1
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
2
|
Kumaresan M, Vijayan A, Ramkumar M, Philip NE. Unraveling the enigma: chronic kidney disease of unknown etiology and its causative factors with a specific focus on dissolved organic compounds in groundwater-reviews and future prospects. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:510. [PMID: 39527132 DOI: 10.1007/s10653-024-02287-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Chronic kidney disease is globally recognized as a highly impactful non-communicable disease. The inability of early identification contributes to its high mortality rate and financial burden on affected individuals. Chronic kidney disease of uncertain etiology (CKDu) constitutes a significant global public health concern. This condition does not arise from traditional risk factors such as diabetes, hypertension, or glomerulonephritis. More than 150 articles were analysed to understand risk factors of CKDu. This study aimed to investigate the potential association between dissolved organic compounds, such as Polycyclic Aromatic Hydrocarbons and Humic Acid, and the incidence of CKDu. Through a comprehensive literature review, we identified CKDu clusters worldwide, including notable nephropathies, and explored their potential links with organic compounds. Our analysis revealed that organic compounds can leach from sediments and low-rank lignite deposits into groundwater, subsequently contaminating water supplies and food. These compounds have been implicated in the development of diabetes and increased heavy metal mobility, both of which are risk factors for kidney disease. Our findings suggest that exposure to organic compounds may contribute to the etiology of CKDu, underscoring the need for regular monitoring and establishment of baseline and threshold values in water and soil. We also emphasize the importance of analyzing organic compounds in groundwater in CKDu hotspots and establishing distinct registries for CKD and CKDu implementation.
Collapse
Affiliation(s)
- Madhumitha Kumaresan
- Department of Geology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| | - Anjali Vijayan
- Department of Geology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India.
| | - Mu Ramkumar
- Department of Geology, Periyar University, Salem, 636011, India
| | - Neena Elezebeth Philip
- Department of Epidemiology and Public Health, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610005, India
| |
Collapse
|
3
|
Wan X, Liu X, Ao Y, Zhang L, Zhuang P, Jiao J, Zhang Y. Associations between cooking method of food and type 2 diabetes risk: A prospective analysis focusing on cooking method transitioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124662. [PMID: 39097261 DOI: 10.1016/j.envpol.2024.124662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Cooking process for food significantly impacts household air and increases exposure to endocrine disruptors such as acrylamide, consequently affecting human health. In the past 30 years, the transformation of cooking methods to high-temperature thermal processing has occurred widely in China. Yet the transition of cooking methods on the onset of type 2 diabetes (T2D) remains unclear, which may hinder health-based Sustainable Development Goals. We aimed to estimate the associations between dietary intake with different cooking methods and T2D risk. We included 14,745 participants (>20 y) from the China Health and Nutrition Survey (1991-2015). Food consumption was calculated using three consecutive 24-h dietary recalls combined with both individual participant level and household food inventory. Cooking methods, including boiling, steaming, baking, griddling, stir-frying, deep-frying, and raw eating, were also recorded. The consumption of baked/griddled and deep-fried foods was positively associated with 39% and 35% higher of T2D risk by comparing the highest with the lowest category of food consumption, respectively. The use of unhealthy cooking methods for processing foods including baked/griddled and deep-fried foods was attributable for 15 million T2D cases of the total T2D burden in 2011, resulting in a medical cost of $2.7 billion and was expected to be attributable for 39 million T2D cases in 2030, producing a medical cost of $223.8 billion. Replacing one serving of deep-fried foods and baked/griddle foods with boiled/steamed foods was related to 50% and 20% lower risk of T2D, respectively. Our findings recommend healthy driven cooking methods for daily diet for nourishing sustainable T2D prevention in China.
Collapse
Affiliation(s)
- Xuzhi Wan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang Ao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lange Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pan Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Endocrinology, The Second Affiliated Hospital, Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
González A, Fullaondo A, Odriozola I, Odriozola A. Microbiota and other detrimental metabolites in colorectal cancer. ADVANCES IN GENETICS 2024; 112:309-365. [PMID: 39396839 DOI: 10.1016/bs.adgen.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Increasing scientific evidence demonstrates that gut microbiota plays an essential role in the onset and development of Colorectal cancer (CRC). However, the mechanisms by which these microorganisms contribute to cancer development are complex and far from completely clarified. Specifically, the impact of gut microbiota-derived metabolites on CRC is undeniable, exerting both protective and detrimental effects. This paper examines the effects and mechanisms by which important bacterial metabolites exert detrimental effects associated with increased risk of CRC. Metabolites considered include heterocyclic amines and polycyclic aromatic hydrocarbons, heme iron, secondary bile acids, ethanol, and aromatic amines. It is necessary to delve deeper into the mechanisms of action of these metabolites in CRC and identify the microbiota members involved in their production. Furthermore, since diet is the main factor capable of modifying the intestinal microbiota, conducting studies that include detailed descriptions of dietary interventions is crucial. All this knowledge is essential for developing precision nutrition strategies to optimise a protective intestinal microbiota against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Iñaki Odriozola
- Health Department of Basque Government, Donostia-San Sebastián, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
5
|
Harris KL, Harris KJ, Banks LD, Adunyah SE, Ramesh A. Acceleration of benzo(a)pyrene-induced colon carcinogenesis by Western diet in a rat model of colon cancer. Curr Res Toxicol 2024; 6:100162. [PMID: 38496007 PMCID: PMC10943645 DOI: 10.1016/j.crtox.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related mortalities in the USA and around 52,550 people were expected to die from this disease by December 2023. The objective of this study was to investigate the effect of diet type on benzo(a)pyrene [B(a)P]-induced colon cancer in an adult male rat model, the Polyposis In the Rat Colon (PIRC) kindred type. Groups of PIRC rats (n = 10) were fed with AIN-76A regular diet (RD) or Western diet (WD) and received 25, 50 and 100 µg B(a)P/kg body wt. via oral gavage for 60 days. Rats fed diets alone, but no B(a)P, served as controls. After exposure, rats were euthanized; colon and liver samples were analyzed for activation of drug metabolizing enzymes (DMEs) CYP1A1, CYP1B1, SULT and GST. Plasma and tissue samples were analyzed by reverse phase-HPLC for B(a)P metabolites. In addition to these studies, DNA isolated from colon and liver tissues was analyzed for B(a)P-induced DNA adducts by the 32P-postlabeling method using a thin-layer chromatography system. Western diet consumption resulted in a marked increase in DME expression and B(a)P metabolite concentrations in rats that were administered 100 µg/kg B(a)P + WD (p < 0.05) compared to other treatment groups. Our findings demonstrate that WD accelerates the development of colon tumors induced by B(a)P through enhanced biotransformation, and the products of this process (metabolites) were found to bind with DNA and form B(a)P-DNA adducts, which may have given rise to colon polyps characterized by gain in tumor number, sizes, and dysplasia.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Kenneth J Harris
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Leah D Banks
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Samuel E Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, United States
| |
Collapse
|
6
|
Liao D, Xiong S, An S, Tao L, Dai L, Tian Y, Chen W, He C, Xu P, Wu N, Liu X, Zhang H, Hu Z, Deng M, Liu Y, Li Q, Shang X, Shen X, Zhou Y. Association of urinary polycyclic aromatic hydrocarbon metabolites with gestational diabetes mellitus and gestational hypertension among pregnant women in Southwest China: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123206. [PMID: 38145636 DOI: 10.1016/j.envpol.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The association of polycyclic aromatic hydrocarbons (PAHs) with gestational diabetes mellitus (GDM) and gestational hypertension during pregnancy has not yet been established. To investigate the association between PAH exposure and GDM and gestational hypertension, we conducted a cross-sectional study of 4206 pregnant women from the Zunyi birth cohort in southwestern China. Gas chromatography/mass spectrometry was used to detect the urinary levels of 10 monohydroxylated PAHs (OH-PAHs). GDM and gestational hypertension were diagnosed and the relevant information was documented by specialist obstetricians and gynecologists. Logistic regression and restricted cubic spline regression were employed to investigate their single and nonlinear associations. Stratified analyses of pregnancy and body mass index data were conducted to determine their moderating effects on the abovementioned associations. Compared with the first quartile of urinary ∑OH-PAHs, the third or fourth quartile in all study participants was associated with an increased risk of GDM (quartile 3: odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.03-1.77) and gestational hypertension (quartile 3: OR = 1.88, 95% CI: 1.26-2.81; quartile 4: OR = 1.58, 95% CI: 1.04-2.39), respectively. Nonlinear associations of 1-OH-PYR with GDM (cutoff level: 0.02 μg/g creatinine [Cr]) and 1-OH-PHE with gestational hypertension (cutoff level: 0.06 μg/g Cr) were also observed. In pregnant women with overweight or obesity, 1-OH-PHE and 3-OH-PHE were more strongly associated with gestational hypertension. Our results indicate that exposure to PAH during pregnancy may significantly increase the maternal risks of GDM and gestational hypertension; however, this finding still needs to be confirmed through larger-scale prospective studies and biological evidence.
Collapse
Affiliation(s)
- Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lulu Dai
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- Medical Department, Xingyi People's Hospital, Xingyi, 562400, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Reproductive Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
7
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Keller L, Baumann Z, Parayil N, Stawiski M, Rachid L, Dervos T, Mitrovic S, Meier DT, Cavelti-Weder C. Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Part Fibre Toxicol 2023; 20:7. [PMID: 36895000 PMCID: PMC9996885 DOI: 10.1186/s12989-023-00518-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Dervos
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Sandra Mitrovic
- Department of Laboratory Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland. .,Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Rämistrasse 100, 8009, Zurich, Switzerland.
| |
Collapse
|
8
|
Han M, Ma A, Dong Z, Yin J, Shao B. Organochlorine pesticides and polycyclic aromatic hydrocarbons in serum of Beijing population: Exposure and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160358. [PMID: 36436633 DOI: 10.1016/j.scitotenv.2022.160358] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, but large-scale human biomonitoring and health risk assessment data on these contaminants remain limited. In this study, concentrations of 6 OCPs and 5 PAHs were determined by GC-MS/MS in 1268 human serum samples which were collected from the participants in 2017 Beijing Chronic Disease and Risk Factor Surveillance. The detection frequencies of OCPs and PAHs ranged from 64.7 % to 96.5 % and 89.4 % to 99.6 %, respectively. The most abundant contaminants in OCPs and PAHs were pentachlorophenol (PCP) and pyrene (Pyr) with median concentrations reaching up to 3.13 and 8.48 μg/L, respectively. Nonparametric tests were employed to assess the correlations among contaminants levels, demographic characteristics (age, gender, body mass index, residence) and serum biochemical indexes. Significantly higher serum levels of all PAHs were observed in suburb residents than that in urban residents (P < 0.001). Binary logistic regression analysis demonstrated that exposure to benzo(a)pyrene (OR 2.17 [1.29, 3.63]), phenanthrene (OR 1.06 [1.02, 1.11]), fluoranthene (OR 1.04 [1.02, 1.07]) and Pyr (OR 1.02 [1.01, 1.03]) might increase the occurrence of hyperglycemia, and exposure to hexachlorobenzene (HCB) (OR 1.53 [1.05, 2.22]) and pentachlorobenzene (OR 1.14 [1.02, 1.27]) were positively associated with hyperlipidemia. Furthermore, the hazard quotients (HQs) for serum HCB, PCP and p,p'-dichlorodiphenyldichloroethylene were calculated based on health-based guidance values to predict health risks. 0.2 % and 4.3 % of serum samples showed HQ values exceeding 1 for HCB and PCP, respectively, in case of the non-carcinogenic risk, while 23.1 % of HQs for HCB were above 1 in case of the carcinogenic risk for a risk level 10-5. Our study reveals that the body burden of the Beijing general population relative to OCPs and PAHs was nonnegligible. The past exposure of HCB and PCP might adversely affect the health status of the Beijing population.
Collapse
Affiliation(s)
- Muke Han
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Aijuan Ma
- Institute of Non-communicable Chronic Disease Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Zhong Dong
- Institute of Non-communicable Chronic Disease Control and Prevention, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Jie Yin
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China.
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| |
Collapse
|
9
|
Ageeli RY, Sharma S, Puppa M, Bloomer RJ, Buddington RK, van der Merwe M. Fasting Protocols Do Not Improve Intestinal Architecture and Immune Parameters in C57BL/6 Male Mice Fed a High Fat Diet. MEDICINES (BASEL, SWITZERLAND) 2023; 10:18. [PMID: 36827218 PMCID: PMC9961949 DOI: 10.3390/medicines10020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The intestinal ecosystem, including epithelium, immune cells, and microbiota, are influenced by diet and timing of food consumption. The purpose of this study was to evaluate various dietary protocols after ad libitum high fat diet (HFD) consumption on intestinal morphology and mucosal immunity. METHODS C57BL/6 male mice were fed a 45% high fat diet (HFD) for 6 weeks and then randomized to the following protocols; (1) chow, (2) a purified high fiber diet known as the Daniel Fast (DF), HFD consumed (3) ad libitum or in a restricted manner; (4) caloric-restricted, (5) time-restricted (six hours of fasting in each 24 h), or (6) alternate-day fasting (24 h fasting every other day). Intestinal morphology and gut-associated immune parameters were investigated after 2 months on respective protocols. RESULTS Consuming a HFD resulted in shortening of the intestine and reduction in villi and crypt size. Fasting, while consuming the HFD, did not restore these parameters to the extent seen with the chow and DF diet. Goblet cell number and regulatory T cells had improved recovery with high fiber diets, not seen with the HFD irrespective of fasting. CONCLUSION Nutritional content is a critical determinant of intestinal parameters associated with gut health.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie van der Merwe
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
10
|
Van Pee T, Hogervorst J, Dockx Y, Witters K, Thijs S, Wang C, Bongaerts E, Van Hamme JD, Vangronsveld J, Ameloot M, Raes J, Nawrot TS. Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association with the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIR ONAGE Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17010. [PMID: 36719212 PMCID: PMC9888258 DOI: 10.1289/ehp11257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katrien Witters
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven-University of Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, Leuven University, Leuven, Belgium
| |
Collapse
|
11
|
Zhu Z, Xu Y, Huang T, Yu Y, Bassey AP, Huang M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Fallah Z, Darand M, Salehi-Abargouei A, Mirzaei M, Ferns GA, Khayyatzadeh SS. The association between dietary habits and metabolic syndrome: findings from the Shahedieh-cohort study. BMC Nutr 2022; 8:117. [PMID: 36274164 PMCID: PMC9590195 DOI: 10.1186/s40795-022-00609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Metabolic syndrome (MetS) is a complex disorder with an increasing prevalence globally. Limited data are available about the association between dietary habits and the prevalence of MetS. The present cross-sectional study aimed to investigate the association between dietary habits and MetS in a large population sample from Iranians. Methods The study was conducted on 9261 adults aged 35–70 years who attended the baseline phase of Shahedieh cohort study, Yazd, Iran. Dietary habits including meal frequency, fried food consumption, adding salt to prepared meal, barbecued food consumption, used oil type and reuse oil number were assessed by a standard questionnaire. MetS was defined using the National Cholesterol Education Program Adult Treatment Panel III criteria. Logistic regression was used in different adjusted models to investigate the relationship between dietary habits and MetS: (Model I: adjusted for age, sex and energy. Model II: Model I + adjusted for wealth score index and physical activity. Model III: Model II + adjusted for cardiovascular diseases and liver diseases). Results The subjects who ate barbecued-food more than 3 times/ month had 1.18 times greater odds for MetS than individual who ate this less than once/ month (OR: 1.18, 95% CI: 1.01–1.38). After further adjustment for other confounding variables, the association remained significant. No significant association was found between other dietary habits and odds of MetS. Conclusion Higher intakes of barbecued-food consumption were related to the prevalence of MetS. Larger longitudinal studies in other population groups are needed to confirm these associations.
Collapse
|
13
|
Luo Q, Jahangir A, He J, Huang C, Xia Y, Jia L, Wei X, Pan T, Du Y, Mu B, Gong H, Liu W, Ur-Rehman S, Pan K, Chen Z. Ameliorating Effects of TRIM67 against Intestinal Inflammation and Barrier Dysfunction Induced by High Fat Diet in Obese Mice. Int J Mol Sci 2022; 23:7650. [PMID: 35887011 PMCID: PMC9317707 DOI: 10.3390/ijms23147650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Asad Jahangir
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Junbo He
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Xiaoli Wei
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ting Pan
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yanni Du
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Saif Ur-Rehman
- Department of Parasitology and Microbiology, FV&AS, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Q.L.); (A.J.); (J.H.); (Y.X.); (L.J.); (X.W.); (T.P.); (Y.D.); (B.M.); (H.G.); (W.L.)
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
14
|
Wang X, Li A, Xu Q. The Association between Urinary Polycyclic Aromatic Hydrocarbons Metabolites and Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137605. [PMID: 35805265 PMCID: PMC9265723 DOI: 10.3390/ijerph19137605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered to be endocrine disruptors. In this study, the evidence on the association between PAHs and diabetes was systematically reviewed. PubMed, EMBASE, and ISI Web of Science were systematically searched for studies reporting the association between PAHs and diabetes. Of the 698 articles identified through the search, nine cross-sectional studies were included. Seven were conducted in the general population and two in coke oven workers. Fixed-effects and random-effects models were used to calculate the total effect. Subgroup analysis was further carried out according to the types of PAH metabolites. The results showed that the odds of diabetes were significantly higher for the highest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total mono-hydroxylated (OH-PAH) metabolites compared to the lowest category. The pooled odds ratios (OR) and 95% confidence intervals (CI) were 1.52 (95%CI: 1.19, 1.94), 1.53 (95%CI: 1.36, 1.71), 1.43 (95%CI: 1.28, 1.60), and 1.49 (95%CI: 1.07, 2.08), respectively. In coke oven workers, 4-hydroxyphenanthrene (4-OHPh) was significantly correlated with an increased risk of diabetes. Exposure measurements, outcome definitions, and adjustment for confounders were heterogeneous between studies. The results of the current study demonstrate a potentially adverse effect of PAHs on diabetes. Further mechanistic studies and longitudinal studies are needed to confirm whether PAH metabolite levels are causative, and hence associative, with increased diabetes incidences.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Correspondence:
| |
Collapse
|
15
|
Garcia WL, Miller CJ, Lomas GX, Gaither KA, Tyrrell KJ, Smith JN, Brandvold KR, Wright AT. Profiling How the Gut Microbiome Modulates Host Xenobiotic Metabolism in Response to Benzo[ a]pyrene and 1-Nitropyrene Exposure. Chem Res Toxicol 2022; 35:585-596. [PMID: 35347982 PMCID: PMC9878584 DOI: 10.1021/acs.chemrestox.1c00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The gut microbiome is a key contributor to xenobiotic metabolism. Polycyclic aromatic hydrocarbons (PAHs) are an abundant class of environmental contaminants that have varying levels of carcinogenicity depending on their individual structures. Little is known about how the gut microbiome affects the rates of PAH metabolism. This study sought to determine the role that the gut microbiome has in determining the various aspects of metabolism in the liver, before and after exposure to two structurally different PAHs, benzo[a]pyrene and 1-nitropyrene. Following exposures, the metabolic rates of PAH metabolism were measured, and activity-based protein profiling was performed. We observed differences in PAH metabolism rates between germ-free and conventional mice under both unexposed and exposed conditions. Our activity-based protein profiling (ABPP) analysis showed that, under unexposed conditions, there were only minor differences in total P450 activity in germ-free mice relative to conventional mice. However, we observed distinct activity profiles in response to corn oil vehicle and PAH treatment, primarily in the case of 1-NP treatment. This study revealed that the repertoire of active P450s in the liver is impacted by the presence of the gut microbiome, which modifies PAH metabolism in a substrate-specific fashion.
Collapse
Affiliation(s)
- Whitney L. Garcia
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Biological Systems Engineering Department, CAHNRS, Washington State University, Pullman, WA 99163 (USA)
| | - Carson J. Miller
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Gerard X. Lomas
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Kari A. Gaither
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Kimberly J. Tyrrell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA)
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (USA)
| | - Kristoffer R. Brandvold
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202 (USA),Corresponding Authors: Kristoffer R. Brandvold - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA); , Aaron T. Wright - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA);
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA),The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163 (USA),Corresponding Authors: Kristoffer R. Brandvold - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA); , Aaron T. Wright - Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (USA);
| |
Collapse
|
16
|
3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol) Counteracts ERK1/2 and mTOR Activation, Pro-Inflammatory Cytokine Release, Autophagy and Mitophagy Reduction Mediated by Benzo[a]pyrene in Primary Human Colonic Epithelial Cells. Pharmaceutics 2022; 14:pharmaceutics14030663. [PMID: 35336037 PMCID: PMC8948646 DOI: 10.3390/pharmaceutics14030663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the effects induced by carcinogens on primary colonic epithelial cells and how to counteract them might help to prevent colon cancer, which is one of the most frequent and aggressive cancers. In this study, we exposed primary human colonic epithelial cells (HCoEpC) to Benzo[a]pyrene (B[a]P) and found that it led to an increased production of pro-inflammatory cytokines and activated ERK1/2 and mTOR. These pathways are known to be involved in inflammatory bowel disease (IBD), which represents a colon cancer risk factor. Moreover, B[a]P reduced autophagy and mitophagy, processes whose dysregulation has been clearly demonstrated to predispose to cancer either by in vitro or in vivo studies. Interestingly, all the effects induced by B[a]P could be counteracted by 3,4-Dihydroxyphenylethanol (DPE or Hydroxytyrosol, H), the most powerful anti-inflammatory and antioxidant compound contained in olive oil. This study sheds light on the mechanisms that could be involved in colon carcinogenesis induced by a chemical carcinogen and identifies a safe natural product that may help to prevent them.
Collapse
|
17
|
Mirzababaei A, Daneshzad E, Moradi S, Abaj F, Mehranfar S, Asbaghi O, Clark CCT, Mirzaei K. The association between urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases and blood pressure: a systematic review and meta-analysis of observational studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1712-1728. [PMID: 34699007 DOI: 10.1007/s11356-021-17091-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Although epidemiological studies have discerned the association between polycyclic aromatic hydrocarbons (PAHs) exposure and hypertension and/or cardiovascular disease in the general population, the possible mechanisms for this association are not well understood. We sought to examine the association between urinary metabolites of PAHs and cardiovascular diseases (CVDs) and blood pressure in adults, by conducting a meta-analysis of observational studies. We searched PubMed, Scopus, Embase, and Web of science, up to July 2021, for observational studies that investigated the association between urinary metabolites of PAHs and CVDs and blood pressure in adults. Nine prospective studies, including 27,280 participants, were included. Based on overall pooled results, there was a significant positive association between all types of urinary metabolites of PAH and blood pressure (OR: 1.32; 95%, CI: 1.19 to 1.48, p < 0.0001) (I2 = 62.4%, p < 0.0001). There was no significant association between any urinary metabolite of PAH and CHD (OR: 0.93; 95%, CI: 0.83 to 1.03, p = 0.174) (I2 = 0%, p = 0.653). Overall, there was a significant positive association between all urinary metabolites of PAH and CVD (OR: 1.23; 95%, CI: 1.16 to 1.30, p < 0.0001) (I2 = 59.7%, p < 0.0001). The results of the present meta-analysis suggest that different metabolites PAHs are associated with an increased risk of CVD and HTN. Further studies, including randomized clinical trials, are needed to confirm the veracity of our findings.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
18
|
Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Int J Hyg Environ Health 2021; 240:113886. [PMID: 34864598 DOI: 10.1016/j.ijheh.2021.113886] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023]
Abstract
Environmental pollutants have been known to increase the risks of not only respiratory and cardiovascular disease but also metabolic diseases such as obesity and diabetes mellitus (DM). Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) such as benzene and toluene are major constituents of environmental pollution. In the present study, we employed the population of the Korean National Environmental Health Survey (KoNEHS) Cycle 3 conducted between 2015 and 2017, and assessed the associations of urinary biomarkers for PAHs and VOCs exposure with obesity and DM. A total of 3787 adult participants were included and the urinary concentrations of four PAH metabolites and two VOC metabolites were measured. For correcting urine dilution, a covariate-adjusted standardization method was used. The highest quartiles of urinary 2-hydroxynaphthalene (2-NAP) [OR (95% confidence interval (CI)) = 1.46 (1.13, 1.87)] and sum of PAH metabolites [OR (95% CI) = 1.45 (1.13, 1.87)] concentrations were associated with a higher risk of obesity [body mass index (BMI)≥25 kg/m2]. BMI was positively associated with urinary 2-NAP [β (95% CI) = 0.25 (0.09, 0.41), p = 0.003] and sum of PAH metabolites [β (95% CI) = 0.29 (0.08, 0.49), p = 0.006] concentrations. The risk of DM was increased with increasing quartile of 2-hydroxyfluorene (2-OHFlu) and trans, trans-muconic acid (t,t-MA) (p for trend<0.05 and < 0.001, respectively). The highest quartile of t,t-MA showed a significantly higher risk of DM [OR (95% CI) = 2.77 (1.74, 4.42)] and obesity [OR (95% CI) = 1.42 (1.06, 1.90)]. Urinary t,t,-MA level was positively associated with BMI [(β (95% CI) = 0.51 (0.31, 0.71), p < 0.001] and non-alcoholic fatty liver disease index [(β (95% CI) = 0.09 (0.06, 0.12), p < 0.001]. In conclusion, the benzene metabolites t,t-MA and PAH metabolite 2-OHFlu were associated with an increased risk of DM. Urinary biomarkers for PAHs and VOCs were positively associated with BMI in the Korean adult population. Further studies to validate these observations in other populations are warranted.
Collapse
|
19
|
Huang Y, Cao D, Chen Z, Chen B, Li J, Guo J, Dong Q, Liu L, Wei Q. Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem 2021; 356:129697. [PMID: 33838606 DOI: 10.1016/j.foodchem.2021.129697] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
The purpose of this umbrella review was to evaluate the quality of evidence, validity and biases of the associations between red and processed meat consumption and multiple cancer outcomes according to existing systematic reviews and meta-analyses. The umbrella review identified 72 meta-analyses with 20 unique outcomes for red meat and 19 unique outcomes for processed meat. Red meat consumption was associated with increased risk of overall cancer mortality, non-Hodgkin lymphoma (NHL), bladder, breast, colorectal, endometrial, esophageal, gastric, lung and nasopharyngeal cancer. Processed meat consumption might increase the risk of overall cancer mortality, NHL, bladder, breast, colorectal, esophageal, gastric, nasopharyngeal, oral cavity and oropharynx and prostate cancer. Dose-response analyses revealed that 100 g/d increment of red meat and 50 g/d increment of processed meat consumption were associated with 11%-51% and 8%-72% higher risk of multiple cancer outcomes, respectively, and seemed to be not correlated with any benefit.
Collapse
Affiliation(s)
- Yin Huang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Dehong Cao
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jianbing Guo
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Dong
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiang Wei
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
20
|
Rehman K, Haider K, Akash MSH. Cigarette smoking and nicotine exposure contributes for aberrant insulin signaling and cardiometabolic disorders. Eur J Pharmacol 2021; 909:174410. [PMID: 34375672 DOI: 10.1016/j.ejphar.2021.174410] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 01/06/2023]
Abstract
Cigarette smoking- and nicotine-mediated dysregulation in insulin-signaling pathways are becoming leading health issues associated with morbidity and mortality worldwide. Many cardiometabolic disorders particularly insulin resistance, polycystic ovary syndrome (PCOS), central obesity and cardiovascular diseases are initiated from exposure of exogenous substances which augment by disturbances in insulin signaling cascade. Among these exogenous substances, nicotine and cigarette smoking are potential triggers for impairment of insulin-signaling pathways. Further, this aberrant insulin signaling is associated with many metabolic complications, which consequently give rise to initiation as well as progression of these metabolic syndromes. Hence, understanding the underlying molecular mechanisms responsible for cigarette smoking- and nicotine-induced altered insulin signaling pathways and subsequent participation in several health hazards are quite essential for prophylaxis and combating these complications. In this article, we have focused on the role of nicotine and cigarette smoking mediated pathological signaling; for instance, nicotine-mediated inhibition of nuclear factor erythroid 2-related factor 2 and oxidative damage, elevated cortisol that may promote central obesity, association PCOS and oxidative stress via diminished nitric oxide which may lead to endothelial dysfunction and vascular inflammation. Pathological underlying molecular mechanisms involved in mediating these metabolic syndromes via alteration of insulin signaling cascade and possible molecular mechanism responsible for these consequences on nicotine exposure have also been discussed.
Collapse
Affiliation(s)
- Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kamran Haider
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
21
|
Zhang B, Liu L, Guo L, Guo S, Zhao X, Liu G, Li Q, Jiang L, Pan B, Nie J, Yang J. Telomere length mediates the association between polycyclic aromatic hydrocarbons exposure and abnormal glucose level among Chinese coke oven plant workers. CHEMOSPHERE 2021; 266:129111. [PMID: 33310362 DOI: 10.1016/j.chemosphere.2020.129111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Diabetes is a chronic and complex disease determined by environmental and genetic factors. This study aimed to investigate the association between polycyclic aromatic hydrocarbons (PAHs) exposure and fasting blood glucose levels and telomere length among coke-oven plant workers, to explore potential role of telomere length (TL) in the association between PAHs exposure and abnormal glucose level. METHODS The cross-sectional survey was conducted in 2017. The high-performance liquid chromatography mass spectrometry (HPLC-MS) was used to detect 11 urine biomarkers of PAHs exposure. TL was measured using the Real-time quantitative polymerase chain reaction (RT-qPCR) method. Logistic regression model, the modified Poisson regression models, and mediation analysis were used to evaluate the associations between PAHs exposure, TL, and abnormal glucose. RESULTS The results showed that the urinary 1-hydroxypyrene (1-PYR) was positively related to abnormal glucose in a dose-dependent manner (Ptrend = 0.007), the prevalence ratio of abnormal glucose was 8% (95% CI: 1.01-1.16) higher in 3rd tertile of urinary 1-PYR levels. Urinary 1-PYR in the 2nd tertile and 3rd tertile were associated with a 53% (OR = 0.47, 95% CI: 0.28-0.79) and 59% (OR = 0.41, 95% CI: 0.23-0.76) higher risk of shortening TL. And there was a negatively association between 1-PYR and TL in a dose-dependent manner (Ptrend = 0.045). We observed that the association between 1-PYR and abnormal glucose was more significantly positive among participants with median TL level (Ptrend = 0.006). In addition, mediation analysis showed the TL could explain 11.7% of the effect of abnormal glucose related to PAHs exposure. CONCLUSIONS Our findings suggested the effect of abnormal glucose related to PAHs exposure was mediated by telomere length in coke oven plant workers.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
22
|
Cheng M, Zhou Y, Wang B, Mu G, Ma J, Zhou M, Wang D, Yang M, Cao L, Xie L, Wang X, Nie X, Yu L, Yuan J, Chen W. IL-22: A potential mediator of associations between urinary polycyclic aromatic hydrocarbon metabolites with fasting plasma glucose and type 2 diabetes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123278. [PMID: 32634658 DOI: 10.1016/j.jhazmat.2020.123278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that exposure to polycyclic aromatic hydrocarbons (PAHs) was associated with type 2 diabetes (T2D) prevalence. However, the potential mechanism is still unclear. In this study, we investigated 3031 Chinese urban adults to discover the relationship between PAH exposure and plasma Interleukin-22 (IL-22) and potential role of IL-22 in the association between PAH and fasting plasma glucose (FPG) or risk of T2D. After adjustment for potential confounders, significant dose-response relationships were observed between several urinary PAH metabolites with FPG and the prevalence of T2D. Each 1-U increase in ln-transformed value of 2-hydroxynaphthalene (2-OHNa), 2-hydroxyphenanthrene (2-OHPh), 3-hydroxyphenanthrene (3-OHPh), 4-hydroxyphenanthrene (4-OHPh), 9-hydroxyphenanthrene (9-OHPh), 1-hydroxypyrene (1-OHP) or total PAH metabolites was significantly associated with a 0.053, 0.026, 0.037, 0.045, 0.051, 0.041 or 0.047 unit decrease in IL-22 level, respectively. In addition, plasma IL-22 level was negatively associated with FPG and prevalence of T2D in a dose-dependent manner. Mediation analysis showed that IL-22 mediated 8.48 %, 3.87 %, 6.64 %, 6.47 %, and 8.67 % of the associations between urinary 2-OHNa, 1-OHPh, 3-OHPh, 4-OHPh, and 9-OHPh with the prevalence of T2D, respectively. These results indicated that urinary PAHs metabolites were inversely associated with plasma levels of IL-22, but positively related to FPG and the T2D prevalence. Downregulation of IL-22 might play a significant role in mediating PAHs exposure-associated risk increasement of T2D.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LingLing Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
23
|
Loke YL, Chew MT, Ngeow YF, Lim WWD, Peh SC. Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Front Cell Infect Microbiol 2020; 10:603086. [PMID: 33364203 PMCID: PMC7753026 DOI: 10.3389/fcimb.2020.603086] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) incidence increases yearly, and is three to four times higher in developed countries compared to developing countries. The well-known risk factors have been attributed to low physical activity, overweight, obesity, dietary consumption including excessive consumption of red processed meats, alcohol, and low dietary fiber content. There is growing evidence of the interplay between diet and gut microbiota in CRC carcinogenesis. Although there appears to be a direct causal role for gut microbes in the development of CRC in some animal models, the link between diet, gut microbes, and colonic carcinogenesis has been established largely as an association rather than as a cause-and-effect relationship. This is especially true for human studies. As essential dietary factors influence CRC risk, the role of proteins, carbohydrates, fat, and their end products are considered as part of the interplay between diet and gut microbiota. The underlying molecular mechanisms of colon carcinogenesis mediated by gut microbiota are also discussed. Human biological responses such as inflammation, oxidative stress, deoxyribonucleic acid (DNA) damage can all influence dysbiosis and consequently CRC carcinogenesis. Dysbiosis could add to CRC risk by shifting the effect of dietary components toward promoting a colonic neoplasm together with interacting with gut microbiota. It follows that dietary intervention and gut microbiota modulation may play a vital role in reducing CRC risk.
Collapse
Affiliation(s)
- Yean Leng Loke
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Ming Tsuey Chew
- Centre for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Centre for Research on Communicable Diseases, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Wendy Wan Dee Lim
- Department of Gastroenterology, Sunway Medical Centre, Petaling Jaya, Malaysia
| | - Suat Cheng Peh
- Ageing Health and Well-Being Research Centre, Sunway University, Petaling Jaya, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|
24
|
Khosravipour M, Khosravipour H. The association between urinary metabolites of polycyclic aromatic hydrocarbons and diabetes: A systematic review and meta-analysis study. CHEMOSPHERE 2020; 247:125680. [PMID: 32069705 DOI: 10.1016/j.chemosphere.2019.125680] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
To examine the association between urinary metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) and diabetes, online databases, including PubMed, Scopus, and Web of Science, were searched on July 17, 2019. Of the 668 articles identified through searching, six cross-sectional studies involving 24,406 participants were included. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effect model. Heterogeneity was measured by reporting the I-square index. Moreover, subgroup analysis according to types of metabolites was performed. We found a significantly higher odds of diabetes in the highest versus the lowest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total OH-PAH metabolites. The pooled OR (95% CI) was estimated at 1.47 (1.17, 1.78), 1.50 (1.29, 1.71), 1.41 (1.21, 1.60), and 1.61 (1.01, 2.21), respectively. We also found a significant association per 1-fold increase in FLU (OR = 1.09, 95% CI [1.00, 1.19]) and PHEN (OR = 1.19, 95% CI [1.08, 1.30]) metabolites. In subgroup analysis stratified by types of OH-PAH metabolites, A significant stronger odds of diabetes was observed in the highest versus the lowest category of 2-PHEN (OR = 1.66, 95% CI [1.32, 2.00]), 2-NAP (OR = 1.66, 95% CI [1.16, 2.17]), 2-FLU (OR = 1.62, 95% CI [1.28, 1.97]), and 9-FLU (OR = 1.62, 95% CI [1.21, 2.04]) metabolites. Furthermore, there was a meaningfully greater likelihood of diabetes per 1-fold increase in 2-FLU (OR = 1.34, 95% CI [1.10, 1.57]), 2-PHEN (OR = 1.33, 95% CI [1.14, 1.51]), and 3-PHEN (OR = 1.19, 95% CI [1.04, 1.34]) metabolites. In conclusion, our study suggests the significant odds of association between urinary OH-PAH metabolites and diabetes.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadis Khosravipour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
25
|
Mehranfar S, Jalilpiran Y, Surkan PJ, Azadbakht L. Association between protein-rich dietary patterns and anthropometric measurements among children aged 6 years. Nutr Diet 2020; 77:359-367. [PMID: 32153120 DOI: 10.1111/1747-0080.12609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/12/2020] [Accepted: 01/18/2020] [Indexed: 01/09/2023]
Abstract
AIM The associations between types of dietary protein intake and child anthropometric measurements have not been fully studied. Therefore, we examined dietary protein pattern in relation to anthropometric indicators among 6-year-old children. METHODS We carried out a cross-sectional study of 788 randomly selected children from health centres in Tehran, Iran. Dietary intake was assessed using a food frequency questionnaire completed by the mothers. Anthropometric measurements were based on standard protocols. Principle component analysis was performed to identify different dietary protein patterns. We used multivariate logistic regression to evaluate how these patterns were associated with child anthropometry. RESULTS Three dietary protein patterns were identified: pattern 1 (rich in red and processed meats, dairy products and eggs), pattern 2 (rich in fish and poultry) and pattern 3 (rich in soy and legumes). After adjusting for potential confounders (energy intake, socioeconomic status and physical activity), being in the third compared to the first tertiles of pattern 2 was associated with increased (OR = 1.57; 95% CI: 1.09-2.27; P = .01) and decreased (OR = 0.54; 95% CI: 0.32-0.92; P = .02) risk of overweight/obesity and underweight/wasting, respectively. There was no association between other dietary patterns and risk of overweight/obesity or underweight/wasting. CONCLUSIONS The present study showed inverse association between the fish/white meat pattern and underweight/wasting and also a positive association between higher fish/white meat protein intake and higher risk of overweight/obesity. Further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Sanaz Mehranfar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Yahya Jalilpiran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Pamela J Surkan
- Department of International Health, John Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
26
|
Nam YJ, Kim SH. Association of Urinary Polycyclic Aromatic Hydrocarbons and Diabetes in Korean Adults: Data from the Korean National Environmental Health Survey Cycle 2 (2012-2014). Diabetes Metab Syndr Obes 2020; 13:3993-4003. [PMID: 33149638 PMCID: PMC7602886 DOI: 10.2147/dmso.s276658] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/01/2020] [Indexed: 01/30/2023] Open
Abstract
PURPOSE To investigate the associations between the urinary levels of polycyclic aromatic hydrocarbons (PAHs) and diabetes mellitus in Korean adults. MATERIALS AND METHODS We examined the data of 6478 participants aged ≥19 years from the Korean National Environmental Health Survey (KoNEHS) cycle 2 (2012-2014). The urinary levels of 1-hydroxypyrene (1-OHP), 2-naphthol (2-NAP), 1-hydroxyphenathrene (1-OHPhe), and 2-hydroxyfluorene (2-OHFlu) were measured by gas chromatography-mass spectrometry. Diabetes mellitus was defined as a self-report of physician-diagnosed diabetes mellitus or the use of oral hypoglycemics or insulin. Analyses were adjusted for sex, age, body mass index, household income, alcohol consumption, physical activity, urinary creatinine and cotinine, menopausal status, and quartiles of all other PAHs. RESULTS The prevalence of diabetes was 6.5% in the study population. In men, the geometric means of the 2-NAP and 2-OHFlu levels were higher in participants with diabetes mellitus than in those without diabetes mellitus [4.11 vs 3.26 μg/L (P <0.05) and 0.45 vs 0.40 μg/L (P <0.05), respectively]. In women, the geometric mean of 2-NAP levels was also higher in participants with diabetes mellitus than in those without diabetes mellitus (1.81 vs 0.56 μg/L, P <0.05), but there were no significant differences in geometric means for other PAHs. A higher odds ratio (OR) of diabetes was found in participants with the highest quartiles of urinary 2-NAP [OR 1.83, 95% confidence interval (CI) 1.29-2.60] and 2-OHFlu (OR 1.81, 95% CI 1.10-2.98) than in those with the lowest quartiles. CONCLUSION The urinary 2-NAP and 2-OHFlu levels were associated with diabetes mellitus in Korean adults. Further studies are needed to determine a potential causal relationship between PAH exposure and diabetes mellitus and its underlying mechanism.
Collapse
Affiliation(s)
- Yon Ju Nam
- College of Health Science, Korea University, Seoul02841, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul01757, Korea
- Correspondence: Shin-Hye KimDepartment of Pediatrics, Inje University Sanggye Paik Hospital, Inje University College of Medicine, 1342 Dongil-Ro, Nowon-Gu, Seoul01757, KoreaTel +82-2-950-4812Fax +82-2-950-1246 Email
| |
Collapse
|
27
|
Smith J, Neupane R, McAmis W, Singh U, Chatterjee S, Raychoudhury S. Toxicity of polycyclic aromatic hydrocarbons involves NOX2 activation. Toxicol Rep 2019; 6:1176-1181. [PMID: 31763181 PMCID: PMC6861563 DOI: 10.1016/j.toxrep.2019.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
PAHs cause decrease in cell viability and increase in lactate levels. The mixture of PAHs suppress S phase. Toxicity is accompanied by NOX2 activation.
Polycyclic Aromatic Hydrocarbons (PAHs) are environmental pollutants. The present study compares the toxic effects of BaP alone and a mixture of PAHs on human breast cancer cells. We hypothesize that PAH mixture is more toxic than BaP alone, and an increased NOX2 activation is related to PAH-induced oxidative stress. Initially, we exposed cultured human breast cancer cells to BaP alone (125 ng/mL and 500 ng/mL) and a mixture of PAHs (125 ng/mL and 500 ng/mL). After 24 h of exposure, the PAH mixture demonstrated a significant (P < 0.05) reduction in cell viability. The higher concentration of BaP alone (500 ng/mL) and both 125 ng/mL and 500 ng/mL PAH mixture significantly (P < 0.05) increased lactate production by MDA-MB-231 cells. We had observed an identical level of increased lactate levels when the cells were exposed to PAHs for 48 h. Flow cytometric analysis revealed that only PAHs mixture (both 125 ng/mL and 500 ng/mL) suppressed S phase significantly (P < 0.05). Finally, immunofluorescence microscopy was undertaken to examine the role of NOX2 due to PAHs toxicity. Colocalization of GP91phox and P47phox, a hallmark of NOX2 activation in the cell membrane of macrophage Kupffer cells demonstrated that higher concentration of BaP or PAH mixture showed increased colocalization events. These data suggest that the mixture of PAHs is more toxic and perturbing to DNA synthesis than BaP alone in cultured cells, and the toxicity is accompanied by NOX2 activation. Thus PAHs can lead to the increased burden of oxidative stress and alter the cellular redox status.
Collapse
Affiliation(s)
- Joycelyn Smith
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - Rajendra Neupane
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - William McAmis
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| | - Udai Singh
- School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Samir Raychoudhury
- Department of Biology, Chemistry, and Environmental Health Science, Benedict College, 1600 Harden Street, Columbia, SC, 29204, USA
| |
Collapse
|
28
|
Yun Y, Zhang Y, Li G, Chen S, Sang N. Embryonic exposure to oxy-polycyclic aromatic hydrocarbon interfere with pancreatic β-cell development in zebrafish via altering DNA methylation and gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1602-1609. [PMID: 30743951 DOI: 10.1016/j.scitotenv.2018.12.476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are a class of anthropogenic, persistent and very toxic PAH contaminant associated with developmental toxicity. Abnormal glucose metabolism disturbs energy balances that impair the early development of vertebrates, but the mechanisms by which maternal OPAH exposure alters glucose homeostasis in offspring are not well understood. Studies have suggested that epigenetic changes, particularly in DNA methylation, provide a memory of plastic developmental responses to the environment, leading to the generation of novel offspring phenotypes. The objective of this study is to test the hypothesis that embryonic exposure to low-dose OPAH can impair early β-cell differentiation in zebrafish (Danio rerio) by altering DNA methylation and gene expression. The zebrafish embryos were exposed to 0, 0.03, 0.1, 0.3, 1 and 3 μM 9‑fluorenone (9-FLO) at 3 h postfertilization (hpf) until 120 hpf to assess pancreatic organogenesis. 9-FLO exposure reduced total body length, eye length and heart rate, decreased insulin generation, interfered with glucose metabolism, and altered the expression of pancreatic organogenesis-related genes pdx-1, foxa2, isl1 and ptf1a. In particular, low-dose embryonic 9-FLO exposure significantly decreased β-cell differentiation marker gene pdx-1 mRNA levels, indicating that pancreatic endocrine is a more sensitive target response to embryonic low-dose OPAH exposure. Additionally, we found that DNA methyltransferases dnmt1 and dnmt3 were elevated and the DNA methylation at promoter regions of pdx-1 was increased at an early stage of development. These data demonstrated that the low-dose OPAH embryonic exposure can impair pancreatic endocrine development by increasing DNA methylation at the promoter regions of pdx-1 that are essential for β-cell differentiation.
Collapse
Affiliation(s)
- Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yujie Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaoyu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA; University of Louisville Alcohol Research Center, Louisville, KY, USA
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
29
|
Fractionated whole body gamma irradiation modulates the hepatic response in type II diabetes of high fat diet model rats. Mol Biol Rep 2019; 46:2273-2283. [PMID: 30747384 DOI: 10.1007/s11033-019-04681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
HFD animals were exposed to a low rate of different fractionated whole body gamma irradiation doses (0.5, 1 and 2 Gy, three fractions per week for two consecutive months) and the expression of certain genes involved in type 2 diabetes mellitus (T2DM) in livers and brains of HFD Wistar rats was investigated. Additionally, levels of diabetes-related proteins encoded by the studied genes were analyzed. Results indicated that mRNA level of incretin glucagon like peptite-1 receptor (GLP-1R) was augmented in livers and brains exposed to 1 and 2 Gy doses. Moreover, the mitochondrial uncoupling proteins 2 and 3 (UCP2/3) expressions in animals fed on HFD compared to those fed on normal chow diet were significantly increased at all applied doses. GLP-1R and UCP3 protein levels were up regulated in livers. Total protein content increased at 0.5 and 1 Gy gamma irradiation exposure and returned to its normal level at 2 Gy dose. Results could be an indicator of type 2 diabetes delayed development during irradiation exposure and support the importance of GLP-1R as a target gene in radiotherapy against T2DM and its chronic complications. A new hypothesis of brain-liver and intestine interface is speculated by which an increase in the hepatic GLP-1R is influenced by the effect of fractionated whole body gamma irradiation.
Collapse
|
30
|
Wang L, Hou J, Hu C, Zhou Y, Sun H, Zhang J, Li T, Gao E, Wang G, Chen W, Yuan J. Mediating factors explaining the associations between polycyclic aromatic hydrocarbons exposure, low socioeconomic status and diabetes: A structural equation modeling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:1476-1483. [PMID: 30340292 DOI: 10.1016/j.scitotenv.2018.08.255] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is linked with increased risk of diabetes, whereas socioeconomic status (SES) may contribute to the development of diabetes. However, the mechanisms underlying the relationships between them are unclear. We used structural equation modeling (SEM) to identify mediating factors in the associations of PAHs exposure, low SES with diabetes risk. Data were collected from 2751 Wuhan participants at baseline from the Wuhan-Zhuhai Cohort Study (n = 3053). They answered the questionnaires regarding socio-demographic, participated physical examinations and provided urine samples for measurements of urinary monohydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) levels. SEM was used to identify the mediating factors (such as hypertension, body mass index (BMI), triglycerides (TG) and total cholesterol (TCHO)) in the associations of low SES or PAHs exposure with diabetes risk. We observed that partial effect of PAHs exposure (β = 0.281, p = 0.034), BMI (β = 0.182, p = 0.000), TG (β = 0.358, p = 0.000), TCHO (β = 0.203, p = 0.009) or hypertension (β = 0.385, p = 0.000) on diabetes was directive. Moreover, low SES also exhibited a directive effect on PAHs exposure (β = -0.084, p = 0.000), BMI (β = 0.301, p = 0.000), hypertension (β = 0.134, p = 0.003) and TG (β = 0.087, p = 0.001). PAHs exposure directly affected TCHO levels (β = 0.080, p = 0.002) and TG (β = 0.076, p = 0.017). The proportion of the effect of PAHs exposure on diabetes mediated by TG and TCHO was 15.6%. The proportion of the effect of low SES on diabetes mediated by BMI, hypertension and TG was 89.1%. The results suggested that low SES increased diabetes risk, which may be partially explained by BMI, hypertension and triglycerides, and exposure to high levels of PAHs may have indirect contribution to increased risk for diabetes with dyslipidemia.
Collapse
Affiliation(s)
- Lu Wang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jian Hou
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Chen Hu
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Yun Zhou
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Huizhen Sun
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jiafei Zhang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Tian Li
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Erwei Gao
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Guiyang Wang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Jing Yuan
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China..
| |
Collapse
|
31
|
Qiu Z, Zhong D, Yang B. Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Liver Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:217-242. [DOI: 10.1007/978-981-32-9421-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Efremov YR, Proskurina AS, Potter EA, Dolgova EV, Efremova OV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Cancer Stem Cells: Emergent Nature of Tumor Emergency. Front Genet 2018; 9:544. [PMID: 30505319 PMCID: PMC6250818 DOI: 10.3389/fgene.2018.00544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.
Collapse
Affiliation(s)
- Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oksana V Efremova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- The State Research Center of Virology and Biotechnology Vector, Koltsovo, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Khalil A, Omran H, Alsheikh F. Balance of pro- and anti-inflammatory cytokines in livers of high fat diet rats exposed to fractionated gamma irradiation. BMC Res Notes 2018; 11:741. [PMID: 30340629 PMCID: PMC6194628 DOI: 10.1186/s13104-018-3851-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
Objective In this work, the effects of irradiation and high fat diet (HFD) intake have been examined in Wistar rat livers. HFD Wistar rats were exposed three times per week for 2 months to three different doses (0.5, 1, and 2 Gy) of a fractionated whole body gamma irradiation (FWBGI). Hepatic mRNA of these rats was evaluated for five cytokines, TNFα, IL1β, IL6, CRP and IL10. In addition, some critical protein levels were evaluated. Results Results demonstrated that FWBGI was able to omit the inflammatory state already induced by the HFD through the depression of all pro-inflammatory genes. In addition, TNFα/IL10 IL1β/IL10, IL6/IL10 and CRP/IL10 ratios were less than 1 at all studied irradiation doses. IL6/IL10 ratio (mRNA and protein) was the best that represented an anti-inflammatory state with all used doses. Results could be of great importance in liver radiotherapy in HFD animal models and may give indicators about the inflammatory state improvement during FWBGI.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Radiation Medicine, Human Nutrition Laboratory, Atomic Energy Commission of Syria (AECS), P.O. Box: 6091, Damascus, Syrian Arab Republic.
| | - Hasan Omran
- Department of Radiation Medicine, Human Nutrition Laboratory, Atomic Energy Commission of Syria (AECS), P.O. Box: 6091, Damascus, Syrian Arab Republic
| | - Fatima Alsheikh
- Department of Radiation Medicine, Human Nutrition Laboratory, Atomic Energy Commission of Syria (AECS), P.O. Box: 6091, Damascus, Syrian Arab Republic
| |
Collapse
|
34
|
Defois C, Ratel J, Garrait G, Denis S, Le Goff O, Talvas J, Mosoni P, Engel E, Peyret P. Food Chemicals Disrupt Human Gut Microbiota Activity And Impact Intestinal Homeostasis As Revealed By In Vitro Systems. Sci Rep 2018; 8:11006. [PMID: 30030472 PMCID: PMC6054606 DOI: 10.1038/s41598-018-29376-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/04/2018] [Indexed: 12/22/2022] Open
Abstract
Growing evidence indicates that the human gut microbiota interacts with xenobiotics, including persistent organic pollutants and foodborne chemicals. The toxicological relevance of the gut microbiota-pollutant interplay is of great concern since chemicals may disrupt gut microbiota functions, with a potential impairment of host homeostasis. Herein we report within batch fermentation systems the impact of food contaminants (polycyclic aromatic hydrocarbons, polychlorobiphenyls, brominated flame retardants, dioxins, pesticides and heterocyclic amines) on the human gut microbiota by metatranscriptome and volatolome i.e. “volatile organic compounds” analyses. Inflammatory host cell response caused by microbial metabolites following the pollutants-gut microbiota interaction, was evaluated on intestinal epithelial TC7 cells. Changes in the volatolome pattern analyzed via solid-phase microextraction coupled to gas chromatography-mass spectrometry mainly resulted in an imbalance in sulfur, phenolic and ester compounds. An increase in microbial gene expression related to lipid metabolism processes as well as the plasma membrane, periplasmic space, protein kinase activity and receptor activity was observed following dioxin, brominated flame retardant and heterocyclic amine exposure. Conversely, all food contaminants tested induced a decreased in microbial transcript levels related to ribosome, translation and nucleic acid binding. Finally, we demonstrated that gut microbiota metabolites resulting from pollutant disturbances may promote the establishment of a pro-inflammatory state in the gut, as stated with the release of cytokine IL-8 by intestinal epithelial cells.
Collapse
|
35
|
Liu G, Zong G, Wu K, Hu Y, Li Y, Willett WC, Eisenberg DM, Hu FB, Sun Q. Meat Cooking Methods and Risk of Type 2 Diabetes: Results From Three Prospective Cohort Studies. Diabetes Care 2018; 41:1049-1060. [PMID: 29530926 PMCID: PMC5911789 DOI: 10.2337/dc17-1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/15/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine open-flame and/or high-temperature cooking (grilling/barbecuing, broiling, or roasting) and doneness preferences (rare, medium, or well done) for red meat, chicken, and fish in relation to type 2 diabetes (T2D) risk among U.S. adults who consumed animal flesh regularly (≥2 servings/week). RESEARCH DESIGN AND METHODS The prospective studies included 52,752 women from the Nurses' Health Study (NHS) (followed during 1996-2012), 60,809 women from NHS II (followed during 2001-2013), and 24,679 men from the Health Professionals Follow-Up Study (HPFS) (followed during 1996-2012) who were free of diabetes, cardiovascular disease, and cancer at baseline. Incident cases of T2D were confirmed by validated supplementary questionnaires. RESULTS We documented 7,895 incident cases of T2D during 1.74 million person-years of follow-up. After multivariate adjustments including baseline BMI and total consumption of red meat, chicken, and fish, higher frequency of open-flame and/or high-temperature cooking was independently associated with an elevated T2D risk. When comparing open-flame and/or high-temperature cooking >15 times/month with <4 times/month, the pooled hazard ratio (HR) (95% CI) of T2D was 1.28 (1.18, 1.39; Ptrend <0.001). When comparing the extreme quartiles of doneness-weighted frequency of high-temperature cooking, the pooled HR (95% CI) of T2D was 1.20 (1.12, 1.28; Ptrend <0.001). These associations remained significant when red meat and chicken were examined separately. In addition, estimated intake of heterocyclic aromatic amines was also associated with an increased T2D risk. CONCLUSIONS Independent of consumption amount, open-flame and/or high-temperature cooking for both red meat and chicken is associated with an increased T2D risk among adults who consume animal flesh regularly.
Collapse
Affiliation(s)
- Gang Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Kana Wu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - David M Eisenberg
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Hou J, Sun H, Zhou Y, Zhang Y, Yin W, Xu T, Cheng J, Chen W, Yuan J. Environmental exposure to polycyclic aromatic hydrocarbons, kitchen ventilation, fractional exhaled nitric oxide, and risk of diabetes among Chinese females. INDOOR AIR 2018; 28:383-393. [PMID: 29444361 DOI: 10.1111/ina.12453] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Diabetes is related to exposure to polycyclic aromatic hydrocarbons (PAHs), inflammation in the body, and housing characters. However, associations of urinary monohydroxy-PAHs (OH-PAHs) or fractional exhaled nitric oxide (FeNO) with diabetes risk in relation to housing characters are unclear. In this study, 2645 individuals were drawn from the baseline survey of the Wuhan-Zhuhai Cohort Study. Associations of diabetes with urinary OH-PAHs or FeNO among cooking participants were estimated using logistic regression models. Among women with self-cooking meals, urinary OH-PAH levels were positively associated with diabetes risk (P < .05); the cooking women with high FeNO (≥25 ppb) had a 59% increase in the risk of diabetes (OR: 1.59, 95% CI: 1.06, 2.38), compared with those with low FeNO (<25 ppb). The cooking women with use of kitchen exhaust fans/hoods had a 52% decrease in the risk of diabetes (OR: 0.48, 95% CI: 0.27, 0.84), compared with those with nonuse of kitchen exhaust fans/hoods. The results indicated that the cooking women had an elevated risk of diabetes, which may be partly explained by an increase in the PAH body burden and higher inflammatory responses. Use of kitchen exhaust fan/hood can be associated with a lower risk of diabetes.
Collapse
Affiliation(s)
- J Hou
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Sun
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Huizhen Sun, Hubei Center for Disease Control and Prevention, Wuhan, China
| | - Y Zhou
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Zhang
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Yin
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Xu
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Cheng
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Chen
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - J Yuan
- Department of Occupational and Environmental Health, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
May P, Bremond P, Sauzet C, Piccerelle P, Grimaldi F, Champion S, Villard PH. In Vitro Cocktail Effects of PCB-DL (PCB118) and Bulky PCB (PCB153) with BaP on Adipogenesis and on Expression of Genes Involved in the Establishment of a Pro-Inflammatory State. Int J Mol Sci 2018. [PMID: 29534036 PMCID: PMC5877702 DOI: 10.3390/ijms19030841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
(1) Objective: Highlight the in vitro effects of 3T3-L1 cell exposure to polychlorinated biphenyls (PCB118 and 153) or benzo(a)pyrene (BaP) alone or as a cocktail on adipogenesis (ADG) by focusing on changes in lipid metabolism and inflammatory-related genes expression (INFG) and ADG-related genes expression (ADGG); (2) Results: Treatment from the early stage of cell differentiation by BaP alone or in combination with PCBs decreased the expression of some of the ADGG (PPARγGlut-4, FAS, Lipin-1a, Leptin, and Adiponectin). BaP enhanced the INFG, especially MCP-1 and TNFα. Co-exposure to BaP and PCB153 showed a synergistic effect on TNFα and IL6 expression. Treatment with BaP and PCBs during only the maturation period up-regulated the INFG (IL6, TNFα, CXCL-10 & MCP-1). PCB118 alone also enhanced TNFα, CXCL-10, and PAI-1 expression. The change in MCP-1 protein expression was in agreement with that of the gene. Finally, the BaP-induced up-regulation of the xenobiotic responsive element (XRE)-controlled luciferase activity was impaired by PCB153 but not by PCB118; (3) Conclusion: BaP and PCBs down-regulate a part of ADGG and enhance INFG. The direct regulatory effect of PCBs on both ADGG and INFG is usually rather lower than that of BaP and synergistic or antagonistic cocktail effects are clearly observed.
Collapse
Affiliation(s)
- Phealay May
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Patricia Bremond
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Christophe Sauzet
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Philippe Piccerelle
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Frédérique Grimaldi
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Serge Champion
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| | - Pierre-Henri Villard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Faculté de Pharmacie 27 Bd Jean Moulin, 13385 Marseille CEDEX 5, France.
| |
Collapse
|
38
|
Harris KL, Pulliam SR, Okoro E, Guo Z, Washington MK, Adunyah SE, Amos-Landgraf JM, Ramesh A. Western diet enhances benzo(a)pyrene-induced colon tumorigenesis in a polyposis in rat coli (PIRC) rat model of colon cancer. Oncotarget 2018; 7:28947-60. [PMID: 26959117 PMCID: PMC5045369 DOI: 10.18632/oncotarget.7901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
Consumption of Western diet (WD), contaminated with environmental toxicants, has been implicated as one of the risk factors for sporadic colon cancer. Our earlier studies using a mouse model revealed that compared to unsaturated dietary fat, the saturated dietary fat exacerbated the development of colon tumors caused by B(a)P. The objective of this study was to study how WD potentiates B(a)P-induced colon carcinogenesis in the adult male rats that carry a mutation in the Apc locus - the polyposis in the rat colon (PIRC) rats. Groups of PIRC rats were fed with AIN-76A standard diet (RD) or Western diet (WD) and received 25, 50, or 100 μg B(a)P/kg body weight (wt) via oral gavage for 60 days. Subsequent to exposure, rats were euthanized; colons were retrieved and preserved in 10% formalin for counting the polyp numbers, measuring the polyp size, and histological analyses. Blood samples were collected and concentrations of cholesterol, triglycerides, glucose, insulin and leptin were measured. Rats that received WD + B(a)P showed increased levels of cholesterol, triglycerides, and leptin in comparison to RD + B(a)P groups or controls. The colon tumor numbers showed a B(a)P dose-response relationship. Adenomas with high grade dysplasia were prominent in B(a)P + WD rats compared to B(a)P + RD rats and controls (p < 0.05). The larger rat model system used in this study allows for studying more advanced tumor phenotypes over a longer duration and delineating the role of diet - toxicant interactions in sporadic colon tumor development.
Collapse
Affiliation(s)
- Kelly L Harris
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emmanuel Okoro
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zhongmao Guo
- Department of Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Mary K Washington
- Department of Pathology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - James M Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
39
|
Khalil A, Omran H. The role of gut in type 2 diabetes mellitus during whole body gamma irradiation in high-fat diet Wistar rats. Int J Radiat Biol 2017; 94:137-149. [PMID: 29252073 DOI: 10.1080/09553002.2018.1419300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE The effects of a low rate (100 mGy/min) fractionated whole body gamma irradiation (FWBGI) at different doses were assessed using a real-time PCR technique on the expression of some target genes implicated in the development of type 2 diabetes mellitus in high-fat diet (HFD) Wistar rats. METHOD HFD Wistar rats were exposed to different doses (12, 24 and 48 Gy) divided into 24 fractions (three times a week for two months), thus, the daily doses were 0.5, 1, 2 Gy, respectively. Total RNA was extracted and the expression of target genes was measured in the four intestinal segments (duodenum, jejunum, ileum and colon). RESULTS The pre-diabetic state already induced by HFD was found to be improved by irradiation exposure. This irradiation effect occurs mainly via altered anti-diabetic gene expressions (mRNA and protein levels) of the incretin glucagon-like peptide-1 (GLP-1) overall bowel segments except the colon which has its own specific response to irradiation exposure by the induction of the insulin receptor substrate 4 (IRS-4) and the uncoupling protein 3 (UCP3). CONCLUSIONS Results could be of great importance suggesting for the first time, a protective role for FWBGI on HFD animal models by increasing GLP-1 and UCP3 levels.
Collapse
Affiliation(s)
- Ayman Khalil
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| | - Hasan Omran
- a Department of Radiation Medicine, Human Nutrition Laboratory , Atomic Energy Commission of Syria (AECS) , Damascus , Syria
| |
Collapse
|
40
|
Hou J, Sun H, Huang X, Zhou Y, Zhang Y, Yin W, Xu T, Cheng J, Chen W, Yuan J. Exposure to polycyclic aromatic hydrocarbons and central obesity enhanced risk for diabetes among individuals with poor lung function. CHEMOSPHERE 2017; 185:1136-1143. [PMID: 28764134 DOI: 10.1016/j.chemosphere.2017.07.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Some studies have shown an association between obesity or exposure to polycyclic aromatic hydrocarbons (PAHs) and the risk of diabetes. This study aimed to investigate the interaction of obesity and urinary monohydroxy-PAHs (OH-PAHs) on diabetes. Individuals (n = 2716) were drawn from the baseline survey of the Wuhan-Zhuhai Cohort Study. They completed the physical examination, measurements of lung function, biochemical indices and urinary OH-PAHs levels. Additive effect of obesity and urinary ΣOH-PAHs levels on diabetes was assessed by calculating the relative excess risk due to interaction (RERI) and the attributable proportion (AP) due to interaction. Several urinary OH-PAHs were positively associated with diabetes in individuals with central obesity or normal weight (p < 0.05 for all). Among individuals with poor lung function, the RERI between urinary ΣOH-PAHs and waist circumstance (WC, RERI: 0.866, 95% CI: -0.431, 2.164, p = 0.192) or waist-to-height ratio (WHtR, RERI: 1.091, 95% CI: -0.124, 2.305, p = 0.078) was found; the AP due to the interaction between urinary ΣOH-PAHs and WC or WHtR was 0.383 (95% CI: -0.07, 0.80, p = 0.086) or 0.465 (95% CI: 0.019, 0.912, p = 0.04). The results indicated that central obesity may enhance the effect of exposure to background PAHs on diabetes in individuals with poor lung function.
Collapse
Affiliation(s)
- Jian Hou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Huizhen Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Xiji Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Youjian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Wenjun Yin
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Tian Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Juan Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
41
|
Nadal A, Quesada I, Tudurí E, Nogueiras R, Alonso-Magdalena P. Endocrine-disrupting chemicals and the regulation of energy balance. Nat Rev Endocrinol 2017; 13:536-546. [PMID: 28524168 DOI: 10.1038/nrendo.2017.51] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.
Collapse
Affiliation(s)
- Angel Nadal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Ivan Quesada
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| | - Eva Tudurí
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Instituto de Investigaciones Sanitarias (IDIS), Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS) and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Avda. Barcelona s/n, 15706 Santiago de Compostela, Spain
- Department of Physiology, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela, Calle San Francisco s/n, 15706 Santiago de Compostela, Spain
| | - Paloma Alonso-Magdalena
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioengineering, Miguel Hernández University of Elche, Avda Universidad s/n, 03202 Elche, Alicante, Spain
| |
Collapse
|
42
|
Liu G, Zong G, Hu FB, Willett WC, Eisenberg DM, Sun Q. Cooking Methods for Red Meats and Risk of Type 2 Diabetes: A Prospective Study of U.S. Women. Diabetes Care 2017; 40:1041-1049. [PMID: 28611054 PMCID: PMC5521980 DOI: 10.2337/dc17-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/06/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study examined different cooking methods for red meats in relation to type 2 diabetes (T2D) risk among U.S. women who consumed red meats regularly (≥2 servings/week). RESEARCH DESIGN AND METHODS We monitored 59,033 women (1986-2012) aged 30-55 years and free of diabetes, cardiovascular disease, and cancer at baseline when information on frequency of different cooking methods for red meats, including broiling, barbequing, roasting, pan-frying, and stewing/boiling, was collected. RESULTS During 1.24 million person-years of follow-up, we documented 6,206 incident cases of T2D. After multivariate adjustment including red meat cooking methods, total red meat and processed red meat intake were both associated with a monotonically increased T2D risk (both P trend <0.05). After multivariate adjustment including total red meat intake, a higher frequency of broiling, barbequing, and roasting red meats was each independently associated with a higher T2D risk. When comparing ≥2 times/week with <1 time/month, the hazard ratios (HRs) and 95% CI of T2D were 1.29 (1.19, 1.40; P trend <0.001) for broiling, 1.23 (1.11, 1.38; P trend <0.001) for barbequing, and 1.11 (1.01, 1.23; P trend = 0.14) for roasting. In contrast, the frequency of stewing/boiling red meats was not associated with T2D risk, and an inverse association was observed for pan-frying frequency and T2D risk. The results remained similar after cooking methods were further mutually adjusted. CONCLUSIONS Independent of total red meat consumption, high-temperature and/or open-flame cooking methods for red meats, especially broiling and barbequing, may further increase diabetes risk among regular meat eaters.
Collapse
Affiliation(s)
- Gang Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Geng Zong
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Walter C Willett
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - David M Eisenberg
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA .,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Yang K, Jiang X, Cheng S, Chen C, Cao X, Tu B. Effects of coke oven emissions and benzo[a]pyrene on blood pressure and electrocardiogram in coke oven workers. J Occup Health 2016; 59:1-7. [PMID: 27885241 PMCID: PMC5388607 DOI: 10.1539/joh.15-0264-oa] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: To evaluate the effects of occupational exposures to coke oven emissions (COEs) and benzo[a]pyrene (B[a]P) on the prevalence of hypertension and abnormal electrocardiogram (ECG) in coke oven workers. Methods: We included 880 coke oven workers and 710 oxygen employees in the exposed and control groups, respectively. Blood pressure (BP), ECG, blood lipid levels, and glucose levels of all subjects were measured. COE and B[a]P concentrations at the bottom, side, and top of the oven and control plants were estimated by weighing and high-performance liquid chromatography. Results: The COE concentration at the top and side was higher than that at the bottom (P < 0.05). The levels of B[a]P at the top and side significantly exceeded the limit value. Abnormal BP, ECG, the detection ratio of hypertension and left ventricular high voltage were significantly greater in the exposed group than in the control group (P < 0.05). The logistic regression analysis results revealed that age and B[a]P exposure were risk factors for hypertension in coke oven workers (P < 0.05) and both were risk factors for abnormal ECG (P < 0.05). Moreover, B[a]P exposure, age, and gender were risk factors for impaired fasting glucose in coke oven workers (P < 0.05). Conclusions: B[a]P and COE exposures are risk factors for hypertension and abnormal ECG in coke oven workers.
Collapse
Affiliation(s)
- Kai Yang
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University
| | | | | | | | | | | |
Collapse
|
44
|
Zhang Z, Zhang XX, Wu B, Yin J, Yu Y, Yang L. Comprehensive insights into microcystin-LR effects on hepatic lipid metabolism using cross-omics technologies. JOURNAL OF HAZARDOUS MATERIALS 2016; 315:126-134. [PMID: 27208774 DOI: 10.1016/j.jhazmat.2016.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Microcystin-LR (MC-LR) can induce hepatic tissue damages and molecular toxicities, but its effects on lipid metabolism remain unknown. This study investigated the effects of MC-LR exposure on mice lipid metabolism and uncovered the underlying mechanism through metabonomic, transcriptomic and metagenomic analyses after administration of mice with MC-LR by gavage for 28 d. Increased liver weight and abdominal fat weight, and evident hepatic lipid vacuoles accumulation were observed in the mice fed with 0.2mg/kg/d MC-LR. Serum nuclear magnetic resonance analysis showed that MC-LR treatment altered the levels of serum metabolites including triglyceride, unsaturated fatty acid (UFA) and very low density lipoprotein. Digital Gene Expression technology was used to reveal differential expression of hepatic transcriptomes, demonstrating that MC-LR treatment disturbed hepatic UFA biosynthesis and activated peroxisome proliferator-activated receptor (PPAR) signaling pathways via Pparγ, Fabp1 and Fabp2 over-expression. Metagenomic analyses of gut microbiota revealed that MC-LR exposure also increased abundant ratio of Firmicutes vs. Bacteroidetes in gut and altered biosynthetic pathways of various microbial metabolic and pro-inflammatory molecules. In conclusion, oral MC-LR exposure can induce hepatic lipid metabolism disorder mediated by UFA biosynthesis and PPAR activation, and gut microbial community shift may play an important role in the metabolic disturbance.
Collapse
Affiliation(s)
- Zongyao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yunjiang Yu
- Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Environmental Protection of PRC, Guangzhou 510655, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
45
|
Dzhambov AM, Dimitrova DD. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria. Noise Health 2016; 18:133-42. [PMID: 27157686 PMCID: PMC4918667 DOI: 10.4103/1463-1741.181996] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to L(den) 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM) 2.5 25.0-66.8 μg/m 3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m 3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). L(den) remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria.
Collapse
Affiliation(s)
- Angel M Dzhambov
- Department of Hygiene and Ecomedicine, Health Economics and general Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Donka D Dimitrova
- Department of Health Management, Health Economics and general Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
46
|
Bathina S, Srinivas N, Das UN. BDNF protects pancreatic β cells (RIN5F) against cytotoxic action of alloxan, streptozotocin, doxorubicin and benzo(a)pyrene in vitro. Metabolism 2016; 65:667-684. [PMID: 27085775 DOI: 10.1016/j.metabol.2016.01.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The study was conducted to observe whether brain-derived neurotrophic factor (BDNF) has cytoprotective actions against alloxan (AL), streptozotocin (STZ), doxorubicin (DB) and benzo(a)pyrene (BP) compounds in vitro that may account for its beneficial action in diabetes mellitus. MATERIALS AND METHODS This in vitro study was performed using rat insulinoma (RIN5F) cells. Possible cytoprotective action of BDNF (using pre-treatment, simultaneous and post-treatment schedules of RIN5F cells with BDNF) against the four chemicals tested was evaluated using MTT and apoptosis assays. Possible mechanism of cytoprotective action of BDNF was assessed by measuring BCl2/IKB-β/Pdx mRNA transcripts and anti-oxidant levels in RIN5F cells. Effect of alloxan, STZ, doxorubicin and BP on the production of BDNF by RIN5F cells was also studied. RESULTS Results of the present study revealed that BDNF in the doses (100ng>50ng>10ng/ml) has significant cytoprotection (P<0.001, P<0.01) on cytotoxic action of AL, STZ, DB and BP against rat insulinoma RIN5F (5×10(4) cells/100μl) cells in vitro. It was observed that AL, STZ, DB and BP inhibited BDNF production significantly (P<0.001) in a dose-dependent manner by RIN5F cells (0.5×10(6) cells/500μl) in vitro, while BDNF not only prevented apoptosis induced by these four chemicals but also significantly increased (P<0.001) BCl2/IKB-β/Pdx mRNA transcripts and restored anti-oxidant levels (P<0.01) in RIN5F cells to normal. DISCUSSION These results suggest that BDNF has potent cytoprotective actions, restores anti-oxidant defenses to normal and thus, prevents apoptosis and preserves insulin secreting capacity of β cells. In addition, BDNF enhanced viability of RIN 5F in vitro. Thus, BDNF not only has anti-diabetic actions but also preserves pancreatic β cells integrity and enhances their viability. These results imply that BDNF functions as an endogenous cytoprotective molecule that may explain its beneficial actions in some neurological conditions as well.
Collapse
Affiliation(s)
- Siresha Bathina
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India
| | - Nanduri Srinivas
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Undurti N Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam 530048, India; UND Life Sciences, 2020 S 360th St, #K-202, Federal Way, WA 98003, USA
| |
Collapse
|
47
|
Banks LD, Amoah P, Niaz MS, Washington MK, Adunyah SE, Ramesh A. Olive oil prevents benzo(a)pyrene [B(a)P]-induced colon carcinogenesis through altered B(a)P metabolism and decreased oxidative damage in Apc(Min) mouse model. J Nutr Biochem 2015; 28:37-50. [PMID: 26878781 DOI: 10.1016/j.jnutbio.2015.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Colon cancer ranks third in cancer-related mortalities in the United States. Many studies have investigated factors that contribute to colon cancer in which dietary and environmental factors have been shown to play an integral role in the etiology of this disease. Specifically, human dietary intake of environmental carcinogens such as polycyclic aromatic hydrocarbons has generated interest in looking at how it exerts its effects in gastrointestinal carcinogenesis. Therefore, the objective of this study was to investigate the preventative effects of olive oil on benzo(a)pyrene [B(a)P]-induced colon carcinogenesis in adult Apc(Min) mice. Mice were assigned to a control (n=8) or treatment group (n=8) consisting of 25, 50 and 100-μg B(a)P/kg body weight (bw) dissolved in tricaprylin [B(a)P-only group] or olive oil daily via oral gavage for 60 days. Our studies showed that Apc(Min) mice exposed to B(a)P developed a significantly higher number (P<0.05) of larger dysplastic adenomas compared to those exposed to B(a)P + olive oil. Treatment of mice with B(a)P and olive oil significantly altered (P<0.05) the expression of drug-metabolizing enzymes in both the colon and liver tissues. However, only GST activity was significantly higher (P<0.05) in the liver of mice treated with 50- and 100-μg B(a)P/kg bw + olive oil. Lastly, olive oil promoted rapid detoxification of B(a)P by decreasing its organic metabolite concentrations and also decreasing the extent of DNA damage to colon and liver tissues (P<0.05). These results suggest that olive oil has a protective effect against B(a)P-induced colon tumors.
Collapse
Affiliation(s)
- Leah D Banks
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| | - Priscilla Amoah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| | - Mohammad S Niaz
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| | - Mary K Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208
| | - Aramandla Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208.
| |
Collapse
|
48
|
Kan H, Zhao F, Zhang XX, Ren H, Gao S. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11894-11902. [PMID: 26378342 DOI: 10.1021/acs.est.5b02990] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Goldfish (Carassius auratus) were exposed to 0-100 μg/L pentachlorophenol (PCP) for 28 days to investigate the correlations of fish gut microbial community shift with the induced toxicological effects. PCP exposure caused accumulation of PCP in the fish intestinal tract in a time- and dose-dependent manner, while hepatic PCP reached the maximal level after a 21 day exposure. Under the relatively higher PCP stress, the fish body weight and liver weight were reduced and hepatic CAT and SOD activities were inhibited, demonstrating negative correlations with the PCP levels in liver and gut content (R < -0.5 and P < 0.05 each). Pyrosequencing of the 16S rRNA gene indicated that PCP exposure increased the abundance of Bacteroidetes in the fish gut. Within the Bacteroidetes phylum, the Bacteroides genus had the highest abundance, which was significantly correlated with PCP exposure dosage and duration (R > 0.5 and P < 0.05 each). Bioinformatic analysis revealed that Bacteroides showed quantitatively negative correlations with Chryseobacterium, Microbacterium, Arthrobacter, and Legionella in the fish gut, and the Bacteroidetes abundance, Bacteroides abundance, and Firmicutes/Bacteroidetes ratio played crucial roles in the reduction of body weight and liver weight under PCP stress. The results may extend our knowledge regarding the roles of gut microbiota in ecotoxicology.
Collapse
Affiliation(s)
- Haifeng Kan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University , Nanjing 210023, China
| |
Collapse
|
49
|
Chiang VSC, Quek SY. The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms. Crit Rev Food Sci Nutr 2015; 57:1153-1173. [DOI: 10.1080/10408398.2014.967833] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Siew-Young Quek
- Department of Food Sciences, School of Chemistry Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Yang L, Zhou Y, Sun H, Lai H, Liu C, Yan K, Yuan J, Wu T, Chen W, Zhang X. Dose-response relationship between polycyclic aromatic hydrocarbon metabolites and risk of diabetes in the general Chinese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:24-30. [PMID: 25194268 DOI: 10.1016/j.envpol.2014.08.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/22/2014] [Accepted: 08/11/2014] [Indexed: 06/03/2023]
Abstract
The incidence of diabetes is increasing rapidly in Chinese population, and it has been postulated that environmental factors may play a role in the etiology of diabetes. Therefore, we aimed to investigate the association between PAHs exposure and risk of diabetes in a community-based population of 2824 participants with completed questionnaires, measurements of biochemical indices, and urinary PAHs metabolites. We found that elevated urinary PAHs metabolites were associated, in a dose-dependent manner, with increased risk of diabetes. Particularly, these associations were more evident in subjects who were female, less than 55 years old, nonsmokers, and normal weight. In addition, there was a modest improvement in diabetes discrimination of prediction models when incorporating certain PAHs metabolites into conventional risk factors (CRF). Overall, our data suggested that there may be a dose-dependent relationship between PAHs metabolites and risk of diabetes among general Chinese population.
Collapse
Affiliation(s)
- Liangle Yang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huizhen Sun
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanpeng Lai
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanyao Liu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Yan
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Chen
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|