1
|
Torres-Bonilla KA, Bayona-Serrano JD, Sáenz-Suarez PA, Muñoz-Gómez LM, Bernal-Bautista MH, Hyslop S. The double-banded false coralsnake Erythrolamprus bizona (Dipsadidae, Xenodontinae, Xenodontini) has a metalloproteinase-rich venom with proteolytic activity towards azocasein and α-fibrinogen. Toxicon 2025; 263:108407. [PMID: 40374097 DOI: 10.1016/j.toxicon.2025.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/30/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
The venom of the double-banded false coralsnake, Erythrolamprus bizona, is proteolytic and attenuates neuromuscular contractile activity in vitro. Here, we examined the Duvernoy's venom gland histology and general composition of E. bizona venom using a combination of chromatographic, electrophoretic, enzymatic and proteomic analyses. Histologically, the venom gland consisted of serous epithelium-lined secretory tubules and a supralabial gland that stained positively for mucopolysaccharide. SDS-PAGE showed that the venom had a simple composition, with proteins in the range of 15-60 kDa. This simple composition was confirmed by RP-HPLC that revealed 15 main protein peaks. The venom (1-10 μg) was highly proteolytic towards azocasein, but was devoid of esterase, phospholipase (PLA2), and L-amino acid oxidase activities. The venom also degraded casein and gelatin in zymographic assays, with activity towards gelatin being particularly potent and detected over the range of 18.7 ng-30 μg of venom; gelatinolytic activity was also detected in four of the RP-HPLC peaks. The venom (10 μg) selectively degraded the α-chain of fibrinogen. All proteolytic activity was inhibited by EDTA (metalloproteinase inhibitor) but not by AEBSF (serine proteinase inhibitor). SDS-PAGE followed by in-gel digestion of the main electrophoretic bands coupled with LC-MS/MS analysis revealed the presence of five toxin families: C-type lectin-like proteins (CTL), cysteine-rich secretory proteins (CRiSP), phospholipase B (PLB), snake venom matrix metalloproteinases (svMMP), and snake venom metalloproteinases (SVMP). These findings extend our knowledge of the toxinology of E. bizona and suggest that the local manifestations (pain, edema, erythema, and ecchymosis) seen in human envenomation by this species are probably mediated by venom metalloproteinases.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Juan D Bayona-Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, 05585-000, São Paulo, SP, Brazil
| | - Paula A Sáenz-Suarez
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862, Campinas, SP, Brazil
| | - Luis M Muñoz-Gómez
- Laboratório de Toxinologia, Fundação Oswaldo Cruz, Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias, Avenida Brasil 4036, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Manuel H Bernal-Bautista
- Departamento de Biología, Universidad del Tolima, Barrio Santa Helena, Parte Alta, Tolima, 731020, Ibagué, Colombia
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Torres-Bonilla KA, Bayona-Serrano JD, Sáenz-Suarez PA, Andrade-Silva D, Bernal-Bautista MH, Serrano SMT, Hyslop S. Venom proteomics and Duvernoy's venom gland histology of Pseudoboa neuwiedii (Neuwied's false boa; Dipsadidae, Pseudoboini). Toxicon 2025; 254:108218. [PMID: 39706372 DOI: 10.1016/j.toxicon.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The venom of Colombian specimens of the rear-fanged snake Pseudoboa neuwiedii contains proteolytic and phospholipase A2 (PLA2) activities, but is devoid of esterases. Mass spectrometric analysis of electrophoretic bands indicated that this venom contains C-type lectins (CTL), cysteine-rich secretory proteins (CRiSP), PLA2, snake venom metalloproteinases (SVMP), and snake venom matrix metalloproteinases (svMMP). In this investigation, we extended our characterization of P. neuwiedii by undertaking a shotgun proteomic analysis of the venom and comparing the results with a transcriptomic database for Brazilian P. neuwiedii; proteomic data previously obtained by in-gel digestion of electrophoretic bands coupled with mass spectrometry were also reanalyzed by comparing them with the transcriptomic results. The histology of the Duvernoy's venom gland was also examined. Histological analysis revealed a structural organization similar to that of other colubrids that consisted of a serous venom gland and a mucous supralabial gland. When the shotgun proteomic data were run against a general UniProt database for serpents, only metalloproteinases were identified (99% SVMPs, 1% snake endogenous matrix metalloproteinases-9 or seMMP-9). In contrast, when run against a transcriptomic database derived from the venom gland of Brazilian P. neuwiedii that contains predominantly SVMP, CRiSP, type IIE PLA2 (PLA2-IIE), CTL and seMMP-9, the main components identified were seMMP-9 (49%), SVMP (47%), CRiSP (3%) and minor components that included CTL and PLA2-IIE. These findings confirmed the previously reported general composition of P. neuwiedii venom, with metalloproteinases (SVMP and seMMP-9) being the major components, and refined the identification of certain components, e.g., type IIA PLA2 now identified as PLA2-IIE and the detection of seMMP-9 rather than svMMP. The data also indicate compositional similarity between Brazilian and Colombian P. neuwiedii venoms, and stress the need for specific databases for non-front-fanged colubroid snakes to allow accurate and more comprehensive identification of the venom components of these snakes.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil
| | - Juan D Bayona-Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Paula A Sáenz-Suarez
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, 13083-862 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Manuel H Bernal-Bautista
- Departamento de Biologia, Universidad del Tolima, Barrio Santa Helena Parte Alta, 731020, Ibagué, Tolima, Colombia
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Vital Brasil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Rua Vital Brazil, 80, Cidade Universitária Zeferino Vaz, 13083-888, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Chippaux JP, Madec Y, Amta P, Ntone R, Noël G, Clauteaux P, Boum Y, Nkwescheu AS, Taieb F. Snakebites in Cameroon by Species Whose Effects Are Poorly Described. Trop Med Infect Dis 2024; 9:300. [PMID: 39728827 DOI: 10.3390/tropicalmed9120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Snakes responsible for bites are rarely identified, resulting in a loss of information about snakebites from venomous species whose venom effects are poorly understood. A prospective clinical study including patients bitten by a snake was conducted in Cameroon between 2019 and 2021 to evaluate the efficacy and tolerability of a marketed polyvalent antivenom. Clinical presentation during the first 3 days of hospitalization was recorded following a standardized protocol. This ancillary study aimed to assess the frequency of bites by the different species encountered in Cameroon and to describe the symptoms of bites by formally identified species. Of the 447 patients included in the study, 159 (35.6%) brought the snake that caused the bite that was identified by a specialist. Out of these, 8 specimens could not be identified due to poor condition, 19 were non-venomous species, and 95 belonged to Echis romani-formerly E. ocellatus-species. The remaining 37 specimens included 2 Atheris squamigera, 12 Atractaspis spp., 2 Bitis arietans, 11 Causus maculatus, 1 Dendroaspis jamesoni, 1 Naja haje, 1 N. katiensis, 5 N. melanoleuca complex, and 2 N. nigricollis. Symptoms, severity of envenomation, and post-treatment course are described. Symptoms and severity of bites are consistent with cases described in the literature, but some specific features are highlighted.
Collapse
Affiliation(s)
- Jean-Philippe Chippaux
- MERIT Unit, Institut de Recherche pour le Développement, Paris Cité University, F-75006 Paris, France
| | - Yoann Madec
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Paris Cité University, F-75015 Paris, France
| | - Pierre Amta
- Tokombere Hospital, Mora P.O. Box 74, Cameroon
| | | | - Gaëlle Noël
- Institut Pasteur, Translational Research Center, Paris Cité University, F-75015 Paris, France
| | - Pedro Clauteaux
- Institut Pasteur, Translational Research Center, Paris Cité University, F-75015 Paris, France
| | - Yap Boum
- Institut Pasteur de Bangui, Bangui P.O. Box 923, Central African Republic
| | | | - Fabien Taieb
- Institut Pasteur Medical Center, Paris Cité University, F-75015 Paris, France
| |
Collapse
|
4
|
Lino-López GJ, Ruiz-May E, Elizalde-Contreras JM, Jiménez-Vargas JM, Rodríguez-Vázquez A, González-Carrillo G, Bojórquez-Velázquez E, García-Villalvazo PE, Bermúdez-Guzmán MDJ, Zatarain-Palacios R, Vázquez-Vuelvas OF, Valdez-Velázquez LL, Corzo G. Proteomic Analysis of Heloderma horridum horridum Venom: Assessment to Its Transcriptome and Newfound Proteins. J Proteome Res 2024; 23:3638-3648. [PMID: 39038168 DOI: 10.1021/acs.jproteome.4c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heloderma horridum horridum, a venomous reptile native to America, has a venom with potential applications in treating type II diabetes. In this work, H. h. horridum venom was extracted, lyophilized, and characterized using enzymatic assays for hyaluronidase, phospholipase, and protease. Proteomic analysis of the venom was conducted employing bottom-up/shotgun approaches, SDS-PAGE, high-pH reversed-phase chromatography, and fractionation of tryptic peptides using nano-LC-MS/MS. The proteins found in H. h. horridum venom were reviewed according to the classification of the transcriptome previously reported. The proteomic approach identified 101 enzymes, 36 other proteins, 15 protein inhibitors, 11 host defense proteins, and 1 toxin, including novel venom components such as calcium-binding proteins, phospholipase A2 inhibitors, serpins, cathepsin, subtilases, carboxypeptidase-like, aminopeptidases, glycoside hydrolases, thioredoxin transferases, acid ceramidase-like, enolase, multicopper oxidases, phosphoglucose isomerase (PGI), fructose-1,6-bisphosphatase class 1, pentraxin-related, peptidylglycine α-hydroxylating monooxygenase/peptidyl-hydroxyglycine α-amidating lyase, carbonic anhydrase, acetylcholinesterase, dipeptidylpeptidase, and lysozymes. These findings contribute to understanding the venomous nature of H. h. horridum and highlight its potential as a source of bioactive compounds. Data are available via PRoteomeXchange with the identifier PXD052417.
Collapse
Affiliation(s)
- Gisela J Lino-López
- Facultad de Ciencias Químicas, Universidad de Colima, 28400 Coquimatlan, Colima, México
- Departamento de Control Biológico, CNRF-DGSV-SENASICA-SADER, Km 1.5 Carretera Tecomán-Estación FFCC, Col. Tepeyac, 28110 Tecomán, Colima, México
| | - Eliel Ruiz-May
- Instituto de Ecología, Carretera antigua a Coatepec 351, El Haya, 91073 Xalapa, Veracruz,México
| | | | | | - Armando Rodríguez-Vázquez
- Centro de Conservación de Vida Silvestre El Palapo, Parcela No. 75 Z-1 P2/2, Predio Las Cuevas del Ejido Agua Zarca, 28400 Coquimatlan, Colima, México
| | - Gabino González-Carrillo
- Tecnológico Nacional de México/ITJMMPyH, U.A. Tamazula. Carretera Tamazula Santa Rosa No. 329, 49650 Tamazula de Gordiano, Jalisco, México
| | | | | | - Manuel de J Bermúdez-Guzmán
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), 28100 Tecomán, Colima, México
| | | | | | | | - Gerardo Corzo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México
| |
Collapse
|
5
|
Sofyantoro F, Yudha DS, Lischer K, Nuringtyas TR, Putri WA, Kusuma WA, Purwestri YA, Swasono RT. Bibliometric Analysis of Literature in Snake Venom-Related Research Worldwide (1933-2022). Animals (Basel) 2022; 12:2058. [PMID: 36009648 PMCID: PMC9405337 DOI: 10.3390/ani12162058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Snake envenomation is a severe economic and health concern affecting countries worldwide. Snake venom carries a wide variety of small peptides and proteins with various immunological and pharmacological properties. A few key research areas related to snake venom, including its applications in treating cancer and eradicating antibiotic-resistant bacteria, have been gaining significant attention in recent years. The goal of the current study was to analyze the global profile of literature in snake venom research. This study presents a bibliometric review of snake venom-related research documents indexed in the Scopus database between 1933 and 2022. The overall number of documents published on a global scale was 2999, with an average annual production of 34 documents. Brazil produced the highest number of documents (n = 729), followed by the United States (n = 548), Australia (n = 240), and Costa Rica (n = 235). Since 1963, the number of publications has been steadily increasing globally. At a worldwide level, antivenom, proteomics, and transcriptomics are growing hot issues for research in this field. The current research provides a unique overview of snake venom research at global level from 1933 through 2022, and it may be beneficial in guiding future research.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Donan Satria Yudha
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Kenny Lischer
- Faculty of Engineering, University of Indonesia, Jakarta 16424, Indonesia
| | - Tri Rini Nuringtyas
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | | | - Wisnu Ananta Kusuma
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
| | - Yekti Asih Purwestri
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
6
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
7
|
Hofmann EP, Rautsaw RM, Mason AJ, Strickland JL, Parkinson CL. Duvernoy's Gland Transcriptomics of the Plains Black-Headed Snake, Tantilla nigriceps (Squamata, Colubridae): Unearthing the Venom of Small Rear-Fanged Snakes. Toxins (Basel) 2021; 13:336. [PMID: 34066626 PMCID: PMC8148590 DOI: 10.3390/toxins13050336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
The venoms of small rear-fanged snakes (RFS) remain largely unexplored, despite increased recognition of their importance in understanding venom evolution more broadly. Sequencing the transcriptome of venom-producing glands has greatly increased the ability of researchers to examine and characterize the toxin repertoire of small taxa with low venom yields. Here, we use RNA-seq to characterize the Duvernoy's gland transcriptome of the Plains Black-headed Snake, Tantilla nigriceps, a small, semi-fossorial colubrid that feeds on a variety of potentially dangerous arthropods including centipedes and spiders. We generated transcriptomes of six individuals from three localities in order to both characterize the toxin expression of this species for the first time, and to look for initial evidence of venom variation in the species. Three toxin families-three-finger neurotoxins (3FTxs), cysteine-rich secretory proteins (CRISPs), and snake venom metalloproteinases (SVMPIIIs)-dominated the transcriptome of T. nigriceps; 3FTx themselves were the dominant toxin family in most individuals, accounting for as much as 86.4% of an individual's toxin expression. Variation in toxin expression between individuals was also noted, with two specimens exhibiting higher relative expression of c-type lectins than any other sample (8.7-11.9% compared to <1%), and another expressed CRISPs higher than any other toxin. This study provides the first Duvernoy's gland transcriptomes of any species of Tantilla, and one of the few transcriptomic studies of RFS not predicated on a single individual. This initial characterization demonstrates the need for further study of toxin expression variation in this species, as well as the need for further exploration of small RFS venoms.
Collapse
Affiliation(s)
- Erich P. Hofmann
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Rhett M. Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Andrew J. Mason
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Jason L. Strickland
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
| | - Christopher L. Parkinson
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA; (E.P.H.); (R.M.R.); (A.J.M.); (J.L.S.)
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
8
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
9
|
Modahl CM, Mackessy SP. Venoms of Rear-Fanged Snakes: New Proteins and Novel Activities. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
10
|
Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00218] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
11
|
Petras D, Hempel BF, Göçmen B, Karis M, Whiteley G, Wagstaff SC, Heiss P, Casewell NR, Nalbantsoy A, Süssmuth RD. Intact protein mass spectrometry reveals intraspecies variations in venom composition of a local population of Vipera kaznakovi in Northeastern Turkey. J Proteomics 2019; 199:31-50. [PMID: 30763806 PMCID: PMC7613002 DOI: 10.1016/j.jprot.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/16/2022]
Abstract
We report on the variable venom composition of a population of the Caucasus viper (Vipera kaznakovi) in Northeastern Turkey. We applied a combination of venom gland transcriptomics, de-complexing bottom-up and top-down venomics. In contrast to sole bottom-up venomics approaches and gel or chromatography based venom comparison, our combined approach enables a faster and more detailed comparison of venom proteomes from multiple individuals. In total, we identified peptides and proteins from 15 toxin families, including snake venom metalloproteinases (svMP; 37.8%), phospholipases A2 (PLA2; 19.0%), snake venom serine proteinases (svSP; 11.5%), C-type lectins (CTL; 6.9%) and cysteine-rich secretory proteins (CRISP; 5.0%), in addition to several low abundant toxin families. Furthermore, we identified intraspecies variations of the venom composition of V. kaznakovi, and find these were mainly driven by the age of the animals, with lower svSP abundance detected in juveniles. On the proteoform level, several small molecular weight toxins between 5 and 8 kDa in size, as well as PLA2s, drove the differences observed between juvenile and adult individuals. This study provides novel insights into the venom variability of V. kaznakovi and highlights the utility of intact mass profiling for fast and detailed comparison of snake venom. BIOLOGICAL SIGNIFICANCE: Population level and ontogenetic venom variation (e.g. diet, habitat, sex or age) can result in a loss of antivenom efficacy against snakebites from wide ranging snake populations. The current state of the art for the analysis of snake venoms are de-complexing bottom-up proteomics approaches. While useful, these have the significant drawback of being time-consuming and following costly protocols, and consequently are often applied to pooled venom samples. To overcome these shortcomings and to enable rapid and detailed profiling of large numbers of individual venom samples, we integrated an intact protein analysis workflow into a transcriptomics-guided bottom-up approach. The application of this workflow to snake individuals of a local population of V. kaznakovi revealed intraspecies variations in venom composition, which are primarily explained by the age of the animals, and highlighted svSP abundance to be one of the molecular drivers for the compositional differences observed.
Collapse
Affiliation(s)
- Daniel Petras
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany; University of California San Diego, Collaborative Mass Spectrometry Innovation Center, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| | - Benjamin-Florian Hempel
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Bayram Göçmen
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Mert Karis
- Zoology Section, Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey
| | - Gareth Whiteley
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Simon C Wagstaff
- Research Computing Unit, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Paul Heiss
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova 35100, Izmir, Turkey.
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
12
|
Leonardi A, Sajevic T, Pungerčar J, Križaj I. Comprehensive Study of the Proteome and Transcriptome of the Venom of the Most Venomous European Viper: Discovery of a New Subclass of Ancestral Snake Venom Metalloproteinase Precursor-Derived Proteins. J Proteome Res 2019; 18:2287-2309. [PMID: 31017792 PMCID: PMC6727599 DOI: 10.1021/acs.jproteome.9b00120] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
nose-horned viper, its nominotypical subspecies Vipera
ammodytes ammodytes (Vaa), in particular,
is, medically, one of the most relevant snakes in Europe. The local
and systemic clinical manifestations of poisoning by the venom of
this snake are the result of the pathophysiological effects inflicted
by enzymatic and nonenzymatic venom components acting, most prominently,
on the blood, cardiovascular, and nerve systems. This venom is a very
complex mixture of pharmacologically active proteins and peptides.
To help improve the current antivenom therapy toward higher specificity
and efficiency and to assist drug discovery, we have constructed,
by combining transcriptomic and proteomic analyses, the most comprehensive
library yet of the Vaa venom proteins and peptides.
Sequence analysis of the venom gland cDNA library has revealed the
presence of messages encoding 12 types of polypeptide precursors.
The most abundant are those for metalloproteinase inhibitors (MPis),
bradykinin-potentiating peptides (BPPs), and natriuretic peptides
(NPs) (all three on a single precursor), snake C-type lectin-like
proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases
(SVMPs), secreted phospholipases A2 (sPLA2s),
and disintegrins (Dis). These constitute >88% of the venom transcriptome.
At the protein level, 57 venom proteins belonging to 16 different
protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins.
Peptides detected in the venom include NPs, BPPs, and inhibitors of
SVSPs and SVMPs. Of particular interest, a transcript coding for a
protein similar to P-III SVMPs but lacking the MP domain was also
found at the protein level in the venom. The existence of such proteins,
also supported by finding similar venom gland transcripts in related
snake species, has been demonstrated for the first time, justifying
the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived
proteins.
Collapse
Affiliation(s)
- Adrijana Leonardi
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Tamara Sajevic
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Jože Pungerčar
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences , Jožef Stefan Institute , Jamova cesta 39 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
13
|
Domínguez-Pérez D, Durban J, Agüero-Chapin G, López JT, Molina-Ruiz R, Almeida D, Calvete JJ, Vasconcelos V, Antunes A. The Harderian gland transcriptomes of Caraiba andreae, Cubophis cantherigerus and Tretanorhinus variabilis, three colubroid snakes from Cuba. Genomics 2018; 111:1720-1727. [PMID: 30508561 DOI: 10.1016/j.ygeno.2018.11.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023]
Abstract
The Harderian gland is a cephalic structure, widely distributed among vertebrates. In snakes, the Harderian gland is anatomically connected to the vomeronasal organ via the nasolacrimal duct, and in some species can be larger than the eyes. The function of the Harderian gland remains elusive, but it has been proposed to play a role in the production of saliva, pheromones, thermoregulatory lipids and growth factors, among others. Here, we have profiled the transcriptomes of the Harderian glands of three non-front-fanged colubroid snakes from Cuba: Caraiba andreae (Cuban Lesser Racer); Cubophis cantherigerus (Cuban Racer); and Tretanorhinus variabilis (Caribbean Water Snake), using Illumina HiSeq2000 100 bp paired-end. In addition to ribosomal and non-characterized proteins, the most abundant transcripts encode putative transport/binding, lipocalin/lipocalin-like, and bactericidal/permeability-increasing-like proteins. Transcripts coding for putative canonical toxins described in venomous snakes were also identified. This transcriptional profile suggests a more complex function than previously recognized for this enigmatic organ.
Collapse
Affiliation(s)
- Dany Domínguez-Pérez
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Jordi Durban
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Javier Torres López
- Department of Ecology and Evolutionary Biology, The University of Kansas, 1345 Jayhawk Blvd., Lawrence, Kansas 66045, USA; Faculty of Biology, University of Havana, 25 St. 455, La Habana 10400, Cuba.
| | - Reinaldo Molina-Ruiz
- Centro de Bioactivos Químicos, Universidad Central "Marta Abreu" de Las Villas, 54830 Santa Clara, Cuba.
| | - Daniela Almeida
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Jaume Roig, 11, 46010, Valencia, Spain.
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, Porto 4450-208, Portugal; Department of Biology, University of Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal.
| |
Collapse
|
14
|
Torres-Bonilla KA, Andrade-Silva D, Serrano SMT, Hyslop S. Biochemical characterization of venom from Pseudoboa neuwiedii (Neuwied's false boa; Xenodontinae; Pseudoboini). Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:27-38. [PMID: 29966733 DOI: 10.1016/j.cbpc.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/23/2022]
Abstract
In this work, we examined the proteolytic and phospholipase A2 (PLA2) activities of venom from the opisthoglyphous colubrid Pseudoboa neuwiedii. Proteolytic activity (3 and 10 μg of venom) was comparable to that of Bothrops neuwiedii venom but less than Bothrops atrox. This activity was inhibited by EDTA and 1,10-phenanthroline but only slightly affected (≤30% inhibition) by PMSF and AEBSF, indicating it was mediated by snake venom metalloproteinases (SVMPs). The pH and temperature optima for proteolytic activity were 8.0 and 37 °C, respectively. The venom had no esterase activity, whereas PLA2 activity was similar to B. atrox, greater than B. neuwiedii but less than B. jararacussu. SDS-PAGE revealed venom proteins >100 kDa, 45-70 kDa, 21-24 kDa and ~15 kDa, and mass spectrometry of protein bands revealed SVMPs, cysteine-rich secretory proteins (CRISPs) and PLA2, but no serine proteinases. In gelatin zymography, the most active bands occurred at 65-68 kDa (seen with 0.05-0.25 μg of venom). Caseinolytic activity occurred at 50-66 kDa and was generally weaker than gelatinolytic activity. RP-HPLC of venom yielded 15 peaks, five of which showed gelatinolytic activity; peak 7 was the most active and apparently contained a P-III class SVMP. The venom showed α-fibrinogenase activity, without affecting the β and γ chains; this activity was inhibited by EDTA and 1,10-phenanthroline. The venom did not clot rat citrated plasma but reduced the rate and extent of coagulation after plasma recalcification. In conclusion, P. neuwiedii venom is highly proteolytic and could potentially affect coagulation in vivo by degrading fibrinogen via SVMPs.
Collapse
Affiliation(s)
- Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil
| | - Débora Andrade-Silva
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Brazil 1500, São Paulo, SP, Brazil
| | - Solange M T Serrano
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, Avenida Brazil 1500, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, 13083-887 Campinas, SP, Brazil.
| |
Collapse
|
15
|
Martins A, Passos P, Pinto R. Unveiling diversity under the skin: comparative morphology study of the cephalic glands in threadsnakes (Serpentes: Leptotyphlopidae: Epictinae). ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0409-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Nguyen TV, Osipov AV. A study of ribonuclease activity in venom of vietnam cobra. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2017; 59:20. [PMID: 29021904 PMCID: PMC5611641 DOI: 10.1186/s40781-017-0145-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ribonuclease (RNase) is one of the few toxic proteins that are present constantly in snake venoms of all types. However, to date this RNase is still poorly studied in comparison not only with other toxic proteins of snake venom, but also with the enzymes of RNase group. The objective of this paper was to investigate some properties of RNase from venom of Vietnam cobra Naja atra. METHODS Kinetic methods and gel filtration chromatography were used to investigate RNase from venom of Vietnam cobra. RESULTS RNase from venom of Vietnam cobra Naja atra has some characteristic properties. This RNase is a thermostable enzyme and has high conformational stability. This is the only acidic enzyme of the RNase A superfamily exhibiting a high catalytic activity in the pH range of 1-4, with pHopt = 2.58 ± 0.35. Its activity is considerably reduced with increasing ionic strength of reaction mixture. Venom proteins are separated by gel filtration into four peaks with ribonucleolytic activity, which is abnormally distributed among the isoforms: only a small part of the RNase activity is present in fractions of proteins with molecular weights of 12-15 kDa and more than 30 kDa, but most of the enzyme activity is detected in fractions of polypeptides, having molecular weights of less than 9 kDa, that is unexpected. CONCLUSIONS RNase from the venom of Vietnam cobra is a unique member of RNase A superfamily according to its acidic optimum pH (pHopt = 2.58 ± 0.35) and extremely low molecular weights of its major isoforms (approximately 8.95 kDa for RNase III and 5.93 kDa for RNase IV).
Collapse
Affiliation(s)
- Thiet Van Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - A. V. Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| |
Collapse
|
17
|
Ainsworth S, Petras D, Engmark M, Süssmuth RD, Whiteley G, Albulescu LO, Kazandjian TD, Wagstaff SC, Rowley P, Wüster W, Dorrestein PC, Arias AS, Gutiérrez JM, Harrison RA, Casewell NR, Calvete JJ. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J Proteomics 2017; 172:173-189. [PMID: 28843532 DOI: 10.1016/j.jprot.2017.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/05/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022]
Abstract
Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation. BIOLOGICAL SIGNIFICANCE The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. Previous studies on mamba venoms have focused on the biochemical and pharmacological characterisation of their most relevant toxins to rationalize the common neurological and neuromuscular symptoms of envenomings caused by these species, but there has been little work on overall venom composition or comparisons between them. Only very recently an overview of the composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-proteomic analysis of mamba venom composition. The transcriptomic analyses described in this paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview to infer which available antivenoms may be capable of neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms at locus resolution. This understanding will contribute to the generation of a safer and more efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Daniel Petras
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA; Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Mikael Engmark
- Technical University of Denmark, Department of Bio and Health Informatics, 2800 Kgs. Lyngby, Denmark
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Taline D Kazandjian
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Paul Rowley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Pieter C Dorrestein
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010, Valencia, Spain.
| |
Collapse
|
18
|
Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ. Absolute venomics: Absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 2017; 164:33-42. [PMID: 28579478 DOI: 10.1016/j.jprot.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/17/2022]
Abstract
We report the application of a hybrid element and molecular MS configuration for the parallel absolute quantification of μHPLC-separated intact sulfur-containing venom proteins, via ICP triple quadrupole MS and 32S/34S isotope dilution analysis, and identification by ESI-QToF-MS of the toxins of the medically important African black-necked spitting cobra, Naja nigricollis (Tanzania); New Guinea small-eyed snake, Micropechis ikaheka; and Papuan black snake, Pseudechis papuanus. The main advantage of this approach is that only one generic sulfur-containing standard is required to quantify each and all intact Cys- and/or Met-containing toxins of the venom proteome. The results of absolute quantification are in reasonably good agreement with previously reported relative quantification of the most abundant protein families. However, both datasets depart in the quantification of the minor ones, showing a tendency for this set of proteins to be underestimated in standard peptide-centric venomics approaches. The molecular identity, specific toxic activity, and concentration in the venom, are the pillars on which the toxicovenomics-aimed discovery of the most medically-relevant venom toxins, e.g. those that need to be neutralized by an effective therapeutic antivenom, should be based. The pioneering venom proteome-wide absolute quantification shown in this paper represents thus a significant advance towards this goal. The potential of ICP triple quadrupole MS in proteomics in general, and venomics in particular, is critically discussed. BIOLOGICAL SIGNIFICANCE Animal venoms provide excellent model systems for investigating interactions between predators and prey, and the molecular mechanisms that contribute to adaptive protein evolution. On the other hand, numerous cases of snake bites occur yearly by encounters of humans and snakes in their shared natural environment. Snakebite envenoming is a serious global public health issue that affects the most impoverished and geopolitically disadvantaged rural communities in many tropical and subtropical countries. Unveiling the temporal and spatial patterns of venom variability is of fundamental importance to understand the molecular basis of envenoming, a prerequisite for developing therapeutic strategies against snakebite envenoming. Research on venoms has been continuously enhanced by advances in technology. The combined application of next-generation transcriptomic and venomic workflows has demonstrated unparalleled capabilities for venom characterization in unprecedented detail. However, mass spectrometry is not inherently quantitative, and this analytical limitation has sparked the development of methods to determine absolute abundance of proteins in biological samples. Here we show the potential of a hybrid element and molecular MS configuration for the parallel ESI-QToF-MS and ICP-QQQ detection and absolute quantification of intact sulfur-containing venom proteins via 32S/34S isotope dilution analysis. This configuration has been applied to quantify the toxins of the medically important African snake Naja nigricollis (Tanzania), and the Papuan species Micropechis ikaheka and Pseudechis papuanus.
Collapse
Affiliation(s)
- Francisco Calderón-Celis
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Laura Cid-Barrio
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010 Valencia, Spain.
| |
Collapse
|
19
|
Debono J, Dobson J, Casewell NR, Romilio A, Li B, Kurniawan N, Mardon K, Weisbecker V, Nouwens A, Kwok HF, Fry BG. Coagulating Colubrids: Evolutionary, Pathophysiological and Biodiscovery Implications of Venom Variations between Boomslang (Dispholidus typus) and Twig Snake (Thelotornis mossambicanus). Toxins (Basel) 2017; 9:E171. [PMID: 28534833 PMCID: PMC5450719 DOI: 10.3390/toxins9050171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Venoms can deleteriously affect any physiological system reachable by the bloodstream, including directly interfering with the coagulation cascade. Such coagulopathic toxins may be anticoagulants or procoagulants. Snake venoms are unique in their use of procoagulant toxins for predatory purposes. The boomslang (Dispholidus typus) and the twig snakes (Thelotornis species) are iconic African snakes belonging to the family Colubridae. Both species produce strikingly similar lethal procoagulant pathologies. Despite these similarities, antivenom is only produced for treating bites by D. typus, and the mechanisms of action of both venoms have been understudied. In this study, we investigated the venom of D. typus and T. mossambicanus utilising a range of proteomic and bioactivity approaches, including determining the procoagulant properties of both venoms in relation to the human coagulation pathways. In doing so, we developed a novel procoagulant assay, utilising a Stago STA-R Max analyser, to accurately detect real time clotting in plasma at varying concentrations of venom. This approach was used to assess the clotting capabilities of the two venoms both with and without calcium and phospholipid co-factors. We found that T. mossambicanus produced a significantly stronger coagulation response compared to D. typus. Functional enzyme assays showed that T. mossambicanus also exhibited a higher metalloprotease and phospholipase activity but had a much lower serine protease activity relative to D. typus venom. The neutralising capability of the available boomslang antivenom was also investigated on both species, with it being 11.3 times more effective upon D. typus venom than T. mossambicanus. In addition to being a faster clotting venom, T. mossambicanus was revealed to be a much more complex venom composition than D. typus. This is consistent with patterns seen for other snakes with venom complexity linked to dietary complexity. Consistent with the external morphological differences in head shape between the two species, CT and MRI analyses revealed significant internal structural differences in skull architecture and venom gland anatomy. This study increases our understanding of not only the biodiscovery potential of these medically important species but also increases our knowledge of the pathological relationship between venom and the human coagulation cascade.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Anthony Romilio
- Vertebrate Palaeontology and Biomechanics Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Bin Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Karine Mardon
- Centre for Advanced Imaging, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Vera Weisbecker
- Vertebrate Palaeontology and Biomechanics Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Pla D, Sanz L, Whiteley G, Wagstaff SC, Harrison RA, Casewell NR, Calvete JJ. What killed Karl Patterson Schmidt? Combined venom gland transcriptomic, venomic and antivenomic analysis of the South African green tree snake (the boomslang), Dispholidus typus. Biochim Biophys Acta Gen Subj 2017; 1861:814-823. [PMID: 28130154 PMCID: PMC5335903 DOI: 10.1016/j.bbagen.2017.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022]
Abstract
Background Non-front-fanged colubroid snakes comprise about two-thirds of extant ophidian species. The medical significance of the majority of these snakes is unknown, but at least five species have caused life-threatening or fatal human envenomings. However, the venoms of only a small number of species have been explored. Methods A combined venomic and venom gland transcriptomic approach was employed to characterise of venom of Dispholidus typus (boomslang), the snake that caused the tragic death of Professor Karl Patterson Schmidt. The ability of CroFab™ antivenom to immunocapture boomslang venom proteins was investigated using antivenomics. Results Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families: three-finger toxin (3FTx); phospholipase A2 (PLA2); cysteine-rich secretory proteins (CRISP); snake venom (SV) serine proteinase (SP); C-type lectin-like (CTL); SV metalloproteinases (SVMPs); and disintegrin-like/cysteine-rich (DC) proteolytic fragments. CroFab™ antivenom efficiently immunodepleted some boomslang SVMPs. Conclusions The present work is the first to address the overall proteomic profile of D. typus venom. This study allowed us to correlate the toxin composition with the toxic activities of the venom. The antivenomic analysis suggested that the antivenom available at the time of the unfortunate accident could have exhibited at least some immunoreactivity against the boomslang SVMPs responsible for the disseminated intravascular coagulation syndrome that caused K.P. Schmidt's fatal outcome. General significance This study may stimulate further research on other non-front-fanged colubroid snake venoms capable of causing life-threatening envenomings to humans, which in turn should contribute to prevent fatal human accidents, such as that unfortunately suffered by K.P. Schmidt. The venom proteome of Dispholidus typus (boomslang) is reported. Transcriptomic-assisted proteomic analysis identified venom proteins belonging to seven protein families. Boomslang venom proteome is dominated (75%) by snake venom PIII-metalloproteinases (PIII-SVMPs). CroFab™ antivenom efficiently immunodepleted some boomslang PIII-SVMPs.
Collapse
Affiliation(s)
- Davinia Pla
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Libia Sanz
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - Juan J Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| |
Collapse
|
21
|
Junqueira-de-Azevedo ILM, Campos PF, Ching ATC, Mackessy SP. Colubrid Venom Composition: An -Omics Perspective. Toxins (Basel) 2016; 8:E230. [PMID: 27455326 PMCID: PMC4999846 DOI: 10.3390/toxins8080230] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 01/12/2023] Open
Abstract
Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among "colubrids" is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among "colubrid" venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.
Collapse
Affiliation(s)
- Inácio L M Junqueira-de-Azevedo
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Pollyanna F Campos
- Laboratório Especial de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Ana T C Ching
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo 05503-900, Brazil.
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| |
Collapse
|
22
|
Debono J, Cochran C, Kuruppu S, Nouwens A, Rajapakse NW, Kawasaki M, Wood K, Dobson J, Baumann K, Jouiaei M, Jackson TNW, Koludarov I, Low D, Ali SA, Smith AI, Barnes A, Fry BG. Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms. Toxins (Basel) 2016; 8:toxins8070210. [PMID: 27399777 PMCID: PMC4963843 DOI: 10.3390/toxins8070210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 05/28/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022] Open
Abstract
Central and South American pitvipers, belonging to the genera Bothrops and Bothriechis, have independently evolved arboreal tendencies. Little is known regarding the composition and activity of their venoms. In order to close this knowledge gap, venom proteomics and toxin activity of species of Bothriechis, and Bothrops (including Bothriopsis) were investigated through established analytical methods. A combination of proteomics and bioactivity techniques was used to demonstrate a similar diversification of venom composition between large and small species within Bothriechis and Bothriopsis. Increasing our understanding of the evolution of complex venom cocktails may facilitate future biodiscoveries.
Collapse
Affiliation(s)
- Jordan Debono
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA.
| | - Sanjaya Kuruppu
- Department of Biochemistry & Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Niwanthi W Rajapakse
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.
- Department of Physiology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Minami Kawasaki
- Aquatic Animal Health, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia.
| | - Kelly Wood
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - James Dobson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Dolyce Low
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| | - Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
- HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan.
| | - A Ian Smith
- Department of Biochemistry & Molecular Biology, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Andrew Barnes
- Aquatic Animal Health, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072 Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
23
|
Modahl CM, Mackessy SP. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution. PLoS Negl Trop Dis 2016; 10:e0004587. [PMID: 27280639 PMCID: PMC4900637 DOI: 10.1371/journal.pntd.0004587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/08/2016] [Indexed: 12/24/2022] Open
Abstract
Envenomation of humans by snakes is a complex and continuously evolving medical emergency, and treatment is made that much more difficult by the diverse biochemical composition of many venoms. Venomous snakes and their venoms also provide models for the study of molecular evolutionary processes leading to adaptation and genotype-phenotype relationships. To compare venom complexity and protein sequences, venom gland transcriptomes are assembled, which usually requires the sacrifice of snakes for tissue. However, toxin transcripts are also present in venoms, offering the possibility of obtaining cDNA sequences directly from venom. This study provides evidence that unknown full-length venom protein transcripts can be obtained from the venoms of multiple species from all major venomous snake families. These unknown venom protein cDNAs are obtained by the use of primers designed from conserved signal peptide sequences within each venom protein superfamily. This technique was used to assemble a partial venom gland transcriptome for the Middle American Rattlesnake (Crotalus simus tzabcan) by amplifying sequences for phospholipases A2, serine proteases, C-lectins, and metalloproteinases from within venom. Phospholipase A2 sequences were also recovered from the venoms of several rattlesnakes and an elapid snake (Pseudechis porphyriacus), and three-finger toxin sequences were recovered from multiple rear-fanged snake species, demonstrating that the three major clades of advanced snakes (Elapidae, Viperidae, Colubridae) have stable mRNA present in their venoms. These cDNA sequences from venom were then used to explore potential activities derived from protein sequence similarities and evolutionary histories within these large multigene superfamilies. Venom-derived sequences can also be used to aid in characterizing venoms that lack proteomic profiles and identify sequence characteristics indicating specific envenomation profiles. This approach, requiring only venom, provides access to cDNA sequences in the absence of living specimens, even from commercial venom sources, to evaluate important regional differences in venom composition and to study snake venom protein evolution. This work demonstrates that full-length venom protein messenger RNAs are present in secreted venoms and can be used to acquire full-length protein sequences of toxins from both front-fanged (Elapidae, Viperidae) and rear-fanged (Colubridae) snake venoms, eliminating the need to use venom glands. Full-length transcripts were obtained from venom samples that were fresh, newly lyophilized, old, field desiccated or commercially prepared, representing a significant advance over previous attempts which produced only partial sequence transcripts. Transcripts for all major venom protein families (metalloproteinases, serine proteases, C-type lectins, phospholipases A2 and three-finger toxins) responsible for clinically significant snakebite symptoms were obtained from venoms. These sequences aid in the identification and characterization of venom proteome profiles, allowing for the identification of peptide sequences, specific isoforms, and novel venom proteins. The application of this technique will help to provide venom protein sequences for many snake species, including understudied rear-fanged snakes. Venom protein transcripts offer important insights into potential snakebite envenomation profiles and the molecular evolution of venom protein multigene families. By requiring only venom to obtain venom protein cDNAs, the approach detailed here will provide access to cDNA-based protein sequences from commercial and other venom sources, facilitating study of snake venom protein composition and evolution.
Collapse
Affiliation(s)
- Cassandra M. Modahl
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
| | - Stephen P. Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tsai IH, Wang YM, Huang KF. Structures of Azemiops feae venom phospholipases and cys-rich-secretory protein and implications for taxonomy and toxinology. Toxicon 2016; 114:31-9. [DOI: 10.1016/j.toxicon.2016.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/31/2016] [Accepted: 02/11/2016] [Indexed: 11/28/2022]
|
25
|
Suntravat M, Uzcategui NL, Atphaisit C, Helmke TJ, Lucena SE, Sánchez EE, Acosta AR. Gene expression profiling of the venom gland from the Venezuelan mapanare (Bothrops colombiensis) using expressed sequence tags (ESTs). BMC Mol Biol 2016; 17:7. [PMID: 26944950 PMCID: PMC4779267 DOI: 10.1186/s12867-016-0059-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Bothrops colombiensis is a highly dangerous pit viper and responsible for over 70% of snakebites in Venezuela. Although the composition in B. colombiensis venom has been identified using a proteome analysis, the venom gland transcriptome is currently lacking. RESULTS We constructed a cDNA library from the venom gland of B. colombiensis, and a set of 729 high quality expressed sequence tags (ESTs) was identified. A total number of 344 ESTs (47.2% of total ESTs) was related to toxins. The most abundant toxin transcripts were metalloproteinases (37.5%), phospholipases A2s (PLA2, 29.7%), and serine proteinases (11.9%). Minor toxin transcripts were linked to waprins (5.5%), C-type lectins (4.1%), ATPases (2.9%), cysteine-rich secretory proteins (CRISP, 2.3%), snake venom vascular endothelium growth factors (svVEGF, 2.3%), L-amino acid oxidases (2%), and other putative toxins (1.7%). While 160 ESTs (22% of total ESTs) coded for translation proteins, regulatory proteins, ribosomal proteins, elongation factors, release factors, metabolic proteins, and immune response proteins. Other proteins detected in the transcriptome (87 ESTs, 11.9% of total ESTs) were undescribed proteins with unknown functions. The remaining 138 (18.9%) cDNAs had no match with known GenBank accessions. CONCLUSION This study represents the analysis of transcript expressions and provides a physical resource of unique genes for further study of gene function and the development of novel molecules for medical applications.
Collapse
Affiliation(s)
- Montamas Suntravat
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Néstor L Uzcategui
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| | - Chairat Atphaisit
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Thomas J Helmke
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Sara E Lucena
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Elda E Sánchez
- National Natural Toxins Research Center, Department of Chemistry, Texas A and M University-Kingsville, Kingsville, USA.
| | - Alexis Rodríguez Acosta
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela.
| |
Collapse
|
26
|
Urra FA, Pulgar R, Gutiérrez R, Hodar C, Cambiazo V, Labra A. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae). Toxicon 2015; 108:19-31. [PMID: 26410112 DOI: 10.1016/j.toxicon.2015.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/01/2022]
Abstract
Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis.
Collapse
Affiliation(s)
- Félix A Urra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Laboratorio de Cáncer y Bioenergética, Programa de Farmacología Molecular y Clínica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile.
| | - Rodrigo Pulgar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Ricardo Gutiérrez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Christian Hodar
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Verónica Cambiazo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile and Fondap Center for Genome Regulation (CGR), El Líbano 5524, Santiago, Chile
| | - Antonieta Labra
- Laboratorio de Neuroetología, Programa de Fisiología y Biofísica, Facultad de Medicina, Universidad de Chile, Casilla 70005, Correo 7, Santiago, Chile; Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PB1066 Blinder, 0316 Oslo, Norway.
| |
Collapse
|
27
|
The finding of a group IIE phospholipase A2 gene in a specified segment of Protobothrops flavoviridis genome and its possible evolutionary relationship to group IIA phospholipase A2 genes. Toxins (Basel) 2014; 6:3471-87. [PMID: 25529307 PMCID: PMC4280545 DOI: 10.3390/toxins6123471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/05/2014] [Accepted: 12/15/2014] [Indexed: 01/22/2023] Open
Abstract
The genes encoding group IIE phospholipase A2, abbreviated as IIE PLA2, and its 5' and 3' flanking regions of Crotalinae snakes such as Protobothrops flavoviridis, P. tokarensis, P. elegans, and Ovophis okinavensis, were found and sequenced. The genes consisted of four exons and three introns and coded for 22 or 24 amino acid residues of the signal peptides and 134 amino acid residues of the mature proteins. These IIE PLA2s show high similarity to those from mammals and Colubridae snakes. The high expression level of IIE PLA2s in Crotalinae venom glands suggests that they should work as venomous proteins. The blast analysis indicated that the gene encoding OTUD3, which is ovarian tumor domain-containing protein 3, is located in the 3' downstream of IIE PLA2 gene. Moreover, a group IIA PLA2 gene was found in the 5' upstream of IIE PLA2 gene linked to the OTUD3 gene (OTUD3) in the P. flavoviridis genome. It became evident that the specified arrangement of IIA PLA2 gene, IIE PLA2 gene, and OTUD3 in this order is common in the genomes of humans to snakes. The present finding that the genes encoding various secretory PLA2s form a cluster in the genomes of humans to birds is closely related to the previous finding that six venom PLA2 isozyme genes are densely clustered in the so-called NIS-1 fragment of the P. flavoviridis genome. It is also suggested that venom IIA PLA2 genes may be evolutionarily derived from the IIE PLA2 gene.
Collapse
|
28
|
Hargreaves AD, Swain MT, Logan DW, Mulley JF. Testing the Toxicofera: comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system. Toxicon 2014; 92:140-56. [PMID: 25449103 DOI: 10.1016/j.toxicon.2014.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/01/2014] [Indexed: 12/01/2022]
Abstract
The identification of apparently conserved gene complements in the venom and salivary glands of a diverse set of reptiles led to the development of the Toxicofera hypothesis - the single, early evolution of the venom system in reptiles. However, this hypothesis is based largely on relatively small scale EST-based studies of only venom or salivary glands and toxic effects have been assigned to only some putative Toxicoferan toxins in some species. We set out to examine the distribution of these proposed venom toxin transcripts in order to investigate to what extent conservation of gene complements may reflect a bias in previous sampling efforts. Our quantitative transcriptomic analyses of venom and salivary glands and other body tissues in five species of reptile, together with the use of available RNA-Seq datasets for additional species, shows that the majority of genes used to support the establishment and expansion of the Toxicofera are in fact expressed in multiple body tissues and most likely represent general maintenance or "housekeeping" genes. The apparent conservation of gene complements across the Toxicofera therefore reflects an artefact of incomplete tissue sampling. We therefore conclude that venom has evolved multiple times in reptiles.
Collapse
Affiliation(s)
- Adam D Hargreaves
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom.
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom.
| | - John F Mulley
- School of Biological Sciences, Bangor University, Brambell Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, United Kingdom.
| |
Collapse
|
29
|
McGivern JJ, Wray KP, Margres MJ, Couch ME, Mackessy SP, Rokyta DR. RNA-seq and high-definition mass spectrometry reveal the complex and divergent venoms of two rear-fanged colubrid snakes. BMC Genomics 2014; 15:1061. [PMID: 25476704 PMCID: PMC4289226 DOI: 10.1186/1471-2164-15-1061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Background Largely because of their direct, negative impacts on human health, the venoms of front-fanged snakes of the families Viperidae and Elapidae have been extensively characterized proteomically, transcriptomically, and pharmacologically. However, relatively little is known about the molecular complexity and evolution of the venoms of rear-fanged colubrid snakes, which are, with a few notable exceptions, regarded as harmless to humans. Many of these snakes have venoms with major effects on their preferred prey, and their venoms are probably as critical to their survival as those of front-fanged elapids and viperids. Results We sequenced the venom-gland transcriptomes from a specimen of Hypsiglena (Desert Night Snake; family Colubridae, subfamily Dipsadinae) and of Boiga irregularis (Brown Treesnake; family Colubridae, subfamily Colubrinae) and verified the transcriptomic results proteomically by means of high-definition mass spectrometry. We identified nearly 3,000 nontoxin genes for each species. For B. irregularis, we found 108 putative toxin transcripts in 46 clusters with <1% nucleotide divergence, and for Hypsiglena we identified 79 toxin sequences that were grouped into 33 clusters. Comparisons of the venoms revealed divergent venom types, with Hypsiglena possessing a viper-like venom dominated by metalloproteinases, and B. irregularis having a more elapid-like venom, consisting primarily of three-finger toxins. Conclusions Despite the difficulty of procuring venom from rear-fanged species, we were able to complete all analyses from a single specimen of each species without pooling venom samples or glands, demonstrating the power of high-definition transcriptomic and proteomic approaches. We found a high level of divergence in the venom types of two colubrids. These two venoms reflected the hemorrhagic/neurotoxic venom dichotomy that broadly characterizes the difference in venom strategies between elapids and viperids.
Collapse
Affiliation(s)
| | | | | | | | | | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
30
|
Brahma RK, McCleary RJR, Kini RM, Doley R. Venom gland transcriptomics for identifying, cataloging, and characterizing venom proteins in snakes. Toxicon 2014; 93:1-10. [PMID: 25448392 DOI: 10.1016/j.toxicon.2014.10.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/27/2014] [Indexed: 01/13/2023]
Abstract
Snake venoms are cocktails of protein toxins that play important roles in capture and digestion of prey. Significant qualitative and quantitative variation in snake venom composition has been observed among and within species. Understanding these variations in protein components is instrumental in interpreting clinical symptoms during human envenomation and in searching for novel venom proteins with potential therapeutic applications. In the last decade, transcriptomic analyses of venom glands have helped in understanding the composition of various snake venoms in great detail. Here we review transcriptomic analysis as a powerful tool for understanding venom profile, variation and evolution.
Collapse
Affiliation(s)
- Rajeev Kungur Brahma
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | - Ryan J R McCleary
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore; Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, South Australia 5001, Australia
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India.
| |
Collapse
|
31
|
Ali SA, Jackson TNW, Casewell NR, Low DHW, Rossi S, Baumann K, Fathinia B, Visser J, Nouwens A, Hendrikx I, Jones A, Undheim E, Fry BG. Extreme venom variation in Middle Eastern vipers: a proteomics comparison of Eristicophis macmahonii, Pseudocerastes fieldi and Pseudocerastes persicus. J Proteomics 2014; 116:106-13. [PMID: 25241240 DOI: 10.1016/j.jprot.2014.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/28/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED Venoms of the viperid sister genera Eristicophis and Pseudocerastes are poorly studied despite their anecdotal reputation for producing severe or even lethal envenomations. This is due in part to the remote and politically unstable regions that they occupy. All species contained are sit and wait ambush feeders. Thus, this study examined their venoms through proteomics techniques in order to establish if this feeding ecology, and putatively low levels of gene flow, have resulted in significant variations in venom profile. The techniques indeed revealed extreme venom variation. This has immediate implications as only one antivenom is made (using the venom of Pseudocerastes persicus) yet the proteomic variation suggests that it would be of only limited use for the other species, even the sister species Pseudocerastes fieldi. The high degree of variation however also points toward these species being rich resources for novel compounds which may have use as lead molecules in drug design and development. BIOLOGICAL SIGNIFICANCE These results show extreme venom variation between these closely related snakes. These results have direct implications for the treatment of the envenomed patient.
Collapse
Affiliation(s)
- Syed A Ali
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; HEJ Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Timothy N W Jackson
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Nicholas R Casewell
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Dolyce H W Low
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Sarah Rossi
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Kate Baumann
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Behzad Fathinia
- Department of Biology, Faculty of Science, Yasouj University, 75914 Yasouj, Iran
| | - Jeroen Visser
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Life Sciences, Hogeschool Inholland Amsterdam, 1081 HV, The Netherlands
| | - Amanda Nouwens
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Qld 4072, Australia
| | - Iwan Hendrikx
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Alun Jones
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Eba Undheim
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, Queensland 4520, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4520, Australia.
| |
Collapse
|
32
|
Hargreaves AD, Swain MT, Hegarty MJ, Logan DW, Mulley JF. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome Biol Evol 2014; 6:2088-95. [PMID: 25079342 PMCID: PMC4231632 DOI: 10.1093/gbe/evu166] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/23/2022] Open
Abstract
Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive "just-so story" in evolutionary biology.
Collapse
Affiliation(s)
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Matthew J Hegarty
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - John F Mulley
- School of Biological Sciences, Bangor University, United Kingdom
| |
Collapse
|
33
|
Abstract
INTRODUCTION As an ecological adaptation venoms have evolved independently in several species of Metazoa. As haematophagous arthropods ticks are mainly considered as ectoparasites due to directly feeding on the skin of animal hosts. Ticks are of major importance since they serve as vectors for several diseases affecting humans and livestock animals. Ticks are rarely considered as venomous animals despite that tick saliva contains several protein families present in venomous taxa and that many Ixodida genera can induce paralysis and other types of toxicoses. Tick saliva was previously proposed as a special kind of venom since tick venom is used for blood feeding that counteracts host defense mechanisms. As a result, the present study provides evidence to reconsider the venomous properties of tick saliva. RESULTS Based on our extensive literature mining and in silico research, we demonstrate that ticks share several similarities with other venomous taxa. Many tick salivary protein families and their previously described functions are homologous to proteins found in scorpion, spider, snake, platypus and bee venoms. This infers that there is a structural and functional convergence between several molecular components in tick saliva and the venoms from other recognized venomous taxa. We also highlight the fact that the immune response against tick saliva and venoms (from recognized venomous taxa) are both dominated by an allergic immunity background. Furthermore, by comparing the major molecular components of human saliva, as an example of a non-venomous animal, with that of ticks we find evidence that ticks resemble more venomous than non-venomous animals. Finally, we introduce our considerations regarding the evolution of venoms in Arachnida. CONCLUSIONS Taking into account the composition of tick saliva, the venomous functions that ticks have while interacting with their hosts, and the distinguishable differences between human (non-venomous) and tick salivary proteins, we consider that ticks should be referred to as venomous ectoparasites.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Center for Infection and Immunity of Lille (CIIL), INSERM U1019 – CNRS UMR 8204, Université Lille Nord de France, Institut Pasteur de Lille, Lille, France
- SaBio. Instituto de Investigación de Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ciudad Real 13005, Spain
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, 37005, Czech Republic
| |
Collapse
|
34
|
Calvete JJ. Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomics 2014; 11:315-29. [PMID: 24678852 DOI: 10.1586/14789450.2014.900447] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Venom research has been continuously enhanced by technological advances. High-throughput technologies are changing the classical paradigm of hypothesis-driven research to technology-driven approaches. However, the thesis advocated in this paper is that full proteome coverage at locus-specific resolution requires integrating the best of both worlds into a protocol that includes decomplexation of the venom proteome prior to liquid chromatography-tandem mass spectrometry matching against a species-specific transcriptome. This approach offers the possibility of proof-checking the species-specific contig database using proteomics data. Immunoaffinity chromatography constitutes the basis of an antivenomics workflow designed to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venom toxins. In the author's view, snake venomics and antivenomics form part of a biology-driven conceptual framework to unveil the genesis and natural history of venoms, and their within- and between-species toxicological and immunological divergences and similarities. Understanding evolutionary trends across venoms represents the Rosetta Stone for generating broad-ranging polyspecific antivenoms.
Collapse
Affiliation(s)
- Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain +34 963 391 778 +34 963 690 800
| |
Collapse
|
35
|
Sunagar K, Undheim EAB, Scheib H, Gren ECK, Cochran C, Person CE, Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteomics 2014; 99:68-83. [PMID: 24463169 DOI: 10.1016/j.jprot.2014.01.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Due to the extreme variation of venom, which consequently results in drastically variable degrees of neutralization by CroFab antivenom, the management and treatment of envenoming by Crotalus oreganus helleri (the Southern Pacific Rattlesnake), one of the most medically significant snake species in all of North America, has been a clinician's nightmare. This snake has also been the subject of sensational news stories regarding supposed rapid (within the last few decades) evolution of its venom. This research demonstrates for the first time that variable evolutionary selection pressures sculpt the intraspecific molecular diversity of venom components in C. o. helleri. We show that myotoxic β-defensin peptides (aka: crotamines/small basic myotoxic peptides) are secreted in large amounts by all populations. However, the mature toxin-encoding nucleotide regions evolve under the constraints of negative selection, likely as a result of their non-specific mode of action which doesn't enforce them to follow the regime of the classic predator-prey chemical arms race. The hemorrhagic and tissue destroying snake venom metalloproteinases (SVMPs) were secreted in larger amounts by the Catalina Island and Phelan rattlesnake populations, in moderate amounts in the Loma Linda population and in only trace levels by the Idyllwild population. Only the Idyllwild population in the San Jacinto Mountains contained potent presynaptic neurotoxic phospholipase A2 complex characteristic of Mohave Rattlesnake (Crotalus scutulatus) and Neotropical Rattlesnake (Crotalus durissus terrificus). The derived heterodimeric lectin toxins characteristic of viper venoms, which exhibit a diversity of biological activities, including anticoagulation, agonism/antagonism of platelet activation, or procoagulation, appear to have evolved under extremely variable selection pressures. While most lectin α- and β-chains evolved rapidly under the influence of positive Darwinian selection, the β-chain lectin of the Catalina Island population appears to have evolved under the constraint of negative selection. Both lectin chains were conspicuously absent in both the proteomics and transcriptomics of the Idyllwild population. Thus, we not only highlight the tremendous biochemical diversity in C. o. helleri's venom-arsenal, but we also show that they experience remarkably variable strengths of evolutionary selection pressures, within each toxin class among populations and among toxin classes within each population. The mapping of geographical venom variation not only provides additional information regarding venom evolution, but also has direct medical implications by allowing prediction of the clinical effects of rattlesnake bites from different regions. Such information, however, also points to these highly variable venoms as being a rich source of novel toxins which may ultimately prove to be useful in drug design and development. BIOLOGICAL SIGNIFICANCE These results have direct implications for the treatment of envenomed patients. The variable venom profile of Crotalus oreganus helleri underscores the biodiscovery potential of novel snake venoms.
Collapse
Affiliation(s)
- Kartik Sunagar
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - Eivind A B Undheim
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Holger Scheib
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eric C K Gren
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Chip Cochran
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carl E Person
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ivan Koludarov
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Wayne Kelln
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Glenn F King
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Agosthino Antunes
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, P 4050-123 Porto, Portugal
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia; Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
36
|
Venom down under: dynamic evolution of Australian elapid snake toxins. Toxins (Basel) 2013; 5:2621-55. [PMID: 24351719 PMCID: PMC3873703 DOI: 10.3390/toxins5122621] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 (PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.
Collapse
|
37
|
Snake venomics: From the inventory of toxins to biology. Toxicon 2013; 75:44-62. [DOI: 10.1016/j.toxicon.2013.03.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/06/2013] [Accepted: 03/13/2013] [Indexed: 01/05/2023]
|
38
|
Sunagar K, Fry BG, Jackson TNW, Casewell NR, Undheim EAB, Vidal N, Ali SA, King GF, Vasudevan K, Vasconcelos V, Antunes A. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf. PLoS One 2013; 8:e81827. [PMID: 24312363 PMCID: PMC3843689 DOI: 10.1371/journal.pone.0081827] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/17/2013] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.
Collapse
Affiliation(s)
- Kartik Sunagar
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Bryan Grieg Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Timothy N. W. Jackson
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Nicholas R. Casewell
- Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor, United Kingdom
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Eivind A. B. Undheim
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | - Nicolas Vidal
- Département Systématique et Evolution, Service de Systématique Moléculaire, UMR 7138, Muséum National d’Histoire Naturelle, Paris, France
| | - Syed A. Ali
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Glenn F. King
- Institute for Molecular Bioscience, University of Queenland, St Lucia, Queensland, Australia
| | | | - Vitor Vasconcelos
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Agostinho Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
39
|
Three-fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of snake venom toxins. Toxins (Basel) 2013; 5:2172-208. [PMID: 24253238 PMCID: PMC3847720 DOI: 10.3390/toxins5112172] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx.
Collapse
|
40
|
Atractaspis aterrima toxins: the first insight into the molecular evolution of venom in side-stabbers. Toxins (Basel) 2013; 5:1948-64. [PMID: 24169588 PMCID: PMC3847709 DOI: 10.3390/toxins5111948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022] Open
Abstract
Although snake venoms have been the subject of intense research, primarily because of their tremendous potential as a bioresource for design and development of therapeutic compounds, some specific groups of snakes, such as the genus Atractaspis, have been completely neglected. To date only limited number of toxins, such as sarafotoxins have been well characterized from this lineage. In order to investigate the molecular diversity of venom from Atractaspis aterrima—the slender burrowing asp, we utilized a high-throughput transcriptomic approach completed with an original bioinformatics analysis pipeline. Surprisingly, we found that Sarafotoxins do not constitute the major ingredient of the transcriptomic cocktail; rather a large number of previously well-characterized snake venom-components were identified. Notably, we recovered a large diversity of three-finger toxins (3FTxs), which were found to have evolved under the significant influence of positive selection. From the normalized and non-normalized transcriptome libraries, we were able to evaluate the relative abundance of the different toxin groups, uncover rare transcripts, and gain new insight into the transcriptomic machinery. In addition to previously characterized toxin families, we were able to detect numerous highly-transcribed compounds that possess all the key features of venom-components and may constitute new classes of toxins.
Collapse
|
41
|
Fry BG, Undheim EAB, Ali SA, Jackson TNW, Debono J, Scheib H, Ruder T, Morgenstern D, Cadwallader L, Whitehead D, Nabuurs R, van der Weerd L, Vidal N, Roelants K, Hendrikx I, Gonzalez SP, Koludarov I, Jones A, King GF, Antunes A, Sunagar K. Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Mol Cell Proteomics 2013; 12:1881-99. [PMID: 23547263 PMCID: PMC3708173 DOI: 10.1074/mcp.m112.023143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 04/01/2013] [Indexed: 12/20/2022] Open
Abstract
Although it has been established that all toxicoferan squamates share a common venomous ancestor, it has remained unclear whether the maxillary and mandibular venom glands are evolving on separate gene expression trajectories or if they remain under shared genetic control. We show that identical transcripts are simultaneously expressed not only in the mandibular and maxillary glands, but also in the enigmatic snake rictal gland. Toxin molecular frameworks recovered in this study were three-finger toxin (3FTx), CRiSP, crotamine (beta-defensin), cobra venom factor, cystatin, epididymal secretory protein, kunitz, L-amino acid oxidase, lectin, renin aspartate protease, veficolin, and vespryn. We also discovered a novel low-molecular weight disulfide bridged peptide class in pythonid snake glands. In the iguanian lizards, the most highly expressed are potentially antimicrobial in nature (crotamine (beta-defensin) and cystatin), with crotamine (beta-defensin) also the most diverse. However, a number of proteins characterized from anguimorph lizards and caenophidian snakes with hemotoxic or neurotoxic activities were recruited in the common toxicoferan ancestor and remain expressed, albeit in low levels, even in the iguanian lizards. In contrast, the henophidian snakes express 3FTx and lectin toxins as the dominant transcripts. Even in the constricting pythonid and boid snakes, where the glands are predominantly mucous-secreting, low-levels of toxin transcripts can be detected. Venom thus appears to play little role in feeding behavior of most iguanian lizards or the powerful constricting snakes, and the low levels of expression argue against a defensive role. However, clearly the incipient or secondarily atrophied venom systems of these taxa may be a source of novel compounds useful in drug design and discovery.
Collapse
Affiliation(s)
- Bryan G Fry
- Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Durban J, Pérez A, Sanz L, Gómez A, Bonilla F, Rodríguez S, Chacón D, Sasa M, Angulo Y, Gutiérrez JM, Calvete JJ. Integrated "omics" profiling indicates that miRNAs are modulators of the ontogenetic venom composition shift in the Central American rattlesnake, Crotalus simus simus. BMC Genomics 2013; 14:234. [PMID: 23575160 PMCID: PMC3660174 DOI: 10.1186/1471-2164-14-234] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/14/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Understanding the processes that drive the evolution of snake venom is a topic of great research interest in molecular and evolutionary toxinology. Recent studies suggest that ontogenetic changes in venom composition are genetically controlled rather than environmentally induced. However, the molecular mechanisms underlying these changes remain elusive. Here we have explored the basis and level of regulation of the ontogenetic shift in the venom composition of the Central American rattlesnake, Crotalus s. simus using a combined proteomics and transcriptomics approach. RESULTS Proteomic analysis showed that the ontogenetic shift in the venom composition of C. s. simus is essentially characterized by a gradual reduction in the expression of serine proteinases and PLA2 molecules, particularly crotoxin, a β-neurotoxic heterodimeric PLA2, concominantly with an increment of PI and PIII metalloproteinases at age 9-18 months. Comparison of the transcriptional activity of the venom glands of neonate and adult C. s. simus specimens indicated that their transcriptomes exhibit indistinguisable toxin family profiles, suggesting that the elusive mechanism by which shared transcriptomes generate divergent venom phenotypes may operate post-transcriptionally. Specifically, miRNAs with frequency count of 1000 or greater exhibited an uneven distribution between the newborn and adult datasets. Of note, 590 copies of a miRNA targeting crotoxin B-subunit was exclusively found in the transcriptome of the adult snake, whereas 1185 copies of a miRNA complementary to a PIII-SVMP mRNA was uniquely present in the newborn dataset. These results support the view that age-dependent changes in the concentration of miRNA modulating the transition from a crotoxin-rich to a SVMP-rich venom from birth through adulthood can potentially explain what is observed in the proteomic analysis of the ontogenetic changes in the venom composition of C. s. simus. CONCLUSIONS Existing snake venom toxins are the result of early recruitment events in the Toxicofera clade of reptiles by which ordinary genes were duplicated, and the new genes selectively expressed in the venom gland and amplified to multigene families with extensive neofunctionalization throughout the approximately 112-125 million years of ophidian evolution. Our findings support the view that understanding the phenotypic diversity of snake venoms requires a deep knowledge of the mechanisms regulating the transcriptional and translational activity of the venom gland. Our results suggest a functional role for miRNAs. The impact of specific miRNAs in the modulation of venom composition, and the integration of the mechanisms responsible for the generation of these miRNAs in the evolutionary landscape of the snake's venom gland, are further challenges for future research.
Collapse
Affiliation(s)
- Jordi Durban
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, Valencia 46010, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Brust A, Sunagar K, Undheim EAB, Vetter I, Yang DC, Yang DC, Casewell NR, Jackson TNW, Koludarov I, Alewood PF, Hodgson WC, Lewis RJ, King GF, Antunes A, Hendrikx I, Fry BG. Differential evolution and neofunctionalization of snake venom metalloprotease domains. Mol Cell Proteomics 2012; 12:651-63. [PMID: 23242553 DOI: 10.1074/mcp.m112.023135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Snake venom metalloproteases (SVMP) are composed of five domains: signal peptide, propeptide, metalloprotease, disintegrin, and cysteine-rich. Secreted toxins are typically combinatorial variations of the latter three domains. The SVMP-encoding genes of Psammophis mossambicus venom are unique in containing only the signal and propeptide domains. We show that the Psammophis SVMP propeptide evolves rapidly and is subject to a high degree of positive selection. Unlike Psammophis, some species of Echis express both the typical multidomain and the unusual monodomain (propeptide only) SVMP, with the result that a lower level of variation is exerted upon the latter. We showed that most mutations in the multidomain Echis SVMP occurred in the protease domain responsible for proteolytic and hemorrhagic activities. The cysteine-rich and disintegrin-like domains, which are putatively responsible for making the P-III SVMPs more potent than the P-I and P-II forms, accumulate the remaining variation. Thus, the binding sites on the molecule's surface are evolving rapidly whereas the core remains relatively conserved. Bioassays conducted on two post-translationally cleaved novel proline-rich peptides from the P. mossambicus propeptide domain showed them to have been neofunctionalized for specific inhibition of mammalian a7 neuronal nicotinic acetylcholine receptors. We show that the proline rich postsynaptic specific neurotoxic peptides from Azemiops feae are the result of convergent evolution within the precursor region of the C-type natriuretic peptide instead of the SVMP. The results of this study reinforce the value of studying obscure venoms for biodiscovery of novel investigational ligands.
Collapse
Affiliation(s)
- Andreas Brust
- ‡Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072 Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 2012; 28:219-29. [PMID: 23219381 DOI: 10.1016/j.tree.2012.10.020] [Citation(s) in RCA: 647] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/10/2012] [Accepted: 10/26/2012] [Indexed: 01/08/2023]
Abstract
Venoms have evolved on numerous occasions throughout the animal kingdom. These 'biochemical weapon systems' typically function to facilitate, or protect the producing animal from, predation. Most venomous animals remain unstudied despite venoms providing model systems for investigating predator-prey interactions, molecular evolution, functional convergence, and novel targets for pharmaceutical discovery. Through advances in 'omic' technologies, venom composition data have recently become available for several venomous lineages, revealing considerable complexity in the processes responsible for generating the genetic and functional diversity observed in many venoms. Here, we review these recent advances and highlight the ecological and evolutionary novelty of venom systems.
Collapse
Affiliation(s)
- Nicholas R Casewell
- Molecular Ecology and Evolution Group, School of Biological Sciences, Bangor University, Bangor, LL57 2UW, UK.
| | | | | | | | | |
Collapse
|
45
|
|
46
|
Peichoto ME, Tavares FL, Santoro ML, Mackessy SP. Venom proteomes of South and North American opisthoglyphous (Colubridae and Dipsadidae) snake species: a preliminary approach to understanding their biological roles. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:361-9. [PMID: 22974712 DOI: 10.1016/j.cbd.2012.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
Opisthoglyphous snake venoms remain under-explored despite being promising sources for ecological, evolutionary and biomedical/biotechnological research. Herein, we compared the protein composition and enzymatic properties of the venoms of Philodryas baroni (PbV), Philodryas olfersii olfersii (PooV) and Philodryas patagoniensis (PpV) from South America, and Hypsiglena torquata texana (HttV) and Trimorphodon biscutatus lambda (TblV) from North America. All venoms degraded azocasein, and this metalloproteinase activity was significantly inhibited by EDTA. PooV exhibited the highest level of catalytic activity towards synthetic substrates for serine proteinases. All venoms hydrolyzed acetylthiocholine at low levels, and only TblV showed phospholipase A(2) activity. 1D and 2D SDS-PAGE profile comparisons demonstrated species-specific components as well as several shared components. Size exclusion chromatograms from the three Philodryas venoms and HttV were similar, but TblV showed a notably different pattern. MALDI-TOF MS of crude venoms revealed as many as 49 distinct protein masses, assigned to six protein families. MALDI-TOF/TOF MS analysis of tryptic peptides confirmed the presence of cysteine-rich secretory proteins in all venoms, as well as a phospholipase A(2) and a three-finger toxin in TblV. Broad patterns of protein composition appear to follow phylogenetic lines, with finer scale variation likely influenced by ecological factors such as diet and habitat.
Collapse
Affiliation(s)
- María E Peichoto
- Instituto Nacional de Medicina Tropical, Puerto Iguazú, Argentina.
| | | | | | | |
Collapse
|