1
|
Maadurshni GB, Nagarajan M, Mahalakshmi B, Sivasubramanian J, Hemamalini V, Manivannan J. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) exposure induces hepatotoxicity and nephrotoxicity - role of oxidative stress, mitochondrial dysfunction and pathways of cytotoxicity. Toxicol Res (Camb) 2024; 13:tfae173. [PMID: 39417036 PMCID: PMC11474237 DOI: 10.1093/toxres/tfae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Objective Bisphenol A (BPA) is a ubiquitous pollutant worldwide and 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is considered a major active metabolite of BPA with a wide range of potent toxicological properties. However, its adverse outcome pathway (AOP) on the hepatic and renal system has not yet been explored. Methods Hence, the current study evaluated its effect on cell survival, oxidative stress, and apoptosis. In addition, the influence of signalling pathways on cytotoxicity and ROS generating enzymes (NOX2 and XO) on oxidative stress was explored by siRNA knockdown experiments. Further, its molecular interaction with SOD, CAT, and HSA (molecular docking and dynamics) was evaluated and validated with spectroscopy (fluorescence and FTIR) based methods. Results The outcome indicates that MBP exposure dose dependently increased the cytotoxic response, oxidative stress, and apoptosis in both hepatocytes and kidney cells. Further, MAPK signalling pathways and oxidative stress influenced the overall cytotoxic response in both cells. In addition, the stimulatory (NOX2 and XO) and inhibitory (SOD and CAT) effects of MBP were observed, along with a robust interaction with HSA. Conclusions The overall observation illustrates that MBP exposure adversely impacts hepatic and renal cells through oxidative stress and relevant molecular pathways which may connect the missing links during risk assessment of BPA.
Collapse
Affiliation(s)
| | - Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65212, United States of America
| | - Balamurali Mahalakshmi
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | | | - Vedagiri Hemamalini
- Department of Bioinformatics, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India
| |
Collapse
|
2
|
Chou L, Zhang S, Luo W, Zhu W, Guo J, Tu K, Tan H, Wang C, Wei S, Yu H, Zhang X, Shi W. Identification of Key Toxic Substances Considering Metabolic Activation: A Combination of Transcriptome and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14831-14842. [PMID: 39120612 DOI: 10.1021/acs.est.4c03683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There have been numerous studies using effect-directed analysis (EDA) to identify key toxic substances present in source and drinking water, but none of these studies have considered the effects of metabolic activation. This study developed a comprehensive method including a pretreatment process based on an in vitro metabolic activation system, a comprehensive biological effect evaluation based on concentration-dependent transcriptome (CDT), and a chemical feature identification based on nontarget chemical analysis (NTA), to evaluate the changes in the toxic effects and differences in the chemical composition after metabolism. Models for matching metabolites and precursors as well as data-driven identification methods were further constructed to identify toxic metabolites and key toxic precursor substances in drinking water samples from the Yangtze River. After metabolism, the metabolic samples showed a general trend of reduced toxicity in terms of overall biological potency (mean: 3.2-fold). However, metabolic activation led to an increase in some types of toxic effects, including pathways such as excision repair, mismatch repair, protein processing in endoplasmic reticulum, nucleotide excision repair, and DNA replication. Meanwhile, metabolic samples showed a decrease (17.8%) in the number of peaks and average peak area after metabolism, while overall polarity, hydrophilicity, and average molecular weight increased slightly (10.3%). Based on the models for matching of metabolites and precursors and the data-driven identification methods, 32 chemicals were efficiently identified as key toxic substances as main contributors to explain the different transcriptome biological effects such as cellular component, development, and DNA damage related, including 15 industrial compounds, 7 PPCPs, 6 pesticides, and 4 natural products. This study avoids the process of structure elucidation of toxic metabolites and can trace them directly to the precursors based on MS spectra, providing a new idea for the identification of key toxic pollutants of metabolites.
Collapse
Affiliation(s)
- Liben Chou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenrui Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenxuan Zhu
- Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, Minnesota 55105, United States
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Keng Tu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chang Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
3
|
Silva GKD, de Arruda JAA, Almeida TFA, Oliveira SR, Rocha PADS, Mesquita RA, Cardeal ZDL, Menezes HC, Diniz IMA, Macari S, Leopoldino AM, Silva TA. Effects of bisphenol A on murine salivary glands and human tumor cell lines. Exp Mol Pathol 2023; 134:104870. [PMID: 37690528 DOI: 10.1016/j.yexmp.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with a potential role in endocrine cancers. However, the effects of BPA on the salivary glands have been barely explored. We investigated the impact of in vivo sub-chronic exposure to BPA and its in vitro effects on human salivary gland mucoepidermoid carcinoma cell lines. Male and female mice were exposed to BPA (30 mg/kg/day). Sublingual and submandibular salivary glands from an estrogen-deficiency model were also analyzed. BPA concentration in salivary glands was evaluated by gas chromatography coupled to ion trap mass spectrometry. Immunohistochemical analysis using anti-p63 and anti-α-SMA antibodies was performed on mouse salivary gland tissues. Gene expression of estrogen receptors alpha and beta, P63 and α-SMA was quantified in mouse salivary gland and/or mucoepidermoid (UM-HMC-1 and UM-HMC-3A) cell lines. Cell viability, p63 and Ki-67 immunostaining were evaluated in vitro. BPA disrupted the tissue architecture of the submandibular and sublingual glands, particularly in female mice, and increased the expression of estrogen receptors and p63, effects that were accompanied by significant BPA accumulation in these tissues. Conversely, ovariectomy slightly impacted BPA-induced morphological changes. In vitro, BPA did not affect the proliferation of neoplastic cells, but augmented the expression of p63 and estrogen receptors. The present data highlight a potential harmful effect of BPA on salivary gland tissues, particularly in female mice, and salivary gland tumor cells. Our findings suggest that estrogen-dependent pathways may orchestrate the effects of BPA in salivary glands.
Collapse
Affiliation(s)
- Gabriela Kelly da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiana Fernandes Araújo Almeida
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Alves da Silva Rocha
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Zenilda de Lourdes Cardeal
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helvécio Costa Menezes
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Casas-Rodríguez A, Moyano R, Molina-Hernández V, Cameán AM, Jos A. Potential oestrogenic effects (following the OECD test guideline 440) and thyroid dysfunction induced by pure cyanotoxins (microcystin-LR, cylindrospermopsin) in rats. ENVIRONMENTAL RESEARCH 2023; 226:115671. [PMID: 36907345 DOI: 10.1016/j.envres.2023.115671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Potential endocrine-disrupting properties of cyanotoxins, such as microcystin-LR (MC-LR) and cylindrospermopsin (CYN) are of concern due to their increasing occurrence, the scarcity of reports on the topic (particularly for CYN) and the impact of human's health at different levels. Thus, this work performed for the first time the uterotrophic bioassay in rats, following the Organization for Economic Cooperation and Development (OECD) Test Guideline 440, to explore the oestrogenic properties of CYN and MC-LR (75, 150, 300 μg/kg b.w./day) in ovariectomized (OVX) rats. Results revealed neither changes in the wet and blotted uterus weights nor in the morphometric study of uteri. Moreover, among the steroid hormones analysed in serum, the most remarkable effect was the dose-dependent increase in progesterone (P) levels in rats exposed to MC-LR. Additionally, a histopathology study of thyroids and serum levels of thyroids hormones were determined. Tissue affectation (follicular hypertrophy, exfoliated epithelium, hyperplasia) was observed, as well as increased T3 and T4 levels in rats exposed to both toxins. Taken together, these results point out that CYN and MC-LR are not oestrogenic compounds at the conditions tested in the uterotrophic assay in OVX rats, but, however, thyroid disruption effects cannot be discarded.
Collapse
Affiliation(s)
- Antonio Casas-Rodríguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| | - Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Cordoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Verónica Molina-Hernández
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Facultad de Veterinaria, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Cordoba, Edificio de Sanidad Animal, Campus de Rabanales, Ctra. Madrid-Cádiz Km 396, 14014, Córdoba, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012, Seville, Spain
| |
Collapse
|
5
|
Repeated exposure to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) accelerates ligand-independent activation of estrogen receptors in long-term estradiol-deprived MCF-7 cells. Toxicol Lett 2023; 378:31-38. [PMID: 36863540 DOI: 10.1016/j.toxlet.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
It was previously identified that there may be an active metabolite of bisphenol A (BPA), 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). An in vitro system was developed to detect MBP toxicity to the Michigan Cancer Foundation-7 (MCF-7) cells that had been repeatedly exposed to a low dose of the metabolite. MBP profoundly activated estrogen receptor (ER)-dependent transcription as a ligand, with an EC50 of 2.8 nM. Women are continuously exposed to numerous estrogenic environmental chemicals; but their susceptibility to these chemicals may be significantly altered after menopause. Long-term estrogen-deprived (LTED) cells, which display ligand-independent ER activation, are a postmenopausal breast cancer model derived from MCF-7 cells. In this study, we investigated the estrogenic effects of MBP on LTED cells in a repeated exposure in vitro model. The results suggest that i) nanomolar levels of MBP reciprocally disrupt the balanced expression of ERα and ERβ proteins, leading to the dominant expression of ERβ, ii) MBP stimulates ERs-mediated transcription without acting as an ERβ ligand, and iii) MBP utilizes mitogen-activated protein kinase and phosphatidylinositol-3 kinase signaling to evoke its estrogenic action. Moreover, the repeated exposure strategy was effective for detecting low-dose estrogenic-like effects caused by MBP in LTED cells.
Collapse
|
6
|
Maadurshni GB, Nagarajan M, Priyadharshini S, Singaravelu U, Manivannan J. System-wide health risk prediction for 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene(MBP), a major active metabolite of environmental pollutant and food contaminant - Bisphenol A. Toxicology 2023; 485:153414. [PMID: 36587891 DOI: 10.1016/j.tox.2022.153414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Human exposure to plastic contaminated foods and environmental micro/nano plastic derived chemicals necessitates system-wide health risk assessment. Hence, current study intend to explore the mode of action (MoA) based adverse outcome pathways of 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), the major active metabolite of bisphenol A (BPA). The computational study employed broad range of target prediction, systems biology tools and molecular docking protocols. Further, validation of MBP targets was done using protein-ligand fluorescence quenching assay, endothelial cell culture and chicken embryo vascular angiogenesis models. Interestingly, the current results illustrate that various physiological signaling pathways (MAPK and VEGF related angiogenesis signaling) and disease progression pathways (hypertension, cancer and endocrine disorders) were enriched as potential targets of MBP. Further, docking studies highlights the possible binding mechanism of MBP with important targets including endothelial nitric oxide synthase (eNOS) and serum albumin (BSA). In addition, the validation studies on MBP-BSA interaction (fluorescence quenching), eNOS derived nitric oxide (NOx) generation in endothelial cells and chicken embryo angiogenesis support the system-wide impacts of MBP with highlights on cardiovascular pathogenesis. Thus, the current observation provides novel insights into the system wide impacts of MBP for the futuristic health risk assessment of plastic derived chemicals.
Collapse
Affiliation(s)
| | - Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Saravanan Priyadharshini
- Integrated Biocomputing Lab, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Usha Singaravelu
- Integrated Biocomputing Lab, Department of Bioinformatics, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
7
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|
8
|
Volatilomics as an Emerging Strategy to Determine Potential Biomarkers of Female Infertility: A Pilot Study. Biomedicines 2022; 10:biomedicines10112852. [DOI: 10.3390/biomedicines10112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Due to its high prevalence, infertility has become a prominent public health issue, posing a significant challenge to modern reproductive medicine. Some clinical conditions that lead to female infertility include polycystic ovary syndrome (PCOS), endometriosis, and premature ovarian failure (POF). Follicular fluid (FF) is the biological matrix that has the most contact with the oocyte and can, therefore, be used as a predictor of its quality. Volatilomics has emerged as a non-invasive, straightforward, affordable, and simple method for characterizing various diseases and determining the effectiveness of their current therapies. In order to find potential biomarkers of infertility, this study set out to determine the volatomic pattern of the follicular fluid from patients with PCOS, endometriosis, and POF. The chromatographic data integration was performed through solid-phase microextraction (SPME), followed by gas chromatography–mass spectrometry (GC-MS). The findings pointed to specific metabolite patterns as potential biomarkers for the studied diseases. These open the door for further research into the relevant metabolomic pathways to enhance infertility knowledge and diagnostic tools. An extended investigation may, however, produce a new mechanistic understanding of the pathophysiology of the diseases.
Collapse
|
9
|
Hirao-Suzuki M. Mechanisms of Cancer Malignancy Elicited by Environmental Chemicals: Analysis Focusing on Cadmium and Bisphenol A. YAKUGAKU ZASSHI 2022; 142:1161-1168. [DOI: 10.1248/yakushi.22-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Wei Y, Gao C, Cui J, Shen H, Zhao Y, Zhou S, Ye C, Du Y, Li J, Wu D. The response of electrochemical method to estrogen effect and the tolerance to culture factors: Comparison with MTT and cell counting methods. Anal Chim Acta 2022; 1233:340514. [DOI: 10.1016/j.aca.2022.340514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
11
|
Sugiyama KI, Kinoshita M, Grúz P, Kasamatsu T, Honma M. Bisphenol-A reduces DNA methylation after metabolic activation. GENES AND ENVIRONMENT : THE OFFICIAL JOURNAL OF THE JAPANESE ENVIRONMENTAL MUTAGEN SOCIETY 2022; 44:20. [PMID: 35879744 PMCID: PMC9316663 DOI: 10.1186/s41021-022-00249-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Bisphenol-A (BPA) is an important environmental contaminant with adverse health effects suspected to be mediated through epigenetic mechanisms. We had reported that the FLO1-dependent flocculation of transgenic yeast expressing human DNA methyltransferase (DNMT yeast) is a useful tool in epigenotoxicology studies. In this report, we have investigated the effects of BPA in the presence of metabolic activation (S-9 mix) on the transcription level of the FLO1 gene in the DNMT yeast. In the presence of metabolic activation, BPA inhibited the intensity of green fluorescence reporter protein (GFP) driven by the FLO1 promoter. A metabolite of BPA, 4-methyl-2,4-bis(p-hydroxyphenyl) pent-1-ene (MBP), also exhibited similar inhibitory effect. Furthermore, BPA in the presence of S-9 mix had only a weak while MBP had no inhibitory effects on the expression of modified GFP reporter gene under the control of FLO1 promoter with reduced CpG motifs. Aforementioned behavior was confirmed by the inhibition of flocculation as well as FLO1 gene mRNA expression. In addition, the global DNA methylation level in the human HEK293 cells was also reduced by MBP. These results indicate that BPA metabolites have inhibitory effect on DNA methylation. Our approach offers a novel in vitro method for screening for chemicals that can alter the epigenome by a mechanism dependent on their metabolic activation.
Collapse
Affiliation(s)
- Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Mawo Kinoshita
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Toshio Kasamatsu
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Masamitsu Honma
- Division of General Affairs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
12
|
Schönemann AM, Moreno Abril SI, Diz AP, Beiras R. The bisphenol A metabolite MBP causes proteome alterations in male Cyprinodon variegatus fish characteristic of estrogenic endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118936. [PMID: 35124124 DOI: 10.1016/j.envpol.2022.118936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The toxicological status of bisphenol A (BPA) is under strong debate. Whereas in vitro it is an agonist of the estrogen receptor with a potency ca. 105-fold lower than the natural female hormone estradiol, in vivo exposure causes only mild effects at concentration thresholds environmentally not relevant and inconsistent among species. By using a proteomic approach, shotgun liver proteome analysis, we show that 7-d exposure to 10 μg/L of the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), and not the same exposure to the parental molecule BPA, alters the liver proteome of male Cyprinodon variegatus fish. Different physiological and environmental conditions leading to biotransformation of BPA to MBP may partly explain the conflicting results so far reported for in vivo BPA exposures. The pattern of alteration induced by MBP is similar to that caused by estradiol, and indicative of estrogenic endocrine disruption. MBP enhanced ribosomal activity, protein synthesis and transport, with upregulation of 91% of the ribosome-related proteins, and 12 proteins whose expression is regulated by estrogen-responsive elements, including vitellogenin and zona pellucida. Whey acidic protein (WAP) was the protein most affected by MBP exposure (FC = 68). This result points at WAP as novel biomarker for xenoestrogens.
Collapse
Affiliation(s)
- Alexandre M Schönemann
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Sandra Isabel Moreno Abril
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain
| | - Angel P Diz
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, Galicia, Spain
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo (CIM-UVigo), Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, Vigo, Galicia, Spain.
| |
Collapse
|
13
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int J Mol Sci 2022; 23:ijms23052411. [PMID: 35269554 PMCID: PMC8910111 DOI: 10.3390/ijms23052411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Preterm birth remains to be one of the most prevalent obstetric complications worldwide. Since there are multiple etiological factors associated with this disease process, an integrative literature search in PubMed and Scopus databases on possible mechanism of action and effect of bisphenols on exposure on human or animal placental samples in preterm birth was conducted. From 2332 articles on initial literature search, 63 studies were included for full data extraction. Altogether, several pathways were shown to be possibly affected by bisphenols, leading to dysregulations in structural and endocrine foundation in the placenta, potential induction of senescence and failure of decidualization in the decidua, and possible propagation of inflammation in the fetal membranes. Combined, these actions may eventually counteract bisphenol-induced relaxation of the myometrium and promote contractility alongside fetal membrane weakening. In totality, these individual impairments in gestation-critical processes may lead to failure of maintenance of pregnancy, and thus effecting preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
14
|
Hirao-Suzuki M, Nagase K, Suemori T, Tsutsumi K, Shigemori E, Tanaka M, Takiguchi M, Sugihara N, Yoshihara S, Takeda S. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) Targets Estrogen Receptor β, to Evoke the Resistance of Human Breast Cancer MCF-7 Cells to G-1, an Agonist for G Protein-Coupled Estrogen Receptor 1. Biol Pharm Bull 2021; 44:1524-1529. [PMID: 34602561 DOI: 10.1248/bpb.b21-00417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) has been shown to induce the activation of nuclear estrogen receptor α/β (ERα/β) in both in vitro and in vivo settings. We originally obtained a 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a possible active metabolite of BPA, strongly activating the ERs-mediated transcription in MCF-7 cells with an EC50 of 2.8 nM (i.e., BPA's EC50 = 519 nM). Environmental estrogens can also target G protein-coupled estrogen receptor 1 (GPER1), a membrane-type ER. However, the effects of BPA/MBP on GPER1, have not yet been fully resolved. In this study, we used MCF-7, a ERα/ERβ/GPER1-positive human breast cancer cell line, as a model to investigate the effects of the exposure to BPA or MBP. Our results revealed that at concentrations below 1 nM MBP, but not BPA, downregulates the expression of GPER1 mRNA via upregulated ERβ, and the MCF-7 cells pre-treated with MBP display resistance to GPER1 agonist G-1-mediated anti-proliferative effects. Because GPER1 can act as a tumor suppressor in several types of cancer including breast cancer, the importance of MBP-mediated decrease in GPER1 expression in breast cancer cells is discussed.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Keita Nagase
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Tatsuya Suemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Kana Tsutsumi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Egao Shigemori
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Michitaka Tanaka
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
15
|
Ramírez V, Gálvez-Ontiveros Y, Porras-Quesada P, Martinez-Gonzalez LJ, Rivas A, Álvarez-Cubero MJ. Metabolic pathways, alterations in miRNAs expression and effects of genetic polymorphisms of bisphenol a analogues: A systematic review. ENVIRONMENTAL RESEARCH 2021; 197:111062. [PMID: 33798517 DOI: 10.1016/j.envres.2021.111062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) is one of the most common endocrine disruptors found in the environment and its harmful health effects in humans and wildlife have been extensively reported One of the main aims of this review was to examine the metabolic pathways of BPA and BPA substitutes and the endocrine disrupting properties of their metabolites. According to the available literature, phase I and phase II metabolic reactions play an important role in the detoxification process of bisphenols (BPs), but their metabolism can also lead to the formation of highly reactive metabolites. The second part of this work addresses the associations between exposure to BPA and its analogues with the alterations in miRNAs expression and the effects of single nucleotide polymorphisms (SNPs). Available scientific evidence shows that BPs can dysregulate the expression of several miRNAs, and in turn, these miRNAs could be considered as epigenetic biomarkers to prevent the development of a variety of BP-mediated diseases. Interestingly, genetic polymorphisms are able to modify the relationship of BPA exposure with the risk of adverse health effects, suggesting that interindividual genetic differences modulate the susceptibility to the effects of environmental contaminants.
Collapse
Affiliation(s)
- Viviana Ramírez
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Patricia Porras-Quesada
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Ana Rivas
- University of Granada, Department of Nutrition and Food Science, Faculty of Pharmacy, Cartuja Campus, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - María Jesús Álvarez-Cubero
- University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| |
Collapse
|
16
|
Huang CC, Yang CY, Su CC, Fang KM, Yen CC, Lin CT, Liu JM, Lee KI, Chen YW, Liu SH, Huang CF. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a Major Active Metabolite of Bisphenol A, Triggers Pancreatic β-Cell Death via a JNK/AMPKα Activation-Regulated Endoplasmic Reticulum Stress-Mediated Apoptotic Pathway. Int J Mol Sci 2021; 22:ijms22094379. [PMID: 33922211 PMCID: PMC8122752 DOI: 10.3390/ijms22094379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.
Collapse
Affiliation(s)
- Cheng-Chin Huang
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Ching-Ting Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Jui-Min Liu
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan; (C.-C.H.); (J.-M.L.); (K.-IL.)
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (S.-H.L.); (C.-F.H.)
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Correspondence: (S.-H.L.); (C.-F.H.)
| |
Collapse
|
17
|
Huang CF, Liu SH, Su CC, Fang KM, Yen CC, Yang CY, Tang FC, Liu JM, Wu CC, Lee KI, Chen YW. Roles of ERK/Akt signals in mitochondria-dependent and endoplasmic reticulum stress-triggered neuronal cell apoptosis induced by 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene, a major active metabolite of bisphenol A. Toxicology 2021; 455:152764. [PMID: 33771661 DOI: 10.1016/j.tox.2021.152764] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
Bisphenol A (BPA) is recognized as a harmful pollutant in the worldwide. Growing studies have reported that BPA can cause adverse effects and diseases in human, and link to a potential risk factor for development of neurodegenerative diseases (NDs). 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which generated in the mammalian liver after BPA exposure, is a major active metabolite of BPA. MBP has been suggested to exert greater toxicity than BPA. However, the molecular mechanism of MBP on the neuronal cytotoxicity remains unclear. In this study, MBP exposure significantly reduced Neuro-2a cell viability and induced apoptotic events that MBP (5-15 μM) exhibited greater neuronal cytotoxicity than BPA (50-100 μM). The mitochondria-dependent apoptotic signals including the decrease in mitochondrial membrane potential (MMP) and the increase in cytosolic apoptosis-induced factor (AIF), cytochrome c release, and Bax protein expression were involved in MBP (10 μM)-induced Neuro-2a cell death. Exposure of Neuro-2a cells to MBP (10 μM) also triggered endoplasmic reticulum (ER) stress through the induction of several key molecules including glucose-regulated protein (GRP)78, C/EBP homologous protein (CHOP), X-box binding protein (XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4 and ATF6, and caspase-12. Pretreatment with 4-PBA (an ER stress inhibitor) and specific siRNAs for GRP78, CHOP, and XBP-1 significantly suppressed the expression of these ER stress-related proteins and the activation of caspase-12/-3/-7 in MBP-exposed Neuro-2a cells. Furthermore, MBP (10 μM) exposure dramatically increased the activation of extracellular regulated protein (ERK)1/2 and decreased Akt phosphorylation. Pretreatment with PD98059 (an ERK1/2 inhibitor) and transfection with the overexpression of activation of Akt1 (myr-Akt1) effectively suppressed MBP-induced apoptotic and ER stress-related signals. Collectively, these results demonstrate that MBP exposure exerts neuronal cytotoxicity via the interplay of ERK activation and Akt inactivation-regulated mitochondria-dependent and ER stress-triggered apoptotic pathway, which ultimately leads to neuronal cell death.
Collapse
Affiliation(s)
- Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Ching-Yao Yang
- Department of Surgery, National Taiwan University Hospital, and Department of Surgery, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua County, 500, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
18
|
Molecular interactions of thyroxine binding globulin and thyroid hormone receptor with estrogenic compounds 4-nonylphenol, 4-tert-octylphenol and bisphenol A metabolite (MBP). Life Sci 2020; 253:117738. [PMID: 32360618 DOI: 10.1016/j.lfs.2020.117738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
AIM Endocrine disruption due to environmental chemical contaminants is a global human health issue. The aim of present study was to investigate the structural binding aspects of possible interference of commonly detected environmental contaminants on thyroid function. MATERIAL AND METHODS Three compounds, 4-tert-octylphenol (4-tert-OP), 4-nonylphenol (4-NP), and 4-methyl-2,4-bis(4-hydroxypentyl)pent-1-ene (MBP) were subjected to induced fit docking (IFD) against thyroxine binding globulin (TBG) and thyroid hormone receptor (THR). Structural analysis included molecular interactions of the amino acid residues and binding energy estimation between the ligands and the target proteins. KEY RESULTS All the ligands were successfully placed in the ligand binding pocket of TBG and THR using induced fit docking (IFD). The IFD results revealed high percentage of commonality in interacting amino acid residues between the aforementioned compounds and the native ligand for both TBG and THR. The results of our study further revealed that all the compounds have the potential to interfere with thyroid transport and signaling. However, MBP showed higher binding affinity for both TBG and THR, suggesting higher thyroid disruptive potential as compared to 4-t-OP and 4-NP. Furthermore, our results also suggest that the reported disruptive effects of BPA could actually be exerted through its metabolite; MBP. SIGNIFICANCE This work implies that all the three compounds 4-NP, 4-t-OP and especially MBP have the potential to interfere with thyroid hormone transport and signaling. This potentially leads to disruption of thyroid hormone function.
Collapse
|
19
|
Mentor A, Bornehag CG, Jönsson M, Mattsson A. A suggested bisphenol A metabolite (MBP) interfered with reproductive organ development in the chicken embryo while a human-relevant mixture of phthalate monoesters had no such effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:66-81. [PMID: 32077375 DOI: 10.1080/15287394.2020.1728598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and phthalate diesters are ubiquitous environmental contaminants. While these compounds have been reported as reproductive toxicants, their effects may partially be attributed to metabolites. The aim of this study was to examine reproductive organ development in chicken embryos exposed to the BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP; 100 µg/g egg) or a human-relevant mixture of 4 phthalate monoesters (85 µg/g egg). The mixture was designed within the EU project EDC-MixRisk based upon a negative association with anogenital distance in boys at 21 months of age in a Swedish pregnancy cohort. Chicken embryos were exposed in ovo from an initial stage of gonad differentiation (embryonic day 4) and dissected two days prior to anticipated hatching (embryonic day 19). No discernible effects were noted on reproductive organs in embryos exposed to the mixture. MBP-treated males exhibited retention of Müllerian ducts and feminization of the left testicle, while MBP-administered females displayed a diminished the left ovary. In the left testicle of MBP-treated males, mRNA expression of female-associated genes was upregulated while the testicular marker gene SOX9 was downregulated, corroborating a feminizing effect by MBP. Our results demonstrate that MBP, but not the phthalate monoester mixture, disrupts both male and female reproductive organ development in an avian embryo model.
Collapse
Affiliation(s)
- Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
- Department of Environmental Medicine and Public Health, Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| |
Collapse
|
20
|
Renaud L, Huff M, da Silveira WA, Angert M, Haas M, Hardiman G. Genome-Wide Analysis of Low Dose Bisphenol-A (BPA) Exposure in Human Prostate Cells. Curr Genomics 2019; 20:260-274. [PMID: 32030086 PMCID: PMC6983955 DOI: 10.2174/1389202920666190603123040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) have the potential to cause adverse effects on wild-life and human health. Two important EDCs are the synthetic estrogen 17α-ethynylestradiol (EE2) and bisphenol-A (BPA) both of which are xenoestrogens (XEs) as they bind the estrogen receptor and dis-rupt estrogen physiology in mammals and other vertebrates. In the recent years the influence of XEs on oncogenes, specifically in relation to breast and prostate cancer has been the subject of considerable study.
Collapse
Affiliation(s)
- Ludivine Renaud
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Matthew Huff
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Willian A da Silveira
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Mila Angert
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Martin Haas
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| | - Gary Hardiman
- 1Department of Medicine, Medical University of South Carolina, Charleston, SC, USA; 2MUSC Bioinformatics, Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC, USA; 3MS in Biomedical Sciences Program, Medical University of South Carolina, Charleston, SC, USA; 4School of Biological Sciences and Institute for Global Food Security, Queens University Belfast, BelfastBT9 5AG, UK; 5Department of Medicine, University of California, La Jolla, CA, USA; 6Moores UCSD Cancer Center, University of California San Diego, La Jolla, California, CA, USA; 7Division of Biological Sciences, University of California San Diego, La Jolla, California, CA, USA
| |
Collapse
|
21
|
Lee HS, Park Y. Identification of metabolic pathways related to the bisphenol A-induced adipogenesis in differentiated murine adipocytes by using RNA-sequencing. ENVIRONMENTAL RESEARCH 2019; 171:161-169. [PMID: 30665118 DOI: 10.1016/j.envres.2019.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
We evaluated the effect of bisphenol A and its metabolites on the 3T3-L1 cells, in terms of glucose and lipid metabolism. We also aimed to obtain the information on the genome-wide expression changes in the 3T3-L1 cells treated with Bisphenol A by using RNA-seq, which involves whole-transcriptome sequencing. Differentially Expressed Genes (DEGs) collected from RNA-seq can be used to produce a complete picture of related metabolism pathways. The KEGG pathway was extracted based on the DEGs. Bisphenol A significantly increased the mRNA level of Sterol regulatory element binding transcription factor 1 (Srebf1) and CCAAT/enhancer binding protein alpha (Cebpa). Lipoprotein lipase (Lpl) was also significantly influenced by bisphenol A and its metabolites. Acetyl-Coenzyme A carboxylase beta (Acacb) and Fatty acid synthase (Fasn) mRNA levels were elevated by bisphenol A and its metabolites. The insulin signaling pathway, neurotrophin signaling pathway, and endometrial cancer-related pathway were focused by the functional enrichment analyses, and the pathways were well coincided with recent previous reports. DEGs collected from RNA-seq were confirmed as a reliable evidence in the exposure to the chemicals such as bisphenol A. Collecting pieces of the puzzles obtained from the RNA-seq will help us to produce a complete picture of the metabolic pathway for such chemicals.
Collapse
Affiliation(s)
- Hee-Seok Lee
- National Institute of Food and Drug Safety Evaluation, Osong 28159, Republic of Korea
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
22
|
Hirao-Suzuki M, Takeda S, Okuda K, Takiguchi M, Yoshihara S. Repeated Exposure to 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an Active Metabolite of Bisphenol A, Aggressively Stimulates Breast Cancer Cell Growth in an Estrogen Receptor β (ER β)-Dependent Manner. Mol Pharmacol 2019; 95:260-268. [PMID: 30552153 DOI: 10.1124/mol.118.114124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphenol A (BPA), recognized as an endocrine disruptor, is thought to exert its activity through a mechanism involving the activation of estrogen receptors (ERs) α/β However, a major problem is that very high concentrations of BPA are required (i.e., those in excess of environmental levels) for effective activation of ERα/β-mediated transcriptional activities in vitro, despite the BPA-induced estrogenic effects observed in vivo. To elucidate the causal reasons, we successfully identified a BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which exhibits highly potent estrogenic activity both in vivo and in vitro. We have focused on the biologic relationship between breast tumor promotion and MBP/BPA, because BPA is considered to be a human carcinogen owing to its breast tumor-promoting properties. In general, humans are exposed to many endocrine disruptors, including BPA. In the present study, we used the ERα/β-positive human breast cancer cell line MCF-7 as an experimental model to investigate the effects of repeated exposure to BPA/MBP at concentrations found in the environment on the expression of ERα/β and to determine the particular ER subtype involved. We demonstrated that repeated exposure to MBP, but not to BPA, significantly downregulated ERα protein expression and stimulated the proliferation of MCF-7 cells through the activation of ERβ-mediated signaling.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Shuso Takeda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Katsuhiro Okuda
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| | - Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University (HIU), Kure, Hiroshima, Japan (M.H.-S., S.T., M.T., S.Y.); and Department of Legal Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan (K.O.)
| |
Collapse
|
23
|
Brown AR, Green JM, Moreman J, Gunnarsson LM, Mourabit S, Ball J, Winter MJ, Trznadel M, Correia A, Hacker C, Perry A, Wood ME, Hetheridge MJ, Currie RA, Tyler CR. Cardiovascular Effects and Molecular Mechanisms of Bisphenol A and Its Metabolite MBP in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:463-474. [PMID: 30520632 PMCID: PMC6333396 DOI: 10.1021/acs.est.8b04281] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 05/03/2023]
Abstract
The plastic monomer bisphenol A (BPA) is one of the highest production volume chemicals in the world and is frequently detected in wildlife and humans, particularly children. BPA has been associated with numerous adverse health outcomes relating to its estrogenic and other hormonal properties, but direct causal links are unclear in humans and animal models. Here we simulated measured (1×) and predicted worst-case (10× ) maximum fetal exposures for BPA, or equivalent concentrations of its metabolite MBP, using fluorescent reporter embryo-larval zebrafish, capable of quantifying Estrogen Response Element (ERE) activation throughout the body. Heart valves were primary sites for ERE activation by BPA and MBP, and transcriptomic analysis of microdissected heart tissues showed that both chemicals targeted several molecular pathways constituting biomarkers for calcific aortic valve disease (CAVD), including extra-cellular matrix (ECM) alteration. ECM collagen deficiency and impact on heart valve structural integrity were confirmed by histopathology for high-level MBP exposure, and structural defects (abnormal curvature) of the atrio-ventricular valves corresponded with impaired cardiovascular function (reduced ventricular beat rate and blood flow). Our results are the first to demonstrate plausible mechanistic links between ERE activation in the heart valves by BPA's reactive metabolite MBP and the development of valvular-cardiovascular disease states.
Collapse
Affiliation(s)
- A. Ross Brown
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Jon M. Green
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - John Moreman
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Lina M. Gunnarsson
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Sulayman Mourabit
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Jonathan Ball
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Matthew J. Winter
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Maciej Trznadel
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Ana Correia
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Christian Hacker
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Alexis Perry
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Mark E. Wood
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Malcolm J. Hetheridge
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| | - Richard A. Currie
- Jealott’s
Hill International Research Centre, Syngenta, Bracknell, Berkshire RG42
6EY, U.K.
| | - Charles R. Tyler
- Biosciences,
College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon EX4 4QD, U.K.
| |
Collapse
|
24
|
Zaid SSM, Othman S, Kassim NM. Protective role of Ficus deltoidea against BPA-induced impairments of the follicular development, estrous cycle, gonadotropin and sex steroid hormones level of prepubertal rats. J Ovarian Res 2018; 11:99. [PMID: 30477542 PMCID: PMC6260867 DOI: 10.1186/s13048-018-0466-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
Ficus deltoidea is one of the well-known medicinal plants in Malaysia that is traditionally used by the Malay community to treat various ailments and for maintenance of female reproductive health. The objective of this study is to evaluate the potential protective roles of Ficus deltoidea against BPA-induced toxicity of the pituitary-ovarian axis in pre-pubertal female rats. In this study, four groups of pre-pubertal female Sprague Dawley rats were administered with the followings by oral gavage for a period of six weeks: NC (negative control- treated with vehicle), PC (positive control-treated with BPA at 10 mg/kg/BW), F (treated with Ficus deltoidea at 100 mg/kg/BW, then exposed to BPA at 10 mg/kg/BW) and FC (Ficus deltoidea control - treated with Ficus deltoidea at 100 mg/kg/BW). Daily vaginal smear, ovarian follicular development as well as gonadotropin and sexual-steroid hormone levels were determined. The findings showed that Ficus deltoidea demonstrated preventive role against BPA-induced toxicity on the ovaries. This was evident by the increased percentage of rats with normal estrous cycle, qualitatively reduced number of atretic follicles (as observed in histopathological examination) and normalization of the gonadotropins hormone (FSH) and sexual steroid hormone (progesterone) levels. In conclusion, Ficus deltoidea has the capability to prevent the effects of BPA toxicity in the hypothalamus-pituitary-gonadal axis of prepubertal female reproductive system, possibly due to its variety of phytochemical properties. Therefore, these findings strongly support the traditional belief that this medicinal plant is beneficial as daily dietary supplement for the maintenance of female reproductive health.
Collapse
Affiliation(s)
- Siti Sarah Mohamad Zaid
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Shatrah Othman
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Normadiah M Kassim
- Department of Anatomy, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Moreman J, Takesono A, Trznadel M, Winter MJ, Perry A, Wood ME, Rogers NJ, Kudoh T, Tyler CR. Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis( p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6656-6665. [PMID: 29738667 DOI: 10.1021/acs.est.8b01095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.
Collapse
Affiliation(s)
- John Moreman
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Nicola J Rogers
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| |
Collapse
|
26
|
Sheikh IA, Tayubi IA, Ahmad E, Ganaie MA, Bajouh OS, AlBasri SF, Abdulkarim IMJ, Beg MA. Computational insights into the molecular interactions of environmental xenoestrogens 4-tert-octylphenol, 4-nonylphenol, bisphenol A (BPA), and BPA metabolite, 4-methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene (MBP) with human sex hormone-binding globulin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:284-291. [PMID: 27750096 DOI: 10.1016/j.ecoenv.2016.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 09/13/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
Environmental contamination has been one of the major drawbacks of the industrial revolution. Several man-made chemicals are constantly released into the environment during the manufacturing process and by leaching from the industrial products. As a result, human and animal populations are exposed to these synthetic chemicals on a regular basis. Many of these chemicals have adverse effects on the physiological functions, particularly on the hormone systems in human and animals and are called endocrine disrupting chemicals (EDCs). Bisphenol A (BPA), 4-tert-octylphenol (OP), and 4-nonylphenol (NP) are three high volume production EDCs that are widely used for industrial purposes and are present ubiquitously in the environment. Bisphenol A is metabolized in the human body to a more potent compound (MBP: 4-Methyl-2, 4-bis (4-hydroxyphenyl) pent-1-ene). Epidemiological and experimental studies have shown the three EDCs to be associated with adverse effects on reproductive system in human and animals. Sex hormone-binding globulin (SHBG) is a circulatory protein that binds sex steroids and is a potential target for endocrine disruptors in the human body. The current study was done in order to understand the binding mechanism of OP, BPA, NP, and MBP with human SHBG using in silico approaches. All four compounds showed high binding affinity with SHBG, however, the binding affinity values were higher (more negative) for MBP and NP than for OP and BPA. The four ligands interacted with 19-23 residues of SHBG and a consistent overlapping of the interacting residues for the four ligands with the residues for the natural ligand, dihydrotestosterone (DHT; 82-91% commonality) was shown. The overlapping SHBG interacting residues among DHT and the four endocrine disruptors suggested that these compounds have potential for interference and disruption in the steroid binding function.
Collapse
Affiliation(s)
- Ishfaq A Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Iftikhar A Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Kingdom of Saudi Arabia
| | - Ejaz Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Majid A Ganaie
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Kingdom of Saudi Arabia
| | - Osama S Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Samera F AlBasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ibtihal M J Abdulkarim
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
| |
Collapse
|
27
|
Liu SH, Su CC, Lee KI, Chen YW. Effects of Bisphenol A Metabolite 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene on Lung Function and Type 2 Pulmonary Alveolar Epithelial Cell Growth. Sci Rep 2016; 6:39254. [PMID: 27982077 PMCID: PMC5159875 DOI: 10.1038/srep39254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/22/2016] [Indexed: 11/09/2022] Open
Abstract
Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.
Collapse
Affiliation(s)
- Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, Taichung, Taiwan
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Andra SS, Austin C, Yang J, Patel D, Arora M. Recent advances in simultaneous analysis of bisphenol A and its conjugates in human matrices: Exposure biomarker perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:770-781. [PMID: 27586167 PMCID: PMC5099122 DOI: 10.1016/j.scitotenv.2016.07.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 05/26/2023]
Abstract
Human exposures to bisphenol A (BPA) has attained considerable global health attention and represents one of the leading environmental contaminants with potential adverse health effects including endocrine disruption. Current practice of measuring of exposure to BPA includes the measurement of unconjugated BPA (aglycone) and total (both conjugated and unconjugated) BPA; the difference between the two measurements leads to estimation of conjugated forms. However, the measurement of BPA as the end analyte leads to inaccurate estimates from potential interferences from background sources during sample collection and analysis. BPA glucuronides (BPAG) and sulfates (BPAS) represent better candidates for biomarkers of BPA exposure, since they require in vivo metabolism and are not prone to external contamination. In this work, the primary focus was to review the current state of the art in analytical methods available to quantitate BPA conjugates. The entire analytical procedure for the simultaneous extraction and detection of aglycone BPA and conjugates is covered, from sample pre-treatment, extraction, separation, ionization, and detection. Solid phase extraction coupled with liquid chromatograph and tandem mass spectrometer analysis provides the most sensitive detection and quantification of BPA conjugates. Discussed herein are the applications of BPA conjugates analysis in human exposure assessment studies. Measuring these potential biomarkers of BPA exposure has only recently become analytically feasible and there are limitations and challenges to overcome in biomonitoring studies.
Collapse
Affiliation(s)
- Syam S Andra
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christine Austin
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dhavalkumar Patel
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manish Arora
- Exposure Biology, Lautenberg Environmental Health Sciences Laboratory, Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Gramec Skledar D, Peterlin Mašič L. Bisphenol A and its analogs: Do their metabolites have endocrine activity? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:182-199. [PMID: 27771500 DOI: 10.1016/j.etap.2016.09.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 05/25/2023]
Abstract
Structural analogs of bisphenol A are commonly used as its alternatives in industrial and commercial applications. Nevertheless, the question arises whether the use of other bisphenols is justified as replacements for bisphenol A in mass production of plastic materials. To evaluate the influence of metabolic reactions on endocrine activities of bisphenols, we conducted a systematic review of the literature. Knowledge about the metabolic pathways and enzymes involved in metabolic biotransformations is essential for understanding and predicting mechanisms of toxicity. Bisphenols are metabolized predominantly by the glucuronidation reaction, which is considered their most important detoxification pathway, as based on current knowledge, glucuronides do not have activity on endocrine receptors. In contrast, several oxidative metabolites of bisphenols with enhanced endocrine activities are presented, and these findings indicate that oxidative metabolites of bisphenols can still have endocrine activities in humans.
Collapse
|
30
|
Tualang Honey Protects against BPA-Induced Morphological Abnormalities and Disruption of ERα, ERβ, and C3 mRNA and Protein Expressions in the Uterus of Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:202874. [PMID: 26788107 PMCID: PMC4691614 DOI: 10.1155/2015/202874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties.
Collapse
|
31
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1417] [Impact Index Per Article: 141.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
32
|
Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA. A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 2015; 59:167-82. [PMID: 26493093 DOI: 10.1016/j.reprotox.2015.09.006] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022]
Abstract
The estrogenic properties of bisphenol A (BPA), a ubiquitous synthetic monomer that can leach into the food and water supply, have prompted considerable research into exposure-associated health risks in humans. Endocrine-disrupting properties of BPA suggest it may impact developmental plasticity during early life, predisposing individuals to disease at doses below the oral reference dose (RfD) established by the Environmental Protection Agency in 1982. Herein, we review the current in vivo literature evaluating the carcinogenic properties of BPA. We conclude that there is substantial evidence from rodent studies indicating that early-life BPA exposures below the RfD lead to increased susceptibility to mammary and prostate cancer. Based on the definitions of "carcinogen" put forth by the International Agency for Research on Cancer and the National Toxicology Program, we propose that BPA may be reasonably anticipated to be a human carcinogen in the breast and prostate due to its tumor promoting properties.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Kristen W Bonk
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, USA
| | - Gail S Prins
- Departments of Urology, Physiology and Biophysics, University of Illinois, Chicago, IL 60612-7310, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University, Boston, MA 02111, USA
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
33
|
Rehan M, Ahmad E, Sheikh IA, Abuzenadah AM, Damanhouri GA, Bajouh OS, AlBasri SF, Assiri MM, Beg MA. Androgen and Progesterone Receptors Are Targets for Bisphenol A (BPA), 4-Methyl-2,4-bis-(P-Hydroxyphenyl)Pent-1-Ene--A Potent Metabolite of BPA, and 4-Tert-Octylphenol: A Computational Insight. PLoS One 2015; 10:e0138438. [PMID: 26379041 PMCID: PMC4574962 DOI: 10.1371/journal.pone.0138438] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
Exposure to toxic industrial chemicals that have capacity to disrupt the endocrine system, also known as endocrine disrupting chemicals (EDCs), has been increasingly associated with reproductive problems in human population. Bisphenol A (BPA; 4,4'-(propane-2,2-diyl)diphenol) and 4-tert-octylphenol (OP; 4-(1,1,3,3-tetramethylbutyl)phenol) are among the most common environmental contaminants possessing endocrine disruption properties and are present in plastics, epoxy resins, detergents and other commercial products of common personal and industrial use. A metabolite of BPA, 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is about 1000 times more biologically active compared to BPA. Epidemiological, clinical, and experimental studies have shown association of BPA and OP with adverse effects on male and female reproductive system in human and animals. The endocrine disruption activity can occur through multiple pathways including binding to steroid receptors. Androgen receptor (AR) and progesterone receptor (PR) are critical for reproductive tract growth and function. Structural binding characterization of BPA, MBP, and OP with AR and PR using molecular docking simulation approaches revealed novel interactions of BPA with PR, and MBP and OP with AR and PR. For BPA, MBP, and OP, five AR interacting residues Leu-701, Leu-704, Asn-705, Met-742, and Phe-764 overlapped with those of native AR ligand testosterone, and four PR interacting residues Leu-715, Leu-718, Met-756, and Met-759 overlapped with those of PR co-complex ligand, norethindrone. For both the receptors the binding strength of MBP was maximum among the three compounds. Thus, these compounds have the potential to block or interfere in the binding of the endogenous native AR and PR ligands and, hence, resulting in dysfunction. The knowledge of the key interactions and the important amino-acid residues also allows better prediction of potential of xenobiotic molecules for disrupting AR- and PR-mediated pathways, thus, helping in design of less potent alternatives for commercial use.
Collapse
Affiliation(s)
- Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ejaz Ahmad
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ishfaq A. Sheikh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Adel M. Abuzenadah
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ghazi A. Damanhouri
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Osama S. Bajouh
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Samera F. AlBasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mansour M. Assiri
- Department of Obstetrics and Gynecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Gustafsson JA. Control of gene expression by novel metabolic intermediates. J Steroid Biochem Mol Biol 2015; 153:102-4. [PMID: 25869558 DOI: 10.1016/j.jsbmb.2015.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 03/25/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
In view of the recent discoveries of novel nuclear receptors (NRs) whose ligands remain to be determined, metabolic intermediates may be considered as ligands for these receptors and undiscovered or overlooked intermediates may play important roles in regulating gene expression by activating or repressing the action of these nuclear receptors. This article is part of a Special Issue entitled 'Steroid Perspectives'.
Collapse
Affiliation(s)
- Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA.
| |
Collapse
|
35
|
Khan D, Ahmed SA. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Front Endocrinol (Lausanne) 2015; 6:91. [PMID: 26097467 PMCID: PMC4456948 DOI: 10.3389/fendo.2015.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Present address: Deena Khan, Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- *Correspondence: S. Ansar Ahmed, Department of Biomedical Sciences and Pathobiology, VMCVM, Virginia Tech, Phase II, Duck Pond Drive, Blacksburg, VA 24060, USA,
| |
Collapse
|
36
|
Zaid SSM, Othman S, Kassim NM. Potential protective effect of Tualang honey on BPA-induced ovarian toxicity in prepubertal rat. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:509. [PMID: 25519484 PMCID: PMC4301897 DOI: 10.1186/1472-6882-14-509] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/09/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND To investigate the potential protective effects of Tualang honey against the toxicity effects induced by Bisphenol A (BPA) on pubertal development of ovaries. METHODS This study was conducted on pre-pubertal female Sprague Dawley rats. Animals were divided into four groups (n = 8 in each group). Group I was administered with vehicle 0.2 ml of corn oil (Sigma-Aldrich, USA) using oral gavage daily for six weeks; these animals served as negative control (CO group), Group II was administered with BPA suspended in corn oil at 10 mg/kg body weight and served as positive control (PC group), Group III was administered with 200 mg/kg body weight of Tualang honey 30 min before the administration of BPA at 10 mg/kg (TH group) while Group IV was administered with 200 mg/kg body weight of Tualang honey 30 min before the administration of corn oil (THC group). Body weight of all animals were monitored weekly. RESULTS The BPA-exposed animals exhibited disruption of their estrus cycle, while those animals treated with BPA together with Tualang honey, exhibited an improvement in percentage of normal estrous cycle. Their ovaries had lower numbers of atretic follicles compared to the PC group but higher than the CO group. CONCLUSIONS Tualang honey has a potential role in reducing BPA-induced ovarian toxicity by reducing the morphological abnormalities of the ovarian follicles and improving the normal estrous cycle.
Collapse
|
37
|
Kang JS, Choi JS, Kim WK, Lee YJ, Park JW. Estrogenic potency of bisphenol S, polyethersulfone and their metabolites generated by the rat liver S9 fractions on a MVLN cell using a luciferase reporter gene assay. Reprod Biol Endocrinol 2014; 12:102. [PMID: 25371027 PMCID: PMC4232735 DOI: 10.1186/1477-7827-12-102] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) is an applied chemical that is used in many industrial fields and is a potential endocrine disruption chemical (EDC) that is found in the environment. Bisphenol S (BPS) and polyethersulfone (PES) have been suggested as putative BPA alternatives. In this study, the estrogenic potency induced by the binding of 17-beta-estradiol (E2), BPA, BPS, PES and their metabolites formed by the rat liver S9 fraction to the human estrogen receptor (ER) was estimated. METHODS We used an in vitro bioassay based on the luciferase reporter assay in MVLN cells to evaluate the estrogenic activity of 17-beta-estradiol (E2), BPA, BPS, PES (E2: 0.001 to 0.3 nM; BPA, BPS and PES: 0.0001 to 5 microM) and their metabolites (E2: 0.05 microM; BPA, BPS and PES: 0.1 mM) according to incubation times (0, 20 and 40 min). After chemical treatment to MVLN cells for 72 hrs, and the cell viability and luciferase intensity induced were estimated, from which the estrogenic activity of the chemicals tested was evaluated. RESULTS BPA and BPS induced estrogenic activity whereas PES did not show any estrogenic activity in the concentrations tested. In an in vitro assay of metabolites, BPA metabolites displayed comparable estrogenic activity with BPA and metabolites of both BPS and PES showed increasing estrogenic activity. CONCLUSIONS The results suggest that the metabolites of BPS and PES have estrogenic potential and the need for the assessment of both chemicals and their metabolites in other EDC evaluation studies. The estrogenic potency of PES and its metabolites is the first report in our best knowledge.
Collapse
Affiliation(s)
- Jae Soon Kang
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam Republic of Korea
| | - Jin-Soo Choi
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam Republic of Korea
| | - Woo-Keun Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam Republic of Korea
| | - Yong-Ju Lee
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam Republic of Korea
| | - June-Woo Park
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Jin-Ju, Gyeongnam Republic of Korea
| |
Collapse
|
38
|
Zuo Y, Zhu Z. Simultaneous identification and quantification of 4-cumylphenol, 2,4-bis-(dimethylbenzyl)phenol and bisphenol A in prawn Macrobrachium rosenbergii. CHEMOSPHERE 2014; 107:447-453. [PMID: 24560775 DOI: 10.1016/j.chemosphere.2014.01.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 05/17/2023]
Abstract
Bisphenol A (BPA), 4-cumylphenol (4-CP) and 2,4-bis-(dimethylbenzyl)phenol (2,4-DCP) are all high production volume chemicals and widely used in plastic and other consumer products. During the past two decades, BPA has attracted a great deal of scientific and public attention due to its presence in the environment and estrogenic property. Although 4-CP and 2,4-DCP are much more estrogenic and toxic than BPA, little information is available about their occurrence and fate in the environment. In this study, a rapid, selective, accurate and reliable analytical method was developed for the simultaneous determination of 4-CP, 2,4-DCP and BPA in prawn Macrobrachium rosenbergii. The method comprises an ultrasound-accelerated extraction followed by capillary gas chromatographic (GC) separation. The detection limits range from 1.50 to 36.4 ng kg(-1) for the three alkylphenols. The calibration curves are linear over the concentration range tested with the coefficients of determination, R(2), greater than 0.994. The developed method was successfully applied to the simultaneous determination of 4-CP, 2,4-DCP and BPA in prawn samples. The peak identification was confirmed using GC-MS. Bisphenol A, 2,4-bis-(dimethylbenzyl)phenol and 4-cumylphenol were found in prawn samples in the concentration ranges of 0.67-5.51, 0.36-1.61, and 0.00-1.96 ng g(-1) (wet weight), respectively. All relative standard deviations are less than 4.8%. At these environmentally relevant concentration levels, 4-CP, 2,4-DCP and BPA may affect the reproduction and development of aquatic organisms, including negative influence on crustaceans' larval survival, molting, metamorphosis and shell hardening. This is the first study reported on the occurrence of 4-CP, 2,4-DCP and BPA in prawn M. rosenbergii.
Collapse
Affiliation(s)
- Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA; University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
| | - Zhuo Zhu
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
39
|
Yoshihara S. [A memoir of my researches on xenobiotic metabolism for 48 years--researches on Kanemi Yusho and endocrine disrupting chemicals]. YAKUGAKU ZASSHI 2014; 133:747-72. [PMID: 23811764 DOI: 10.1248/yakushi.13-00100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The author started a research on xenobiotic metabolism at Graduate School of Pharmaceutical Sciences, Kyushu University in 1965. In 1968, an epidemic of a "strange disease", called Yusho, occurred in western Japan. The epidemic was soon identified to be a food poisoning caused by the ingestion of commercial Kanemi rice bran oil which had been accidentally contaminated with large amounts of polychlorinated biphenyls (PCBs) and their related compounds such as polychlorinated dibenzofurans (PCDFs.) At first, in this review, our toxicological studies on Yusho during the early thirty years were briefly described. Next, the studies on aldehyde oxidase, a molybdenum hydroxylase, which is involved in the lactam formation reaction such as 1-phenyl-2-(2-oxopyrrolidine)pentane(oxoprolintane) from 1-phenyl-2-pyrrolidinopentane(prolintane) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP) lactam from 1-methyl-4-phenyl-2,3-dihydropyridinium ion (MPDP⁺) were also presented. Finally, we investigated how the xenobiotic metabolism of endocrine disrupting chemicals such as bisphenol A (BPA) and some isoflavones affects their estrogenic activities. In this study, we demonstrated that BPA is converted to 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), an active metabolite as estrogen, by rat liver S9. In the cases of isoflavones, although genistein was inactivated, biochanin A, 4'-methoxy analogue of genistein, was activated to genistein by O-demethylation with rat liver S9.
Collapse
Affiliation(s)
- Shin'ichi Yoshihara
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan.
| |
Collapse
|
40
|
Cipelli R, Harries L, Okuda K, Yoshihara S, Melzer D, Galloway T. Bisphenol A modulates the metabolic regulator oestrogen-related receptor-α in T-cells. Reproduction 2014; 147:419-26. [PMID: 24231368 DOI: 10.1530/rep-13-0423] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bisphenol A (BPA) is a widely used plastics constituent that has been associated with endocrine, immune and metabolic effects. Evidence for how BPA exerts significant biological effects at chronic low levels of exposure has remained elusive. In adult men, exposure to BPA has been associated with higher expression of two nuclear receptors, oestrogen receptor-β (ERβ) and oestrogen-related-receptor-α (ERRα), in peripheral white blood cells in vivo. In this study, we explore the expression of ESR2 (ERβ) and ESRRA (ERRα) in human leukaemic T-cell lymphoblasts (Jurkat cells) exposed to BPA in vitro. We show that exposure to BPA led to enhanced expression of ESRRA within 6 h of exposure (mean±s.e.m.: 1.43±0.08-fold increase compared with the control, P<0.05). After 72 h, expression of ESRRA remained significantly enhanced at concentrations of BPA ≥1 nM. Oxidative metabolism of BPA by rat liver S9 fractions yields the potent oestrogenic metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP). Exposure of cells to 1-100 nM MBP increased the expression of both ESRRA (significantly induced, P<0.05, at 1, 10, 100 nM) and ESR2 (1.32±0.07-fold increase at 100 nM exposure, P<0.01). ERRα is a major control point for oxidative metabolism in many cell types, including T-cells. Following exposure to both BPA and MBP, we found that cells showed a decrease in cell proliferation rate. Taken together, these results confirm the bioactivity of BPA against putative T-cell targets in vitro at concentrations relevant to general human exposure.
Collapse
Affiliation(s)
- Riccardo Cipelli
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4PS, UK
| | | | | | | | | | | |
Collapse
|
41
|
Michałowicz J. Bisphenol A--sources, toxicity and biotransformation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:738-58. [PMID: 24632011 DOI: 10.1016/j.etap.2014.02.003] [Citation(s) in RCA: 640] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is a chemical compound used in massive amounts in the production of synthetic polymers and thermal paper. In this review, the sources of BPA, which influence its occurrence in the environment and human surrounding will be presented. Data concerning BPA occurrence in food, water and indoor environments as well as its appearance in tissues and body fluids of human body will be shown. The results of in vitro and in vivo studies and the results of epidemiological surveys showing toxic, endocrine, mutagenic and cancerogenic action of BPA will also be discussed. Moreover, data suggesting that exposure of human to BPA may elevate risk of obesity, diabetes and coronary heart diseases will be presented. Finally, biotransformation of BPA in animals, plants and microorganisms (bacteria, fungi, algae), resulting in the formation of various metabolites that exhibit different from BPA toxicity will be described.
Collapse
Affiliation(s)
- Jaromir Michałowicz
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143St., 90-236 Łódź, Poland.
| |
Collapse
|
42
|
Liu KC, Wu RSS, Ge W. Luteinizing hormone receptor (lhcgr) as a marker gene for characterizing estrogenic endocrine-disrupting chemicals in zebrafish ovarian follicle cells. Gen Comp Endocrinol 2013; 192:89-94. [PMID: 23851042 DOI: 10.1016/j.ygcen.2013.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
The adverse effects of endocrine-disrupting chemicals (EDCs) have been well documented; however, the action mechanisms of many EDCs remain elusive and controversial. Furthermore, the highly diversified chemical structures and low environmental concentrations of EDCs present a major challenge to their chemical detection. Clearly, there is an urgent need for simple and reliable bioassays to detect EDCs in the environment and unravel their action mechanisms. We have recently identified luteinizing hormone receptor (lhcgr) as a robust estradiol (E2)-responsive gene in cultured zebrafish ovarian follicle cells. The expression of lhcgr exhibited a distinct biphasic response to E2 over a 24-h time-course treatment, making this a unique system for characterizing estrogenic EDCs. This study was undertaken to validate this platform by testing a wide range of EDCs, including 17α-ethinylestradiol (EE2), diethylstilbestrol (DES), bisphenol A (BPA), genistein (GEN), 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane (o,p'-DDT), vinclozolin (VIN), bis(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Diethylstilbestrol (DES), EE2 and o,p'-DDT mimicked E2 and induced a biphasic expression of lhcgr while BPA and GEN stimulated a monophasic expression in the 24-h time-course. In contrast, BDE-47, DEHP and VIN had no effect, whereas TCDD decreased lhcgr expression. Dose-response experiment showed that E2, EE2 and DES had the highest potency, which was followed by GEN, BPA and o,p'-DDT. The effects of estrogenic EDCs were further confirmed by their potentiation of hCG-induced activin βA2 subunit (inhbab) expression. In conclusion, the present study showed that the expression of lhcgr in cultured zebrafish follicle cells and its biphasic response to estrogens provide a unique in vitro platform for screening and categorizing estrogenic substances and deciphering their action mechanisms.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | |
Collapse
|
43
|
Baker ME, Chandsawangbhuwana C. 3D models of MBP, a biologically active metabolite of bisphenol A, in human estrogen receptor α and estrogen receptor β. PLoS One 2012; 7:e46078. [PMID: 23056236 PMCID: PMC3464279 DOI: 10.1371/journal.pone.0046078] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022] Open
Abstract
Bisphenol A [BPA] is a widely dispersed environmental chemical that is of much concern because the BPA monomer is a weak transcriptional activator of human estrogen receptor α [ERα] and ERβ in cell culture. A BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene [MBP], has transcriptional activity at nM concentrations, which is 1000-fold lower than the concentration for estrogenic activity of BPA, suggesting that MBP may be an environmental estrogen. To investigate the structural basis for the activity of MBP at nM concentrations and the lower activity of BPA for human ERα and ERβ, we constructed 3D models of human ERα and ERβ with MBP and BPA for comparison with estradiol in these ERs. These 3D models suggest that MBP, but not BPA, has key contacts with amino acids in human ERα and ERβ that are important in binding of estradiol by these receptors. Metabolism of BPA to MBP increases the spacing between two phenolic rings, resulting in contacts between MBP and ERα and ERβ that mimic those of estradiol with these ERs. Mutagenesis of residues on these ERs that contact the phenolic hydroxyls will provide a test for our 3D models. Other environmental chemicals containing two appropriately spaced phenolic rings and an aliphatic spacer instead of an estrogenic B and C ring also may bind to ERα or ERβ and interfere with normal estrogen physiology. This analysis also may be useful in designing novel chemicals for regulating the actions of human ERα and ERβ.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America.
| | | |
Collapse
|
44
|
Melzer D, Osborne NJ, Henley WE, Cipelli R, Young A, Money C, McCormack P, Luben R, Khaw KT, Wareham NJ, Galloway TS. Urinary Bisphenol A Concentration and Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women. Circulation 2012; 125:1482-90. [DOI: 10.1161/circulationaha.111.069153] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- David Melzer
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Nicholas J. Osborne
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - William E. Henley
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Riccardo Cipelli
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Anita Young
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Cathryn Money
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Paul McCormack
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Robert Luben
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Kay-Tee Khaw
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Nicholas J. Wareham
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| | - Tamara S. Galloway
- From the Epidemiology and Public Health Group, Peninsula Medical School, University of Exeter, Exeter (D.M.); School of Biosciences, University of Exeter, Exeter (T.S.G., R.C.); School of Computing and Mathematics, University of Plymouth, Plymouth (W.E.H.); European Center for Environment and Human Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter (D.M., N.J.O., T.S.G.); Brixham Environmental Laboratory, Brixham (A.Y., C.M., P.M.); Medical Research Council
| |
Collapse
|
45
|
Haighton L, Card JW, Lynch B, Roberts A. Bisphenol A and infant neonatal neurobehavior. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:A102; author reply A102-3. [PMID: 22381703 PMCID: PMC3295359 DOI: 10.1289/ehp.1104429r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Affiliation(s)
- Lois Haighton
- Intertek Cantox, Mississauga, Ontario, Canada, E-mail:
| | | | - Barry Lynch
- Intertek Cantox, Mississauga, Ontario, Canada, E-mail:
| | | |
Collapse
|
46
|
de Queiroz GT, Santos TR, Macedo R, Peters VM, Leite MN, de Cássia da Silveira e Sá R, de Oliveira Guerra M. Efficacy of Morus nigra L. on reproduction in female Wistar rats. Food Chem Toxicol 2011; 50:816-22. [PMID: 22198063 DOI: 10.1016/j.fct.2011.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/29/2022]
Abstract
Morus nigra L. is a plant employed as a substitute for the conventional hormonal replacement therapy. This work analyzes the estrogenic effect of M. nigra on the reproductive system and embryonic development of Wistar rats. Female rats were orally treated with M. nigra hydroalcoholic extract (MnHE) at the dose levels of 25, 50, 75, 350 and 700 mg/kg of body weight over 15 days, and continued through mating until the 14th day of gestation. Vaginal smears were performed daily and the body weight of the females was recorded at 5 days intervals. On day 15 of gestation, the females were killed and their kidneys, liver, spleen and ovaries were removed and weighed. The number of implants, resorptions, and live and dead fetuses were evaluated. Histological sections of ovaries, measurement of the height of the uterine epithelium and vaginal smears were performed to assess the estrogenic activity. The results showed that the administration of MnHE did not significantly alter the analyzed variables. Therefore, considering the experimental model used in this study, the data obtained indicate that M. nigra did not exhibit any estrogenic activity nor did exert a toxic effect on the female reproductive system and on the embryonic development of rats.
Collapse
Affiliation(s)
- Graziela Tonioni de Queiroz
- Programa de Pós-Graduação em Ciências Biológicas-Área de concentração em Comportamento e Biologia Animal/Universidade Federal de Juiz de Fora, Campus Universitário, Bairro São Pedro, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil.
| | | | | | | | | | | | | |
Collapse
|
47
|
Melzer D, Harries L, Cipelli R, Henley W, Money C, McCormack P, Young A, Guralnik J, Ferrucci L, Bandinelli S, Corsi AM, Galloway T. Bisphenol A exposure is associated with in vivo estrogenic gene expression in adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1788-93. [PMID: 21831745 PMCID: PMC3261992 DOI: 10.1289/ehp.1103809] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/10/2011] [Indexed: 05/27/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a synthetic estrogen commonly used in polycarbonate plastic and resin-lined food and beverage containers. Exposure of animal and cell models to doses of BPA below the recommended tolerable daily intake (TDI) of 50 μg/kg/day have been shown to alter specific estrogen-responsive gene expression, but this has not previously been shown in humans. OBJECTIVE We investigated associations between BPA exposure and in vivo estrogenic gene expression in humans. METHODS We studied 96 adult men from the InCHIANTI population study and examined in vivo expression of six estrogen receptor, estrogen-related receptor, and androgen receptor genes in peripheral blood leukocytes. RESULTS The geometric mean urinary BPA concentration was 3.65 ng/mL [95% confidence interval (CI): 3.13, 4.28], giving an estimated mean excretion of 5.84 μg/day (95% CI: 5.00, 6.85), significantly below the current TDI. In age-adjusted models, there were positive associations between higher BPA concentrations and higher ESR2 [estrogen receptor 2 (ER beta)] expression (unstandardized linear regression coefficient = 0.1804; 95% CI: 0.0388, 0.3221; p = 0.013) and ESRRA (estrogen related receptor alpha) expression (coefficient = 0.1718; 95% CI: 0.0213, 0.3223; p = 0.026): These associations were little changed after adjusting for potential confounders, including obesity, serum lipid concentrations, and white cell subtype percentages. Upper-tertile BPA excretors (urinary BPA > 4.6 ng/mL) had 65% higher mean ESR2 expression than did lower-tertile BPA excretors (0-2.4 ng/mL). CONCLUSIONS Because activation of nuclear-receptor-mediated pathways by BPA is consistently found in laboratory studies, such activation in humans provides evidence that BPA is likely to function as a xenoestrogen in this sample of adults.
Collapse
Affiliation(s)
- David Melzer
- Epidemiology and Public Health, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Okuda K, Fukuuchi T, Takiguchi M, Yoshihara S. Novel pathway of metabolic activation of bisphenol A-related compounds for estrogenic activity. Drug Metab Dispos 2011; 39:1696-703. [PMID: 21636669 DOI: 10.1124/dmd.111.040121] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
We previously demonstrated that estrogenic activity of bisphenol A (BPA) in the yeast estrogen screening assay was increased severalfold after incubation with rat liver S9 fraction in the presence of a NADPH-generating system. In this study, we investigated whether eight BPA-related compounds are similarly activated metabolically by rat liver S9 fraction. Three of the analogs exhibited an increase of estrogenic activity after incubation with rat liver S9 fraction but not with microsomal or cytosolic fraction alone. The structures of the metabolites formed were examined by liquid chromatography/mass spectrometry. In addition to oxidized metabolites such as catechols, we found novel dimer-type metabolites. Some of the putative metabolites were chemically synthesized to confirm their structures. The structural requirements for formation of the metabolites, some of which showed more potent estrogenic activity than the parent substrates, were examined. We have uncovered a new pathway of metabolic activation of certain phenolic compounds, such as BPA analogs, to estrogenic dimer-type compounds.
Collapse
Affiliation(s)
- Katsuhiro Okuda
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan
| | | | | | | |
Collapse
|
49
|
Bibliography. Neonatology and perinatology. Current world literature. Curr Opin Pediatr 2011; 23:253-7. [PMID: 21412083 DOI: 10.1097/mop.0b013e3283454167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Nakamura S, Tezuka Y, Ushiyama A, Kawashima C, Kitagawara Y, Takahashi K, Ohta S, Mashino T. Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol Lett 2011; 203:92-5. [PMID: 21402134 DOI: 10.1016/j.toxlet.2011.03.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 03/05/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
Bisphenol A (BPA), an industrial chemical with estrogenic activity, was investigated as a substrate for the ipso-metabolism catalyzed by microsomal cytochrome P450 (P450). BPA was expected to be transformed to a quinol via an ipso-addition reaction; however, hydroquinone (HQ) was detected as a metabolite via an ipso-substitution reaction. Isopropenylphenol (IPP) and hydroxycumyl alcohol (HCA) were also produced as eliminated metabolites by C-C bond scission via ipso-substitution. Incorporation of the ¹⁸O atom to HCA from H₂¹⁸O suggested the presence of a carbocation intermediate. Bulkiness of p-substituted group of BPA and/or stability of the eliminated carbocation intermediate may cause ipso-substitution of BPA. CYP3A4 and CYP3A5 showed higher activity for ipso-substitution. CYP2D6*1 also showed the activity; however, the other 9 isozymes did not. IPP showed ER-binding activity in the same degree of BPA. Furthermore, the ER-binding activity of HCA was about a hundred times greater than that of BPA. These results suggested that this new metabolic pathway contributes to the activation of the estrogenic activity of BPA.
Collapse
Affiliation(s)
- Shigeo Nakamura
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | | | | | |
Collapse
|