1
|
Chen M, Yang L, Zeng G, Xiao X, Liu Z, Zhang G, Zhou X. Isolation and identification of toxins inhibiting Shal potassium channels from the venom of Ornithoctonus hainana spider. Toxicol Appl Pharmacol 2025; 500:117374. [PMID: 40345556 DOI: 10.1016/j.taap.2025.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/20/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
The spider, Ornithoctonus hainana, is a large and formidable predatory arthropod that possesses strong lethality towards rodents through its venoms. Its venom and constituent bioactive peptide toxins have previously been shown to modulate the activity of voltage-gated ion channels. Therefore, venom toxins are an important weapon for rapidly subduing prey or escaping predators. Here, we discovered three new peptide toxins, termed HNTXs, from the venom of O. hainana. These toxins potently inhibit the peak currents of rKv4.2, a member of the Shal channel family. We demonstrated that HNTXs are gating modifiers that shift the voltage dependence of activation and inactivation to more positive potentials. Additionally, chimeric channel and site-directed mutagenesis analyses show that these toxins inhibit rKv4.2 by interacting with the S3-S4 linker in the channel. Furthermore, we found that HNTXs exhibited different responses to Shal channels of vertebrates and invertebrates, suggesting that venomous animals employ diversified toxins to efficiently and accurately defend against predation and interspecific competition. This research may expand our understanding of venom peptides in evolutionary adaptation.
Collapse
Affiliation(s)
- Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Li Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Guo Zeng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Xin Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| | - Xi Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
2
|
Damm M, Vilcinskas A, Lüddecke T. Mapping the architecture of animal toxin systems by mass spectrometry imaging. Biotechnol Adv 2025; 81:108548. [PMID: 40049423 DOI: 10.1016/j.biotechadv.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Animal toxins are proteins, peptides or metabolites that cause negative effects against predators, prey or competitors following contact or injection. They work by interacting with enzymes, receptors and other targets causing pain, debilitation or leading even to death. Their biological significance and pharmacological effects in humans make them interesting to researchers, but much remains to be learned about their mechanisms of action, storage, tissue-specific distribution and maturation. Mass spectrometry imaging (MSI), a technique that determines the spatial distribution of molecules based on their molecular mass, is uniquely positioned to answer these key questions and pioneering studies have already confirmed its potential impact on the field of zootoxinology. We provide the first comprehensive review of MSI as a means to study animal toxins, the lessons learned thus far, and potential future applications. This fills an important gap in the literature and will facilitate future work on the structure, function, evolutionary history and medical uses of animal toxins.
Collapse
Affiliation(s)
- Maik Damm
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Andreas Vilcinskas
- Institute of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| | - Tim Lüddecke
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Branch Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Ohlebergsweg 12, 35392 Giessen, Germany.
| |
Collapse
|
3
|
Lyons K, Dugon MM, Healy K. Spider venom potency exhibits phylogenetic prey specificity but does not trade-off with body size or silk use in prey capture. Biol Lett 2025; 21:20250133. [PMID: 40393515 DOI: 10.1098/rsbl.2025.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 05/22/2025] Open
Abstract
Spiders employ a diverse range of predator traits, including potent venoms, complex silk-hunting strategies and mechanical strength coupled with larger body sizes to capture prey. This trait diversity, along with the quantifiable nature of venom potency, makes spiders an excellent group to study evolutionary trade-offs. Yet, comparative approaches have been historically confounded by the use of atypical prey models to measure venom potency. Here, we account for such confounding issues by incorporating the phylogenetic similarity between a spider's diet and the species used to measure its venom potency. Using a phylogenetic comparative analysis of 75 spider species to test how diet, silk use in prey capture and body size drive venom yield and potency (LD50), we show that spider venoms are generally more potent against models more closely related to their natural prey, reflecting prey-specific patterns. Despite predictions, we find no trade-offs among body size, silk use and venom potency. We find that venom yield scales sublinearly with size, reflecting the 0.75 allometric scaling predicted by metabolic theory, suggesting that venom is metabolically expensive in spiders. Our approach demonstrates how contemporary comparative approaches can be applied to historic venom potency measures to test fundamental evolutionary patterns in predator traits.
Collapse
Affiliation(s)
- Keith Lyons
- Zoology Department, University of Galway, Galway, Ireland
| | - M M Dugon
- Zoology Department, University of Galway, Galway, Ireland
| | - Kevin Healy
- Zoology Department, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Marston LA, Fox GA, Hung KY, Delo SJ, Hayes WK. A Sting Operation: Risk Assessment and Venom Expenditure by Arizona Bark Scorpions ( Centruroides sculpturatus) in a Defensive Context. Toxins (Basel) 2025; 17:198. [PMID: 40278696 PMCID: PMC12030811 DOI: 10.3390/toxins17040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Scorpion antipredator behavior incorporates risk assessment that informs decision-making and venom usage. We quantified antipredator behaviors of the clinically significant Arizona bark scorpion (Centruroides sculpturatus) in their natural environment using exposure to two stimuli: a freshly thawed laboratory mouse (Mus musculus) and a membrane-covered glass beaker. We videotaped and compared envenomation behaviors between sexes (females, gravid females, and males), across sizes, and between animal orientations (on vertical or horizontal substrates). Results failed to show consistent support for any of our four hypotheses. Females (especially gravid females) were no more likely than males to exhibit higher levels of stinging and venom expenditure. Scorpions on horizontal surfaces compared to those on vertical surfaces, and larger scorpions compared to smaller ones, were likewise no more likely to exhibit higher levels of responsiveness. Mice were more likely to be stung than the membrane-covered beaker, but with fewer and briefer stings, suggesting the scorpions did not attempt to deliver more venom into the mice. Thus, we discerned no clear patterns in risk assessment, stinging, and venom use associated with sex, substrate orientation, body size, or threat stimuli. These findings contrasted with those of several prior laboratory studies. Variation from unaccounted environmental variables may have obfuscated divergent behavioral tactics. Nevertheless, the behaviors we document here provide insights on the range of defensive behaviors exhibited by C. sculpturatus under natural environmental conditions, including the frequency of dry stings (11.8%) to the membrane-covered beakers.
Collapse
Affiliation(s)
- Lindsay A. Marston
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (L.A.M.); (G.A.F.); (S.J.D.)
| | - Gerad A. Fox
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (L.A.M.); (G.A.F.); (S.J.D.)
| | - Kim Y. Hung
- Coachella Valley Mosquito and Vector Control District, 43-420 Trader Pl, Indio, CA 92201, USA;
| | - Shannon J. Delo
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (L.A.M.); (G.A.F.); (S.J.D.)
| | - William K. Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA; (L.A.M.); (G.A.F.); (S.J.D.)
| |
Collapse
|
5
|
Hayes WK, Gren ECK, Nelsen DR, Corbit AG, Cooper AM, Fox GA, Streit MB. It's a Small World After All: The Remarkable but Overlooked Diversity of Venomous Organisms, with Candidates Among Plants, Fungi, Protists, Bacteria, and Viruses. Toxins (Basel) 2025; 17:99. [PMID: 40137872 PMCID: PMC11945383 DOI: 10.3390/toxins17030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Numerous organisms, including animals, plants, fungi, protists, and bacteria, rely on toxins to meet their needs. Biological toxins have been classified into three groups: poisons transferred passively without a delivery mechanism; toxungens delivered to the body surface without an accompanying wound; and venoms conveyed to internal tissues via the creation of a wound. The distinctions highlight the evolutionary pathways by which toxins acquire specialized functions. Heretofore, the term venom has been largely restricted to animals. However, careful consideration reveals a surprising diversity of organisms that deploy toxic secretions via strategies remarkably analogous to those of venomous animals. Numerous plants inject toxins and pathogenic microorganisms into animals through stinging trichomes, thorns, spines, prickles, raphides, and silica needles. Some plants protect themselves via ants as venomous symbionts. Certain fungi deliver toxins via hyphae into infected hosts for nutritional and/or defensive purposes. Fungi can possess penetration structures, sometimes independent of the hyphae, that create a wound to facilitate toxin delivery. Some protists discharge harpoon-like extrusomes (toxicysts and nematocysts) that penetrate their prey and deliver toxins. Many bacteria possess secretion systems or contractile injection systems that can introduce toxins into targets via wounds. Viruses, though not "true" organisms according to many, include a group (the bacteriophages) which can inject nucleic acids and virion proteins into host cells that inflict damage rivaling that of conventional venoms. Collectively, these examples suggest that venom delivery systems-and even toxungen delivery systems, which we briefly address-are much more widespread than previously recognized. Thus, our understanding of venom as an evolutionary novelty has focused on only a small proportion of venomous organisms. With regard to this widespread form of toxin deployment, the words of the Sherman Brothers in Disney's iconic tune, It's a Small World, could hardly be more apt: "There's so much that we share, that it's time we're aware, it's a small world after all".
Collapse
Affiliation(s)
- William K. Hayes
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Eric C. K. Gren
- Bitterroot College, University of Montana, Hamilton, MT 59840, USA;
| | - David R. Nelsen
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Aaron G. Corbit
- Biology/Allied Health Department, Southern Adventist University, Collegedale, TN 37315, USA; (D.R.N.); (A.G.C.)
| | - Allen M. Cooper
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - Gerad A. Fox
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| | - M. Benjamin Streit
- Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA; (A.M.C.); (G.A.F.); (M.B.S.)
| |
Collapse
|
6
|
Michálek O, King GF, Pekár S. Prey specificity of predatory venoms. Biol Rev Camb Philos Soc 2024; 99:2253-2273. [PMID: 38991997 DOI: 10.1111/brv.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
7
|
González-Gómez JC, Simone Y, Pérez LMF, Valenzuela-Rojas JC, van der Meijden A. Rapid prey manipulation and bite location preferences in three species of wandering spiders. Behav Processes 2024; 221:105083. [PMID: 39094759 DOI: 10.1016/j.beproc.2024.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Predator-prey interactions are the interspecific relationships of greatest interest in ecology. Spiders are among the most diverse and ubiquitous terrestrial predators on the planet. Their large dietary breadth is often linked with the development of specific predatory behaviors and morphological adaptations. However, studies on the predatory behavior of spiders have mostly focused on specialist species, leaving behind the ethological variability occurring in generalist species that allow them to respond to the different prey types. For three species of generalist wandering spiders, we searched images of predation events on the Internet to determine the most common prey. Subsequently, the focal predator species were then used in behavioral experiments. Using high-speed videos, handling patterns for different prey types (spider and cricket) were analyzed. Our results show a notable difference in handling patterns between prey types. We found that the spider prey was often rotated around the axis allowing the predator to bite in the ventral region of the prey and thus avoid a counterattack. Contrary, crickets were arbitrarily rotated. Our work may be an indication that these three species of generalist spiders have a preference for manipulating prey differently with a preference to rotate spiders, allowing them to exploit prey with various defensive mechanisms.
Collapse
Affiliation(s)
- Julio César González-Gómez
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Programa de Doctorado en Ciencias Biológicas, Universidad del Tolima, Altos de Santa Helena, Ibagué, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia.
| | - Yuri Simone
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| | - Lida Marcela Franco Pérez
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22, Calle 67, Ibagué, Colombia.
| | - Juan Carlos Valenzuela-Rojas
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; Semillero de Investigación INVUSCO, Grupo GIPB, Licenciatura en Ciencias Naturales y Educación Ambiental, Universidad Surcolombiana, Neiva, Huila, Colombia; Institución Educativa San Roque, Oporapa, Huila, Colombia.
| | - Arie van der Meijden
- Grupo de Investigación Biología y Ecología de Artrópodos (BEA), Corporación Huiltur, Neiva, Huila, Colombia; BIOPOLIS, CIBIO/InBio, Rua Padre Armando Quintas 7, Vairão 4485-661, Portugal.
| |
Collapse
|
8
|
Kowalski K, Marciniak P, Nekaris KAI, Rychlik L. Proteins from shrews' venom glands play a role in gland functioning and venom production. ZOOLOGICAL LETTERS 2024; 10:12. [PMID: 39010181 PMCID: PMC11251227 DOI: 10.1186/s40851-024-00236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024]
Abstract
Venom production has evolved independently many times in the animal kingdom, although it is rare among mammals. Venomous shrews produce venom in their submandibular salivary glands and use it for food acquisition. Only a few toxins have been identified in shrew venoms thus far, and their modes of action require investigation. The biological and molecular processes relating to venom production and gland functioning also remain unknown. To address this gap, we investigated protein content in extracts from venom glands of two shrew species, Neomys fodiens and Sorex araneus, and interpreted their biological functions. Applying a proteomic approach coupled with Gene Ontology enrichment analysis, we identified 313 and 187 putative proteins in venom glands of N. fodiens and S. araneus, respectively. A search of the UniProt database revealed that most of the proteins found in both shrew species were involved in metabolic processes and stress response, while GO enrichment analysis revealed more stress-related proteins in the glands of S. araneus. Molecules that regulate molecule synthesis, cell cycles, and cell divisions are necessary to enable venom regeneration and ensure its effectiveness in predation and food hoarding. The presence of proteins involved in stress response may be the result of shrews' high metabolic rate and the costs of venom replenishment. Some proteins are likely to promote toxin spreading during envenomation and, due to their proteolytic action, reinforce venom toxicity. Finally, finding numerous proteins involved in immune response suggests a potential role of shrew venom gland secretions in protection against pathogens. These findings open up new perspectives for studying biological functions of molecules from shrew venom glands and extend our knowledge on the functioning of eulipotyphlan venom systems. Because the majority of existing and putative venomous mammals use oral venom systems to inject venom into target species, the methods presented here provide a promising avenue for confirming or discovering new taxa of venomous mammals.
Collapse
Affiliation(s)
- Krzysztof Kowalski
- Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland.
| | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - K Anne-Isola Nekaris
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Leszek Rychlik
- Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| |
Collapse
|
9
|
Kodama T, Sakamoto SH, Mori A. Cold kiss still hot: limited temperature effects on envenomation performance in predatory strikes of a Japanese pit viper ( Gloydius blomhoffii). Proc Biol Sci 2024; 291:20240719. [PMID: 39079665 PMCID: PMC11288664 DOI: 10.1098/rspb.2024.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 08/03/2024] Open
Abstract
Understanding how environmental factors affect the performance of predators can provide profound insights into predator-prey interactions from evolutionary and ecological perspectives and the global distributional patterns of each taxon. Almost all venomous predators are ectotherms, with muscle contraction properties depending on temperature. For predators having venom transportation systems driven by muscle contraction, temperature may have quite large effects on envenomation performance for prey subjugation. Here, we used videography and enzyme-linked immunosorbent assay to examine thermal effects on envenomation kinematics and venom expenditure in predatory strikes of a venomous snake, the Mamushi Gloydius blomhoffii, to its main rodent prey at various body temperatures under both field and laboratory experimental conditions. Unexpectedly, we found that the thermal effects on envenomation performance are limited over nearly the entire ecologically relevant range of temperature (from 13.2°C to 26.2°C). Although temperature statistically significantly affected the mass of venom injected under field conditions, temperature explained only a minor proportion of the variation in venom expenditure. These findings suggest that the Mamushi is able to maintain prey subjugation performance across a wide range of temperatures, which is highly advantageous for ectothermic predators. Further studies should examine the underlying mechanisms of the limited thermal effects and their ubiquity across venomous predators.
Collapse
Affiliation(s)
- Tomonori Kodama
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto606-8502, Japan
| | - Shinsuke H. Sakamoto
- Faculty of Agriculture, University of Miyazaki, Miyazaki889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki889-2192, Japan
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto606-8502, Japan
| |
Collapse
|
10
|
Fuller G, Wirdateti, Nekaris KAI. Evaluating the Use of Chemical Weapons for Capturing Prey by a Venomous Mammal, the Greater Slow Loris ( Nycticebus coucang). Animals (Basel) 2024; 14:1438. [PMID: 38791656 PMCID: PMC11117385 DOI: 10.3390/ani14101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Few mammals are venomous, including one group of primates-slow (Nycticebus spp.) and pygmy (Xanthonycticebus spp.) lorises. Hypotheses for the evolutionary function of venom in these primates include defense from predators or ectoparasites, communication or competition with conspecifics, and the capture of prey. We tested the prey capture hypothesis in 75 trials with 22 wild-caught greater slow lorises (N. coucang) housed in a rescue center in Java, Indonesia. We experimentally offered the slow lorises arthropod prey items varying in size, escape potential, and toxicity and recorded venom-related and predatory behaviors using live and video observations. The slow lorises visually targeted arthropod prey, approached it quickly and efficiently, and captured it with a manual grasping motion. They rarely performed venom-related behaviors and seemed to do so in a defensive context. The slow lorises exhibited little variation in pre-capture behavior as a function of prey size or escape potential. In response to noxious prey, the slow lorises performed tongue-flicking and other investigative behaviors that indicate they are using chemosensory input to assess prey characteristics. These data suggest it is unlikely that slow lorises use chemical weapons to subdue arthropod prey and may support, instead, a defensive function for slow loris venom.
Collapse
Affiliation(s)
- Grace Fuller
- Nocturnal Primate Research Group, School of Social Sciences and Law, Oxford Brookes University, Oxford OX3 0BP, UK;
- Detroit Zoological Society, Royal Oak, MI 48067, USA
| | - Wirdateti
- Division Zoology, Research Center for Biosystematics and Evolution, Badan Riset dan Inovasi Nasional (BRIN), Kawasan Sains dan Teknologi (KST), Soekarno, Cibinong 16911, Indonesia;
| | - K. A. I. Nekaris
- Nocturnal Primate Research Group, School of Social Sciences and Law, Oxford Brookes University, Oxford OX3 0BP, UK;
| |
Collapse
|
11
|
Ajdi B, El Asbahani A, El Hidan MA, Bocquet M, Falconnet L, Ait Hamza M, Elmourid A, Touloun O, Boubaker H, Bulet P. Molecular diversity assessed by MALDI mass spectrometry of two scorpion species venom from two different locations in Morocco. Toxicon 2024; 238:107562. [PMID: 38103799 DOI: 10.1016/j.toxicon.2023.107562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Scorpion venom is a cocktail of molecules whose composition is remarkably plastic, controlled by several factors. The Moroccan scorpion fauna is characterized by its richness and high rate of endemism and the venom molecular variability of many species is not yet well characterized. The aim of the present study was to highlight the molecular variability of the venom composition of Androctonus amoreuxi and Buthacus stockmanni (endemic species), both belonging to the Buthidae family, collected from two Moroccan regions, Zagora and Tan-tan. Characterization of the molecular mass fingerprints (MFPs) of each specimen was performed by Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) using a sandwich (Sand) and a dried-droplet (DD) sample preparation and dilutions. Considering these two methods, a total of 828 ion signals were detected, and Sand method produced more adducts (56%) than DD (44%). We observed interspecific variations in the venom composition between these two species showing they share 235 ion signals, while 226 and 367 are specific for these two species, respectively. Moreover, B. stockmanni specimens showed a clear difference in their MFPs between the two geographical areas studied, suggesting intraspecific variations. Moreover, specimens from each population also show an intraspecific variability. In addition, for the same individual, a variation in the venom composition was also recorded depending on the milking frequency. Our results confirmed the presence of characteristic components in each extracted venom sample. In conclusion, MFPs assessed by MALDI-MS represent a fast, non-supervised, sensitive, reliable and cost-efficient approach for taxonomic identification and molecular variability characterization. This study undoubtedly represents a step forward for understanding the scorpion venom plasticity, intra/inter variations, and their temporal and geographical variability.
Collapse
Affiliation(s)
- Boujemaa Ajdi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco; Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000, Grenoble, France; Platform BioPark Archamps, 74160, Archamps, France.
| | - Abdelhafed El Asbahani
- Applied Chemistry and Environment Laboratory, Team of Bio-organic Chemistry and Natural Substances, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Michel Bocquet
- Platform BioPark Archamps, 74160, Archamps, France; Apimedia, 74370, Annecy, France
| | | | - Mohamed Ait Hamza
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Applied Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdessamad Elmourid
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, 23030, Morocco.
| | - Oulaid Touloun
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, 23030, Morocco.
| | - Hassan Boubaker
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000, Grenoble, France; Platform BioPark Archamps, 74160, Archamps, France.
| |
Collapse
|
12
|
Rezaei Orimi J, Eskandarzadeh N, Amrollahi-Sharifabadi M, Miri V, Aghabeiglooei Z, Rezghi M. Analyzing the biological traits of snakes in Avicenna's Canon of medicine and making a comparison with contemporary serpentology. Toxicon 2023; 231:107198. [PMID: 37331525 DOI: 10.1016/j.toxicon.2023.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Snakes are a group of reptiles in the order of squamata that have been the subject of scientific research for years. This study aimed to determine the biological characteristics of snakes that were mentioned in Avicenna's Canon of Medicine to compare with modern serpentology. Data were obtained from the Canon of Medicine using keywords concerning snakes and also appropriate literature in PubMed, Scopus, Web of Science, Scientific Information Database (SID), and IranDoc. Our results revealed that Avicenna divided snakes into three classes including highly, moderately, and slightly venomous snakes that are comparable to modern serpontology. Moreover, Avicenna clarified physiological factors such as age, gender, size, psychological state, hunger state, physical features, the type of living climate, habitat, and the time of snakebite. Considering the snake features presented in the Canon of Medicine, even though is not feasible to make a full comparison between Avicenna's snake knowledge and modern serpentology but some characteristics can be still applicable. Conclusively, the present study suggested that the criteria used for the identification and classification of snakes have changed from the medieval ages to the nowadays.
Collapse
Affiliation(s)
- Jamal Rezaei Orimi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | | | | | - Vajihe Miri
- Department of Research Sciences, Faculty of Theology, Law and Political Sciences, Azad University, Tehran, Iran.
| | - Zahra Aghabeiglooei
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran.
| | - Maedeh Rezghi
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Traditional Medicine, School of Traditional Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
13
|
Duran LH, Wilson DT, Salih M, Rymer TL. Interactions between physiology and behaviour provide insights into the ecological role of venom in Australian funnel-web spiders: Interspecies comparison. PLoS One 2023; 18:e0285866. [PMID: 37216354 PMCID: PMC10202279 DOI: 10.1371/journal.pone.0285866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/03/2023] [Indexed: 05/24/2023] Open
Abstract
Australian funnel-web spiders are iconic species, characterized as being the most venomous spiders in the world. They are also valued for the therapeutics and natural bioinsecticides potentially hidden in their venom molecules. Although numerous biochemical and molecular structural approaches have tried to determine the factors driving venom complexity, these approaches have not considered behaviour, physiology and environmental conditions collectively, which can play a role in the evolution, complexity, and function of venom components in funnel-webs. This study used a novel interdisciplinary approach to understand the relationships between different behaviours (assessed in different ecological contexts) and morphophysiological variables (body condition, heart rate) that may affect venom composition in four species of Australian funnel-web spiders. We tested defensiveness, huddling behaviour, frequency of climbing, and activity for all species in three ecological contexts: i) predation using both indirect (puff of air) and direct (prodding) stimuli; ii) conspecific tolerance; and iii) exploration of a new territory. We also assessed morphophysiological variables and venom composition of all species. For Hadronyche valida, the expression of some venom components was associated with heart rate and defensiveness during the predation context. However, we did not find any associations between behavioural traits and morphophysiological variables in the other species, suggesting that particular associations may be species-specific. When we assessed differences between species, we found that the species separated out based on the venom profiles, while activity and heart rate are likely more affected by individual responses and microhabitat conditions. This study demonstrates how behavioural and morphophysiological traits are correlated with venom composition and contributes to a broader understanding of the function and evolution of venoms in funnel-web spiders.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - David Thomas Wilson
- Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Cairns, Australia
| | - Mohamed Salih
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, Cairns, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, Cairns, Australia
| |
Collapse
|
14
|
Gripshover ND, Jayne BC. Using natricine snakes to test how prey type and size affect predatory behaviors and performance. Front Behav Neurosci 2023; 17:1134131. [PMID: 37214640 PMCID: PMC10196387 DOI: 10.3389/fnbeh.2023.1134131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Predation is a complex process for which behavior, morphology, and size of both predator and prey can affect the success and effectiveness of the predator. For predators such as snakes that swallow prey whole, gape ultimately limits prey size, but the behaviors used to select, capture, and consume prey and attributes of the prey can also affect maximal prey size. For example, swallowing live, struggling prey is difficult, but using coiling or envenomation to restrain or kill prey has evolved repeatedly in snakes. Methods To test the potential benefits of these behaviors, we manipulated the type and size of prey, and determined how stereotyped predatory behavior was in a snake species (Liodytes rigida) that uses both coiling and envenomation to restrain and immobilize its formidable prey of crayfish. We also studied a close relative (Liodytes pygaea) that eats fish and salamanders to gain insights into the evolution of these traits. Results For L. rigida, envenomation of hard-shell crayfish via their soft underside was very stereotyped (100% of feedings). Envenomation of soft-shell crayfish was less frequent (59% of feedings) but became more likely both with increased relative prey size and increased time after molt (hardness). L. rigida coiled more for hard-shell than soft-shell crayfish (77% vs. 30%). The probability of coiling was unaffected by prey size, but it increased with increased time after molt for the soft-shell crayfish. Liodytes rigida waited to swallow crayfish until they were completely immobile in 75% and 37% of the feedings with hard- and soft-shelled crayfish, respectively. Even with large prey L. pygaea never used coiling or envenomation, whereas previous studies of L. alleni, the sister species of L. rigida, observed non-lethal coiling without envenomation when eating hard-shell crayfish. Discussion Our findings for the Liodytes clade of three species suggest that coiling evolved ancestral to the crayfish specialists (L. alleni; L. rigida), and envenomation by L. rigida subsequently evolved as an additional means of subduing formidable prey. The proximate benefits observed for coiling and envenomation in L. rigida support the evolutionary scenario that both traits evolved to enhance the feeding performance for more formidable prey.
Collapse
Affiliation(s)
- Noah D. Gripshover
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Bruce C. Jayne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
15
|
Inoue T, Mori A, Yoshinaga N, Mori N. Intrinsic Factors Associated with Dietary Toxin Quantity and Concentration in the Nuchal Glands of a Natricine Snake Rhabdophis Tigrinus. J Chem Ecol 2023; 49:133-141. [PMID: 36881327 DOI: 10.1007/s10886-023-01415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
The snake Rhabdophis tigrinus sequesters cardiotonic steroids, bufadienolides (BDs), from ingested toads and stores them in the nuchal glands as defensive toxins. It has previously been shown that there are individual differences in the total quantity of BDs stored in the nuchal glands of adult R. tigrinus and that BD quantities and profiles of R. tigrinus exhibit geographic variation. However, no previous study has examined the total quantity of BDs as a percentage of body mass (relative BD quantity) and the concentration of BDs in the nuchal gland fluid (BD gland concentration). In addition, intrinsic factors that are associated with relative BD quantity and BD concentration have not been examined within a single population. We collected 158 adult snakes from an area of central Japan from May to October and analyzed their BD quantities by UV analysis. We assessed individual differences in BD quantity, relative BD quantity and BD gland concentration. We found that 1) in approximately 60% of the 158 individuals, the BD gland concentration was greater than 50%; 2) body length and body condition are positively correlated with relative BD quantity and BD gland concentration; 3) even in a single population, individual differences of BD quantity are large, and are greater in females than in males; and 4) relative BD quantity and BD gland concentration of females during the gestation season are lower than those during the non-gestation season.
Collapse
Affiliation(s)
- Takato Inoue
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Naoko Yoshinaga
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Naoki Mori
- Division of Applied Life Science, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
16
|
Beydizada N, Pekár S. Personality predicts mode of attack in a generalist ground spider predator. Behav Ecol 2022. [DOI: 10.1093/beheco/arac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Abstract
Personality traits, such as boldness and/or aggressiveness, have long been accepted to have a profound influence on many aspects of the lives of animals, including foraging. However, little is known about how personality traits shape the use of a particular attack strategy. Ground spiders use either venom or silk attack to immobilize prey. In this study, we tested the hypothesis that behavioral differences among individuals (namely boldness, measured as the time spent exploring a novel environment; and aggressiveness, measured as the number of killed but not consumed prey) drive the use of a particular attack strategy. We used a generalist ground spider, Drassodes lapidosus, and recorded the mode of attack on two types of prey, dangerous and safe. Moreover, we measured the size of the venom gland to test the relationship between the size of venom volume and the personality, as well as the mode of attack. Drassodes individuals showed consistent behavioral differences in the way they attacked prey. Venom attack was significantly related to increased aggressiveness when attacking spider (dangerous) prey and to increased boldness when attacking cricket (safe) prey. Silk attack was more frequently used by shy (for cricket prey) and docile (for spider prey). The volume of venom was not related to the attack strategy. We conclude that personality traits are important drivers of prey-capture behavior in generalist ground spiders.
Collapse
Affiliation(s)
- Narmin Beydizada
- Department of Botany and Zoology, Faculty of Science, Masaryk University , Kotlářská 2, 611 37 Brno , Czech Republic
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University , Kotlářská 2, 611 37 Brno , Czech Republic
| |
Collapse
|
17
|
Zhang Q, Xu J, Zhou X, Liu Z. CAP superfamily proteins from venomous animals: Who we are and what to do? Int J Biol Macromol 2022; 221:691-702. [PMID: 36099994 DOI: 10.1016/j.ijbiomac.2022.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
Cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related (PR-1) superfamily proteins (CAP superfamily proteins) are found in diverse species across the bacterial, fungal, plant, mammalian, and venomous animal kingdoms. Notably, CAP proteins are found in a remarkable range of species across the venomous animal kingdom and are present almost ubiquitously in venoms, even when venoms are produced in very small quantities. Meanwhile, in comparison to mammals, venomous animals are underappreciated and easy to ignore. Overwhelming evidence suggests that CAP proteins derived from venomous animals exhibit diverse activities, including ion channel, inflammatory, proteolysis, and immune regulatory activities. To understand the potential biological functions of CAP proteins in venom more effectively, we need to examine the significance of the evolution of venomous animals in the animal kingdom, for their survival. In this article, we will review the current status of research on CAP proteins in venomous animals, including their isolation, characterization, known biological activities, and sequence alignments. We will also discuss the rapid evolution of CAP proteins with varied subtypes in venomous animals. A treasure trove of information can be obtained by studying the CAP proteins in venomous animals; hence, it is necessary to explore these proteins further.
Collapse
Affiliation(s)
- Qianqian Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiawei Xu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Peptide and small molecule drug R&D plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
18
|
Worldwide Web: High Venom Potency and Ability to Optimize Venom Usage Make the Globally Invasive Noble False Widow Spider Steatoda nobilis (Thorell, 1875) (Theridiidae) Highly Competitive against Native European Spiders Sharing the Same Habitats. Toxins (Basel) 2022; 14:toxins14090587. [PMID: 36136525 PMCID: PMC9500793 DOI: 10.3390/toxins14090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Venom compositions include complex mixtures of toxic proteins that evolved to immobilize/dissuade organisms by disrupting biological functions. Venom production is metabolically expensive, and parsimonious use is expected, as suggested by the venom optimisation hypothesis. The decision-making capacity to regulate venom usage has never been demonstrated for the globally invasive Noble false widow Steatoda nobilis (Thorell, 1875) (Theridiidae). Here, we investigated variations of venom quantities available in a wild population of S. nobilis and prey choice depending on venom availability. To partially determine their competitiveness, we compared their attack rate success, median effective dose (ED50) and lethal dose (LD50), with four sympatric synanthropic species: the lace webbed spider Amaurobius similis, the giant house spider Eratigena atrica, the missing sector orb-weaver Zygiella x-notata, and the cellar spider Pholcus phalangioides. We show that S. nobilis regulates its venom usage based on availability, and its venom is up to 230-fold (0.56 mg/kg) more potent than native spiders. The high potency of S. nobilis venom and its ability to optimize its usage make this species highly competitive against native European spiders sharing the same habitats.
Collapse
|
19
|
Venom system variation and the division of labor in the colonial hydrozoan Hydractinia symbiolongicarpus. Toxicon X 2022; 14:100113. [PMID: 35287376 PMCID: PMC8917316 DOI: 10.1016/j.toxcx.2022.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Cnidarians (jellyfish, hydroids, sea anemones, and corals) possess a unique method for venom production, maintenance, and deployment through a decentralized system composed of different types of venom-filled stinging structures called nematocysts. In many species, nematocyst types are distributed heterogeneously across functionally distinct tissues. This has led to a prediction that different nematocyst types contain specific venom components. The colonial hydrozoan, Hydractinia symbiolongicarpus, is an ideal system to study the functional distribution of nematocyst types and their venoms, given that they display a division of labor through functionally distinct polyps within the colony. Here, we characterized the composition and distribution of nematocysts (cnidome) in the different polyp types and show that the feeding polyp (gastrozooid) has a distinct cnidome compared to the reproductive (gonozooid) and predatory polyp (dactylozooid). We generated a nematocyst-specific reporter line to track nematocyst development (nematogenesis) in H. symbiolongicarpus, and were able to confirm that nematogenesis primarily occurs in the mid-region of the gastrozooid and throughout stolons (tubes of epithelia that connect the polyps in the colony). This reporter line enabled us to isolate a nematocyst-specific lineage of cells for de novo transcriptome assembly, annotate venom-like genes (VLGs) and determine differential expression (DE) across polyp types. We show that a majority of VLGs are upregulated in gastrozooids, consistent with it being the primary site of active nematogenesis. However, despite gastrozooids producing more nematocysts, we found a number of VLGs significantly upregulated in dactylozooids, suggesting that these VLGs may be important for prey-capture. Our transgenic Hydractinia reporter line provides an opportunity to explore the complex interplay between venom composition, nematocyst diversity, and ecological partitioning in a colonial hydrozoan that displays a division of labor. Functionally specific polyp types in Hydractinia symbiolongicarpus have distinct cnidomes. We present a nematocyst-targeted transgenic line for H. symbiolongicarpus, showcasing active areas of nematogenesis. 105 venom-like genes (VLGs) were annotated from an assembled nematocyst-enriched transcriptome. Several VLGs were significantly upregulated in feeding polyps, consistent with being a site of active nematogenesis. Differential expression analysis suggests that different polyp types express distinct combinations of VLGs.
Collapse
|
20
|
Kaposi K, Courtney R, Seymour J. Implications of bleaching on cnidarian venom ecology. Toxicon X 2022; 13:100094. [PMID: 35146416 PMCID: PMC8819380 DOI: 10.1016/j.toxcx.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 11/03/2022] Open
Abstract
Cnidarian bleaching research often focuses on the effects on a cnidarian's physiological health and fitness, whilst little focus has been towards the impacts of these events on their venom ecology. Given the importance of a cnidarian's venom to their survival and the increasing threat of bleaching events, it is important to understand the effects that this threat may have on this important aspect of their ecology as it may have unforeseen impacts on their ability to catch prey and defend themselves. This review aims to explore evidence that suggests that bleaching may impact on each of the key aspects of a cnidarians' venom ecology: cnidae, venom composition, and venom toxicity. Additionally, the resulting energy deficit, compensatory heterotrophic feeding, and increased defensive measures have been highlighted as possible ecological factors driving these changes. Suggestions are also made to guide the success of research in this field into the future, specifically in regards to selecting a study organism, the importance of accurate symbiont and cnidae identification, use of appropriate bleaching methods, determination of bleaching, and animal handling. Ultimately, this review highlights a significant and important gap in our knowledge into how cnidarians are, and will, continue to be impacted by bleaching stress. Information on the effects of bleaching on cnidarian venom ecology is limited. There is evidence to suggest nematocysts, venom composition and venom toxicity may each be impacted by bleaching. Bleaching may result in depleted energy, increased heterotrophy and/or the need for stronger defensive strategies. To fully understand how cnidarians may be impacted by bleaching stress further research in this field is needed. Future studies should consider the model organism and methodologies, thereby minimising indirect confounding effects.
Collapse
|
21
|
Deaker DJ, Balogh R, Dworjanyn SA, Mos B, Byrne M. Echidnas of the Sea: The Defensive Behavior of Juvenile and Adult Crown-of-Thorns Sea Stars. THE BIOLOGICAL BULLETIN 2021; 241:259-270. [PMID: 35015617 DOI: 10.1086/716777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
AbstractCrown-of-thorns sea stars are one of the most ecologically important tropical marine invertebrates, with boom-bust population dynamics that influence the community structure of coral reefs. Although predation is likely to influence the development of population outbreaks, little is known about the defensive behavior of crown-of-thorns sea stars. Righting behavior after being overturned, a key defensive response in echinoderms, was investigated for the newly settled herbivorous juvenile, the corallivorous juvenile, and adult stages of crown-of-thorns sea stars. The average righting time of the newly settled juveniles (0.3-1.0-mm diameter) was 2.74 minutes. For the coral-eating juveniles (15-55-mm diameter), the righting time (mean = 6.24 min) was faster in larger juveniles, and the mean righting time of the adults was 6.28 minutes. During righting and in response to being lifted off of the substrate, the juveniles and adults exhibited an arm curling response, during which their arms closed over their oral side, often forming a spine ball, a feature not known for other asteroids. The righting and curling responses of the corallivorous juveniles were influenced by the presence of a natural enemy, a coral guard crab, which caused the juveniles to spend more time with their arms curled. These behaviors indicate that crown-of-thorns sea stars use their spines to protect the soft tissue of their oral side. The highly defended morphology and behavioral adaptations of crown-of-thorns sea stars are likely to have evolved as antipredator mechanisms. This points to the potential importance of predators in regulating their populations, which may have decreased in recent times due to fishing, a factor that may contribute to outbreaks.
Collapse
|
22
|
Harris RJ, Nekaris KAI, Fry BG. Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras. BMC Biol 2021; 19:253. [PMID: 34823526 PMCID: PMC8613972 DOI: 10.1186/s12915-021-01195-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Background Snakes and primates have a multi-layered coevolutionary history as predators, prey, and competitors with each other. Previous work has explored the Snake Detection Theory (SDT), which focuses on the role of snakes as predators of primates and argues that snakes have exerted a selection pressure for the origin of primates’ visual systems, a trait that sets primates apart from other mammals. However, primates also attack and kill snakes and so snakes must simultaneously avoid primates. This factor has been recently highlighted in regard to the movement of hominins into new geographic ranges potentially exerting a selection pressure leading to the evolution of spitting in cobras on three independent occasions. Results Here, we provide further evidence of coevolution between primates and snakes, whereby through frequent encounters and reciprocal antagonism with large, diurnally active neurotoxic elapid snakes, Afro-Asian primates have evolved an increased resistance to α-neurotoxins, which are toxins that target the nicotinic acetylcholine receptors. In contrast, such resistance is not found in Lemuriformes in Madagascar, where venomous snakes are absent, or in Platyrrhini in the Americas, where encounters with neurotoxic elapids are unlikely since they are relatively small, fossorial, and nocturnal. Within the Afro-Asian primates, the increased resistance toward the neurotoxins was significantly amplified in the last common ancestor of chimpanzees, gorillas, and humans (clade Homininae). Comparative testing of venoms from Afro-Asian and American elapid snakes revealed an increase in α-neurotoxin resistance across Afro-Asian primates, which was likely selected against cobra venoms. Through structure-activity studies using native and mutant mimotopes of the α-1 nAChR receptor orthosteric site (loop C), we identified the specific amino acids responsible for conferring this increased level of resistance in hominine primates to the α-neurotoxins in cobra venom. Conclusion We have discovered a pattern of primate susceptibility toward α-neurotoxins that supports the theory of a reciprocal coevolutionary arms-race between venomous snakes and primates. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01195-x.
Collapse
Affiliation(s)
- Richard J Harris
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Bryan G Fry
- Venom Evolution Lab, University of Queensland, Biological Sciences, St. Lucia, Brisbane, 4072, Australia.
| |
Collapse
|
23
|
Jia Z, Liu Y, Ji X, Zheng Y, Li Z, Jiang S, Li H, Kong Y. DAKS1, a Kunitz Scaffold Peptide from the Venom Gland of Deinagkistrodon acutus Prevents Carotid-Artery and Middle-Cerebral-Artery Thrombosis via Targeting Factor XIa. Pharmaceuticals (Basel) 2021; 14:ph14100966. [PMID: 34681191 PMCID: PMC8539665 DOI: 10.3390/ph14100966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Scaffold-based peptides (SBPs) are fragments of large proteins that are characterized by potent bioactivity, high thermostability, and low immunogenicity. Some SBPs have been approved by the FDA for human use. In the present study, we developed SBPs from the venom gland of Deinagkistrodon acutus (D. acutus) by combining transcriptome sequencing and Pfam annotation. To that end, 10 Kunitz peptides were discovered from the venom gland of D. acutus, and most of which peptides exhibited Factor XIa (FXIa) inhibitory activity. One of those, DAKS1, exhibiting strongest inhibitory activity against FXIa, was further evaluated for its anticoagulant and antithrombotic activity. DAKS1 prolonged twofold APTT at a concentration of 15 μM in vitro. DAKS1 potently inhibited thrombosis in a ferric chloride-induced carotid-artery injury model in mice at a dose of 1.3 mg/kg. Furthermore, DAKS1 prevented stroke in a transient middle cerebral-artery occlusion (tMCAO) model in mice at a dose of 2.6 mg/kg. Additionally, DAKS1 did not show significant bleeding risk at a dose of 6.5 mg/kg. Together, our results indicated that DAKS1 is a promising candidate for drug development for the treatment of thrombosis and stroke disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Kong
- Correspondence: ; Tel.: +86-025-832-712-82
| |
Collapse
|
24
|
Simone Y, van der Meijden A. Armed stem to stinger: a review of the ecological roles of scorpion weapons. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210002. [PMID: 34527038 PMCID: PMC8425188 DOI: 10.1590/1678-9199-jvatitd-2021-0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/18/2021] [Indexed: 12/24/2022] Open
Abstract
Scorpions possess two systems of weapons: the pincers (chelae) and the stinger (telson). These are placed on anatomically and developmentally well separated parts of the body, that is, the oral appendages and at the end of the body axis. The otherwise conserved body plan of scorpions varies most in the shape and relative dimensions of these two weapon systems, both across species and in some cases between the sexes. We review the literature on the ecological function of these two weapon systems in each of three contexts of usage: (i) predation, (ii) defense and (iii) sexual contests. In the latter context, we will also discuss their usage in mating. We first provide a comparative background for each of these contexts of usage by giving examples of other weapon systems from across the animal kingdom. Then, we discuss the pertinent aspects of the anatomy of the weapon systems, particularly those aspects relevant to their functioning in their ecological roles. The literature on the functioning and ecological role of both the chelae and the telson is discussed in detail, again organized by context of usage. Particular emphasis is given on the differences in morphology or usage between species or higher taxonomic groups, or between genders, as such cases are most insightful to understand the roles of each of the two distinct weapon systems of the scorpions and their evolutionary interactions. We aimed to synthesize the literature while minimizing conjecture, but also to point out gaps in the literature and potential future research opportunities.
Collapse
Affiliation(s)
- Yuri Simone
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| | - Arie van der Meijden
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Porto, Portugal
| |
Collapse
|
25
|
Lüddecke T, Herzig V, von Reumont BM, Vilcinskas A. The biology and evolution of spider venoms. Biol Rev Camb Philos Soc 2021; 97:163-178. [PMID: 34453398 DOI: 10.1111/brv.12793] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
Spiders are diverse, predatory arthropods that have inhabited Earth for around 400 million years. They are well known for their complex venom systems that are used to overpower their prey. Spider venoms contain many proteins and peptides with highly specific and potent activities suitable for biomedical or agrochemical applications, but the key role of venoms as an evolutionary innovation is often overlooked, even though this has enabled spiders to emerge as one of the most successful animal lineages. In this review, we discuss these neglected biological aspects of spider venoms. We focus on the morphology of spider venom systems, their major components, biochemical and chemical plasticity, as well as ecological and evolutionary trends. We argue that the effectiveness of spider venoms is due to their unprecedented complexity, with diverse components working synergistically to increase the overall potency. The analysis of spider venoms is difficult to standardize because they are dynamic systems, fine-tuned and modified by factors such as sex, life-history stage and biological role. Finally, we summarize the mechanisms that drive spider venom evolution and highlight the need for genome-based studies to reconstruct the evolutionary history and physiological networks of spider venom compounds with more certainty.
Collapse
Affiliation(s)
- Tim Lüddecke
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.,School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| | - Andreas Vilcinskas
- Department for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, Gießen, 35392, Germany.,LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, Frankfurt am Main, 60325, Germany.,Institute for Insect Biotechnology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26-32, Gießen, 35392, Germany
| |
Collapse
|
26
|
Damm M, Hempel BF, Süssmuth RD. Old World Vipers-A Review about Snake Venom Proteomics of Viperinae and Their Variations. Toxins (Basel) 2021; 13:toxins13060427. [PMID: 34204565 PMCID: PMC8235416 DOI: 10.3390/toxins13060427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Fine-tuned by millions of years of evolution, snake venoms have frightened but also fascinated humanity and nowadays they constitute potential resources for drug development, therapeutics and antivenoms. The continuous progress of mass spectrometry techniques and latest advances in proteomics workflows enabled toxinologists to decipher venoms by modern omics technologies, so-called ‘venomics’. A tremendous upsurge reporting on snake venom proteomes could be observed. Within this review we focus on the highly venomous and widely distributed subfamily of Viperinae (Serpentes: Viperidae). A detailed public literature database search was performed (2003–2020) and we extensively reviewed all compositional venom studies of the so-called Old-World Vipers. In total, 54 studies resulted in 89 venom proteomes. The Viperinae venoms are dominated by four major, four secondary, six minor and several rare toxin families and peptides, respectively. The multitude of different venomics approaches complicates the comparison of venom composition datasets and therefore we differentiated between non-quantitative and three groups of quantitative workflows. The resulting direct comparisons within these groups show remarkable differences on the intra- and interspecies level across genera with a focus on regional differences. In summary, the present compilation is the first comprehensive up-to-date database on Viperinae venom proteomes and differentiating between analytical methods and workflows.
Collapse
Affiliation(s)
- Maik Damm
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, (BCRT), 10117 Berlin, Germany;
| | - Roderich D. Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany;
- Correspondence: ; Tel.: +49-(0)30-314-24205
| |
Collapse
|
27
|
The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2021; 48:1353-1365. [PMID: 32756910 DOI: 10.1042/bst20190820] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Animal venoms are recognised as unique biological systems in which to study molecular evolution. Venom use has evolved numerous times among the insects, and insects today use venom to capture prey, defend themselves from predators, or to subdue and modulate host responses during parasitism. However, little is known about most insect venom toxins or the mode and tempo by which they evolve. Here, I review the evolutionary dynamics of insect venom toxins, and argue that insects offer many opportunities to examine novel aspects of toxin evolution. The key questions addressed are: How do venomous animals evolve from non-venomous animals, and how does this path effect the composition and pharmacology of the venom? What genetic processes (gene duplication, co-option, neofunctionalisation) are most important in toxin evolution? What kinds of selection pressures are acting on toxin-encoding genes and their cognate targets in envenomated animals? The emerging evidence highlights that venom composition and pharmacology adapts quickly in response to changing selection pressures resulting from new ecological interactions, and that such evolution occurs through a stunning variety of genetic mechanisms. Insects offer many opportunities to investigate the evolutionary dynamics of venom toxins due to their evolutionary history rich in venom-related adaptations, and their quick generation time and suitability for culture in the laboratory.
Collapse
|
28
|
Gatchoff L, Stein LR. Venom and Social Behavior: The Potential of Using Spiders to Evaluate the Evolution of Sociality under High Risk. Toxins (Basel) 2021; 13:388. [PMID: 34071320 PMCID: PMC8227785 DOI: 10.3390/toxins13060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 12/04/2022] Open
Abstract
Risks of sociality, including competition and conspecific aggression, are particularly pronounced in venomous invertebrates such as arachnids. Spiders show a wide range of sociality, with differing levels of cannibalism and other types of social aggression. To have the greatest chance of surviving interactions with conspecifics, spiders must learn to assess and respond to risk. One of the major ways risk assessment is studied in spiders is via venom metering, in which spiders choose how much venom to use based on prey and predator characteristics. While venom metering in response to prey acquisition and predator defense is well-studied, less is known about its use in conspecific interactions. Here we argue that due to the wide range of both sociality and venom found in spiders, they are poised to be an excellent system for testing questions regarding whether and how venom use relates to the evolution of social behavior and, in return, whether social behavior influences venom use and evolution. We focus primarily on the widow spiders, Latrodectus, as a strong model for testing these hypotheses. Given that successful responses to risk are vital for maintaining sociality, comparative analysis of spider taxa in which venom metering and sociality vary can provide valuable insights into the evolution and maintenance of social behavior under risk.
Collapse
Affiliation(s)
- Laura Gatchoff
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA;
| | | |
Collapse
|
29
|
Hernández Duran L, Wilson DT, Briffa M, Rymer TL. Beyond spider personality: The relationships between behavioral, physiological, and environmental factors. Ecol Evol 2021; 11:2974-2989. [PMID: 33841759 PMCID: PMC8019048 DOI: 10.1002/ece3.7243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Spiders are useful models for testing different hypotheses and methodologies relating to animal personality and behavioral syndromes because they show a range of behavioral types and unique physiological traits (e.g., silk and venom) that are not observed in many other animals. These characteristics allow for a unique understanding of how physiology, behavioral plasticity, and personality interact across different contexts to affect spider's individual fitness and survival. However, the relative effect of extrinsic factors on physiological traits (silk, venom, and neurohormones) that play an important role in spider survival, and which may impact personality, has received less attention. The goal of this review is to explore how the environment, experience, ontogeny, and physiology interact to affect spider personality types across different contexts. We highlight physiological traits, such as neurohormones, and unique spider biochemical weapons, namely silks and venoms, to explore how the use of these traits might, or might not, be constrained or limited by particular behavioral types. We argue that, to develop a comprehensive understanding of the flexibility and persistence of specific behavioral types in spiders, it is necessary to incorporate these underlying mechanisms into a synthesized whole, alongside other extrinsic and intrinsic factors.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| | - David Thomas Wilson
- Centre for Molecular TherapeuticsAustralian Institute for Tropical Health and MedicineJames Cook UniversityCairnsQldAustralia
| | - Mark Briffa
- School of Biological and Marine SciencesPlymouth UniversityPlymouthUK
| | - Tasmin Lee Rymer
- College of Science and EngineeringJames Cook UniversityCairnsQldAustralia
- Centre for Tropical Environmental and Sustainability SciencesJames Cook UniversityCairnsQldAustralia
| |
Collapse
|
30
|
Andrade-Silva D, Nishiyama MY, Stuginski DR, Zelanis A, Serrano SMT. The distinct N-terminomes of Bothrops jararaca newborn and adult venoms. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140643. [PMID: 33722654 DOI: 10.1016/j.bbapap.2021.140643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
Using approaches of transcriptomics and proteomics we have shown that the phenotype of Bothrops jararaca venom undergoes a significant rearrangement upon neonate to adult transition. Most regulatory processes in biology are intrinsically related to modifications of protein structure, function, and abundance. However, it is unclear to which extent intrinsic proteolysis affects toxins and snake venom phenotypes upon ontogenesis. Here we assessed the natural N-terminome of Bothrops jararaca newborn and adult venoms and explored the degree of N-terminal protein truncation in ontogenetic-based proteome variation. To this end we applied the Terminal Amine Isotopic Labeling of Substrates (TAILS) technology to characterize venom collected in the presence of proteinase inhibitors. We identified natural N-terminal sequences in the newborn (71) and adult (84) venoms, from which only 37 were common to both. However, truncated toxins were found in higher number in the newborn (212) than in the adult (140) venom. Moreover, sequences N-terminally blocked by pyroglutamic acid were identified in the newborn (55) and adult (49) venoms. Most toxin classes identified by their natural N-terminal sequences showed a similar number of unique peptides in the newborn and adult venoms, however, those of serine proteinases and C-type lectins were more abundant in the adult venom. Truncated sequences from at least ten toxin classes were detected, however the catalytic and cysteine-rich domains of metalloproteinases were the most prone to proteolysis, mainly in the newborn venom. Our results underscore the pervasiveness of truncations in most toxin classes and highlight variable post-translational events in newborn and adult venoms.
Collapse
Affiliation(s)
- Débora Andrade-Silva
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | - Milton Y Nishiyama
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil
| | | | - André Zelanis
- Functional Proteomics Laboratory, Department of Science and Technology, Federal University of São Paulo, (ICT-UNIFESP), São José dos Campos, SP, Brazil
| | - Solange M T Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Rodrigo AP, Grosso AR, Baptista PV, Fernandes AR, Costa PM. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid. Toxins (Basel) 2021; 13:toxins13020097. [PMID: 33525375 PMCID: PMC7911839 DOI: 10.3390/toxins13020097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ("phyllotoxins") were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.
Collapse
|
32
|
Hauke TJ, Herzig V. Muscle spasms - A common symptom following theraphosid spider bites? Toxicon 2021; 192:74-77. [PMID: 33493497 DOI: 10.1016/j.toxicon.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 12/11/2022]
Abstract
Despite the popularity of theraphosids, detailed reports on bite symptoms are still limited to few geographic regions and subfamilies. We therefore examined 363 published bite reports and noticed muscles cramps caused by theraphosids from nearly all continents and subfamilies. Symptoms are mostly locally restricted and mild, but 12.7% of victims experience pronounced cramps with highest incidence rates by Poecilotheriinae, Harpactirinae and Stromatopelminae subfamilies. We discuss how variations in venom quantity correlate with muscle cramp prevalence.
Collapse
Affiliation(s)
| | - Volker Herzig
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia; School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
33
|
Electric Eels Wield a Functional Venom Analogue. Toxins (Basel) 2021; 13:toxins13010048. [PMID: 33435184 PMCID: PMC7826911 DOI: 10.3390/toxins13010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
In this paper, I draw an analogy between the use of electricity by electric eels (Electrophorus electricus) to paralyze prey muscles and the use of venoms that paralyze prey by disrupting the neuromuscular junction. The eel’s strategy depends on the recently discovered ability of eels to activate prey motor neuron efferents with high-voltage pulses. Usually, eels use high voltage to cause brief, whole-body tetanus, thus preventing escape while swallowing prey whole. However, when eels struggle with large prey, or with prey held precariously, they often curl to bring their tail to the opposite side. This more than doubles the strength of the electric field within shocked prey, ensuring maximal stimulation of motor neuron efferents. Eels then deliver repeated volleys of high-voltage pulses at a rate of approximately 100 Hz. This causes muscle fatigue that attenuates prey movement, thus preventing both escape and defense while the eel manipulates and swallows the helpless animal. Presumably, the evolution of enough electrical power to remotely activate ion channels in prey efferents sets the stage for the selection of eel behaviors that functionally “poison” prey muscles.
Collapse
|
34
|
Duran LH, Rymer TL, Wilson DT. Variation in venom composition in the Australian funnel-web spiders Hadronyche valida. Toxicon X 2020; 8:100063. [PMID: 33305257 PMCID: PMC7711288 DOI: 10.1016/j.toxcx.2020.100063] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022] Open
Abstract
Mygalomorph venom properties and active components, which have importance in medicine, agronomy, venomics, ecology and evolution, have been widely studied, but only a small fraction have been characterised. Several studies have shown inter-individual variation in the composition of venom peptides based on ontogeny, sexual dimorphism, season and diet. However, intra-individual variation in venom composition, which could play a key role in the evolution, diversification and function of toxins, is poorly understood. In this study, we demonstrate significant intra- and inter-individual variation in venom composition in the Australian funnel-web spider Hadronyche valida, highlighting that individuals show different venom profiles over time. Fourteen (four juvenile and ten adult females) funnel-web spiders, maintained under the same environmental conditions and diet, were milked a total of four times, one month apart. We then used reversed-phase high performance liquid chromatography/electrospray ionisation mass spectrometry to generate venom fingerprints containing the retention time and molecular weights of the different toxin components in the venom. Across all individuals, we documented a combined total of 83 individual venom components. Only 20% of these components were shared between individuals. Individuals showed variation in the composition of venom peptides, with some components consistently present over time, while others were only present at specific times. When individuals were grouped using the Jaccard clustering index and Kernel Principal Component Analysis, spiders formed two distinct clusters, most likely due to their origin or time of collection. This study contributes to the understanding of variation in venom composition at different levels (intra-individual, and intra- and inter-specific) and considers some of the mechanisms of selection that may contribute to venom diversification within arachnids. In addition, inter-specific variation in venom composition can be highly useful as a chemotaxonomic marker to identify funnel-web species.
Collapse
Affiliation(s)
- Linda Hernández Duran
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - Tasmin Lee Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, QLD, 4870, Australia
| | - David Thomas Wilson
- Centre for Molecular Therapeutics, Australian Institute for Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
35
|
Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF. Animal toxins - Nature's evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 2020; 181:114096. [PMID: 32535105 PMCID: PMC7290223 DOI: 10.1016/j.bcp.2020.114096] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Venomous animals have evolved toxins that interfere with specific components of their victim's core physiological systems, thereby causing biological dysfunction that aids in prey capture, defense against predators, or other roles such as intraspecific competition. Many animal lineages evolved venom systems independently, highlighting the success of this strategy. Over the course of evolution, toxins with exceptional specificity and high potency for their intended molecular targets have prevailed, making venoms an invaluable and almost inexhaustible source of bioactive molecules, some of which have found use as pharmacological tools, human therapeutics, and bioinsecticides. Current biomedically-focused research on venoms is directed towards their use in delineating the physiological role of toxin molecular targets such as ion channels and receptors, studying or treating human diseases, targeting vectors of human diseases, and treating microbial and parasitic infections. We provide examples of each of these areas of venom research, highlighting the potential that venom molecules hold for basic research and drug development.
Collapse
Affiliation(s)
- Volker Herzig
- School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| | | | - Mathilde R Israel
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha A Nixon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
36
|
Pucca MB, Knudsen C, S. Oliveira I, Rimbault C, A. Cerni F, Wen FH, Sachett J, Sartim MA, Laustsen AH, Monteiro WM. Current Knowledge on Snake Dry Bites. Toxins (Basel) 2020; 12:E668. [PMID: 33105644 PMCID: PMC7690386 DOI: 10.3390/toxins12110668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
Snake 'dry bites' are characterized by the absence of venom being injected into the victim during a snakebite incident. The dry bite mechanism and diagnosis are quite complex, and the lack of envenoming symptoms in these cases may be misinterpreted as a miraculous treatment or as proof that the bite from the perpetrating snake species is rather harmless. The circumstances of dry bites and their clinical diagnosis are not well-explored in the literature, which may lead to ambiguity amongst treating personnel about whether antivenom is indicated or not. Here, the epidemiology and recorded history of dry bites are reviewed, and the clinical knowledge on the dry bite phenomenon is presented and discussed. Finally, this review proposes a diagnostic and therapeutic protocol to assist medical care after snake dry bites, aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista 69310-000, Roraima, Brazil;
| | - Cecilie Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.K.); (C.R.); (A.H.L.)
- Bioporto Diagnostics A/S, DK-2900 Hellerup, Denmark
| | - Isadora S. Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.S.O.); (F.A.C.)
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.K.); (C.R.); (A.H.L.)
| | - Felipe A. Cerni
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.S.O.); (F.A.C.)
| | - Fan Hui Wen
- Butantan Institute, São Paulo 05503-900, Brazil;
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus 69065-001, Amazonas, Brazil;
- Department of Teaching and Research, Alfredo da Matta Foundation, Manaus 69065-130, Amazonas, Brazil
| | - Marco A. Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040-000, Amazonas, Brazil;
- Institute of Biological Sciences, Amazonas Federal University, Manaus 69067-005, Amazonas, Brazil
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark; (C.K.); (C.R.); (A.H.L.)
| | - Wuelton M. Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus 69065-001, Amazonas, Brazil;
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus 69040-000, Amazonas, Brazil;
| |
Collapse
|
37
|
Sachkova MY, Macrander J, Surm JM, Aharoni R, Menard-Harvey SS, Klock A, Leach WB, Reitzel AM, Moran Y. Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian. BMC Biol 2020; 18:121. [PMID: 32907568 PMCID: PMC7488265 DOI: 10.1186/s12915-020-00855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. RESULTS We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three factors to determine how abiotic stressors impact toxin expression for individuals collected across this species' range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate differently their venom production levels. CONCLUSIONS We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and significant environmental differences between their habitats.
Collapse
Affiliation(s)
- Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
- Florida Southern College, Lakeland, FL, USA
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shelcie S Menard-Harvey
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Amy Klock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
38
|
Fischer ML, Wielsch N, Heckel DG, Vilcinskas A, Vogel H. Context-dependent venom deployment and protein composition in two assassin bugs. Ecol Evol 2020; 10:9932-9947. [PMID: 33005355 PMCID: PMC7520181 DOI: 10.1002/ece3.6652] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
The Heteroptera are a diverse suborder of phytophagous, hematophagous, and zoophagous insects. The shift to zoophagy can be traced back to the transformation of salivary glands into venom glands, but the venom is used not only to kill and digest invertebrate prey but also as a defense strategy, mainly against vertebrates. In this study, we used an integrated transcriptomics and proteomics approach to compare the composition of venoms from the anterior main gland (AMG) and posterior main gland (PMG) of the reduviid bugs Platymeris biguttatus L. and Psytalla horrida Stål. In both species, the AMG and PMG secreted distinct protein mixtures with few interspecific differences. PMG venom consisted mostly of S1 proteases, redulysins, Ptu1-like peptides, and uncharacterized proteins, whereas AMG venom contained hemolysins and cystatins. There was a remarkable difference in biological activity between the AMG and PMG venoms, with only PMG venom conferring digestive, neurotoxic, hemolytic, antibacterial, and cytotoxic effects. Proteomic analysis of venom samples revealed the context-dependent use of AMG and PMG venom. Although both species secreted PMG venom alone to overwhelm their prey and facilitate digestion, the deployment of defensive venom was species-dependent. P. biguttatus almost exclusively used PMG venom for defense, whereas P. horrida secreted PMG venom in response to mild harassment but AMG venom in response to more intense harassment. This intriguing context-dependent use of defensive venom indicates that future research should focus on species-dependent differences in venom composition and defense strategies among predatory Heteroptera.
Collapse
Affiliation(s)
- Maike L. Fischer
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Natalie Wielsch
- Research Group Mass Spectrometry/ProteomicsMax‐Planck Institute for Chemical EcologyJenaGermany
| | - David G. Heckel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Andreas Vilcinskas
- Institute for Insect BiotechnologyJustus Liebig UniversityGiessenGermany
| | - Heiko Vogel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
39
|
Nelsen DR, David EM, Harty CN, Hector JB, Corbit AG. Risk Assessment and the Effects of Refuge Availability on the Defensive Behaviors of the Southern Unstriped Scorpion ( Vaejovis carolinianus). Toxins (Basel) 2020; 12:toxins12090534. [PMID: 32825487 PMCID: PMC7551882 DOI: 10.3390/toxins12090534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022] Open
Abstract
Selection should favor individuals that acquire, process, and act on relevant environmental signals to avoid predation. Studies have found that scorpions control their use of venom: both when it is released and the total volume expelled. However, this research has not included how a scorpion’s awareness of environmental features influences these decisions. The current study tested 18 Vaejovis carolinianus scorpions (nine females and nine males) by placing them in circular arenas supplied with varying numbers (zero, two, or four) of square refuges and by tracking their movements overnight. The following morning, defensive behaviors were elicited by prodding scorpions on the chelae, prosoma, and metasoma once per second over 90 s. We recorded stings, venom use, chelae pinches, and flee duration. We found strong evidence that, across all behaviors measured, V. carolinianus perceived prods to the prosoma as more threatening than prods to the other locations. We found that stinging was a common behavior and became more dominant as the threat persisted. Though tenuous, we found evidence that scorpions’ defensive behaviors changed based on the number of refuges and that these differences may be sex specific. Our findings suggest that V. carolinianus can assess risk and features of the local environment and, therefore, alter their defensive strategies accordingly.
Collapse
|
40
|
Calvete JJ, Bonilla F, Granados-Martínez S, Sanz L, Lomonte B, Sasa M. Venomics of the Duvernoy's gland secretion of the false coral snake Rhinobothryum bovallii (Andersson, 1916) and assessment of venom lethality towards synapsid and diapsid animal models. J Proteomics 2020; 225:103882. [DOI: 10.1016/j.jprot.2020.103882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
|
41
|
Influence of past and current social contexts on hunting behaviour in spiderlings. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Pucca MB, Ahmadi S, Cerni FA, Ledsgaard L, Sørensen CV, McGeoghan FTS, Stewart T, Schoof E, Lomonte B, Auf dem Keller U, Arantes EC, Çalışkan F, Laustsen AH. Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A 2 and Cytotoxins. Front Pharmacol 2020; 11:611. [PMID: 32457615 PMCID: PMC7221120 DOI: 10.3389/fphar.2020.00611] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toxin synergism is a complex biochemical phenomenon, where different animal venom proteins interact either directly or indirectly to potentiate toxicity to a level that is above the sum of the toxicities of the individual toxins. This provides the animals possessing venoms with synergistically enhanced toxicity with a metabolic advantage, since less venom is needed to inflict potent toxic effects in prey and predators. Among the toxins that are known for interacting synergistically are cytotoxins from snake venoms, phospholipases A2 from snake and bee venoms, and melittin from bee venom. These toxins may derive a synergistically enhanced toxicity via formation of toxin complexes by hetero-oligomerization. Using a human keratinocyte assay mimicking human epidermis in vitro, we demonstrate and quantify the level of synergistically enhanced toxicity for 12 cytotoxin/melittin-PLA2 combinations using toxins from elapids, vipers, and bees. Moreover, by utilizing an interaction-based assay and by including a wealth of information obtained via a thorough literature review, we speculate and propose a mechanistic model for how toxin synergism in relation to cytotoxicity may be mediated by cytotoxin/melittin and PLA2 complex formation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Shirin Ahmadi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Felipe A Cerni
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Farrell T S McGeoghan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trenton Stewart
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.,Department of Biology, Lund University, Lund, Sweden
| | - Erwin Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bruno Lomonte
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Eliane C Arantes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Figen Çalışkan
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey.,Department of Biology, Faculty of Science and Art, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
43
|
Blennerhassett RA, Bell-Anderson K, Shine R, Brown GP. The cost of chemical defence: the impact of toxin depletion on growth and behaviour of cane toads ( Rhinella marina). Proc Biol Sci 2020; 286:20190867. [PMID: 31088275 DOI: 10.1098/rspb.2019.0867] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many animals capable of deploying chemical defences are reluctant to use them, suggesting that synthesis of toxins imposes a substantial cost. Typically, such costs have been quantified by measuring the elevation in metabolic rate induced by toxin depletion (i.e. during replenishment of toxin stores). More generally, we might expect that toxin depletion will induce shifts in a broad suite of fitness-relevant traits. In cane toads ( Rhinella marina), toxic compounds that protect against predators and pathogens are stored in large parotoid (shoulder) glands. We used correlational and experimental approaches in field and laboratory settings to investigate impacts of toxin depletion on growth rate and behaviour in cane toads. In free-ranging toads, larger toxin stores were associated with smaller gonads and livers, suggesting energetic trade-offs between toxin production and both reproduction and energy metabolism. Experimental removal of toxin (by manually squeezing parotoid glands) reduced rates of growth in body mass in both captive and free-ranging toads. Radio tracking demonstrated that de-toxined toads dispersed more slowly than did control toads. Given that toxin stores in cane toads take several months to fully replenish, deploying toxin to repel a predator may impose a substantial cost, explaining why toads use toxin only as a final line of defence.
Collapse
Affiliation(s)
| | - Kim Bell-Anderson
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| | - Richard Shine
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| | - Gregory P Brown
- 2 School of Life and Environmental Sciences, The University of Sydney , Sydney New South Wales 2006 , Australia
| |
Collapse
|
44
|
Snake C-Type Lectins Potentially Contribute to the Prey Immobilization in Protobothrops mucrosquamatus and Trimeresurus stejnegeri Venoms. Toxins (Basel) 2020; 12:toxins12020105. [PMID: 32041262 PMCID: PMC7076790 DOI: 10.3390/toxins12020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022] Open
Abstract
Snake venoms contain components selected to immobilize prey. The venoms from Elapidae mainly contain neurotoxins, which are critical for rapid prey paralysis, while the venoms from Viperidae and Colubridae may contain fewer neurotoxins but are likely to induce circulatory disorders. Here, we show that the venoms from Protobothrops mucrosquamatus and Trimeresurus stejnegeri are comparable to those of Naja atra in prey immobilization. Further studies indicate that snake C-type lectin-like proteins (snaclecs), which are one of the main nonenzymatic components in viper venoms, are responsible for rapid prey immobilization. Snaclecs (mucetin and stejnulxin) from the venoms of P. mucrosquamatus and T. stejnegeri induce the aggregation of both mammalian platelets and avian thrombocytes, leading to acute cerebral ischemia, and reduced animal locomotor activity and exploration in the open field test. Viper venoms in the absence of snaclecs fail to aggregate platelets and thrombocytes, and thus show an attenuated ability to cause cerebral ischemia and immobilization of their prey. This work provides novel insights into the prey immobilization mechanism of Viperidae snakes and the understanding of viper envenomation-induced cerebral infarction.
Collapse
|
45
|
Barkan NP, Chevalier M, Pradervand JN, Guisan A. Alteration of Bumblebee Venom Composition toward Higher Elevation. Toxins (Basel) 2019; 12:toxins12010004. [PMID: 31861682 PMCID: PMC7020474 DOI: 10.3390/toxins12010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, for either predation or defense. Bumblebees, which occur in various habitats due to their unique thermoregulatory properties, mainly use venom for defense. Herein, we conducted an exploratory analysis of the venom composition of a bumblebee species (Bombus pascuorum) along an elevation gradient in the western Swiss Alps using shot-gun proteomic approaches to assess whether their defense mechanism varies along the gradient. The gradient was characterized by high temperatures and low humidity at low elevations and low temperatures and high humidity at high elevations. Venom composition is changing along the elevation gradient, with proteomic variation in the abundances of pain-inducing and allergenic proteins. In particular, the abundance of phospholipase A2-like, the main component of bumblebee venom, gradually decreases toward higher elevation (lower temperature), suggesting venom alteration and thus a decrease in bumblebee defense towards harsher environments. Larger datasets may complement this study to validate the observed novel trends.
Collapse
Affiliation(s)
- Nezahat Pınar Barkan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Mathieu Chevalier
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
| | - Jean-Nicolas Pradervand
- Swiss Ornithological Institute, Valais Field Station, Rue du Rhône 11, CH-1950 Sion, Switzerland;
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Biophore, Lausanne, Switzerland; (N.P.B.); (M.C.)
- Institute of Earth Surface Dynamics, University of Lausanne, CH-1015 Géopolis, Lausanne, Switzerland
- Correspondence: ; Tel.: +41-(0)21-692-42-54
| |
Collapse
|
46
|
Michálek O, Kuhn-Nentwig L, Pekár S. High Specific Efficiency of Venom of Two Prey-Specialized Spiders. Toxins (Basel) 2019; 11:E687. [PMID: 31771158 PMCID: PMC6950493 DOI: 10.3390/toxins11120687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
The venom of predators should be under strong selection pressure because it is a costly substance and prey may potentially become resistant. Particularly in prey-specialized predators, venom should be selected for its high efficiency against the focal prey. Very effective venom paralysis has been observed in specialized predators, such as spiders preying on dangerous prey. Here, we compared the toxicity of the venoms of two prey-specialized species, araneophagous Palpimanus sp. and myrmecophagous Zodarion nitidum, and their related generalist species. We injected different venom concentrations into two prey types-the prey preferred by a specialist and an alternative prey-and observed the mortality and the paralysis of the prey within 24 h. We found that the venoms of specialists were far more potent towards the preferred prey than alternative prey. The venoms of generalists were similarly potent towards both prey types. In addition, we tested the efficacy of two venom fractions (smaller and larger than 10 kDa) in araneophagous Palpimanus sp. Compounds larger than 10 kDa paralyzed both prey types, but smaller compounds (<10 kDa) were effective only on preferred prey, suggesting the presence of prey-specific compounds in the latter fraction. Our results confirm that prey-specialized spiders possess highly specific venom that allows them to subdue dangerous prey.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lucia Kuhn-Nentwig
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland;
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
47
|
Schendel V, Rash LD, Jenner RA, Undheim EAB. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins (Basel) 2019; 11:E666. [PMID: 31739590 PMCID: PMC6891279 DOI: 10.3390/toxins11110666] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lachlan D. Rash
- School of Biomedical Sciences, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
48
|
Hadrurid Scorpion Toxins: Evolutionary Conservation and Selective Pressures. Toxins (Basel) 2019; 11:toxins11110637. [PMID: 31683932 PMCID: PMC6891616 DOI: 10.3390/toxins11110637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Scorpion toxins are thought to have originated from ancestral housekeeping genes that underwent diversification and neofunctionalization, as a result of positive selection. Our understanding of the evolutionary origin of these peptides is hindered by the patchiness of existing taxonomic sampling. While recent studies have shown phylogenetic inertia in some scorpion toxins at higher systematic levels, evolutionary dynamics of toxins among closely related taxa remain unexplored. In this study, we used new and previously published transcriptomic resources to assess evolutionary relationships of closely related scorpions from the family Hadruridae and their toxins. In addition, we surveyed the incidence of scorpine-like peptides (SLP, a type of potassium channel toxin), which were previously known from 21 scorpion species. We demonstrate that scorpine-like peptides exhibit gene duplications. Our molecular analyses demonstrate that only eight sites of two SLP copies found in scorpions are evolving under positive selection, with more sites evolving under negative selection, in contrast to previous findings. These results show evolutionary conservation in toxin diversity at shallow taxonomic scale.
Collapse
|
49
|
Cavigliasso F, Mathé-Hubert H, Kremmer L, Rebuf C, Gatti JL, Malausa T, Colinet D, Poirié M. Rapid and Differential Evolution of the Venom Composition of a Parasitoid Wasp Depending on the Host Strain. Toxins (Basel) 2019; 11:E629. [PMID: 31671900 PMCID: PMC6891688 DOI: 10.3390/toxins11110629] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/17/2022] Open
Abstract
Parasitoid wasps rely primarily on venom to suppress the immune response and regulate the physiology of their host. Intraspecific variability of venom protein composition has been documented in some species, but its evolutionary potential is poorly understood. We performed an experimental evolution initiated with the crosses of two lines of Leptopilinaboulardi of different venom composition to generate variability and create new combinations of venom factors. The offspring were maintained for 10 generations on two strains of Drosophila melanogaster differing in resistance/susceptibility to the parental parasitoid lines. The venom composition of individuals was characterized by a semi-automatic analysis of 1D SDS-PAGE electrophoresis protein profiles whose accuracy was checked by Western blot analysis of well-characterized venom proteins. Results made evident a rapid and differential evolution of the venom composition on both hosts and showed that the proteins beneficial on one host can be costly on the other. Overall, we demonstrated the capacity of rapid evolution of the venom composition in parasitoid wasps, important regulators of arthropod populations, suggesting a potential for adaptation to new hosts. Our approach also proved relevant in identifying, among the diversity of venom proteins, those possibly involved in parasitism success and whose role deserves to be deepened.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Hugo Mathé-Hubert
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Laurent Kremmer
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Christian Rebuf
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Thibaut Malausa
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Dominique Colinet
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| | - Marylène Poirié
- Université Côte d'Azur, INRA, CNRS, ISA, 06 903 Sophia Antipolis, France.
| |
Collapse
|
50
|
Jackson TNW, Jouanne H, Vidal N. Snake Venom in Context: Neglected Clades and Concepts. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00332] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|