus. We also employed a large variety of end-point free energy methods in combination with entropic terms to produce scoring functions of the relative affinities of the inhibitors for the toxins. Then we identified the scoring functions that best correlated with experimental data obtained from kinetic activity assays. In addition, to the characterization of these six molecules as inhibitors of the toxins, this study sheds light on the main enzyme-inhibitor interactions, explaining the broad-spectrum behavior of the inhibitors, and identifies the energetic and entropic terms that improve the performance of the scoring functions.
Collapse
Affiliation(s)
- Raoni A. de Souza
- Rua Conde Pereira Carneiro 80, Dept. de Pesquisa e
Desenvolvimento, Fundação Ezequiel Dias, Belo
Horizonte 30510-010, Minas Gerais, Brazil
| | - Natalia Díaz
- Avda Julián Clavería 8, Dept. de
Química Física y Analítica, Universidad de
Oviedo, Oviedo 33006, Asturias, Spain
| | - Luis G. Fuentes
- Carretera Sacramento s/n, Dept. de Química y
Física, Universidad de Almería, Almería
04120, Andalucía, Spain
| | - Adriano Pimenta
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Ronaldo A. P. Nagem
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Carlos Chávez-Olórtegui
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| | - Francisco S. Schneider
- 1682, Rue de la Valsière, Sys2Diag
(UMR9005 CNRS − ALCEN), Cap Delta, Montpellier 34184, Occitanie,
France
| | - Franck Molina
- 1682, Rue de la Valsière, Sys2Diag
(UMR9005 CNRS − ALCEN), Cap Delta, Montpellier 34184, Occitanie,
France
| | - Eladio F. Sanchez
- Rua Conde Pereira Carneiro 80, Dept. de Pesquisa e
Desenvolvimento, Fundação Ezequiel Dias, Belo
Horizonte 30510-010, Minas Gerais, Brazil
| | - Dimas Suárez
- Avda Julián Clavería 8, Dept. de
Química Física y Analítica, Universidad de
Oviedo, Oviedo 33006, Asturias, Spain
| | - Rafaela S. Ferreira
- Avenida Antônio Carlos 6627, Dept. De
Bioquímica e Imunologia, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Minas Gerais,
Brazil
| |
Collapse
|
2
|
Montealegre-Sánchez L, Montoya-Gómez A, Jiménez-Charris E. Individual variations in the protein profiles and functional activities of the eyelash palm pit-viper (Bothriechis schlegelii) venom from the Colombian southwest region. Acta Trop 2021; 223:106113. [PMID: 34450060 DOI: 10.1016/j.actatropica.2021.106113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Bothriechis schlegelii is a venomous snake found in Central and South America, mainly sighted in regions devoted to agriculture. However, in Colombia, little is known about its contribution to the total envenoming cases. Furthermore, there are no reports of the biochemical and functional activities of venoms from the southwest populations, and the differences respecting other populations are unknown. This study analyzed the protein profiles of venom samples obtained from three specimens originating from this region of Colombia using electrophoresis and chromatography. The lethality, edema-induction, hemorrhagic, defibrinating, coagulant, and indirect hemolytic activities were also evaluated. As a result, venoms were composed of proteins with a wide range of molecular weights, most of them below <37 kDa, with differences between male and female electrophoretic and chromatographic profiles. These variations were also observed in the evaluation of venom functional activities such as pro-coagulant, indirect hemolytic, and edema-inducing activities, whereas neither hemorrhagic nor defibrinating activities were detected. These results are also different considering reports with venom samples from other geographical locations, restating the existence of high intraspecific variability in B. schlegelii venoms, which could have relevant pathophysiological and therapeutic implications.
Collapse
|
3
|
Site mutation of residues in a loop surrounding the active site of a P I snake venom metalloproteinase abrogates its hemorrhagic activity. Biochem Biophys Res Commun 2019; 512:859-863. [DOI: 10.1016/j.bbrc.2019.03.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/23/2019] [Indexed: 12/29/2022]
|
4
|
de Souza RA, Díaz N, Nagem RAP, Ferreira RS, Suárez D. Unraveling the distinctive features of hemorrhagic and non-hemorrhagic snake venom metalloproteinases using molecular simulations. J Comput Aided Mol Des 2015; 30:69-83. [PMID: 26676823 DOI: 10.1007/s10822-015-9889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
Abstract
Snake venom metalloproteinases are important toxins that play fundamental roles during envenomation. They share a structurally similar catalytic domain, but with diverse hemorrhagic capabilities. To understand the structural basis for this difference, we build and compare two dynamical models, one for the hemorrhagic atroxlysin-I from Bothrops atrox and the other for the non-hemorraghic leucurolysin-a from Bothrops leucurus. The analysis of the extended molecular dynamics simulations shows some changes in the local structure, flexibility and surface determinants that can contribute to explain the different hemorrhagic activity of the two enzymes. In agreement with previous results, the long Ω-loop (from residue 149 to 177) has a larger mobility in the hemorrhagic protein. In addition, we find some potentially-relevant differences at the base of the S1' pocket, what may be interesting for the structure-based design of new anti-venom agents. However, the sharpest differences in the computational models of atroxlysin-I and leucurolysin-a are observed in the surface electrostatic potential around the active site region, suggesting thus that the hemorrhagic versus non-hemorrhagic activity is probably determined by protein surface determinants.
Collapse
Affiliation(s)
- Raoni Almeida de Souza
- Depto de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, 3010-010, Brazil
| | - Natalia Díaz
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ronaldo Alves Pinto Nagem
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Avenida Antônio Carlos 6627, Depto. de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Dimas Suárez
- C/ Julián Clavería 8. Dpto. de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
5
|
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:28. [PMID: 26273288 PMCID: PMC4535780 DOI: 10.1186/s40409-015-0027-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| |
Collapse
|
6
|
Schneider FS, Nguyen DL, Castro KL, Cobo S, Machado de Avila RA, Ferreira NDA, Sanchez EF, Nguyen C, Granier C, Galéa P, Chávez-Olortegui C, Molina F. Use of a synthetic biosensor for neutralizing activity-biased selection of monoclonal antibodies against atroxlysin-I, an hemorrhagic metalloproteinase from Bothrops atrox snake venom. PLoS Negl Trop Dis 2014; 8:e2826. [PMID: 24762927 PMCID: PMC3998924 DOI: 10.1371/journal.pntd.0002826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/13/2014] [Indexed: 11/20/2022] Open
Abstract
Background The snake Bothrops atrox is responsible for the majority of envenomings in the northern region of South America. Severe local effects, including hemorrhage, which are mainly caused by snake venom metalloproteinases (SVMPs), are not fully neutralized by conventional serum therapy. Little is known about the immunochemistry of the P-I SVMPs since few monoclonal antibodies (mAbs) against these molecules have been obtained. In addition, producing toxin-neutralizing mAbs remains very challenging. Methodology/Principal Findings Here, we report on the set-up of a functional screening based on a synthetic peptide used as a biosensor to select neutralizing mAbs against SVMPs and the successful production of neutralizing mAbs against Atroxlysin-I (Atr-I), a P-I SVMP from B. atrox. Hybridomas producing supernatants with inhibitory effect against the proteolytic activity of Atr-I towards the FRET peptide Abz-LVEALYQ-EDDnp were selected. Six IgG1 Mabs were obtained (named mAbatr1 to mAbatr6) and also two IgM. mAbatrs1, 2, 3 and 6 were purified. All showed a high specific reactivity, recognizing only Atr-I and B. atrox venom in ELISA and a high affinity, showing equilibrium constants in the nM range for Atr-I. These mAbatrs were not able to bind to Atr-I overlapping peptides, suggesting that they recognize conformational epitopes. Conclusions/Significance For the first time a functional screening based on a synthetic biosensor was successfully used for the selection of neutralizing mAbs against SVMPs. In this work, we propose a new screening strategy to produce monoclonal antibodies against Atr-I, a P-I class SVMP from Bothrops atrox, which is the snake responsible for the majority of the accidents in South America. SVMPs are the main toxic factors in Bothrops venom causing systemic and local hemorrhage, which may evolve to inflammation and/or necrosis. Since the toxic effects of SVMPs are related to their proteolytic activity, we have produced a peptide which was used as a biosensor for Atr-I hydrolysis. Hydrolysis of this substrate was monitored and the clones possessing inhibitory activity against the proteolytic activity of Atr-I upon the peptide were selected. Using our new approach, we have obtained four monoclonal antibodies highly specific and with neutralizing capacity against the hemorrhagic activity of either Atr-I alone or Bothrops atrox whole venom. To the best of the authors' knowledge, this is the first time where a functional screening is used for the selection of neutralizing mAbs against SVMPs. It is also the first description of mAbs anti-Atr-I, with inhibitory potential against its toxic activities which may be useful for diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Francisco Santos Schneider
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | - Karen Larissa Castro
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Sandra Cobo
- SysDiag, UMR3145,CNRS/BioRad, Montpellier, France
| | - Ricardo Andrez Machado de Avila
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Nivia de Assis Ferreira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - Eladio Flores Sanchez
- Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Brasil
| | | | | | | | - Carlos Chávez-Olortegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- * E-mail:
| | | |
Collapse
|
7
|
Araújo GLD, Campos MAA, Valente MAS, Silva SCT, França FD, Chaves MM, Tagliati CA. Alternative methods in toxicity testing: the current approach. BRAZ J PHARM SCI 2014. [DOI: 10.1590/s1984-82502011000100005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alternative methods are being developed to reduce, refine, and replace (3Rs) animals used in experiments, aimed at protecting animal welfare. The present study reports alternative tests which are based on the principles of the 3Rs and the efforts made to validate these tests. In Europe, several methodologies have already been implemented, such as tests of irritability, cell viability, and phototoxicity as well as in vitro mathematical models together with the use of in silico tools. This is a complex process that spans from development to regulatory approval and subsequent adoption by various official entities. Within this regulatory framework is REACH, the European Community Regulation for chemicals and their safe use. In Brazil, the BraCVAM (Brazilian Center for the Validation of Alternative Methods) was recently established to validate alternative methods and stimulate incorporation of new methodologies. A new vision of toxicology is emerging for the 21st century (Tox-21), and the subsequent changes are shaping a new paradigm.
Collapse
|
8
|
Molecular models of the Mojave rattlesnake (Crotalus scutulatus scutulatus) venom metalloproteinases reveal a structural basis for differences in hemorrhagic activities. J Biol Phys 2014; 40:193-216. [PMID: 24522289 DOI: 10.1007/s10867-013-9339-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Rattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C. s. scutulatus metalloproteinase gene (GP1, GP2, GP3, and GP4). For comparative purposes, we modeled the atrolysin metalloproteinases of C. atrox as well. All molecular models shared the same topology. While the atrolysin metalloproteinase molecular models contained highly conserved substrate binding sites, the Mojave rattlesnake metalloproteinases showed higher structural divergence when superimposed onto each other. The highest structural divergence among the four C. s. scutulatus molecular models was located at the northern cleft wall and the S'1-pocket of the substrate binding site, molecular regions that modulate substrate selectivity. Molecular dynamics and field potential maps for each C. s. scutulatus metalloproteinase model demonstrated that the non-hemorrhagic metalloproteinases (GP2 and GP3) contain highly basic molecular and field potential surfaces while the hemorrhagic metalloproteinases GP1 and atrolysin C showed extensive acidic field potential maps and shallow but less dynamic active site pockets. Hence, differences in the spatial arrangement of the northern cleft wall, the S'1-pocket, and the physico-chemical environment surrounding the catalytic site contribute to differences in metalloproteinase activities in the Mojave rattlesnake. Our results provide a structural basis for variation of metalloproteinase-associated activities in the rattlesnake venom of the Mojave rattlesnake.
Collapse
|
9
|
Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. J Proteomics 2013; 80:250-67. [DOI: 10.1016/j.jprot.2013.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
|
10
|
Escalante T, Ortiz N, Rucavado A, Sanchez EF, Richardson M, Fox JW, Gutiérrez JM. Role of collagens and perlecan in microvascular stability: exploring the mechanism of capillary vessel damage by snake venom metalloproteinases. PLoS One 2011; 6:e28017. [PMID: 22174764 PMCID: PMC3234262 DOI: 10.1371/journal.pone.0028017] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/29/2011] [Indexed: 01/09/2023] Open
Abstract
Hemorrhage is a clinically important manifestation of viperid snakebite envenomings, and is induced by snake venom metalloproteinases (SVMPs). Hemorrhagic and non-hemorrhagic SVMPs hydrolyze some basement membrane (BM) and associated extracellular matrix (ECM) proteins. Nevertheless, only hemorrhagic SVMPs are able to disrupt microvessels; the mechanisms behind this functional difference remain largely unknown. We compared the proteolytic activity of the hemorrhagic P-I SVMP BaP1, from the venom of Bothrops asper, and the non-hemorrhagic P-I SVMP leucurolysin-a (leuc-a), from the venom of Bothrops leucurus, on several substrates in vitro and in vivo, focusing on BM proteins. When incubated with Matrigel, a soluble extract of BM, both enzymes hydrolyzed laminin, nidogen and perlecan, albeit BaP1 did it at a faster rate. Type IV collagen was readily digested by BaP1 while leuc-a only induced a slight hydrolysis. Degradation of BM proteins in vivo was studied in mouse gastrocnemius muscle. Western blot analysis of muscle tissue homogenates showed a similar degradation of laminin chains by both enzymes, whereas nidogen was cleaved to a higher extent by BaP1, and perlecan and type IV collagen were readily digested by BaP1 but not by leuc-a. Immunohistochemistry of muscle tissue samples showed a decrease in the immunostaining of type IV collagen after injection of BaP1, but not by leuc-a. Proteomic analysis by LC/MS/MS of exudates collected from injected muscle revealed higher amounts of perlecan, and types VI and XV collagens, in exudates from BaP1-injected tissue. The differences in the hemorrhagic activity of these SVMPs could be explained by their variable ability to degrade key BM and associated ECM substrates in vivo, particularly perlecan and several non-fibrillar collagens, which play a mechanical stabilizing role in microvessel structure. These results underscore the key role played by these ECM components in the mechanical stability of microvessels.
Collapse
Affiliation(s)
- Teresa Escalante
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Natalia Ortiz
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | - Alexandra Rucavado
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Eladio F. Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundaçao Ezequiel Dias (FUNED), Belo Horizonte, Minas Gerais, Brazil
| | - Michael Richardson
- Centro de Pesquisa e Desenvolvimento, Fundaçao Ezequiel Dias (FUNED), Belo Horizonte, Minas Gerais, Brazil
| | - Jay W. Fox
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- * E-mail:
| |
Collapse
|
11
|
Key events in microvascular damage induced by snake venom hemorrhagic metalloproteinases. J Proteomics 2011; 74:1781-94. [DOI: 10.1016/j.jprot.2011.03.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/28/2023]
|
12
|
Moura LDA, Sanchez EF, Bianco ÉM, Pereira RC, Teixeira VL, Fuly AL. Antiophidian properties of a dolastane diterpene isolated from the marine brown alga Canistrocarpus cervicornis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Wallnoefer HG, Lingott T, Gutiérrez JM, Merfort I, Liedl KR. Backbone flexibility controls the activity and specificity of a protein-protein interface: specificity in snake venom metalloproteases. J Am Chem Soc 2010; 132:10330-7. [PMID: 20617834 DOI: 10.1021/ja909908y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interfaces have crucial functions in many biological processes. The large interaction areas of such interfaces show complex interaction motifs. Even more challenging is the understanding of (multi)specificity in protein-protein binding. Many proteins can bind several partners to mediate their function. A perfect paradigm to study such multispecific protein-protein interfaces are snake venom metalloproteases (SVMPs). Inherently, they bind to a variety of basement membrane proteins of capillaries, hydrolyze them, and induce profuse bleeding. However, despite having a high sequence homology, some SVMPs show a strong hemorrhagic activity, while others are (almost) inactive. We present computer simulations indicating that the activity to induce hemorrhage, and thus the capability to bind the potential reaction partners, is related to the backbone flexibility in a certain surface region. A subtle interplay between flexibility and rigidity of two loops seems to be the prerequisite for the proteins to carry out their damaging function. Presumably, a significant alteration in the backbone dynamics makes the difference between SVMPs that induce hemorrhage and the inactive ones.
Collapse
Affiliation(s)
- Hannes G Wallnoefer
- Institute of General, Inorganic and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
14
|
Moura LDA, Sanchez EF, Bianco EM, Pereira RC, Teixeira VL, Fuly AL. WITHDRAWN: Antiophidian properties of a dolastane diterpene isolated from the marine brown alga Canistrocarpus cervicornis. Biomed Pharmacother 2010:S0753-3322(10)00181-2. [PMID: 21131161 DOI: 10.1016/j.biopha.2010.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/30/2010] [Indexed: 11/25/2022] Open
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.bionut.2011.06.021. The duplicate article has therefore been withdrawn.
Collapse
Affiliation(s)
- Laura De Andrade Moura
- Departamento de Biologia Molecular e Celular, Instituto de Biologia, Universidade Federal Fluminense, Campus Valonguinho, Niterói, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Cloning and identification of a novel P-II class snake venom metalloproteinase from Gloydius halys. Appl Biochem Biotechnol 2010; 162:1391-402. [PMID: 20174888 DOI: 10.1007/s12010-010-8911-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
Abstract
Ahpfibrase was a new snake venom metalloproteinase (SVMP) which was cloned from Gloydius halys. The cDNA sequence with 1,891 base pairs encodes an open reading frame of 477 amino acids which includes a 17 amino acid signal peptide, plus a 171 amino acid segment of zymogen-like propeptide, a metalloproteinase domain of 200 amino acids, a spacer of 16 amino acids, and a disintegrin-like peptide of 73 amino acids. The metalloproteinase domain contained a conserved signature zinc-binding motif HEXXHXXGXXH in the catalytic region and a methionine-turn CIM. To determine the activity of ahpfibrase, the coding region including both the metalloproteinase domain and disintegrin region was amplified by PCR, inserted into the pET25b(+) vector, and expressed in Escherichia coli. The recombinant protein was recovered from inclusion bodies with 8 M urea and refolding was performed by fed-batch dilution method, and purified recombinant ahpfibrase showed the fibrinolytic activity and platelet aggregation-inhibition ability.
Collapse
|
16
|
Sanchez EF, Schneider FS, Yarleque A, Borges MH, Richardson M, Figueiredo SG, Evangelista KS, Eble JA. The novel metalloproteinase atroxlysin-I from Peruvian Bothrops atrox (Jergón) snake venom acts both on blood vessel ECM and platelets. Arch Biochem Biophys 2010; 496:9-20. [PMID: 20102699 DOI: 10.1016/j.abb.2010.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
We report the isolation and structure-function relationship of a 23kDa metalloproteinase named atroxlysin-I from the venom of the Peruvian Bothrops atrox (Jergón). Atroxlysin is a P-I metalloproteinase and contains 204 residues. Its proteolytic activity towards dimethylcasein is enhanced by Ca2+ but inhibited by EDTA, dithiothreitol, excessive Zn2+ and alpha2-macroglobulin. Unlike other structurally homologous P-I metalloproteinases, atroxlysin-I causes hemorrhages. To examine its hemorrhagic activity mechanistically, we studied its function in vitro and in vivo. It cleaved the Ala14-Leu15 and Tyr16-Leu17 bonds in oxidized insulin B-chain and specifically hydrolyzed the alpha-chains of fibrin(ogen) in a dose- and time-dependent manner. Atroxlysin-I cleaved plasma fibronectin and other extracellular matrix proteins (collagens I and IV) and the triple-helical fragment CB3 of collagen IV, but did not degrade laminin-111. Complementarily, the laminin and collagen binding integrins alpha7beta1 and alpha1beta1 were cleaved by atroxlysin. Even without catalytic activity atroxlysin-I inhibited collagen- and ADP-triggered platelet aggregation.
Collapse
Affiliation(s)
- Eladio F Sanchez
- Research and Development Center, Ezequiel Dias Foundation, 30510-010 Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J Struct Biol 2009; 169:294-303. [PMID: 19932752 PMCID: PMC7129284 DOI: 10.1016/j.jsb.2009.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 11/30/2022]
Abstract
The structures of snake venom metalloproteases (SVMPs) are proposed to be useful models to understand the structural and functional relationship of ADAM (a disintegrin and metalloprotease) which are membrane-anchored proteins involved in multiple human diseases. We have purified, sequenced and determined the structures of two new P-III SVMPs – atragin and kaouthiagin-like (K-like) from Naja atra. Atragin exhibits a known C-shaped topology, whereas K-like adopts an I-shaped conformation because of the distinct disulfide pattern in the disintegrin-like (D) domain. K-like exhibits an enzymatic specificity toward pro-TNFα with less inhibition of cell migration, but atragin shows the opposite effect. The specificity of the enzymatic activity is indicated to be dominated mainly by the local structures of SVMP in the metalloprotease (M) domain, whereas the hyper-variable region (HVR) in the cysteine-rich (C) domain is involved in a cell-migration activity. We demonstrate also a pH-dependent enzymatic activity of atragin that we correlate with the structural dynamics of a Zn2+-binding motif and the Met-turn based on the structures determined with a pH-jump method. The structural variations between the C- and I-shapes highlight the disulfide bond patterns in the D domain of the ADAM/adamalysin/reprolysins family proteins.
Collapse
|
18
|
Lingott T, Schleberger C, Gutiérrez JM, Merfort I. High-Resolution Crystal Structure of the Snake Venom Metalloproteinase BaP1 Complexed with a Peptidomimetic: Insight into Inhibitor Binding. Biochemistry 2009; 48:6166-74. [DOI: 10.1021/bi9002315] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten Lingott
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg im Breisgau, Germany
| | - Christian Schleberger
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg im Breisgau, Germany
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Chen HS, Tsai HY, Wang YM, Tsai IH. P-III hemorrhagic metalloproteinases from Russell's viper venom: cloning, characterization, phylogenetic and functional site analyses. Biochimie 2008; 90:1486-98. [PMID: 18554518 DOI: 10.1016/j.biochi.2008.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 05/14/2008] [Indexed: 11/21/2022]
Abstract
Two homologous P-III hemorrhagic metalloproteinases were purified from Russell's viper venoms from Myanmar and Kolkata (eastern India), and designated as daborhagin-M and daborhagin-K, respectively. They induced severe dermal hemorrhage in mice at a minimum hemorrhagic dose of 0.8-0.9 microg. Daborhagin-M specifically hydrolyzed an Aalpha-chain of fibrinogen, fibronectin, and type IV collagen in vitro. Analyses of its cleavage sites on insulin chain B and kinetic specificities toward oligopeptides suggested that daborhagin-M prefers hydrophobic residues at the P(1), P(1)', and P(2)' positions on the substrates. Of the eight Daboia geographic venom samples analyzed by Western blotting, only those from Myanmar and eastern India showed a strong positive band at 65kDa, which correlated with the high risk of systemic hemorrhagic symptoms elicited by Daboia envenoming in both regions. The full sequence of daborhagin-K was determined by cDNA cloning and sequencing, and then confirmed by peptide mass fingerprinting. Furthermore, molecular phylogenetic analyses based on 27 P-IIIs revealed the co-evolution of two major P-III classes with distinct hemorrhagic potencies, and daborhagin-K belongs to the most hemorrhagic subclass. By comparing the absolute complexity profiles between these two classes, we identified four structural motifs probably responsible for the phylogenetic subtyping and hemorrhagic potencies of P-III SVMPs.
Collapse
Affiliation(s)
- Hong-Sen Chen
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
20
|
Agero U, Arantes RME, Lacerda-Queiroz N, Mesquita ON, Magalhães A, Sanchez EF, Carvalho-Tavares J. Effect of mutalysin II on vascular recanalization after thrombosis induction in the ear of the hairless mice model. Toxicon 2007; 50:698-706. [PMID: 17681580 DOI: 10.1016/j.toxicon.2007.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 06/01/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
Mutalysin II (mut-II) is an alpha-fibrinogenase isolated from Lachesis muta muta (bushmaster) snake venom. The enzyme lyses fibrin clots in vitro, and this activity does not depend on plasminogen activation. The aim of this study was to assess by intravital microscopy the effect of Mutalysin II on the recanalization of microvessels after thrombus induction in the ears of hairless mice. Photochemical thrombus formation was induced after i.v. injection of 5% fluorescein isothiocyanate labelled dextran (FITC-dextran) followed by mercury light exposure of individual microvessels of the ear of five anesthetized animals. Video playback analysis of intravital microscopy images of the ear microcirculation permitted us to measure blood flow velocity (microm/s) under control conditions (before thrombus formation) in the ear microvessels. Thirty minutes after thrombus formation (blood flow velocity stopped completely), each animal (n=5) was infused with Mutalysin II (2.0 mg/kg, i.v.). All animals treated with Mutalysin II showed evident thrombolysis after approximately 12 min, followed by recanalization. A separate group of mice (n=5) which received urokinase type-plasminogen activator (u-PA, 250 U/mouse, i.v.) showed blood flow restoration within the same interval (12 min). These in vivo data suggest that Mutalysin II has the potential to be an effective thrombolytic agent.
Collapse
Affiliation(s)
- Ubirajara Agero
- Departamento de Física, Instituto de Ciência Exatas Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Mazzi MV, Magro AJ, Amui SF, Oliveira CZ, Ticli FK, Stábeli RG, Fuly AL, Rosa JC, Braz ASK, Fontes MRM, Sampaio SV, Soares AM. Molecular characterization and phylogenetic analysis of BjussuMP-I: A RGD-P-III class hemorrhagic metalloprotease from Bothrops jararacussu snake venom. J Mol Graph Model 2007; 26:69-85. [PMID: 17081786 DOI: 10.1016/j.jmgm.2006.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 10/24/2022]
Abstract
Snake venom metalloproteases (SVMPs) embody zinc-dependent multidomain enzymes responsible for a relevant pathophysiology in envenomation, including local and systemic hemorrhage. The molecular features responsible for hemorrhagic potency of SVMPs have been associated with their multidomains structures which can target these proteins them to several receptors of different tissues and cellular types. BjussuMP-I, a SVMP isolated from the Bothrops jararacussu venom, has been characterized as a P-III hemorrhagic metalloprotease. The complete cDNA sequence of BjussuMP-I with 1641bp encodes open reading frames of 547 amino acid residues, which conserve the common domains of P-III high molecular weight hemorrhagic metalloproteases: (i) pre-pro-peptide, (ii) metalloprotease, (iii) disintegrin-like and (iv) rich cysteine domain. BjussuMP-I induced lyses in fibrin clots and inhibited collagen- and ADP-induced platelet aggregation. We are reporting, for the first time, the primary structure of an RGD-P-III class snake venom metalloprotease. A phylogenetic analysis of the BjussuMP-I metalloprotease/catalytic domain was performed to get new insights into the molecular evolution of the metalloproteases. A theoretical molecular model of this domain was built through folding recognition (threading) techniques and refined by molecular dynamics simulation. Then, the final BjussuMP-I catalytic domain model was compared to other SVMPs and Reprolysin family proteins in order to identify eventual structural differences, which could help to understand the biochemical activities of these enzymes. The presence of large hydrophobic areas and some conserved surface charge-positive residues were identified as important features of the SVMPs and other metalloproteases.
Collapse
Affiliation(s)
- Maurício V Mazzi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP, Universidade de São Paulo, USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
da Silva JO, Fernandes RS, Ticli FK, Oliveira CZ, Mazzi MV, Franco JJ, Giuliatti S, Pereira PS, Soares AM, Sampaio SV. Triterpenoid saponins, new metalloprotease snake venom inhibitors isolated from Pentaclethra macroloba. Toxicon 2007; 50:283-91. [PMID: 17517426 DOI: 10.1016/j.toxicon.2007.03.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/20/2022]
Abstract
We report here the antiproteolytic and antihemorrhagic properties of triterpenoid saponin inhibitors, named macrolobin-A and B, from Pentaclethra macroloba, against Bothrops snake venoms. The inhibitors were able to neutralize the hemorrhagic, fibrin(ogen)olytic, and proteolytic activities of class P-I and P-III metalloproteases isolated from B. neuwiedi and B. jararacussu venoms. Clotting and fibrinogenolytic activities induced by snake venoms and isolated thrombin-like enzymes were partially inhibited. Furthermore, the potential use of these inhibitors to complement antivenom therapy as an alternative treatment and/or used as molecular models for development of new therapeutical agents in the treatment of snake bite envenomations needs to be evaluated in future studies.
Collapse
Affiliation(s)
- Jocivânia O da Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP, Universidade de São Paulo, USP, Ribeirão Preto-SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wagstaff SC, Laing GD, Theakston RDG, Papaspyridis C, Harrison RA. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS Med 2006; 3:e184. [PMID: 16737347 PMCID: PMC1472699 DOI: 10.1371/journal.pmed.0030184] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 01/31/2006] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Snake venom is a potentially lethal and complex mixture of hundreds of functionally diverse proteins that are difficult to purify and hence difficult to characterize. These difficulties have inhibited the development of toxin-targeted therapy, and conventional antivenom is still generated from the sera of horses or sheep immunized with whole venom. Although life-saving, antivenoms contain an immunoglobulin pool of unknown antigen specificity and known redundancy, which necessitates the delivery of large volumes of heterologous immunoglobulin to the envenomed victim, thus increasing the risk of anaphylactoid and serum sickness adverse effects. Here we exploit recent molecular sequence analysis and DNA immunization tools to design more rational toxin-targeted antivenom. METHODS AND FINDINGS We developed a novel bioinformatic strategy that identified sequences encoding immunogenic and structurally significant epitopes from an expressed sequence tag database of a venom gland cDNA library of Echis ocellatus, the most medically important viper in Africa. Focusing upon snake venom metalloproteinases (SVMPs) that are responsible for the severe and frequently lethal hemorrhage in envenomed victims, we identified seven epitopes that we predicted would be represented in all isomers of this multimeric toxin and that we engineered into a single synthetic multiepitope DNA immunogen (epitope string). We compared the specificity and toxin-neutralizing efficacy of antiserum raised against the string to antisera raised against a single SVMP toxin (or domains) or antiserum raised by conventional (whole venom) immunization protocols. The SVMP string antiserum, as predicted in silico, contained antibody specificities to numerous SVMPs in E. ocellatus venom and venoms of several other African vipers. More significantly, the antiserum cross-specifically neutralized hemorrhage induced by E. ocellatus and Cerastes cerastes cerastes venoms. CONCLUSIONS These data provide valuable sequence and structure/function information of viper venom hemorrhagins but, more importantly, a new opportunity to design toxin-specific antivenoms-the first major conceptual change in antivenom design after more than a century of production. Furthermore, this approach may be adapted to immunotherapy design in other cases where targets are numerous, diverse, and poorly characterized such as those generated by hypermutation or antigenic variation.
Collapse
Affiliation(s)
- Simon C Wagstaff
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
24
|
Fernandes CM, Zamuner SR, Zuliani JP, Rucavado A, Gutiérrez JM, Teixeira CDFP. Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: leukocyte recruitment and release of cytokines. Toxicon 2006; 47:549-59. [PMID: 16529786 DOI: 10.1016/j.toxicon.2006.01.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/18/2022]
Abstract
The inflammatory events induced by BaP1, a 22.7 kDa metalloproteinase isolated from Bothrops asper snake venom, were studied. BaP1 i.p. injection in mice induced a marked inflammatory cell infiltrate into peritoneal cavity of animals with predominance of neutrophils in the early phase followed by mononuclear cells in the late period. Inhibition of enzymatic activity of BaP1 by chelation with EDTA resulted in a drastic reduction of this effect. In addition, BaP1 induced a significant increase of blood neutrophil numbers before its accumulation in peritoneal cavity, thus suggesting a stimulatory action of BaP1 on mechanisms of cell mobilization from bone marrow reserve compartments. A reduction in the number of neutrophils was observed in the exudate when antibodies against LECAM-1, CD18 and LFA-1 were used, suggesting the involvement of these adhesion molecules in the effects of BaP1. In contrast, there was no effect with antibodies against ICAM-1 and PECAM-1. Moreover, a conspicuous increment in the levels of IL-1 and TNF-alpha, but not of LTB4, was observed in peritoneal washes collected from mice injected with BaP1. It is concluded that BaP1 induces in vivo a marked leukocyte influx, which parallels an increased number of these cells in the blood, and is associated to the expression of specific leukocyte adhesion molecules and release of chemotactic inflammatory cytokines. Since BaP1 is a P-I class metalloproteinase, these results indicate that the proteolytic domain of metalloproteinases per se can trigger specific inflammatory events.
Collapse
Affiliation(s)
- Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Ave Vital Brazil, 1500-05503 900 Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Ramos OHP, Selistre-de-Araujo HS. Snake venom metalloproteases--structure and function of catalytic and disintegrin domains. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:328-346. [PMID: 16434235 DOI: 10.1016/j.cbpc.2005.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 11/09/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
Snake venoms are relevant sources of toxins that have evolved towards the engineering of highly active compounds. In the last years, research efforts have produced great advance in their understanding and uses. Metalloproteases with disintegrin domains are among the most abundant toxins in many Viperidae snake venoms. This review will focus on the structure, function and possible applications of the metalloprotease and disintegrin domains.
Collapse
Affiliation(s)
- O H P Ramos
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil
| | - H S Selistre-de-Araujo
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, Rodovia Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
26
|
Lou Z, Hou J, Liang X, Chen J, Qiu P, Liu Y, Li M, Rao Z, Yan G. Crystal structure of a non-hemorrhagic fibrin(ogen)olytic metalloproteinase complexed with a novel natural tri-peptide inhibitor from venom of Agkistrodon acutus. J Struct Biol 2005; 152:195-203. [PMID: 16330227 DOI: 10.1016/j.jsb.2005.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Revised: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/19/2022]
Abstract
Thrombotic occlusive diseases pose a great threat to human health. Thrombolytic agents are in widespread use for the dissolution of arterial and venous pathologic thrombi in these kinds of diseases. Snake venom metalloproteinases (SVMPs) can act directly on fibrin/fibrinogen and are therefore potential candidates for therapeutic use against thrombotic occlusive diseases. In this study, we have determined the crystal structure of FII, a novel non-hemorrhagic SVMP isolated from Anhui Agkistrodon acutus snake venom by molecular replacement. The structure reveals that FII is a member of the P-I class SVMPs. The Zn2+ ion essential for hydrolytic activity is found in the active site and is tetrahedrally co-ordinated by three histidine residues and water molecule. Unambiguous electron density for a tri-peptide with sequence KNL is also found located near the active site. Biochemical evidences show that the tri-peptide KNL can inhibit the enzymatic activity of FII.
Collapse
Affiliation(s)
- Zhiyong Lou
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Teixeira CDFP, Fernandes CM, Zuliani JP, Zamuner SF. Inflammatory effects of snake venom metalloproteinases. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:181-4. [PMID: 15962120 DOI: 10.1590/s0074-02762005000900031] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metalloproteinases are abundant enzymes in crotaline and viperine snake venoms. They are relevant in the pathophysiology of envenomation, being responsible for local and systemic hemorrhage frequently observed in the victims. Snake venom metalloproteinases (SVMP) are zinc-dependent enzymes of varying molecular weights having multidomain organization. Some SVMP comprise only the proteinase domain, whereas others also contain a disintegrin-like domain, cysteine-rich, and lectin domains. They have strong structural similarities with both mammalian matrix metalloproteinases (MMP) and members of ADAMs (a disintegrin and metalloproteinase) group. Besides hemorrhage, snake venom metalloproteinase induce local myonecrosis, skin damage, and inflammatory reaction in experimental models. Local inflammation is an important characteristic of snakebite envenomations inflicted by viperine and crotaline snake species. Thus, in the recent years there is a growing effort to understand the mechanisms responsible for SVMP-induced inflammatory reaction and the structural determinants of this effect. This short review focuses the inflammatory effects evoked by SVMP.
Collapse
|