1
|
Pinto TG, Dias TA, Renno ACM, Dos Santos JN, Cury PR, Ribeiro DA. The Impact of Genetic Polymorphisms for Detecting Genotoxicity in Workers Occupationally Exposed to Metals: A Systematic Review. J Appl Toxicol 2024. [PMID: 39428972 DOI: 10.1002/jat.4711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024]
Abstract
The present study aims to provide a systematic review of studies on the essential and nonessential metal exposure at occupational level, genotoxicity, and polymorphisms and to answer the following questions: Are genetic polymorphisms involved in metal-induced genotoxicity? In this study, 14 publications were carefully analyzed in this setting. Our results pointed out an association between polymorphism and genotoxicity in individuals exposed to metals, because 13 studies (out of 14) revealed positive relations between genotoxicity and polymorphisms in xenobiotics metabolizing and DNA repair genes. Regarding the quality of these findings, they can be considered reliable, as the vast majority of the studies (12 out of 14) were categorized as strong or moderate in the quality assessment. Taken as a whole, occupational exposure to metals (essentials or not) induces genotoxicity in peripheral blood or oral mucosa cells. Additionally, professional individuals with certain genotypes may present higher or lower DNA damage as well as DNA repair potential, which will certainly impact the level of DNA damage in the occupational environment.
Collapse
Affiliation(s)
- Thiago Guedes Pinto
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Thayza Aires Dias
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | - Ana Claudia Muniz Renno
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| | | | - Patrícia Ramos Cury
- School of Dentistry, Federal University of Bahia, UFBA, Salvador, Bahia, Brazil
| | - Daniel Araki Ribeiro
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo, UNIFESP, Santos, São Paulo, Brazil
| |
Collapse
|
2
|
Vital N, Antunes S, Louro H, Vaz F, Simões T, Penque D, Silva MJ. Environmental Tobacco Smoke in Occupational Settings: Effect and Susceptibility Biomarkers in Workers From Lisbon Restaurants and Bars. Front Public Health 2021; 9:674142. [PMID: 34150711 PMCID: PMC8213454 DOI: 10.3389/fpubh.2021.674142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/23/2022] Open
Abstract
Environmental tobacco smoke (ETS) has been recognized as a major health hazard by environmental and public health authorities worldwide. In Portugal, smoke-free laws are in force for some years, banning smoking in most indoor public spaces. However, in hospitality venues such as restaurants and bars, owners can still choose between a total smoke-free policy or a partial smoking restriction with designated smoking areas, if adequate reinforced ventilation systems are implemented. Despite that, a previous study showed that workers remained continuously exposed to higher ETS pollution in Lisbon restaurants and bars where smoking was still allowed, comparatively to total smoke-free venues. This was assessed by measurements of indoor PM2.5 and urinary cotinine, a biomarkers of tobacco smoke exposure, demonstrating that partial smoking restrictions do not effectively protect workers from ETS. The aim of the present work was to characterize effect and susceptibility biomarkers in non-smokers from those hospitality venues occupationally exposed to ETS comparatively to non-exposed ones. A group of smokers was also included for comparison. The sister chromatid exchange (SCE), micronucleus (MN) and comet assays in whole peripheral blood lymphocytes (PBLs) and the micronucleus assay in exfoliated buccal cells, were used as biomarkers of genotoxicity. Furthermore, a comet assay after ex vivo challenge of leukocytes with an alkylating agent, ethyl methanesulfonate (EMS), was used to analyze the repair capacity of those cells. Genetic polymorphisms in genes associated with metabolism and DNA repair were also included. The results showed no clear association between occupational exposure to ETS and the induction of genotoxicity. Interestingly, the leukocytes from non-smoking ETS-exposed individuals displayed lower DNA damage levels in response to the ex vivo EMS challenge, in comparison to those from non-exposed workers, suggesting a possible adaptive response. The contribution of individual susceptibility to the effect biomarkers studied was unclear, deserving further investigation.
Collapse
Affiliation(s)
- Nádia Vital
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Susana Antunes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Henriqueta Louro
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fátima Vaz
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Tânia Simões
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | - Deborah Penque
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Khisroon M, Khan A, Shah AA, Ullah I, Farooqi J, Ullah A. Scalp Hair Metal Analysis Concerning DNA Damage in Welders of Peshawar Khyber Pakhtunkhwa Pakistan. Biol Trace Elem Res 2021; 199:1649-1656. [PMID: 32676939 DOI: 10.1007/s12011-020-02281-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Welding is used throughout the world in refineries, thermal power plants, chemical facilities, and pressurized containers, and the welders are exposed to toxic heavy metals, electromagnetic fields, polycyclic aromatic hydrocarbon, and ultraviolet radiations. In the present study, 59 welders and an equal number of control subjects were assessed for DNA damage in the lymphocytes using the comet assay. Heavy metals such as lead (Pb), iron (Fe), nickel (Ni), chromium (Cr), manganese (Mn), and cadmium (Cd) levels in the scalp hair of the subjects were evaluated by using atomic absorption spectroscopy (AAS). The results of the current study showed that DNA damage in the lymphocytes of welders (121.8 ± 10.7) was significantly higher as compared with controls (56.5 ± 17.6) (P < 0.001). Besides, the levels of Pb, Fe, Ni, Cr, Mn, and Cd were remarkably higher in the scalp hair of workers as compared with the control group (P < 0.001). Regression analysis showed a prominent association between the heavy metals and total comet score (TCS) in the exposed subjects. Age and duration of occupational exposure had significant effects (P < 0.05) on TCS values. Our results concluded that occupational exposure to welding fumes may cause DNA damage and can lead to important health hazards in the workers.
Collapse
Affiliation(s)
- Muhammad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Ashraf Ali Shah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ihsan Ullah
- Poonch Medical College, Rawalakot, AJK, Pakistan
| | - Javeed Farooqi
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Abid Ullah
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| |
Collapse
|
4
|
Shakeri M, Zakeri F, Changizi V, Rajabpour MR, Farshidpour MR. Cytogenetic effects of radiation and genetic polymorphisms of the XRCC1 and XRCC3 repair genes in industrial radiographers. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:247-255. [PMID: 30955049 DOI: 10.1007/s00411-019-00782-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Different types of DNA damages caused by ionizing radiation may enhance the cancer risk in exposed individuals. Inherited variations in DNA repair genes cause the inter-individual variability in response to ionizing radiation. The purpose of this study was to determine the association between single nucleotide polymorphism (SNP) of two important DNA repair genes (XRCC1 R399Q and XRCC3 T241M) and the level of DNA damage investigated by micronucleus (MN) frequency in peripheral blood lymphocytes of 120 industrial radiographers (IR) and 120 non-exposed control individuals. The frequencies of MN and nucleoplasmic bridges were significantly higher in the IR group than in the control group (33.83 ± 11.96 vs. 7.47 ± 2.96, p < 0.0001 and 1.69 ± 1.86 vs. 0.12 ± 0.33, p < 0.0001). MN frequencies in the IR group were associated with the cumulative radiation doses (p < 0.0001, r = 0.58 for last 1 year of exposure and p < 0.0001, r = 0.67 for last 5 years of exposure). Polymorphism of XRCC3 T241M was associated with higher MN frequencies in the IR group. However, the same result was not observed between XRCC3 SNP and MN frequency in the control group. Consequently, XRCC3 241Met alleles may cause the increased DNA damage in the industrial radiographers.
Collapse
Affiliation(s)
- Mahsa Shakeri
- Department of Technology of Radiology and Radiotherapy, Allied Medical Sciences School, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Zakeri
- Nuclear Science and Technology Research Institute, Tehran, Iran.
- Iran Nuclear Regulatory Authority, Tehran, Iran.
| | - Vahid Changizi
- Department of Technology of Radiology and Radiotherapy, Allied Medical Sciences School, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
5
|
Zhang D, Liu J, Qi T, Ge B, Wang Z, Jiang S, Liu Q, Zhang H, Ding G, Tang B. Transcriptome Analysis of Hepatopancreas from the Cr (VI)-Stimulated Mantis Shrimp ( Oratosquilla oratoria) by Illumina Paired-End Sequencing: Assembly, Annotation, and Expression Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2598-2606. [PMID: 29425446 DOI: 10.1021/acs.jafc.7b05074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Cr (VI), the pathogenicity factor, is widely known to cause toxic effects in living organisms. Given the economic importance of the mantis shrimp ( Oratosquilla oratoria), the understanding of impacts by Cr (VI) is considered important. In this study, transcriptome of mantis shrimp was characterized by a comparison between control and Cr (VI)-treated samples using RNA-seq approach. Totally, 88 234 826 bp and 13.24G clean reads were obtained. The total length and number of unigenes were 68 411 206 bp and 100 918, respectively. The maximal and average length of unigenes was 24 906 bp and 678 bp, respectively (N50, 798 bp). 7115 of these unigenes accounted for 7.05% of the total that were annotated in all databases. After annotation of assembled unigenes, 35 619 of them were assigned into 3 functional categories and 56 subcategories using Gene Ontology; 18 580 of them were assigned into 26 functional categories using Clusters of Orthologous Groups of proteins; 16 864 of them were assigned into 5 major categories and 32 subclasses using KEGG. Finally, 1730 genes were differentially expressed (DGEs), 9 up-regulated pathways (protein digestion and absorption, neuroactive ligand-receptor interaction, pancreatic secretion, tyrosine metabolism, amoebiasis, ECM-receptor interaction, riboflavin metabolism, amino sugar and nucleotide sugar metabolism and AGE-RAGE signaling pathway in diabetic complications) were significantly enriched ( q < 0.05), and one down-regulated pathway ( Staphylococcus aureus infection) was significantly enriched ( q < 0.05). Up-regulation of genes in pathways of protein digestion/absorption ( PepT1/SLC15A and ATP1B) and environment information processing ( COL1AS, COL4A; LAMA3_5, LAMB3; FN1 and TN) may imply the potentially positive toxicity resistance mechanisms.
Collapse
Affiliation(s)
- Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Jun Liu
- Key Laboratory of Biotechnology in Lianyungang Normal College , Lianyungang 222006 , China
| | - Tingting Qi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Senhao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| | - Ge Ding
- Chemical and Biological Engineering College , Yancheng Institute of Technology , Yancheng 224003 , China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture , Yancheng Teachers University , Yancheng 224051 , China
| |
Collapse
|
6
|
Wultsch G, Nersesyan A, Kundi M, Mišík M, Setayesh T, Waldherr M, Vodicka P, Vodickova L, Knasmüller S. Genotoxic and Cytotoxic Effects in Exfoliated Buccal and Nasal Cells of Chromium and Cobalt Exposed Electroplaters. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:651-660. [PMID: 28524814 DOI: 10.1080/15287394.2017.1286918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Results of a number of studies indicate that electroplaters have increased cancer risks as a consequence of exposure to genotoxic metals such as chromium (VI) and nickel. These effects may be due to induction of damage of the genetic material which plays a key role in the etiology of cancer, and it was found that workers in galvanization factories exhibited increased levels of DNA damage. The aim of the present study was to investigate genetic stability in workers of a bright plating factory who are exposed to chromium (Cr) and cobalt (Co). Exfoliated cells were collected from the buccal and nasal mucosa of workers (n = 42) and matched controls (n = 43) and analyzed for induction of micronuclei (MN) which are formed as a consequence of chromosomal aberrations. In addition, other nuclear anomalies namely nuclear buds (Nbuds) which are formed as a consequence of gene amplification and markers indicating different stages of cell death (condensed chromatin, karyorrhexis, karyolysis, and pyknosis) were also assessed. No evidence was noted for induction of MN, but significantly increased rates of Nbuds in cells from both, buccal and nasal mucosa, were found. Parameters which are indicative for cytotoxic effects were more pronounced in nasal cells and rose with duration of employment period. Overall, our findings indicated that no apparent chromosomal damage occurred in bright electroplaters. However, data demonstrated that acute cytotoxic effects may lead to inflammations and/or lesions in epithelia of the respiratory tract of the workers.
Collapse
Affiliation(s)
- Georg Wultsch
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| | - Armen Nersesyan
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| | - Michael Kundi
- b Institute for Environmental Health, Center for Public Health , Medical University of Vienna , Vienna , Austria
| | - Miroslav Mišík
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| | - Tahereh Setayesh
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| | - Monika Waldherr
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| | - Pavel Vodicka
- c Department of Molecular Biology of Cancer, Institute of Experimental Medicine , Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Ludmila Vodickova
- c Department of Molecular Biology of Cancer, Institute of Experimental Medicine , Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Siegfried Knasmüller
- a Department of Medicine I, Institute of Cancer Research , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
7
|
Sani A, Abdullahi IL. A Bio-assessment of DNA damage by Alkaline Comet Assay in metal workers of Kano metropolis, Nigeria. Toxicol Rep 2016; 3:804-806. [PMID: 28959607 PMCID: PMC5616132 DOI: 10.1016/j.toxrep.2016.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/25/2022] Open
Abstract
Metallic work is one of the widespread economic activities in urban Kano. Little or no attention is usually directed at occupational health risk by local or state authorities in Kano. The present work was aimed at the evaluation of DNA damage in metal workers by Alkaline Comet Assay in blood lymphocytes. The results showed that there was significant difference statistically between the level of DNA damage in blood lymphocytes of metal workers and control group (p < 0.05). In addition, the level of damage to DNA in blood of subjects with long term exposure and old age is of serious concern. There is the need to monitor occupational activities that can pose serious health risks. The relative ignorance of the metal workers about the health risks they are exposed to as well as the public should be addressed.
Collapse
Affiliation(s)
- Ali Sani
- Department of Biological Sciences, Bayero University Kano, P.M.B 3011, Nigeria
| | | |
Collapse
|
8
|
Annangi B, Bonassi S, Marcos R, Hernández A. Biomonitoring of humans exposed to arsenic, chromium, nickel, vanadium, and complex mixtures of metals by using the micronucleus test in lymphocytes. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:140-161. [DOI: 10.1016/j.mrrev.2016.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
|
9
|
Nersesyan A, Kundi M, Waldherr M, Setayesh T, Mišík M, Wultsch G, Filipic M, Mazzaron Barcelos GR, Knasmueller S. Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:119-139. [PMID: 27894681 DOI: 10.1016/j.mrrev.2016.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 12/23/2022]
Abstract
Millions of humans are exposed occupationally and environmentally to lead, mercury and cadmium compounds. Mercury compounds are less abundant but some of them belong to the most toxic chemicals which are known. We evaluated the literature to find out if these metals act in humans as genotoxic carcinogens and if their health effects can be predicted by use of micronucleus (MN) assays with lymphocytes and/or with other genotoxicity tests. Numerous studies showed that lead and mercury induce cancer in humans and also in animals, in vitro experiments with cultured cells indicate that they cause DNA damage via different molecular mechanisms including release of reactive oxygen species and interactions with DNA repair processes. Also in most human studies, positive results were obtained in MN tests with lymphocytes (all 15 occupational studies with lead yielded positive results, with mercury 6 out of 7 investigations were positive). For cadmium, there is clear evidence that it causes cancer in humans; however, induction of chromosomal damage was only seen in high dose experiments with mammalian cells while results of animal and human studies yielded conflicting results (only in 2 of 5MN trials with humans positive findings were reported). Possibly, non-genotoxic mechanisms such as inhibition of apoptosis and interaction with signaling pathways account for the carcinogenic properties of cadmium species. The findings of MN studies with lead and mercury are in excellent agreement with results which were obtained with other endpoints (e.g. chromosomal aberrations and comet formations) and it is evident that this approach can be used for occupational and environmental monitoring of exposed individuals. Important future tasks will be the realization of larger studies with a uniform standardized protocol, the additional evaluation of anomalies other than MN (nuclear buds and bridges) and the combination of such trials with investigations which allow to define the molecular mechanisms relevant for exposed humans.
Collapse
Affiliation(s)
- Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health, Center for Public Health, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Monika Waldherr
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| | - Georg Wultsch
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria
| | - Metka Filipic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gustavo Rafael Mazzaron Barcelos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Borschkegasse 8a, 1090 Vienna, Austria.
| |
Collapse
|
10
|
Genualdo V, Perucatti A, Pauciullo A, Iannuzzi A, Incarnato D, Spagnuolo MS, Solinas N, Bullitta S, Iannuzzi L. Analysis of chromosome damage by sister chromatid exchange (SCE) and redox homeostasis characterization on sheep flocks from Sardinian pasturelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 527-528:393-400. [PMID: 25984702 DOI: 10.1016/j.scitotenv.2015.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/23/2015] [Accepted: 05/06/2015] [Indexed: 06/04/2023]
Abstract
Over the last decades, an increase of pollutants of diverse origin (industrial, military, mining, etc.) was recorded in several areas of Sardinia Island. We report the results of a multidisciplinary and complementary study based on cytogenetic and physiological analyses. The data obtained show the effects of the environmental impact on six sheep flocks (Sardinian breed) grazing on natural pasturelands next to possible polluted areas and compared to three herds grazing in different areas far from those potentially contaminated and used as control. Sister chromatid exchange (SCE) test was used as cytogenetic test to analyze chromosomal damages and it was performed on peripheral blood samples collected from 129 adult sheep (age > 4 years) randomly selected from polluted (92 animals) and control (37 animals) areas. Two types of cell cultures were performed: without (normal cultures) and with the addition of 5-BrdU. SCE-mean values estimated over 35 cells counted for each animal were 8.65 ± 3.40, 8.10 ± 3.50, 8.05 ± 3.08, 7.42 ± 3.34, 9.28 ± 3.56 and 8.38 ± 3.29 in the exposed areas, whereas the average values were 7.86 ± 3.31 in the control group. Significant increases (P < 0.01) of SCEs were found in three investigated areas of Southern Sardinia. Furthermore, sheep of the same flocks were characterized for blood redox homeostasis in order to define the potential targets of oxidative damage and to identify biomarkers of the extent of animal exposure to environmental contaminants. The plasma levels of Asc, Toc and Ret were found to be significantly lower (P < 0.001) in exposed sheep (I, II, IV and V) than in the control group. TAC as well as GPx and SOD activities were higher in control than in the exposed groups (P < 0.001). Finally, plasma levels of N-Tyr, PC, and LPO were significantly lower (P < 0.001) in the control group than in the exposed groups.
Collapse
Affiliation(s)
- Viviana Genualdo
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy.
| | - Angela Perucatti
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy
| | - Alfredo Pauciullo
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy; University of Torino, Department of Agricultural, Forest and Food Sciences (DISAFA), Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy
| | - Alessandra Iannuzzi
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy
| | - Domenico Incarnato
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy
| | - Maria Stefania Spagnuolo
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Physiology, via Argine, 1085, 80147 Naples, Italy
| | - Nicolina Solinas
- Italian Local Health Authority (ASL) n. 1, Ospedale di Thiesi, viale Madonna di Seunis, 07047 Thiesi, Sassari, Italy
| | - Simonetta Bullitta
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Traversa La Crucca, 3, Località Baldinca, 07040 Li Punti, Sassari, Italy
| | - Leopoldo Iannuzzi
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), Laboratory of Animal Cytogenetics and Gene Mapping, via Argine, 1085, 80147 Naples, Italy
| |
Collapse
|
11
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
12
|
Holmes AL, Joyce K, Xie H, Falank C, Hinz JM, Wise JP. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation. Mutat Res 2014; 762:1-9. [PMID: 24561002 DOI: 10.1016/j.mrfmmm.2014.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 02/11/2014] [Indexed: 06/03/2023]
Abstract
Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.
Collapse
Affiliation(s)
- Amie L Holmes
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Kellie Joyce
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Hong Xie
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - Carolyne Falank
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Biotechnology and Life Sciences Building, Pullman, WA 99164-7520, United States of America
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America; Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America.
| |
Collapse
|
13
|
Wang C, Ai Z. Association of XRCC1 polymorphisms with thyroid cancer risk. Tumour Biol 2014; 35:4791-7. [PMID: 24477575 DOI: 10.1007/s13277-014-1629-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 01/06/2014] [Indexed: 11/28/2022] Open
Abstract
Due to the important role in the DNA repair pathways, numerous studies have been carried out to explore the relationship between the polymorphisms in the X-ray repair cross-complementing group 1 (XRCC1) gene and thyroid cancer risk. But previous reports have produced conflicting results. Thus, we performed an updated comprehensive meta-analysis to better investigate the association of the XRCC1 polymorphisms with thyroid cancer risk. There were a total of nine studies included with 1,621 cases and 3,669 controls examining the effects of the XRCC1 Arg280His, Arg399Gln, and Arg194Trp polymorphisms on the susceptibility of thyroid cancer. In our study, the XRCC1 Arg280His polymorphism was found to be associated with an increased thyroid cancer risk in the Caucasian population [allelic contrast: odds ratio (OR) = 1.38, 95% CI = 1.05-1.80, P(Z) = 0.02, P(Q) = 0.61; dominant model: OR = 1.43, 95% CI = 1.08-1.89, P(Z) = 0.01, P(Q) = 0.57]. The Arg399Gln polymorphism was associated with a significant decreased risk [allelic contrast: OR = 0.73, 95% CI = 0.59-0.92, P(Z) = 0.006, P(Q) = 0.31; dominant model: OR = 0.73, 95% CI = 0.55-0.97, P(Z) = 0.03, P(Q) = 0.33; recessive model: OR = 0.56, 95% CI = 0.34-0.93, P(Z) = 0.02, P(Q) = 0.59], while the Arg194Trp SNP conferred an increased risk for thyroid cancer in the mixed populations [allelic contrast: OR = 1.49, 95% CI = 1.02-2.17, P(Z) = 0.04]. To conclude, the present meta-analysis demonstrated that the polymorphisms in the XRCC1 gene may be associated with developing of thyroid cancer.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | | |
Collapse
|
14
|
Peluso MEM, Munnia A. DNA adducts and the total sum of at-risk DNA repair alleles in the nasal epithelium, a target tissue of tobacco smoking-associated carcinogenesis. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50050k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
15
|
García-Quispes W, Pastor S, Galofré P, Biarnés F, Castell J, Velázquez A, Marcos R. Influence of DNA-repair gene variants on the micronucleus frequency in thyroid cancer patients. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 750:34-9. [DOI: 10.1016/j.mrgentox.2012.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/27/2012] [Accepted: 08/30/2012] [Indexed: 01/27/2023]
|
16
|
Spagnuolo MS, Cigliano L, Nebbia C, Rossetti C, Grazioli G, Iannuzzi L. Analysis of plasma indices of redox homeostasis in dairy cows reared in polluted areas of Piedmont (northern Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 433:450-455. [PMID: 22824076 DOI: 10.1016/j.scitotenv.2012.06.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/21/2012] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
Steel manufacturing is responsible for the emission of pollutants, including dioxins and transition metals, inducing reactive oxygen species generation and DNA damage. Dioxin pollution represents the major cause of milk and dairy product contamination, in Italy, and is associated with oxidative stress-related processes, that may impair health and performance of cows. We evaluated the effect of exposure to different concentrations of pollutants derived from steel manufacturing on blood redox homeostasis of bovine cows. We analyzed two groups of dairy cows (A, B), reared in two different polluted areas, and a control group of cows bred in an industry free area. The extent of exposure to contaminants was defined by measuring dioxin level in bulk milk samples collected from animals of each farm. This level was lower in milk of group A than in group B. Plasma concentrations of retinol, alpha-tocopherol and ascorbate, the total antioxidant capacity, and the activities of superoxide dismutase and glutathione peroxidase were higher in control group than in exposed groups. In particular, retinol and tocopherol levels were higher in the group with lower milk dioxin level. Plasma titers of protein-bound carbonyls (PC), nitro-tyrosine, and hydroperoxides were lower in control group than in A or B. Hydroperoxides and PC plasma concentrations were increased in the group with higher milk concentration of dioxin. Our results demonstrate that, irrespective of the nature of chemicals inducing oxidative modifications, the extent of damage to plasma protein and lipid, is correlated with the concentration of dioxin in milk. So, the characterization of blood redox status might be a useful tool for identifying animals exposed to environmental pollutants. Plasma concentrations of retinol, alpha-tocopherol, PC and hydroperoxides could therefore represent good indices of the extent of animal exposure, as they significantly change in groups with different milk concentrations of dioxin.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- National Research Council (CNR), Institute of Animal Production Systems in Mediterranean Environments (ISPAAM), via Argine 1085, 80147 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
Mateuca RA, Decordier I, Kirsch-Volders M. Cytogenetic methods in human biomonitoring: principles and uses. Methods Mol Biol 2012; 817:305-334. [PMID: 22147579 DOI: 10.1007/978-1-61779-421-6_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cellular phenotypes can be applied as biomarkers to differentiate normal from abnormal biological -conditions. Several cytogenetic methods have been developed and allow the accurate detection of such phenotypic changes.Based on their mechanisms of formation, cellular phenotypes may be used either as biomarkers of exposure or as biomarkers of effect. Therefore, it is important that cytogenetic methods implemented in human biomonitoring should be based on a good knowledge of these mechanisms.In this chapter, we aim to review the mechanistic basis, the methodology, and the use in human biomonitoring studies of four major cytogenetic endpoints: sister chromatid exchanges (SCEs), high frequency cells (HFCs), chromosomal aberrations (CAs), and micronuclei (MN). In addition, an overview of potential confounding factors on the induction of these cytogenetic makers is presented. Furthermore, the combination of cytogenetics with molecular methods, which allows chromosome and gene identification on metaphase as well as in interphase cells with high resolution, is discussed. Finally, practical recommendations for an efficient application of these cytogenetic assays and a correct interpretation of the results on the basis of cellular phenotype(s) assessment in human biomonitoring are highlighted.
Collapse
|
18
|
Rancelis V, Cesniene T, Kleizaite V, Zvingila D, Balciuniene L. Influence of cobalt uptake by Vicia faba seeds on chlorophyll morphosis induction, SOD polymorphism, and DNA methylation. ENVIRONMENTAL TOXICOLOGY 2012; 27:32-41. [PMID: 20549638 DOI: 10.1002/tox.20609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/02/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
Vicia faba plants show polymorphism to cobalt (Co) excess, expressed by a different degree of chlorophyll morphosis (CM)-from normally green (N) to yellow (Y) seedlings. For superoxide dismutase (SOD), the high V. faba polymorphism was revealed and increased by Co stress. Epigenetic mechanisms may be involved in both phenomena. For such reasons, we investigated the effect of 5-azacytosine (AzaC) and Na butyrate (NaBut) on CM induction, SOD polymorphism, and DNA methylation-demethylation events in Co(NO(3) )(2) affected plants, without or with AzaC or NaBut. CMs were induced after treatment of seeds for 8 h with 7.5 mM Co(NO(3) )(2) plus 12 h with H(2) O or 8 h with H(2) O plus 12 h with Co(NO(3) )(2) . In the same order AzaC and NaBut were applied in concentrations equimolar to Co(NO(3) )(2) . SOD isoforms were investigated electrophoretically, and for DNA methylation-demethylation events the Aina [Aina et al. (2004) Physiol Plant 121:472-480] system was applied upon using the random amplified polymorphic DNA (RAPD) method employing restrictases MspI and HpaII. The effect of AzaC and NaBut on CM induction in combination with Co was unclear. Posttreatment with Co was more effective than Co-pretreatment. SOD polymorphism was significantly strengthened by NaBut. Detection of DNA methylation-demethylation events depended on the primers used for RAPD analysis. With AP5 and MP4 primers, DNA demethylation was observed in N-seedlings after exposure to Co, AzaC or NaBut applied separately. With primer A6, only DNA methylation events were determined in N-seedlings from seeds exposed to Co or Co-AzaC, and in Y-seedlings after Co-AzaC or Co-NaBut treatment. UPGMA grouping of the results showed that all N-seedlings comprised one common cluster after Co exposure, independently of treatment combinations (Co alone, Co with AzaC, Co with NaBut). On the contrary, no significant differences were determined in SOD polymorphism among the most resistant N-seedlings and the most severely affected Y-seedlings.
Collapse
Affiliation(s)
- Vytautas Rancelis
- Department of Botany and Genetics, Vilnius University, Vilnius, Lithuania
| | | | | | | | | |
Collapse
|
19
|
Abdel-Rahman SZ, El-Zein RA. Evaluating the effects of genetic variants of DNA repair genes using cytogenetic mutagen sensitivity approaches. Biomarkers 2011; 16:393-404. [PMID: 21595606 PMCID: PMC3142279 DOI: 10.3109/1354750x.2011.577237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mutagen sensitivity, measured in short-term cultures of peripheral blood lymphocytes by cytogenetic endpoints, is an indirect measure for DNA repair capacity and has been used for many years as a biomarker for intrinsic susceptibility for cancer. In this article, we briefly give an overview of the different cytogenetic mutagen sensitivity approaches that have been used successfully to evaluate the biological effects of polymorphisms in DNA repair genes based on a current review of the literature and based on the need for biomarkers that would allow the characterization of the biological and functional significance of such polymorphisms. We also address some of the future challenges facing this emerging area of research.
Collapse
Affiliation(s)
- Sherif Z Abdel-Rahman
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, 77555-1062, USA.
| | | |
Collapse
|
20
|
García-Quispes WA, Pérez-Machado G, Akdi A, Pastor S, Galofré P, Biarnés F, Castell J, Velázquez A, Marcos R. Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer. Mutat Res 2011; 709-710:67-72. [PMID: 21414327 DOI: 10.1016/j.mrfmmm.2011.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/28/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
The role of the DNA repair genes OGG1, XRCC1, XRCC2 and XRCC3 on differentiated thyroid cancer (DTC) susceptibility was examined in 881 individuals (402 DTC and 479 controls). DNA repair genes were proposed as candidate genes, since the current data indicate that exposure to ionizing radiation is the only established factor in the development of thyroid cancer, especially when it occurs in early stages of life. We have genotyped DNA repair genes involved in base excision repair (BER) (OGG1, Ser326Cys; XRCC1, Arg280His and Arg399Gln), and homologous recombination repair (HRR) (XRCC2, Arg188His and XRCC3, ISV-14G). Genotyping was carried out using the iPLEX (Sequenom) technique. Multivariate logistic regression analyses were performed in a case-control study design. From all the studied polymorphism, only a positive association (OR=1.58, 95% CI 1.05-2.46, P=0.027) was obtained for XRCC1 (Arg280His). No associations were observed for the other polymorphisms. No effects of the histopathological type of tumor were found when the DTC patients were stratified according to the type of tumor. It must be emphasized that this study include the greater patients group, among the few studies carried out until now determining the role of DNA repair genes in thyroid cancer susceptibility.
Collapse
Affiliation(s)
- Wilser-Andrés García-Quispes
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Occupational risk assessment of oxidative stress and genotoxicity in workers exposed to paints during a working week. Int J Occup Med Environ Health 2011; 24:308-19. [DOI: 10.2478/s13382-011-0030-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
22
|
Decordier I, Mateuca R, Kirsch-Volders M. Micronucleus assay and labeling of centromeres with FISH technique. Methods Mol Biol 2011; 691:115-36. [PMID: 20972750 DOI: 10.1007/978-1-60761-849-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cytokinesis-block micronucleus (CBMN) assay has since many years been applied for in vitro genotoxicity testing and biomonitoring of human populations. The standard in vitro/ex vivo micronucleus test is usually performed on human lymphocytes and has become a comprehensive method to assess genetic damage, cytostasis, and cytotoxicity. The predictive association between the frequency of micronuclei (MN) in cytokinesis-blocked lymphocytes and cancer risk has recently been demonstrated. MN frequencies can be influenced by inherited (or acquired) genetic polymorphisms (or mutations) in genes responsible for the metabolic activation, detoxification of clastogens, and for the fidelity of DNA replication. An important advantage of the CBMN assay is its ability to detect both clastogenic and aneugenic events by centromere and kinetochore identification and contributes to the high sensitivity of the method. The objective of the present chapter is to review the mechanisms of induction of micronuclei, the method of the micronucleus assay and its combination with centromeric labeling in the FISH technique. Furthermore, an overview is given of recent results obtained by our laboratory by the application of the micronucleus assay.
Collapse
Affiliation(s)
- Ilse Decordier
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | |
Collapse
|
23
|
Bagryantseva Y, Novotna B, Rossner P, Chvatalova I, Milcova A, Svecova V, Lnenickova Z, Solansky I, Sram RJ. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: impact of air pollution and genetic polymorphisms. Toxicol Lett 2010; 199:60-8. [PMID: 20723587 DOI: 10.1016/j.toxlet.2010.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/02/2010] [Accepted: 08/11/2010] [Indexed: 12/17/2022]
Abstract
DNA integrity was investigated in the lymphocytes of 50 bus drivers, 20 garagemen and 50 controls using the comet assay with excision repair enzymes. In parallel, 8-oxo-7,8-dihydro-2'-deoxyguanosine and 15-F(2t)-isoprostane levels in the urine and protein carbonyl levels in the plasma were assessed as markers of oxidative damage to DNA, lipids and proteins. Exposure to carcinogenic polycyclic aromatic hydrocarbons (cPAHs) and volatile compounds was measured by personal samplers for 48 and 24h, respectively, before the collection of biological specimens. Both exposed groups exhibited a higher levels of DNA instability and oxidative damage to biological macromolecules than the controls. The incidence of oxidized lesions in lymphocyte DNA, but not the urinary levels of 8-oxodG, correlated with exposure to benzene and triglycerides increased this damage. Oxidative damage to lipids and proteins was associated with exposure to cPAHs and the lipid peroxidation levels positively correlated with age and LDL cholesterol, and negatively with vitamin C. The carriers of at least one variant hOGG1 (Cys) allele tended to higher oxidative damage to lymphocyte DNA than those with the wild genotype, while XPD23 (Gln/Gln) homozygotes were more susceptible to the induction of DNA strand breaks. In contrast, GSTM1 null variant seemed to protect DNA integrity.
Collapse
Affiliation(s)
- Yana Bagryantseva
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine v.v.i., Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Praha 4, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Genotoxicity surveillance programme in workers dismantling World War I chemical ammunition. Int Arch Occup Environ Health 2010; 83:483-95. [DOI: 10.1007/s00420-010-0526-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 02/26/2010] [Indexed: 10/19/2022]
|
25
|
Demircigil GC, Coskun E, Vidinli N, Erbay Y, Yilmaz M, Cimrin A, Schins RP, Borm PJ, Burgaz S. Increased micronucleus frequencies in surrogate and target cells from workers exposed to crystalline silica-containing dust. Mutagenesis 2009; 25:163-9. [PMID: 19939883 DOI: 10.1093/mutage/gep057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mining, crushing, grinding, sandblasting and construction are high-risk activities with regard to crystalline silica exposure, especially in developing countries. Respirable crystalline silica (quartz and cristobalite) inhaled from occupational sources has been reclassified as a human carcinogen in 1997 by the International Agency for Research on Cancer. However, the biological activity of crystalline silica has been found to be variable among different industries, and this has formed the basis for further in vivo/in vitro mechanistic research and epidemiologic studies. This study was conducted for genotoxicity evaluation in a population of workers (e.g. glass industry workers, sandblasters, and stone grinders) mainly exposed to crystalline silica in four different workplaces in Turkey. The micronucleus (MN) assay was applied both in peripheral blood lymphocytes (PBL) as a surrogate tissue and in nasal epithelial cells (NEC) as a target tissue of the respiratory tract. Our study revealed significantly higher MN frequencies in the workers (n = 50) versus the control group (n = 29) (P < 0.001) and indicated a significant effect of occupational exposure on MN induction in both of the tissues. For the NEC target tissue, the difference in MN frequencies between the workers and control group was 3-fold, whereas in peripheral tissue, it was 2-fold. Respirable dust and crystalline silica levels exceeding limit values and mineralogical/elemental dust composition of the dust of at least 70% SiO(2) were used as markers of crystalline silica exposure in each of the workplaces. Moreover, 24% of the current workers were found to have early radiographical changes (profusion category of 1). In conclusion, although the PBL are not primary target cells for respiratory particulate toxicants, an evident increase in MN frequencies in this surrogate tissue was observed, alongside with a significant increase in NEC and may be an indicator of the accumulated genetic damage associated with crystalline silica exposure.
Collapse
|
26
|
Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br J Nutr 2009; 103:490-501. [PMID: 19878615 DOI: 10.1017/s0007114509992066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene-environment interactions determine inter-individual variations in nucleotide excision repair (NER) capacity. Oxidative stress was previously found to inhibit NER, thus supplementation with dietary antioxidants could prevent this inhibition, especially in genetically susceptible subjects. To study the effects of genetic polymorphisms in NER-related genes and dietary intake of antioxidants on an individual's NER capacity, lymphocytes of 168 subjects were isolated before and after a 4-week blueberry and apple juice intervention. Twelve genetic polymorphisms in NER genes XPA, XPC, ERCC1, ERCC2, ERCC5, ERCC6 and RAD23B were assessed by multiplex PCR with single base extension. Based on specific genotype combinations, a subset of individuals (n 36) was selected for phenotypical assessment of NER capacity, which was significantly affected by the total sum of low-activity alleles (P = 0.027). The single polymorphism XPA G23A was the strongest predictor of NER capacity (P = 0.002); carriers of low-activity alleles AA had about three times lower NER capacity than XPA GG carriers. NER capacity assessed before and after intervention correlated significantly (R(2) 0.69; P < 0.001), indicating that inter-individual differences in NER capacity are maintained over 4 weeks. Although the intervention increased plasma trolox equivalent antioxidant capacity from 791 (SE 6.61) to 805 (SE 7.90) microm (P = 0.032), on average it did not affect NER capacity. Nonetheless, carriers of twelve or more low-activity alleles seemed to benefit from the intervention (P = 0.013). Among these, carriers of the variant allele for RAD23B Ala249Val showed improved NER capacity upon intervention (P = 0.020). In conclusion, improved NER capacity upon dietary intervention was detected in individuals carrying multiple low-activity alleles. The XPA G23A polymorphism might be a predictor for NER capacity.
Collapse
|
27
|
Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murray AR, Fadeel B, Shvedova AA. Size-dependent effects of tungsten carbide-cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol 2009; 241:260-8. [PMID: 19747498 DOI: 10.1016/j.taap.2009.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 01/14/2023]
Abstract
Hard metal or cemented carbide consists of a mixture of tungsten carbide (WC) (85%) and metallic cobalt (Co) (5-15%). WC-Co is considered to be potentially carcinogenic to humans. However, no comparison of the adverse effects of nano-sized WC-Co particles is available to date. In the present study, we compared the ability of nano- and fine-sized WC-Co particles to form free radicals and propensity to activate the transcription factors, AP-1 and NF-kappaB, along with stimulation of mitogen-activated protein kinase (MAPK) signaling pathways in a mouse epidermal cell line (JB6 P(+)). Our results demonstrated that nano-WC-Co generated a higher level of hydroxyl radicals, induced greater oxidative stress, as evidenced by a decrease of GSH levels, and caused faster JB6 P(+) cell growth/proliferation than observed after exposure of cells to fine WC-Co. In addition, nano-WC-Co activated AP-1 and NF-kappaB more efficiently in JB6(+/+) cells as compared to fine WC-Co. Experiments using AP-1-luciferase reporter transgenic mice confirmed the activation of AP-1 by nano-WC-Co. Nano- and fine-sized WC-Co particles also stimulated MAPKs, including ERKs, p38, and JNKs with significantly higher potency of nano-WC-Co. Finally, co-incubation of the JB6(+/+) cells with N-acetyl-cysteine decreased AP-1 activation and phosphorylation of ERKs, p38 kinase, and JNKs, thus suggesting that oxidative stress is involved in WC-Co-induced toxicity and AP-1 activation.
Collapse
Affiliation(s)
- M Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stefaniak AB, Virji MA, Day GA. Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2009; 19:475-491. [PMID: 18628793 DOI: 10.1038/jes.2008.37] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
As many as 30,000 workers in the United States of America are exposed to cemented tungsten carbides (CTC), alloys composed primarily of tungsten carbide and cobalt, which are used in cutting tools. Inhalation of cobalt-containing particles may be sufficient for the development of occupational asthma, whereas tungsten carbide particles in association with cobalt particles are associated with the development of hard metal disease (HMD) and lung cancer. Historical epidemiology and exposure studies of CTC workers often rely only on measures of total airborne cobalt mass concentration. In this study, we characterized cobalt- and tungsten-containing aerosols generated during the production of CTC with emphasis on (1) aerosol "total" mass (n=252 closed-face 37 mm cassette samples) and particle size-selective mass concentrations (n=108 eight-stage cascade impactor samples); (2) particle size distributions; and (3) comparison of exposures obtained using personal cassette and impactor samplers. Total cobalt and tungsten exposures were highest in work areas that handled powders (e.g., powder mixing) and lowest in areas that handled finished product (e.g., grinding). Inhalable, thoracic, and respirable cobalt and tungsten exposures were observed in all work areas, indicating potential for co-exposures to particles capable of getting deposited in the upper airways and alveolar region of the lung. Understanding the risk of CTC-induced adverse health effects may require two exposure regimes: one for asthma and the other for HMD and lung cancer. All sizes of cobalt-containing particles that deposit in the lung and airways have potential to cause asthma, thus a thoracic exposure metric is likely biologically appropriate. Cobalt-tungsten mixtures that deposit in the alveolar region of the lung may potentially cause HMD and lung cancer, thus a respirable exposure metric for both metals is likely biologically appropriate. By characterizing size-selective and co-exposures as well as multiple exposure pathways, this series of papers offer an approach for developing biologically meaningful exposure metrics for use in epidemiology.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA.
| | | | | |
Collapse
|
29
|
Catalán J, Heilimo I, Falck GCM, Järventaus H, Rosenström P, Nykyri E, Kallas-Tarpila T, Pitkämäki L, Hirvonen A, Norppa H. Chromosomal aberrations in railroad transit workers: effect of genetic polymorphisms. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2009; 50:304-316. [PMID: 19177501 DOI: 10.1002/em.20458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Complex chemical mixtures are transported by train from Russia to Finland for further shipment. Here, we studied if exposure to genotoxic components among these substances could affect chromosomal aberrations (CAs) in peripheral lymphocytes of workers handling the tank cars. An initial survey among 48 railroad workers and 39 referents (male smokers and nonsmokers) showed an elevation of CAs. A campaign was started to reduce exposures through preventive measures. Five years later, 51 tank car workers and 40 age-matched referents (all nonsmoking men) were studied for CAs and genetic polymorphisms of xenobiotic metabolism (EPHX1, GSTM1, GSTP1, GSTT1, NAT1, NAT2), DNA repair (ERCC2, ERCC5, XPA, XPC, XRCC1, XRCC3), and folate metabolism (MTHFR, MTR). No increase in CAs was seen in the exposed group, suggesting that the preventive measures had been successful. However, a positive association existed between exposure duration and CA level among the exposed subjects. The level of chromosome-type breaks was actually lower in the exposed workers than the referents, particularly among MTHFR wild-type homozygotes or XRCC3 codon 241 variant allele carriers, suggesting modulation of CA frequency by folate metabolism and DNA repair. An interaction was observed between the occupational exposure and MTHFR, EPHX1, and MTR genotypes in determining CA level. The NAT2, ERCC2 exon 10, and XRCC1 codon 194 polymorphisms also affected CA frequency. Our findings suggest that handling of tank cars containing complex chemical mixtures poses a genotoxic risk, which may be reduced by preventive measures. Several genetic polymorphisms seem to modify the genotoxic effect or baseline CA level.
Collapse
Affiliation(s)
- Julia Catalán
- Finnish Institute of Occupational Health, Helsinki and Lappeenranta, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ehrlich VA, Nersesyan AK, Hoelzl C, Ferk F, Bichler J, Valic E, Schaffer A, Schulte-Hermann R, Fenech M, Wagner KH, Knasmüller S. Inhalative exposure to vanadium pentoxide causes DNA damage in workers: results of a multiple end point study. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1689-93. [PMID: 19079721 PMCID: PMC2599764 DOI: 10.1289/ehp.11438] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 07/31/2008] [Indexed: 05/21/2023]
Abstract
BACKGROUND Inhalative exposure to vanadium pentoxide (V(2)O(5)) causes lung cancer in rodents. OBJECTIVE The aim of the study was to investigate the impact of V(2)O(5) on DNA stability in workers from a V(2)O(5) factory. METHODS We determined DNA strand breaks in leukocytes of 52 workers and controls using the alkaline comet assay. We also investigated different parameters of chromosomal instability in lymphocytes of 23 workers and 24 controls using the cytokinesis-block micronucleus (MN) cytome method. RESULTS Seven of eight biomarkers were increased in blood cells of the workers, and vanadium plasma concentrations in plasma were 7-fold higher than in the controls (0.31 microg/L). We observed no difference in DNA migration under standard conditions, but we found increased tail lengths due to formation of oxidized purines (7%) and pyrimidines (30%) with lesion-specific enzymes (formamidopyrimidine glycosylase and endonuclease III) in the workers. Bleomycin-induced DNA migration was higher in the exposed group (25%), whereas the repair of bleomycin-induced lesions was reduced. Workers had a 2.5-fold higher MN frequency, and nucleoplasmic bridges (NPBs) and nuclear buds (Nbuds) were increased 7-fold and 3-fold, respectively. Also, apoptosis and necrosis rates were higher, but only the latter parameter reached statistical significance. CONCLUSIONS V(2)O(5) causes oxidation of DNA bases, affects DNA repair, and induces formation of MNs, NPBs, and Nbuds in blood cells, suggesting that the workers are at increased risk for cancer and other diseases that are related to DNA instability.
Collapse
Affiliation(s)
- Veronika A. Ehrlich
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen K. Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Christine Hoelzl
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Julia Bichler
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Eva Valic
- Austrian Workers Compensation Board, Vienna, Austria
| | - Andreas Schaffer
- Department of Medicine II, Medical University of Vienna, Austria
| | - Rolf Schulte-Hermann
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Human Nutrition, Adelaide, Australia
| | | | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Address correspondence to S. Knasmüller, Institute for Cancer Research, Borschkegasse 8a, 1090 Vienna, Austria. Telephone: 43-1-4277-65142. Fax: 43-1-4277-6519. E-mail:
| |
Collapse
|
31
|
Weng Z, Lu Y, Weng H, Morimoto K. Effects of the XRCC1 gene-environment interactions on DNA damage in healthy Japanese workers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:708-719. [PMID: 18800344 DOI: 10.1002/em.20421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
X-ray repair crosscomplementing group 1 (XRCC1) has a central role in base excision repair (BER) and single-strand break repair (SSBR). XRCC1 gene polymorphisms (codons 194, 280, and 399) have been identified, and in some cases have been reported to contribute to variations in DNA repair capacity and susceptibility to cancer. To further characterize the effects of XRCC1 gene polymorphisms and their possible interactions with environmental factors on individual levels of DNA damage, we investigated the XRCC1 genotypes of 222 healthy Japanese workers and analyzed data with respect to smoking, drinking habits, age, and health practice index (HPI). Our results showed that poor HPI would associate with a higher level of tail moment (TM). Individuals with one or two XRCC1(R280H) variant alleles exhibited significantly higher TM values, and these differences were enhanced by alcohol consumption and aging, whereas smoking and poor HPI may cover up the differences. On the other hand, using a stratified analysis, we found that the XRCC1(R194W) variant was associated with a higher TM value in the 40-50 year-old age group, and the XRCC1(R399Q) variant was associated with a lower TM value in the < or =20 pack-years group or in the 40-50 year-old age group. These data suggest that XRCC1 polymorphisms could influence individual DNA repair capacity by interacting with lifestyle factors, and specifically, the data indicated that the XRCC1(R280H) allele may be more important than codon 194 or 399 alleles.
Collapse
Affiliation(s)
- Zuquan Weng
- Department of Social and Environmental Medicine, Osaka University Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
32
|
Keegan GM, Learmonth ID, Case C. A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants. Crit Rev Toxicol 2008; 38:645-74. [DOI: 10.1080/10408440701845534] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 2008; 23:377-82. [DOI: 10.1093/mutage/gen024] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Stackpole MM, Wise SS, Duzevik EG, Munroe RC, Thompson WD, Thacker J, Thompson LH, Hinz JM, Wise JP. Homologous recombination repair protects against particulate chromate-induced chromosome instability in Chinese hamster cells. Mutat Res 2007; 625:145-54. [PMID: 17662313 PMCID: PMC2230547 DOI: 10.1016/j.mrfmmm.2007.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/01/2007] [Accepted: 06/13/2007] [Indexed: 12/26/2022]
Abstract
Particulate hexavalent chromium [Cr(VI)] compounds are well-established human carcinogens. Cr(VI)-induced tumors are characterized by chromosomal instability (CIN); however, the mechanisms of this effect are unknown. We investigated the hypothesis that homologous recombination (HR) repair of DNA double-strand breaks protect cells from Cr(VI)-induced CIN by focusing on the XRCC3 and RAD51C genes, which play an important role in cellular resistance to DNA double-strand breaks. We used Chinese hamster cells defective in each HR gene (irs3 for RAD51C and irs1SF for XRCC3) and compared with their wildtype parental and cDNA-complemented controls. We found that the intracellular Cr ion levels varied among the cell lines after particulate chromate treatment. Importantly, accounting for differences in Cr ion levels, we discovered that XRCC3 and RAD51C cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, relative to wildtype and cDNA-complimented cells. We also observed the emergence of high levels of chromatid exchanges in the two mutant cell lines. For example, 1microg/cm(2) lead chromate induced 20 and 32 exchanges in XRCC3- and RAD51C-deficient cells, respectively, whereas no exchanges were detected in the wildtype and cDNA-complemented cells. These observations suggest that HR protects cells from Cr(VI)-induced CIN, consistent with the ability of particulate Cr(VI) to induce double-strand breaks.
Collapse
Affiliation(s)
- Megan M. Stackpole
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Sandra S. Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Eliza Grlickova Duzevik
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - Ray C. Munroe
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
| | - W. Douglas Thompson
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, USA
| | - John Thacker
- Medical Research Council, Radiation & Genome Stability Unit, Harwell, Oxfordshire OX11 0RD England
| | - Larry H. Thompson
- Lawrence Livermore National Laboratory, Chemistry, Materials, and Life Sciences Directorate, L452, P.O. Box 808, Livermore, CA 94551-0808
| | - John M. Hinz
- Lawrence Livermore National Laboratory, Chemistry, Materials, and Life Sciences Directorate, L452, P.O. Box 808, Livermore, CA 94551-0808
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME. 04104-9300
- Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, USA
| |
Collapse
|
35
|
Iarmarcovai G, Bonassi S, Botta A, Baan RA, Orsière T. Genetic polymorphisms and micronucleus formation: a review of the literature. Mutat Res 2007; 658:215-33. [PMID: 18037339 DOI: 10.1016/j.mrrev.2007.10.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/08/2007] [Accepted: 10/15/2007] [Indexed: 11/20/2022]
Abstract
The formation of micronuclei (MN) is extensively used in molecular epidemiology as a biomarker of chromosomal damage, genome instability, and eventually of cancer risk. The occurrence of MN represents an integrated response to chromosome-instability phenotypes and altered cellular viabilities caused by genetic defects and/or exogenous exposures to genotoxic agents. The present article reviews human population studies addressing the relationship between genetic polymorphisms and MN formation, and provides insight into how genetic variants could modulate the effect of environmental exposures to genotoxic agents, host factors (gender, age), lifestyle characteristics (smoking, alcohol, folate), and diseases (coronary artery disease, cancer). Seventy-two studies measuring MN frequency either in peripheral blood lymphocytes or exfoliated cells were retrieved after an extensive search of the MedLine/PubMed database. The effect of genetic polymorphisms on MN formation is complex, influenced to a different extent by several polymorphisms of proteins or enzymes involved in xenobiotic metabolism, DNA repair proteins, and folate-metabolism enzymes. This heterogeneity reflects the presence of multiple external and internal exposures, and the large number of chromosomal alterations eventually resulting in MN formation. Polymorphisms of EPHX, GSTT1, and GSTM1 are of special importance in modulating the frequency of chromosomal damage in individuals exposed to genotoxic agents and in unexposed populations. Variants of ALDH2 genes are consistently associated with MN formation induced by alcohol drinking. Carriers of BRCA1 and BRCA2 mutations (with or without breast cancer) show enhanced sensitivity to clastogens. Some evidence further suggests that DNA repair (XRCC1 and XRCC3) and folate-metabolism genes (MTHFR) also influence MN formation. As some of the findings are based on relatively small numbers of subjects, larger scale studies are required that include scoring of additional endpoints (e.g., MN in combination with fluorescent in situ hybridization, analysis of nucleoplasmic bridges and nuclear buds), and address gene-gene interactions.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratory of Biogenotoxicology and Environmental Mutagenesis EA 1784; IFR PMSE 112, Faculty of Medecine, Université de la Méditerranée, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | |
Collapse
|
36
|
Decordier I, De Bont K, De Bock K, Mateuca R, Roelants M, Ciardelli R, Haumont D, Knudsen LE, Kirsch-Volders M. Genetic susceptibility of newborn daughters to oxidative stress. Toxicol Lett 2007; 172:68-84. [PMID: 17614221 DOI: 10.1016/j.toxlet.2007.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A central question in risk assessment is whether newborns' susceptibility to mutagens is different from that of adults. Therefore we investigated whether genotype and/or the DNA strand break repair phenotype in combination with the MN assay would allow estimation of the relative sensitivity of a newborn as compared to his mother for oxidative DNA damage. We compared the in vitro genetic susceptibility for H2O2 in PBMC of 17 mother-newborn daughter pairs taking into account genotypes for relevant DNA repair (hOGG1, XRCC1, XRCC3, XPD) and folate metabolism (MTHFR) polymorphisms. After in vitro challenge with H2O2 the repair capacity was assessed by the Comet assay and chromosome/genome mutations by the cytokinesis-block MN assay. No statistically significant differences were found between mothers and their newborn daughters either for initial DNA damage or for residual DNA damage. Mothers showed higher background frequencies of MN as compared to their newborn daughters, due to the age factor. This was confirmed by significantly higher frequencies of MN observed in mothers versus newborn daughters for several genotypes. No genotype with a significant effect on DNA repair capacity in newborns was identified. Concerning MN frequencies, however, newborns carrying the variant XRCC3(241) genotype might be at higher risk for the induction of MN by oxidative stress. Multivariate analysis revealed a significant protective effect of maternal antioxidant supplementation during pregnancy against oxidative DNA damage in newborns in terms of MN frequencies. However, these conclusions might not be extrapolable to other types of DNA damage and need confirmation in a study on a larger population.
Collapse
Affiliation(s)
- Ilse Decordier
- Laboratory of Cell Genetics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Coppedè F, Mancuso M, Lo Gerfo A, Manca ML, Petrozzi L, Migliore L, Siciliano G, Murri L. A Ser326Cys polymorphism in the DNA repair gene hOGG1 is not associated with sporadic Alzheimer's disease. Neurosci Lett 2007; 414:282-5. [PMID: 17240059 DOI: 10.1016/j.neulet.2006.12.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/26/2022]
Abstract
Oxidative damage accumulates in the DNA of the human brain over time, and is supposed to play a critical role in the pathogenesis of Alzheimer's disease (AD). It has been suggested that the brain in AD might be subjected to the double insult of increased oxidative stress, as well as deficiencies in repair mechanisms responsible for the removal of oxidized bases. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the base excision repair (BER) pathway, and a decrease in BER activity was observed in post-mortem brain regions of AD individuals, especially in the activity of 8-oxoguanine DNA glycosylase. There is evidence that the Ser326Cys polymorphism of the human 8-oxoguanine DNA glycosylase 1 (hOGG1) gene is associated with a reduced DNA repair activity. However, although a deficient BER was proposed in the etiology of AD by several authors, polymorphisms of BER genes have not been studied in AD yet. We performed a case-control study including 178 patients with sporadic AD (sAD) and 146 matched controls to evaluate the role of the Ser326Cys polymorphism as a risk factor for sAD. In the present study we failed to find any association between allele (chi2=0.03, p=0.86) or genotype (chi2=0.25, p=0.882) frequencies of hOGG1 Ser326Cys and the risk of sAD. Present results suggest that the Ser326Cys polymorphism of the hOGG1 gene is not an independent risk factor for sAD.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Neurosciences, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Sokhansanj BA, Wilson DM. Estimating the effect of human base excision repair protein variants on the repair of oxidative DNA base damage. Cancer Epidemiol Biomarkers Prev 2006; 15:1000-8. [PMID: 16702383 DOI: 10.1158/1055-9965.epi-05-0817] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epidemiologic studies have revealed a complex association between human genetic variance and cancer risk. Quantitative biological modeling based on experimental data can play a critical role in interpreting the effect of genetic variation on biochemical pathways relevant to cancer development and progression. Defects in human DNA base excision repair (BER) proteins can reduce cellular tolerance to oxidative DNA base damage caused by endogenous and exogenous sources, such as exposure to toxins and ionizing radiation. If not repaired, DNA base damage leads to cell dysfunction and mutagenesis, consequently leading to cancer, disease, and aging. Population screens have identified numerous single-nucleotide polymorphism variants in many BER proteins and some have been purified and found to exhibit mild kinetic defects. Epidemiologic studies have led to conflicting conclusions on the association between single-nucleotide polymorphism variants in BER proteins and cancer risk. Using experimental data for cellular concentration and the kinetics of normal and variant BER proteins, we apply a previously developed and tested human BER pathway model to (i) estimate the effect of mild variants on BER of abasic sites and 8-oxoguanine, a prominent oxidative DNA base modification, (ii) identify ranges of variation associated with substantial BER capacity loss, and (iii) reveal nonintuitive consequences of multiple simultaneous variants. Our findings support previous work suggesting that mild BER variants have a minimal effect on pathway capacity whereas more severe defects and simultaneous variation in several BER proteins can lead to inefficient repair and potentially deleterious consequences of cellular damage.
Collapse
Affiliation(s)
- Bahrad A Sokhansanj
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
39
|
Iarmarcovai G, Botta A, Orsière T. Number of centromeric signals in micronuclei and mechanisms of aneuploidy. Toxicol Lett 2006; 166:1-10. [PMID: 16854538 DOI: 10.1016/j.toxlet.2006.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/29/2006] [Accepted: 05/30/2006] [Indexed: 11/29/2022]
Abstract
Genome instability or changes in chromosome structure and number are important facets of oncogenesis. Aneuploidy is a major cause of human reproductive failure and plays a large role in cancer. It is therefore important that any increase in its frequency due to occupational exposure to mutagens and carcinogens should be recognized and controlled. In recent years, the cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome/genome damage relevant to cancer. Fluorescent in situ hybridisation using human pancentromeric DNA probes discriminates between the presence of acentric chromosomal fragments and whole chromosomes in binucleated micronucleated lymphocytes. The separated analysis of centromeric micronuclei may improve the sensitivity of the micronucleus assay in detecting genotoxic effects and chromosome instability. Our previous findings suggest that aneugenic events leading to micronuclei (MN) containing a single centromere (C1+MN) and two or more centromeres (Cx+MN) may arise through different pathways. Chromosome migration impairment would lead to increased C1+MN frequency whereas centrosome amplification would induce Cx+MN with three or more centromeric signals. Additional studies that target cellular defects on the centrosome (microtubule nucleation, organization of the spindle poles, cell cycle progression) are required to better understand aneuploid cell production.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA 1784; IFR PMSE 112), Faculté de Médecine, Université de la Méditerranée, 13385 Marseille Cedex 5, France.
| | | | | |
Collapse
|
40
|
Grlickova-Duzevik E, Wise SS, Munroe RC, Thompson WD, Wise JP. XRCC1 protects cells from chromate-induced chromosome damage, but does not affect cytotoxicity. Mutat Res 2006; 610:31-7. [PMID: 16904935 DOI: 10.1016/j.mrgentox.2006.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 12/29/2022]
Abstract
Hexavalent chromium Cr(VI) is a well known human carcinogen. This genotoxic metal induces DNA strand breaks and chromosome damage. However, the relationship between these lesions is uncertain. Our study focused on examining the role of XRCC1 in sodium chromate-induced cytotoxicity and chromosomal aberrations in Chinese Hamster Ovary (CHO) cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant) and H9T3 (EM9 complemented with human XRCC1 gene). Results show that concentration-dependent decreases in relative survival are similar in all three cell lines, indicating that XRCC1 is not crucial for protecting cells from sodium chromate-induced cytotoxicity. Similarly the frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total number of Cr(VI)-induced chromosome aberrations was exacerbated by XRCC1 deficiency and the spectrum of chromosome damage changed dramatically. Specifically, chromatid and isochromatid lesions were the most prominent aberrations induced in the cell lines and XRCC1 was essential to reduce the formation of chromatid lesions. In addition, XRCC1 deficiency caused a dramatic increase in the number of chromatid exchanges indicating that it is involved in protection from Cr(VI)-induced chromosome instability.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States
| | | | | | | | | |
Collapse
|
41
|
Mateuca R, Lombaert N, Aka PV, Decordier I, Kirsch-Volders M. Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie 2006; 88:1515-31. [PMID: 16919864 DOI: 10.1016/j.biochi.2006.07.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 07/10/2006] [Indexed: 12/26/2022]
Abstract
The objective of this state of the art paper is to review the mechanisms of induction, the fate, the methodology, the sensitivity/specificity and predictivity of two major cytogenetic endpoints applied for genotoxicity studies and biomonitoring purposes: chromosome aberrations and micronuclei. Chromosomal aberrations (CAs) are changes in normal chromosome structure or number that can occur spontaneously or as a result of chemical/radiation treatment. Structural CAs in peripheral blood lymphocytes (PBLs), as assessed by the chromosome aberration (CA) assay, have been used for over 30 years in occupational and environmental settings as a biomarker of early effects of genotoxic carcinogens. A high frequency of structural CAs in lymphocytes (reporter tissue) is predictive of increased cancer risk, irrespective of the cause of the initial CA increase. Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. The cytokinesis-block micronucleus (CBMN) assay is the most extensively used method for measuring MN in human lymphocytes, and can be considered as a "cytome" assay covering cell proliferation, cell death and chromosomal changes. The key advantages of the CBMN assay lie in its ability to detect both clastogenic and aneugenic events and to identify cells which divided once in culture. Evaluation of the mechanistic origin of individual MN by centromere and kinetochore identification contributes to the high sensitivity of the method. A number of findings support the hypothesis of a predictive association between the frequency of MN in cytokinesis-blocked lymphocytes and cancer development. Recent advances in fluorescence in situ hybridization (FISH) and microarray technologies are modifying the nature of cytogenetics, allowing chromosome and gene identification on metaphase as well as in interphase. Automated scoring by flow cytometry and/or image analysis will enhance their applicability.
Collapse
Affiliation(s)
- R Mateuca
- Laboratorium voor Cellulaire Genetica, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
42
|
Laffon B, Fraga-Iriso R, Pérez-Cadahía B, Méndez J. Genotoxicity associated to exposure to Prestige oil during autopsies and cleaning of oil-contaminated birds. Food Chem Toxicol 2006; 44:1714-23. [PMID: 16814914 DOI: 10.1016/j.fct.2006.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 03/06/2006] [Accepted: 05/20/2006] [Indexed: 10/24/2022]
Abstract
After the accident involving the oil tanker Prestige in November 2002 near 63,000 tons of heavy oil reached Galician coast (Northwest of Spain). This unleashed a large movement of volunteers to collaborate in several cleaning tasks. The aim of this study was to determine whether handling of Prestige oil-contaminated birds during autopsies and cleaning may have resulted in genotoxic damage. We have also evaluated the possible influence of DNA repair genetic polymorphisms (XRCC1 codons 194 and 399, XRCC3 codon 241 and APE1 codon 148) on susceptibility to the genotoxic effects evaluated. Exposure levels were analysed by determining volatile organic compounds in air samples. Peripheral blood samples were obtained from 34 exposed and 35 controls, and comet assay and micronucleus (MN) test were carried out. Genotyping was performed following PCR-RFLP procedures. Results obtained have shown significantly higher DNA damage, but not cytogenetic damage, in exposed individuals than in controls, related to time of exposure. Among exposed individuals, carriers of the variant alleles XRCC1 399Gln and APE1 148Glu have shown altered DNA damage with regard to wild-type homozygotes, suggesting exposure-genotype interactions. No effect of the DNA repair genetic polymorphisms analysed was observed in the MN test.
Collapse
Affiliation(s)
- Blanca Laffon
- Toxicology Unit, University of A Coruña, Edificio de Servicios Centrales de Investigación, Campus de Elviña s/n, 15071 A Coruña, Spain.
| | | | | | | |
Collapse
|
43
|
Grlickova-Duzevik E, Wise SS, Munroe RC, Thompson WD, Wise JP. XRCC1 protects against particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells. Toxicol Sci 2006; 92:409-15. [PMID: 16714390 DOI: 10.1093/toxsci/kfl021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Water-insoluble hexavalent chromium compounds are well-established human lung carcinogens. Lead chromate, a model insoluble Cr(VI) compound, induces DNA damage, chromosome aberrations, and dose-dependent cell death in human and Chinese hamster ovary (CHO) cells. The relationship between lead chromate-induced DNA damage and chromosome aberrations is unknown. Our study focus was on examining the role of XRCC1 in lead chromate-induced cytotoxicity and structural chromosomal aberrations in CHO cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant), and H9T3 (EM9 complemented with human XRCC1 gene). Cytotoxicity was significantly higher in EM9 cells when compared to AA8 and H9T3 cells, indicating that XRCC1 is important for protecting cells from lead chromate particles-induced cell death. The frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total amount of Cr(VI)-induced chromosome damage was exacerbated by XRCC1 deficiency, and the spectrum of damage changed dramatically. Chromatid and isochromatid lesions were the most prominent aberrations induced in all cell lines. XRCC1 was essential to reduce the formation of chromatid lesions but not for isochromatid lesions. In addition, XRCC1 deficiency resulted in a dramatic increase in the number of chromatid exchanges, indicating that XRCC1 is involved in protection from lead chromate-induced chromosome instability.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, University of Southern Maine, Portland, 04104-9300, USA
| | | | | | | | | |
Collapse
|
44
|
Pilger A, Rüdiger HW. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 2006; 80:1-15. [PMID: 16685565 DOI: 10.1007/s00420-006-0106-7] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 03/23/2006] [Indexed: 11/26/2022]
Abstract
Oxidative DNA damage is considered to play an important role in pathophysiological processes, ageing and cancer. So far major interest has been on measuring 8-hydroxy-2'-deoxyguanosine (8-OHdG), the preferred methods relying on HPLC or GC-mass spectrometry. The high biological relevance of 8-OHdG is due to its ability to induce G-->T transversions, which are among the most frequent somatic mutations found in human cancers. Effects of workplace exposures on the level of white blood cell 8-OHdG or urinary 8-OHdG have been reported with controversial results. Exposures examined include asbestos, azo-dyes, benzene, fine particulate matter (PM(2.5)), glassworks, polycyclic aromatic hydrocarbons (PAHs), rubber manufacturing, silica, metals, styrene, toluene and xylenes. The available data indicate that there is still a lack of well established dose-response relations between occupational or environmental exposures and the induction of 8-OHdG. Smoking has been most consistently identified as a confounder for 8-OHdG, but various occupational studies did not reveal higher levels of 8-OHdG in smokers. Despite the conflicting results, the reported studies show promise for 8-OHdG as a biomarker of oxidative stress associated with chemical exposure. However, there are critical aspects related to the analytical challenge, artifactual production of 8-OHdG, inter- and intra-individual variation, confounding factors and inter-laboratory differences, implying that further work is needed to reach a consensus on the background level of 8-OHdG.
Collapse
Affiliation(s)
- A Pilger
- Division of Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | | |
Collapse
|
45
|
Botta C, Iarmarcovai G, Chaspoul F, Sari-Minodier I, Pompili J, Orsière T, Bergé-Lefranc JL, Botta A, Gallice P, De Méo M. Assessment of occupational exposure to welding fumes by inductively coupled plasma-mass spectroscopy and by the alkaline Comet assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:284-95. [PMID: 16489626 DOI: 10.1002/em.20205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Welding fumes are classified as possibly carcinogenic to humans (Group 2B) by the International Agency for Research on Cancer. In the current study, blood and urine concentrations of aluminum (Al), cadmium (Cd), cobalt (Co), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were monitored by inductively coupled plasma-mass spectrometry (ICP-MS) in 30 welders and in 22 controls. In addition, DNA damage was examined in the lymphocytes of these subjects by the alkaline Comet assay. Two biological samples were taken from the welders at the beginning (BW) and at the end (EW) of a work week. In controls, collection of samples was limited to BW. Blood concentrations of Cd, Co, Cr, Ni, and Pb were higher in the welders than in the control group while higher concentrations of Al, Cd, Co, Cr, Ni, and Pb were detected in welder urines. There was no significant difference in the metal concentrations for the BW and EW welder samples. Increased levels of DNA damage were found in lymphocytes from welders as compared to the controls, and 20/30 welders had higher levels of DNA lesions in the EW than in the BW samples. Age had a significant effect on DNA damage in the control group. Spearman's rank correlation analysis indicated that there were positive correlations between blood concentrations of Al, Co, Ni, and Pb and the levels of DNA damage. A negative correlation was found between DNA damage and Mn in blood, while there was a positive correlation between urinary Mn concentration and DNA damage. These data indicate that occupational exposure to welding fumes increases DNA damage in lymphocytes.
Collapse
Affiliation(s)
- Céline Botta
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale (EA 1784- IFR PMSE 112), Facultés de Médecine et de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Grlickova-Duzevik E, Wise SS, Munroe RC, Thompson WD, Wise JP. XRCC1 protects against particulate chromate-induced chromosome damage and cytotoxicity in Chinese hamster ovary cells. Toxicol Sci 2006; 92:96-102. [PMID: 16597656 DOI: 10.1093/toxsci/kfj183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Water-insoluble hexavalent chromium compounds are well-established human lung carcinogens. Lead chromate, a model insoluble Cr(VI) compound, induces DNA damage, chromosome aberrations, and dose-dependent cell death in human and Chinese hamster ovary (CHO) cells. The relationship between lead chromate-induced DNA damage and chromosome aberrations is unknown. Our study focus was on examining the role of XRCC1 in lead chromate-induced cytotoxicity and structural chromosomal aberrations in CHO cells. Three different cell lines were used: AA8 (parental), EM9 (XRCC1 mutant), and H9T3 (EM9 complemented with human XRCC1 gene). Cytotoxicity was significantly higher in EM9 cells when compared to AA8 and H9T3 cells, indicating that XRCC1 is important for protecting cells from lead chromate particles-induced cell death. The frequency of damaged metaphase cells was not affected by XRCC1 deficiency. However, the total amount of Cr(VI)-induced chromosome damage was exacerbated by XRCC1 deficiency, and the spectrum of damage changed dramatically. Chromatid and isochromatid lesions were the most prominent aberrations induced in all cell lines. XRCC1 was essential to reduce the formation of chromatid lesions, but not for isochromatid lesions. In addition, XRCC1 deficiency resulted in a dramatic increase in the number of chromatid exchanges, indicating that XRCC1 is involved in protection from lead chromate-induced chromosome instability.
Collapse
Affiliation(s)
- Eliza Grlickova-Duzevik
- Wise Laboratory of Environmental and Genetic Toxicology, Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth Street, Portland, ME 04104-9300, USA
| | | | | | | | | |
Collapse
|
47
|
Iarmarcovai G, Sari-Minodier I, Orsière T, De Méo M, Gallice P, Bideau C, Iniesta D, Pompili J, Bergé-Lefranc JL, Botta A. A combined analysis of XRCC1, XRCC3, GSTM1 and GSTT1 polymorphisms and centromere content of micronuclei in welders. Mutagenesis 2006; 21:159-65. [PMID: 16551674 DOI: 10.1093/mutage/gel010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of the present study were to assess clastogenic and aneugenic properties of welding fumes using fluorescent in situ hybridization (FISH) with a human pancentromeric DNA probe. The involvement of genetic polymorphisms in DNA repair genes (p.Arg399Gln of XRCC1 and p.Thr241Met of XRCC3) and in detoxification genes (GSTM1 and GSTT1) on the centromere content of micronuclei (MN) was also evaluated. This study included 27 male welders working without any collective protection device and a control group (n = 30). The welders showed significantly higher levels of chromosome/genome damage compared to the controls. The frequencies of MN and centromere-positive MN (C+MN) per 1,000 binucleated cells were significantly higher in the exposed group than in the control group (7.1 per thousand +/- 3.7 versus 4.9 per thousand +/- 1.8; P = 0.012 and 3.5 per thousand +/- 1.8 versus 2.4 per thousand +/- 1.2; P = 0.018, respectively, Mann-Whitney U-test). The centromere-negative MN (C-MN) frequency was higher in the exposed subjects than in the controls (3.6 per thousand +/- 3.4 versus 2.5 per thousand +/- 1.4), but the Mann-Whitney U-test did not yield a significant result. In the total population, the GSTM1 and GSTT1 polymorphisms significantly affected the frequencies of C-MN and C+MN defined by FISH. GSTM1 positive subjects showed an increased C-MN frequency and GSTT1 null subjects showed an elevated C+MN frequency. When GSTM1 and GSTT1 genotypes were included in multiple regression analysis, the effect of the occupational exposure could better be demonstrated; both C+MN and C-MN were significantly increased in the welders. Our results suggest that the combined analysis of genetic polymorphisms and centromeres in MN may improve the sensitivity of the micronucleus assay in detecting genotoxic effects.
Collapse
Affiliation(s)
- G Iarmarcovai
- Laboratoire de Biogénotoxicologie et Mutagenèse Environnementale, EA 1784; IFR PMSE 112, Facultés de Médecine et de Pharmacie, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Godderis L, Aka P, Mateuca R, Kirsch-Volders M, Lison D, Veulemans H. Dose-dependent influence of genetic polymorphisms on DNA damage induced by styrene oxide, ethylene oxide and gamma-radiation. Toxicology 2006; 219:220-9. [PMID: 16386346 DOI: 10.1016/j.tox.2005.11.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
Styrene oxide (SO), ethylene oxide (EO) and gamma-radiation (G) are agents with a well-described metabolism and genotoxicity. EPHX1 and GSTs play an important role in the detoxification of electrophiles and oxidative stress. Enzymes involved in base excision repair (hOGG1, XRCC1), in rejoining single strand breaks (XRCC1) and in repair of cross-links and chromosomal double strand breaks (XRCC3) might have an impact on genotoxicity as well. In this study we assessed the dose-dependent effect of genetic polymorphisms in biotransforming (EPHX (Tyr113/His113 and His139/Arg139), GSTP1 (Ile105/Val105), GSTM1 and GSTT1) and DNA repair enzymes (hOGG1 (Ser326/Cys326), XRCC1 (Arg194/Trp194, Arg280/His280, Arg399/Gln399), XRCC3 (Thr241/Met241)) on the induced genotoxicity. Peripheral blood mononuclear cells from 20 individuals were exposed to 3 doses per agent (+control). Genotoxicity was evaluated by measuring comet tail length (TL) and micronucleus frequencies in binucleated cells (MNCB). Dose-dependent DNA damage was found for all agents and end-points, with the exception of MNCB induced by EO. Repeated measure ANOVA revealed a significant contribution of hOGG1 and XRCC3 genotypes to the inter-individual variability of TL and MNCB in cells exposed to EO and G. Homozygous hOGG1326 wild cells showed significantly lower EO-induced TL than the heterozygous cells. Significantly higher TL and MNCB were found in EO-exposed cells carrying the XRCC3(241)Met variant and the influence on TL was more pronounced at higher dose. In G-irradiated cells, TL was significantly higher in the hOGG1326 homozygous wild types compared with mutated genotypes. The influence of hOGG1326 on TL was borderline dose-dependent. We conclude that the influence of genetic polymorphisms of enzymes involved in DNA repair on induced genotoxicity depends on exposure dose.
Collapse
Affiliation(s)
- Lode Godderis
- Katholieke Universiteit Leuven (K.U.L.), Laboratorium Voor Arbeidshygiëne en Toxicologie, Kapucijnenvoer 35/6, 3000 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
49
|
Hoffmann H, Högel J, Speit G. The effect of smoking on DNA effects in the comet assay: a meta-analysis. Mutagenesis 2005; 20:455-66. [PMID: 16280345 DOI: 10.1093/mutage/gei064] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The comet assay (alkaline single-cell gel electrophoresis, SCG or SCGE) is frequently used in biomonitoring to detect genotoxic effects in humans exposed at the workplace or in their environment. Because of its ready accessibility, blood is most frequently used in such studies. Many studies investigated cigarette smoking either as a genotoxic exposure itself or as a potential confounding factor in occupational studies. However, although smoking is considered to be a relevant exposure towards various genotoxins, conflicting results have been reported in the comet assay studies. The actual reasons for this discrepancy are not known. To further evaluate evidence for smoking-related DNA effects in the comet assay, we now used a meta-analysis approach based on a literature search. We identified 38 studies from 37 publications which were suited for a formal meta-analysis based on the standardized mean difference (SMD) between the study groups. The evaluation of these 38 studies indicated higher levels of DNA damage in smokers than in non-smokers [under a random effects model, SMD = 0.55, 95% confidence interval = (0.16-0.93)]. Subdividing these studies into studies investigating the effect of smoking as a genotoxic exposure (Type A studies, n = 12) and studies investigating smoking as a potential confounder in occupational studies (Type B, n = 26) indicated a significant difference only in Type A studies but not in Type B studies. Furthermore, studies using image analysis or image length measurements (n = 23) only indicated a tendency for a genotoxic effect of smoking, whereas studies using an arbitrary score (n = 15) found a significantly higher level of DNA damage in smokers.
Collapse
|
50
|
Bower JJ, Leonard SS, Shi X. Conference overview: Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 2005; 279:3-15. [PMID: 16283510 DOI: 10.1007/s11010-005-8210-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chronic exposure to many heavy metals and metal-derivatives is associated with an increased risk of cancer, although the mechanisms of tumorigenesis are largely unknown. Approximately 125 scientists attended the 3rd Conference on Molecular Mechanisms of Metal Toxicity and Carcinogenesis and presented the latest research concerning these mechanisms. Major areas of focus included exposure assessment and biomarker identification, roles of ROS and antioxidants in carcinogenesis, mechanisms of metal-induced DNA damage, metal signalling, and the development of animal models for use in metal toxicology studies. Here we highlight some of the research presented, and summarize the conference proceedings.
Collapse
Affiliation(s)
- Jacquelyn J Bower
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505-2888, USA
| | | | | |
Collapse
|