1
|
Huang SC, Liu KL, Chen P, Xu BW, Ding WL, Yue TJ, Lu YN, Li SY, Li JK, Jian FC. New insights into the combined effects of aflatoxin B1 and Eimeria ovinoidalis on uterine function by disrupting the gut-blood-reproductive axis in sheep. MICROBIOME 2024; 12:269. [PMID: 39707461 DOI: 10.1186/s40168-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/03/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Sheep coccidiosis is an infectious parasitic disease that primarily causes diarrhea and growth retardation in young animals, significantly hindering the development of the sheep breeding industry. Cereal grains and animal feeds are frequently contaminated with mycotoxins worldwide, with aflatoxin B1 (AFB1) being the most common form. AFB1 poses a serious threat to gastrointestinal health upon ingestion and affects the function of parenteral organs, thus endangering livestock health. However, the impact of the combined effects of coccidia and AFB1 on the reproductive system of sheep has not been reported. Therefore, this study utilized sheep as an animal model to investigate the mechanisms underlying the reproductive toxicity induced by the individual or combined effects of AFB1 and Eimeria ovinoidalis (E. ovinoidalis) on the gut-blood-reproductive axis. RESULTS The results showed that AFB1 and coccidia adversely affect the reproductive system defense of sheep by altering uterine histopathology and hormone levels and triggering inflammation, which is associated with changes in the gut microbiota and metabolites. Moreover, co-exposure to AFB1 and coccidia disrupted the intestinal structure of the colon, resulting in reduced crypt depth. The impaired barrier function of the colon manifests primarily through the suppression of barrier protein expression, changes in the gut microbiome composition, and disruptions in gut metabolism. Importantly, the levels of blood inflammatory factors (IL-6, IL-10, TNF-α, and LPS) increased, suggesting that exposure to AFB1 and coccidia compromises the function of uterine organs in sheep by perturbing the gut-blood-reproductive axis. Blood metabolomics analysis further revealed that the differential metabolites predominantly concentrate in the amino acid pathway, particularly N-acetyl-L-phenylalanine. This metabolite is significantly correlated with IL-6, TNF-α, LPS, ERα, and ERβ, and it influences hormone levels while inducing uterine damage through the regulation of the downstream genes PI3K, AKT, and eNOS in the relaxin signaling pathway, as demonstrated by RNA sequencing. CONCLUSIONS These findings reveal for the first time that the combined effects of AFB1 and E. ovinoidalis on sheep uterine function operate at the level of the gut-blood-reproductive axis. This suggests that regulating gut microbiota and its metabolites may represent a potential therapeutic strategy for addressing mycotoxins and coccidia-co-induced female reproductive toxicity.
Collapse
Affiliation(s)
- Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Pan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Bo-Wen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Tao-Jing Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Ya-Nan Lu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Sen-Yang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jia-Kui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Fu-Chun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
2
|
Francis S, Kortei NK, Sackey M, Richard SA. Aflatoxin B 1 induces infertility, fetal deformities, and potential therapies. Open Med (Wars) 2024; 19:20240907. [PMID: 38283584 PMCID: PMC10818061 DOI: 10.1515/med-2024-0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
Aflatoxin B1 (AFB1) is a subsidiary poisonous metabolite, archetypally spawned by Aspergillus flavus and A. parasiticus, which are often isolated in warm or tropical countries across the world. AFB1 is capable of disrupting the functioning of several reproductive endocrine glands by interrupting the enzymes and their substrates that are liable for the synthesis of various hormones in both males and females. In men, AFB1 is capable of hindering testicular development, testicular degeneration, and reduces reproductive capabilities. In women, a direct antagonistic interaction of AFB1 with steroid hormone receptors influencing gonadal hormone production of estrogen and progesterone was responsible for AFB1-associated infertility. AFB1 is potentially teratogenic and is responsible for the development of malformation in humans and animals. Soft-tissue anomalies such as internal hydrocephalus, microphthalmia, cardiac defects, augmented liver lobes, reproductive changes, immune modifications, behavioral changes and predisposition of animals and humans to neoplasm development are AFB1-associated anomalies. Substances such as esculin, selenium, gynandra extract, vitamins C and E, oltipraz, and CDDO-Im are potential therapies for AFB1. Thus, this review elucidates the pivotal pathogenic roles of AFB1 in infertility, fetal deformities, and potential therapies because AFB1 toxicity is a key problem globally.
Collapse
Affiliation(s)
- Sullibie Francis
- Department of Obstetrics and Gynecology, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Nii Korley Kortei
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Marian Sackey
- Department of Pharmacy, Ho Teaching Hospital, P.O. Box MA-374, Ho, Ghana
| | - Seidu A. Richard
- Department of Medicine, Princefield University, P. O. Box MA128, Ho, Ghana
| |
Collapse
|
3
|
Cao J, Wang Y, Wang S, Shen Y, Li W, Wei Z, Li S, Lin Q, Chang Y. Expression of Key Steroidogenic Enzymes in Human Placenta and Associated Adverse Pregnancy Outcomes. MATERNAL-FETAL MEDICINE 2023; 5:163-172. [PMID: 40416852 PMCID: PMC12096406 DOI: 10.1097/fm9.0000000000000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Steroid hormones, including progestagens, estrogens, androgens, corticosteroids, and their precursor cholesterol, perform essential functions in the successful establishment and maintenance of pregnancy and normal fetal development. As the core endocrine organ at the prenatal stage, the human placenta is involved in the biosynthesis, metabolism, and delivery of steroid hormones. Steroidogenic pathways are tightly regulated by placenta-intrinsic cytochrome P450 and hydroxysteroid dehydrogenase. However, the relationship between placental steroidogenic enzyme expression and adverse pregnancy outcomes is controversial. In this review, we summarize the possible upstream regulatory mechanisms of placental steroidogenic enzymes in physiologic and pathophysiologic states. We also describe the human placental barrier model and examine the potential of single-cell sequencing for evaluating the primary functions and cellular origin of steroidogenic enzymes. Finally, we examine the existing evidence for the association between placental steroidogenic enzyme dysregulation and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Yixin Wang
- School of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Shuqi Wang
- School of Clinical Medicine, Tianjin Medical University, Tianjin 300070, China
| | - Yongmei Shen
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Wen Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Zhuo Wei
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Shanshan Li
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Qimei Lin
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| | - Ying Chang
- Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin Central Hospital of Gynecology Obstetrics and Nankai University Affiliated Hospital of Obstetrics and Gynecology, Tianjin 300100, China
| |
Collapse
|
4
|
Wu K, Liu M, Wang H, Rajput SA, Al Zoubi OM, Wang S, Qi D. Effect of zearalenone on aflatoxin B1-induced intestinal and ovarian toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 258:114976. [PMID: 37148750 DOI: 10.1016/j.ecoenv.2023.114976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) cause serious damage to mammals, but few studies have investigated the impacts of these toxins on pregnant and lactating mammals. This study investigated the effects of ZEN on AFB1-induced intestinal and ovarian toxicity in pregnant and lactating rats. Based on the results, AFB1 reduces the digestion, absorption, and antioxidant capacity in the intestine, increases intestinal mucosal permeability, destroys intestinal mechanical barriers, and increases pathogenic bacteria' relative abundances. Simultaneously, ZEN can exacerbate the intestinal injury caused by AFB1. The intestines of the offspring were also damaged, but the damage was less severe than that observed for the dams. While AFB1 activates various signalling pathways in the ovary and affects genes related to endoplasmic reticulum stress, apoptosis, and inflammation, ZEN may exacerbate or antagonize the AFB1 toxicity on gene expression in the ovary through key node genes and abnormally expressed genes. Our study found that mycotoxins can not only directly damage the ovaries and affect gene expression in the ovaries but can also impact ovarian health by disrupting intestinal microbes. Mycotoxins are an important environmental pathogenic factor for intestinal and ovarian disease in pregnancy and lactation mammals.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanbin Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
Owumi SE, Ajakaiye B, Akinwunmi AO, Nwozo SO, Oyelere AK. The Hydrophobic Extract of Sorghum bicolor (L. Moench) Enriched in Apigenin-Protected Rats against Aflatoxin B1-Associated Hepatorenal Derangement. Molecules 2023; 28:molecules28073013. [PMID: 37049776 PMCID: PMC10095839 DOI: 10.3390/molecules28073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a recalcitrant metabolite produced by fungi species, and due to its intoxications in animals and humans, it has been classified as a Group 1 carcinogen in humans. Preserving food products with Sorghum bicolor sheath can minimise the contamination of agricultural products and avert ill health occasioned by exposure to AFB1. The current study investigated the ameliorating effect of Sorghum bicolor sheath hydrophobic extract (SBE-HP) enriched in Apigenin (API) on the hepatorenal tissues of rats exposed to AFB1. The SBE-HP was characterised using TLC and LC-MS and was found to be enriched in Apigenin and its methylated analogues. The study used adult male rats divided into four experimental cohorts co-treated with AFB1 (50 µg/kg) and SBE-HP (5 and 10 mg/kg) for 28 days. Biochemical, enzyme-linked immunosorbent assays (ELISA) and histological staining were used to examine biomarkers of hepatorenal function, oxidative status, inflammation and apoptosis, and hepatorenal tissue histo-architectural alterations. Data were analysed using GraphPad Prism 8.3.0, an independent t-test, and a one-way analysis of variance. Co-treatment with SBE-HP ameliorated an upsurge in the biomarkers of hepatorenal functionality in the sera of rats, reduced the alterations in redox balance, resolved inflammation, inhibited apoptosis, and preserved the histological features of the liver and kidney of rats exposed to AFB1. SBE-HP-containing API is an excellent antioxidant regiment. It can amply prevent the induction of oxidative stress, inflammation, and apoptosis in the hepatorenal system of rats. Therefore, supplementing animal feeds and human foods with SBE-HP enriched in Apigenin may reduce the burden of AFB1 intoxication in developing countries with a shortage of effective antifungal agents.
Collapse
Affiliation(s)
- Solomon E. Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
- Correspondence: (S.E.O.); (A.K.O.)
| | - Blessing Ajakaiye
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
| | - Adenike O. Akinwunmi
- Department of Chemistry, Ekiti State University, Ado-Ekiti, Ekiti 360001, Nigeria
| | - Sarah O. Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan 200005, Nigeria
| | - Adegboyega K. Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: (S.E.O.); (A.K.O.)
| |
Collapse
|
6
|
Rotimi OA, De Campos OC, Adelani IB, Olawole TD, Rotimi SO. Early-life AFB1 exposure: DNA methylation and hormone alterations. VITAMINS AND HORMONES 2023; 122:237-252. [PMID: 36863796 DOI: 10.1016/bs.vh.2022.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aflatoxins are secondary metabolites of mold that contaminate food and feedstuff. They are found in various food including grains, nuts, milk and eggs. Aflatoxin B1 (AFB1) is the most poisonous and commonly found of the various types of aflatoxins. Exposures to AFB1 start early in life viz. in utero, during breastfeeding, and during weaning through the waning foods which are mainly grain based. Several studies have shown that early-life exposures to various contaminants may have various biological effects. In this chapter, we reviewed the effects of early-life AFB1 exposures on changes in hormone and DNA methylation. In utero AFB1 exposure results in alterations in steroid and growth hormones. Specifically, the exposure results in a reduction in testosterone levels later in life. The exposure also affects the methylation of various genes that are significant in growth, immune, inflammation, and signaling pathways.
Collapse
|
7
|
Aljazzar A, El-Ghareeb WR, Darwish WS, Abdel-Raheem SM, Ibrahim AM, Hegazy EE, Mohamed EA. Effects of aflatoxin B1 on human breast cancer (MCF-7) cells: cytotoxicity, oxidative damage, metabolic, and immune-modulatory transcriptomic changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13132-13140. [PMID: 36125688 DOI: 10.1007/s11356-022-23032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Aflatoxin B1 (AFB1) is a potent mycotoxin that is commonly produced by molds such as Aspergillus (A.) flavus and A. parasiticus. AFB1 is associated with several health adverse effects in humans including mutagenesis and carcinogenesis. Aflatoxin is commonly secreted in the milk leading to deleterious effects on breast tissue and potential nursing infants. However, the effects of aflatoxins, particularly AFB1, on the breast cells are less investigated. In this study, AFB1-associated effects on human breast cancer cell lines (MCF-7) were investigated. AFB1 caused significant cytotoxicity on MCF-7 cells. Such cytotoxicity had a positive correlation with the induction of oxidative stress. In addition, AFB1 caused significant transcriptomic alterations in xenobiotics and drug-metabolizing enzymes, transporters, and antioxidant enzymes. Besides, AFB1 upregulated pro-inflammatory markers such as tumor necrosis factor-α and cyclooxygenase-2 with a significant reduction of mRNA expressions of the immunity-related genes including interleukins 8 and 10.
Collapse
Affiliation(s)
- Ahmed Aljazzar
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia.
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Sherief M Abdel-Raheem
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
- Department of Animal Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Abdelazim M Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, P.O. Box: 400, Al Hofuf, 31982, Saudi Arabia
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman E Hegazy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Esraa A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
New evidence for deleterious effects of environmental contaminants on the male gamete. Anim Reprod Sci 2022; 246:106886. [PMID: 34774338 DOI: 10.1016/j.anireprosci.2021.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
The decreasing trend in human and domestic animal fertility in recent decades has resulted in the question of whether reduced sperm quality is associated with changes in global climate and the environment. Proposed causes for reduced sperm quality include environmental contaminants, which enter into the body of animals through the food chain and are transported to the reproductive tract, where contaminating agents can have effects on fertilization capacities of gametes. In this review, there is a focus on various environmental contaminants and potential effects on male fertility. Human-derived contaminants, particularly endocrine-disrupting phthalates and the pesticide atrazine, are discussed. Naturally occurring toxins are also addressed, in particular mycotoxins such as aflatoxin which can be components in food consumed by humans and animals. Mechanisms by which environmental contaminants reduce male fertility are not clearly defined; however, are apparently multifactorial (i.e., direct and indirect effects) with there being diverse modes of action. Results from studies with humans, rodents and domestic animals indicate there are deleterious effects of contaminants on male gametes at various stages of spermatogenesis (i.e., in the testis) during passage through the epididymis, and in mature spermatozoa, after ejaculation and during capacitation. Considering there is never detection of a single contaminant, this review addresses synergistic or additive effects of combinations of contaminants. There is new evidence highlighted for the long-lasting effects of environmental contaminants on spermatozoa and developing embryos. Understanding the risk associated with environmental contaminants for animal reproduction may lead to new management strategies, thereby improving reproductive processes.
Collapse
|
9
|
Wu K, Jia S, Xue D, Rajput SA, Liu M, Qi D, Wang S. Dual effects of zearalenone on aflatoxin B1-induced liver and mammary gland toxicity in pregnant and lactating rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 245:114115. [PMID: 36179448 DOI: 10.1016/j.ecoenv.2022.114115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Food and feed are frequently co-contaminated with aflatoxin B1 (AFB1) and zearalenone (ZEN). This study investigated the effects of ZEN on the AFB1-induced liver and mammary gland toxicity in pregnant and lactating rats. AFB1 and ZEN co-exposure inhibited the growth of rats and caused oxidative stress and inflammatory responses in the liver and mammary gland. Compared with the AFB1-only group, damage was aggravated in the AFB1 + 10 mg/kg ZEN group, and the AFB1 + 1 mg/kg ZEN group showed a reduction in some metrics. The metabolomic results of the mammary gland showed that metabolite changes were mainly in lipid, amino acid, and glucose metabolism. Compared with the AFB1 + 0 mg/kg ZEN group, the AFB1 + 1 mg/kg ZEN group had the most metabolite changes. Moreover, AFB1 and ZEN co-exposure reduced the levels of sex hormones and RNA m6A methylation in the mammary gland. We speculate that ZEN affects the toxicity of AFB1 to the liver and mammary gland by interfering with the function of sex hormones, regulating cell proliferation and metabolic processes.
Collapse
Affiliation(s)
- Kuntan Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sifan Jia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongfang Xue
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shahid Ali Rajput
- Department of Animal Feed and Production, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Minjie Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Kim G, Jang G, Song J, Kim D, Lee S, Joo JWJ, Jang W. A transcriptome-wide association study of uterine fibroids to identify potential genetic markers and toxic chemicals. PLoS One 2022; 17:e0274879. [PMID: 36174000 PMCID: PMC9521910 DOI: 10.1371/journal.pone.0274879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Uterine fibroid is one of the most prevalent benign tumors in women, with high socioeconomic costs. Although genome-wide association studies (GWAS) have identified several loci associated with uterine fibroid risks, they could not successfully interpret the biological effects of genomic variants at the gene expression levels. To prioritize uterine fibroid susceptibility genes that are biologically interpretable, we conducted a transcriptome-wide association study (TWAS) by integrating GWAS data of uterine fibroid and expression quantitative loci data. We identified nine significant TWAS genes including two novel genes, RP11-282O18.3 and KBTBD7, which may be causal genes for uterine fibroid. We conducted functional enrichment network analyses using the TWAS results to investigate the biological pathways in which the overall TWAS genes were involved. The results demonstrated the immune system process to be a key pathway in uterine fibroid pathogenesis. Finally, we carried out chemical–gene interaction analyses using the TWAS results and the comparative toxicogenomics database to determine the potential risk chemicals for uterine fibroid. We identified five toxic chemicals that were significantly associated with uterine fibroid TWAS genes, suggesting that they may be implicated in the pathogenesis of uterine fibroid. In this study, we performed an integrative analysis covering the broad application of bioinformatics approaches. Our study may provide a deeper understanding of uterine fibroid etiologies and informative notifications about potential risk chemicals for uterine fibroid.
Collapse
Affiliation(s)
- Gayeon Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Gyuyeon Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Daeun Kim
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Sora Lee
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
| | - Jong Wha J. Joo
- Department of Computer Science and Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University-Seoul, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Whole-Transcriptome Analysis of Non-Coding RNA Alteration in Porcine Alveolar Macrophage Exposed to Aflatoxin B1. Toxins (Basel) 2022; 14:toxins14060373. [PMID: 35737034 PMCID: PMC9230535 DOI: 10.3390/toxins14060373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a type of mycotoxin produced by the fungi Aspergillus flavus and Aspergillus parasiticus and is commonly found in cereals, oils and foodstuffs. In order to understand the toxic effects of AFB1 exposure on Porcine alveolar macrophages (3D4/2 cell), the 3D4/2 cells were exposed to 40 μg/mL AFB1 for 24 h in vitro, and several methods were used for analysis. Edu and TUNEL analysis showed that the proliferation of 3D4/2 cells was significantly inhibited and the apoptosis of 3D4/2 cells was significantly induced after AFB1 exposure compared with that of the control group. Whole-transcriptome analysis was performed to reveal the non-coding RNA alteration in 3D4/2 cells after AFB1 exposure. It was found that the expression of cell-cycle-related and apoptosis-related genes was altered after AFB1 exposure, and lncRNAs and miRNAs were also significantly different among the experimental groups. In particular, AFB1 exposure affected the expression of lncRNAs associated with cellular senescence signaling pathways, such as MSTRG.24315 and MSTRG.80767, as well as related genes, Cxcl8 and Gadd45g. In addition, AFB1 exposure affected the expression of miRNAs associated with immune-related genes, such as miR-181a, miR-331-3p and miR-342, as well as immune-related genes Nfkb1 and Rras2. Moreover, the regulation networks between mRNA-miRNAs and mRNA-lncRNAs were confirmed by the results of RT-qPCR and immunofluorescence. In conclusion, our results here demonstrate that AFB1 exposure impaired proliferation of 3D4/2 cells via the non-coding RNA-mediated pathway.
Collapse
|
12
|
Vornoli A, Tibaldi E, Gnudi F, Sgargi D, Manservisi F, Belpoggi F, Tovoli F, Mandrioli D. Evaluation of Toxicant-Associated Fatty Liver Disease and Liver Neoplastic Progress in Sprague-Dawley Rats Treated with Low Doses of Aflatoxin B1 Alone or in Combination with Extremely Low Frequency Electromagnetic Fields. Toxins (Basel) 2022; 14:325. [PMID: 35622572 PMCID: PMC9143281 DOI: 10.3390/toxins14050325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 02/05/2023] Open
Abstract
The term toxicant-associated fatty liver disease (TAFLD) has been proposed to describe fatty liver diseases connected to toxicants other than alcohol. Aflatoxins are mycotoxins commonly found as contaminants in foods and feeds, which are known liver toxicants and potential candidates as potential causes of TAFLD. Aflatoxin B1 (AFB1) was administered at low doses to Sprague-Dawley (SD) rats, alone or in combination with S-50 Hz an extremely low frequency electromagnetic field (ELFEMF), to study the evolution of TAFLD, preneoplastic and neoplastic lesions of the liver and the potential enhancing effect of lifespan exposure to ELFEMF. Steatosis, inflammation and foci of different types were significantly increased in both aflatoxin-treated males and females, which is consistent with a pattern of TAFLD. A significant increase in adenomas, cystic dilation of biliary ducts, hepatocellular hyperplasia and hypertrophy and oval cell hyperplasia were also observed in treated females only. The administration of low doses of AFB1 caused TAFLD in SD rats, inducing liver lesions encompassing fatty infiltration, foci of different types and adenomas. Furthermore, the pattern of change observed in preneoplastic liver lesions often included liver steatosis and steatohepatitis (TASH). ELFEMF did not result in any enhancing or toxic effect in the liver of SD rats.
Collapse
Affiliation(s)
- Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Daria Sgargi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (A.V.); (F.G.); (D.S.); (F.M.); (F.B.); (D.M.)
| |
Collapse
|
13
|
Alvarez CS, Rivera‐Andrade A, Kroker‐Lobos MF, Florio AA, Smith JW, Egner PA, Freedman ND, Lazo M, Guallar E, Dean M, Graubard BI, Ramírez‐Zea M, McGlynn KA, Groopman JD. Associations between aflatoxin B 1-albumin adduct levels with metabolic conditions in Guatemala: A cross-sectional study. Health Sci Rep 2022; 5:e495. [PMID: 35229049 PMCID: PMC8865065 DOI: 10.1002/hsr2.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic conditions such as obesity, type 2 diabetes, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD) are highly prevalent in Guatemala and increase the risk for a number of disorders, including hepatocellular carcinoma (HCC). Aflatoxin B1 (AFB1) levels are also notably elevated in the population and are known to be associated with HCC risk. Whether AFB1 also contributes to the high prevalence of the metabolic disorders has not been previously examined. Therefore, the purpose of this study was to assess the association between AFB1 and the metabolic conditions. METHODS Four-hundred twenty-three individuals were included in the study, in which AFB1-albumin adduct levels were measured in sera. Metabolic conditions included diabetes, obesity, central obesity, metabolic syndrome, and NAFLD. Crude and adjusted prevalence odds ratios (PORs) and 95% confidence intervals (95% CI) were estimated for the associations between the metabolic conditions and AFB1-albumin adduct levels categorized into quartiles. RESULTS The study found a significant association between AFB1-albumin adduct levels and diabetes (Q4 vs Q1 POR = 3.74, 95%CI: 1.71-8.19; P-trend .003). No associations were observed between AFB1-albumin adduct levels and the other conditions. CONCLUSIONS As diabetes is the metabolic condition most consistently linked to HCC, the possible association between AFB1 exposure and diabetes may be of public health importance. Further studies are warranted to replicate the findings and examine potential mechanisms.
Collapse
Affiliation(s)
- Christian S. Alvarez
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Alvaro Rivera‐Andrade
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - María F. Kroker‐Lobos
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - Andrea A. Florio
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
- Department of Nutrition, Harvard TH Chan School of Public HealthHarvard UniversityBostonMassachusettsUSA
| | - Joshua W. Smith
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Patricia A. Egner
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Mariana Lazo
- Division of General Internal Medicine, School of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
- Urban Health Collaborative, Dornsife School of Public HealthDrexel UniversityPhiladelphiaPennsylvaniaUSA
| | - Eliseo Guallar
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Michael Dean
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Barry I. Graubard
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Manuel Ramírez‐Zea
- INCAP Research Center for the Prevention of Chronic DiseasesInstitute of Nutrition of Central America and PanamaGuatemala CityGuatemala
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - John D. Groopman
- Department of Environmental Health and Engineering, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Epidemiology, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
14
|
El-Dairi R, Rysä J, Storvik M, Pasanen M, Huuskonen P. Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Curr Res Toxicol 2022; 3:100082. [PMID: 35814288 PMCID: PMC9263407 DOI: 10.1016/j.crtox.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gene expression profiles were studied in human primary trophoblast cells. 170 genes were significantly dysregulated in aflatoxin B1-exposed trophoblasts. AhR-mediated estrogen receptor signalling was dysregulated in response to AFB1. Transcripts involved in endocrine signalling and energy homeostasis were disrupted. Cellular growth and development, cell cycle and DNA repair processes were affected.
Aflatoxin B1 (AFB1) is a mycotoxin produced by Aspergillus flavus and A. parasiticus. A high exposure (40 nM and 1 µM AFB1 for 72 h) was used to study mechanistic effects of AFB1 on gene expression patterns in human primary trophoblast cells, isolated from full term placentae after delivery. Gene expression profiling was conducted, and Ingenuity pathway analysis (IPA) software was used to identify AFB1-regulated gene networks and regulatory pathways. In response to 40 nM AFB1, only 7 genes were differentially expressed whereas 1 µM AFB1 significantly dysregulated 170 genes (124 down- and 46 upregulated, ±1.5-fold, p < 0.05) in AFB1-exposed trophoblasts when compared to controls. The top downregulated genes were involved in endocrine signalling and biosynthesis of hormones, and lipid and carbohydrate metabolism. The top upregulated genes were involved in protein synthesis and regulation of cell cycle. The main canonical pathways identified by IPA were associated with endocrine signalling including growth hormone signalling, and corticotropin releasing hormone signalling. Furthermore, genes involved in aryl hydrocarbon receptor (AhR)-mediated estrogen receptor signalling were dysregulated in response to AFB1. Our findings indicate that a high concentration 72 h AFB1 exposure caused relatively moderate number of changes on transcript level to human placental primary trophoblast cells. However, these preliminary results need to be confirmed with human-relevant concentrations of AFB1.
Collapse
|
15
|
Khan R, Ghazali FM, Mahyudin NA, Samsudin NIP. Biocontrol of Aflatoxins Using Non-Aflatoxigenic Aspergillus flavus: A Literature Review. J Fungi (Basel) 2021; 7:jof7050381. [PMID: 34066260 PMCID: PMC8151999 DOI: 10.3390/jof7050381] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are mycotoxins, predominantly produced by Aspergillus flavus, A. parasiticus, A. nomius, and A. pseudotamarii. AFs are carcinogenic compounds causing liver cancer in humans and animals. Physical and biological factors significantly affect AF production during the pre-and post-harvest time. Several methodologies have been developed to control AF contamination, yet; they are usually expensive and unfriendly to the environment. Consequently, interest in using biocontrol agents has increased, as they are convenient, advanced, and friendly to the environment. Using non-aflatoxigenic strains of A. flavus (AF−) as biocontrol agents is the most promising method to control AFs’ contamination in cereal crops. AF− strains cannot produce AFs due to the absence of polyketide synthase genes or genetic mutation. AF− strains competitively exclude the AF+ strains in the field, giving an extra advantage to the stored grains. Several microbiological, molecular, and field-based approaches have been used to select a suitable biocontrol agent. The effectiveness of biocontrol agents in controlling AF contamination could reach up to 99.3%. Optimal inoculum rate and a perfect time of application are critical factors influencing the efficacy of biocontrol agents.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Correspondence: ; Tel.: +60-12219-8912
| | - Nor Ainy Mahyudin
- Department of Food Service and Management, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Nik Iskandar Putra Samsudin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.K.); (N.I.P.S.)
- Laboratory of Food Safety and Food Integrity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
16
|
Asadpour R, Aliyoldashi MH, Saberivand A, Hamidian G, Hejazi M. Ameliorative effect of selenium nanoparticles on the structure and function of testis and in vitro embryo development in Aflatoxin B1-exposed male mice. Andrologia 2020; 52:e13824. [PMID: 32951201 DOI: 10.1111/and.13824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/27/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The purpose of the research was to investigate the therapeutic ability of selenium nanoparticles (Se-NPs) on the aflatoxin B1 (AFB1) toxicity induced in the male reproductive system. For this experiment, the mature male mice were put into four groups. Control (0.5 ml PBS, 60 days; IP, n = 7), Se-NPs (0.5 µg kg-1 day-1 for 60 days; IP), AFB1 (4.5 mg kg-1 day-1 for 60 days; IP) and AFB1 + Se-NPs (4.5 mg kg-1 day-1 + 0.5 µg kg-1 day-1 for 60 days; IP). After treatment, the histological structure of testis, serum testosterone level and sperm parameters, including concentration, motility, viability, morphology and DNA fragmentation, were examined. The results demonstrated that the AFB1 destroyed the testicular tissue structure and decreased the sperm concentration, motility, viability and normal morphology significantly. AFB1 also could significantly increase sperm DNA fragmentation and reduce in vitro fertilisation and embryo development compared to the control group (p < .001). Our data show that Se-NPs could inhibit AFB1-induced damage to the testis and improve sperm parameters as well as in vitro fertilisation and embryo production in AFB1 exposed male mice. This study revealed that the administration of Se-NPs could attenuate the testicular injury of AFB1 and improve the male reproductive system function in AFB1 exposed mice.
Collapse
Affiliation(s)
- Reza Asadpour
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mohammad H Aliyoldashi
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Adel Saberivand
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Gholamreza Hamidian
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Marzieh Hejazi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
El-Dairi R, Huuskonen P, Pasanen M, Rysä J. Aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone regulated gene networks in human primary trophoblasts. Reprod Toxicol 2020; 96:370-379. [PMID: 32858204 DOI: 10.1016/j.reprotox.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in placenta. AhR belongs to a class of transcriptional regulators that control many developmental and physiological events (e.g. xenobiotic metabolism). Our study describes AhR regulated transcriptional responses in human primary trophoblast by using the AhR agonist, β-naphthoflavone (BNF). Human primary trophoblast cells were isolated from full term placenta after delivery. The trophoblasts were exposed to 25 μM of AhR agonist, BNF, for 72 hours. Gene expression profiling was conducted with Illumina HT-12 expression beadchips. Expression of selected genes was confirmed with RT-qPCR. Ingenuity pathway analysis (IPA) was used to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks associated with AhR. In response to BNF exposure, 64 genes were upregulated, and 257 genes were downregulated compared to control trophoblasts (±1.5-fold, p < 0.05). BNF regulated genes included placental hormones and genes implicated in immune- and inflammatory responses in addition to their well-known effects on xenobiotic metabolism, oxidative stress, antioxidant defense. In conclusion, these results show that BNF has wide-ranging effects on placental gene expression beyond xenobiotic metabolism e.g. disruption of inflammatory processes and hormones in the placenta.
Collapse
Affiliation(s)
- Rami El-Dairi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Pasi Huuskonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
18
|
Roth Z, Komsky-Elbaz A, Kalo D. Effect of environmental contamination on female and male gametes - A lesson from bovines. Anim Reprod 2020; 17:e20200041. [PMID: 33029217 PMCID: PMC7534576 DOI: 10.1590/1984-3143-ar2020-0041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) and foodborne contaminants are environmental pollutants that are considered reproductive toxicants due to their deleterious effects on female and male gametes. Among the EDCs, the phthalate plasticizers are of growing concern. In-vivo and in-vitro models indicate that the oocyte is highly sensitive to phthalates. This review summarizes the effects of di(2-ethylhexyl) phthalate and its major metabolite mono(2-ethyhexyl) phthalate (MEHP) on the oocyte. MEHP reduces the proportion of oocytes that fertilize, cleave and develop to the blastocyst stage. This is associated with negative effects on meiotic progression, and disruption of cortical granules, endoplasmic reticulum and mitochondrial reorganization. MEHP alters mitochondrial membrane polarity, increases reactive oxygen species levels and induces alterations in genes associated with oxidative phosphorylation. A carryover effect from the oocyte to the blastocyst is manifested by alterations in the transcriptomic profile of blastocysts developed from MEHP-treated oocytes. Among foodborne contaminants, the pesticide atrazine (ATZ) and the mycotoxin aflatoxin B1 (AFB1) are of high concern. The potential hazards associated with exposure of spermatozoa to these contaminants and their carryover effect to the blastocyst are described. AFB1 and ATZ reduce spermatozoa's viability, as reflected by a high proportion of cells with damaged plasma membrane; induce acrosome reaction, expressed as damage to the acrosomal membrane; and interfere with mitochondrial function, characterized by hyperpolarization of the membrane. ATZ and AFB1-treated spermatozoa show a high proportion of cells with fragmented DNA. Exposure of spermatozoa to AFB1 and ATZ reduces fertilization and cleavage rates, but not that of blastocyst formation. However, fertilization with AFB1- or ATZ-treated spermatozoa impairs transcript expression in the formed blastocysts, implying a carryover effect. Taken together, the review indicates the risk of exposing farm animals to environmental contaminants, and their deleterious effects on female and male gametes and the developing embryo.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alisa Komsky-Elbaz
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dorit Kalo
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
19
|
Insights into Aflatoxin B1 Toxicity in Cattle: An In Vitro Whole-Transcriptomic Approach. Toxins (Basel) 2020; 12:toxins12070429. [PMID: 32610656 PMCID: PMC7404968 DOI: 10.3390/toxins12070429] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Aflatoxins, and particularly aflatoxin B1 (AFB1), are toxic mycotoxins to humans and farm animal species, resulting in acute and chronic toxicities. At present, AFB1 is still considered a global concern with negative impacts on health, the economy, and social life. In farm animals, exposure to AFB1-contaminated feed may cause several untoward effects, liver damage being one of the most devastating ones. In the present study, we assessed in vitro the transcriptional changes caused by AFB1 in a bovine fetal hepatocyte-derived cell line (BFH12). To boost the cellular response to AFB1, cells were pre-treated with the co-planar PCB 3,3′,4,4′,5-pentachlorobiphenyl (PCB126), a known aryl hydrocarbon receptor agonist. Three experimental groups were considered: cells exposed to the vehicle only, to PCB126, and to PCB126 and AFB1. A total of nine RNA-seq libraries (three replicates/group) were constructed and sequenced. The differential expression analysis showed that PCB126 induced only small transcriptional changes. On the contrary, AFB1 deeply affected the cell transcriptome, the majority of significant genes being associated with cancer, cellular damage and apoptosis, inflammation, bioactivation, and detoxification pathways. Investigating mRNA perturbations induced by AFB1 in cattle BFH12 cells will help us to better understand AFB1 toxicodynamics in this susceptible and economically important food-producing species.
Collapse
|
20
|
Blanco-Castañeda R, Galaviz-Hernández C, Souto PCS, Lima VV, Giachini FR, Escudero C, Damiano AE, Barragán-Zúñiga LJ, Martínez-Aguilar G, Sosa-Macías M. The role of xenobiotic-metabolizing enzymes in the placenta: a growing research field. Expert Rev Clin Pharmacol 2020; 13:247-263. [PMID: 32129110 DOI: 10.1080/17512433.2020.1733412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The placenta is a temporary and unique organ that allows for the physical connection between a mother and fetus; this organ regulates the transport of gases and nutrients mediating the elimination of waste products contained in the fetal circulation. The placenta performs metabolic and excretion functions, on the basis of multiple enzymatic systems responsible for the oxidation, reduction, hydrolysis, and conjugation of xenobiotics. These mechanisms give the placenta a protective role that limits the fetal exposure to harmful compounds. During pregnancy, some diseases require uninterrupted treatment even if it is detrimental to the fetus. Drugs and other xenobiotics alter gene expression in the placenta with repercussions for the fetus and mother's well-being.Areas covered: This review provides a brief description of the human placental structure and function, the main drug and xenobiotic transporters and metabolizing enzymes, placenta-metabolized substrates, and alterations in gene expression that the exposure to xenobiotics may cause.Expert opinion: Research should be focused on the identification and validation of biological markers for the assessment of the harmful effects of some drugs in pregnancy, including the evaluation of polymorphisms and methylation patterns in chorionic villous samples and/or amniotic fluid.
Collapse
Affiliation(s)
| | | | - Paula C S Souto
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Victor Vitorino Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Fernanda R Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Carlos Escudero
- Vascular Physiology Laboratory Group of Investigation in Tumor Angiogenesis (GIANT) Group of Research and Innovation in Vascular Health (GRIVAS Health) Basic Sciences Department Faculty of Sciences, Universidad Del Bio-Bio, Chillan, Chile
| | - Alicia E Damiano
- Laboratorio De Biología De La Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina.,Departamento De Ciencias Biológicas, Facultad De Farmacia Y Bioquimica, Buenos Aires, UBA, Argentina
| | | | - Gerardo Martínez-Aguilar
- Unidad De Investigación Biomédica - Instituto Mexicano del Seguro Social (IMSS) Durango, Durango, México
| | - Martha Sosa-Macías
- Academia De Genómica, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| |
Collapse
|
21
|
Vähäkangas K, Loikkanen J, Sahlman H, Karttunen V, Repo J, Sieppi E, Kummu M, Huuskonen P, Myöhänen K, Storvik M, Pasanen M, Myllynen P, Pelkonen O. Biomarkers of Toxicity in Human Placenta. BIOMARKERS IN TOXICOLOGY 2019:303-339. [DOI: 10.1016/b978-0-12-814655-2.00018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Kourousekos GD, Theodosiadou EK, Lymberopoulos AG, Belibasaki S, Boscos C. Effect of aflatoxin B 1 on blood serum oestradiol-17β and progesterone concentrations during the luteal phase and the synchronized oestrus of goats. Anim Reprod 2018; 15:75-83. [PMID: 33365099 PMCID: PMC7746212 DOI: 10.21451/1984-3143-2017-ar939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of prolonged aflatoxin B1 (AFB1) administration on blood
serum oestradiol-17β and progesterone concentrations in goats during the luteal
phase and the synchronized oestrus was investigated. Thirty-six Greek indigenous primiparous
goats were used, during the oestrus period; 12 goats received, per os, 50 μg (treated
group T50) and 12 goats received 100 μg (treated group T100) AFB1/day/head,
respectively, for approximately 1.5 month, while 12 goats served as controls (C). On day 36
of the experiment, each goat was injected, i.m, 0.5 ml prostaglandin F2α
(PGF2α). Blood samples were collected from each goat twice a week, before
PGF2α injection, as well as every 4 hours from the onset to the end of the
synchronized oestrus. Oestradiol-17β and progesterone concentrations in blood
serum were determined using radioimmunoassay. During the whole luteal(s) phase(s), linear
regression analysis revealed a significant negative dependence (P < 0.05) of oestradiol-17β
and a significant positive dependence (P < 0.05) of progesterone over group (C = 0, T50 =
50, T100 = 100), in a dose dependent manner. During the synchronized oestrus, multiple linear
regression analysis revealed a significant negative dependence (P < 0.05) of oestradiol-17β,
as well as a significant positive dependence (P < 0.05) of progesterone over group (C = 0,
T50 = 50, T100 = 100) and over time (hours, from the onset to the end of the synchronized oestrus).
No significant differences were noticed among the three groups, regarding the body weight
of the goats from the onset to the end of AFB1 administration, the occurrence or
the duration of the synchronized oestrus presented by the goats (P > 0.05). In conclusion,
prolonged AFB1 administration at doses of 100 or even of 50 μg/day/head
changes the hormonal pattern in blood during the luteal phase and the synchronized oestrus
of goats, being in oestrus period.
Collapse
|
23
|
Soni P, Ghufran MS, Kanade SR. Aflatoxin B 1 induced multiple epigenetic modulators in human epithelial cell lines. Toxicon 2018; 151:119-128. [PMID: 30006306 DOI: 10.1016/j.toxicon.2018.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/15/2018] [Accepted: 07/08/2018] [Indexed: 12/12/2022]
Abstract
The compulsive and insidious secondary metabolite aflatoxin B1, produced by the opportunistic fungi Aspergillus flavus, upholds a distinguished place in midst of the toxicants causing fatal hazards to humans. Aflatoxins alter the function of host cells by inducing multiple effects through genetic and non-genetic pathways. Epigenetic mechanisms drag major attention towards finding novel and new mechanisms involved in this process. Our present work intends to study the functional expression profile of multiple epigenetic regulators. AFB1 modulates multiple epigenetic regulators like DNA methyltransferases (DMNTs), histones modifying enzymes and polycomb proteins. AFB1 upregulates the expression of DNMTs at gene and protein level in a dose dependent manner. It reduced the histone acetyl transferase (HAT) activity significantly with a remarkable increase in histone deacetylase (HDAC) activity along with an induction in expression of HDACs gene and protein in a dose dependent manner. The gene and protein expression of polycomb repressor proteins B cell specific moloney murine leukemia virus integration site 1 (BMI-1) and enhancer of zeste homolog 2 (EZH2) was significantly over expressed with enhanced trimethylation of H3K27 and ubiquitination of H2AK119. In summary, our results show impact of aflatoxin B1 on multiple epigenetic modulations known to be pivotal in oncogenic processes.
Collapse
Affiliation(s)
- Priyanka Soni
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Md Sajid Ghufran
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India
| | - Santosh R Kanade
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasargod 671314, Kerala, India.
| |
Collapse
|
24
|
Oliveira BR, Mata AT, Ferreira JP, Barreto Crespo MT, Pereira VJ, Bronze MR. Production of mycotoxins by filamentous fungi in untreated surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17519-17528. [PMID: 29663293 DOI: 10.1007/s11356-018-1952-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Several research studies reported that mycotoxins and other metabolites can be produced by fungi in certain matrices such as food. In recent years, attention has been drawn to the wide occurrence and identification of fungi in drinking water sources. Due to the large demand of water for drinking, watering, or food production purposes, it is imperative that further research is conducted to investigate if mycotoxins may be produced in water matrices. This paper describes the results obtained when a validated analytical method was applied to detect and quantify the presence of mycotoxins as a result of fungi inoculation and growth in untreated surface water. Aflatoxins B1 and B2, fumonisin B3, and ochratoxin A were detected at concentrations up to 35 ng/L. These results show that fungi can produce mycotoxins in water matrices in a non-negligible quantity and, as such, attention must be given to the presence of fungi in water.
Collapse
Affiliation(s)
- Beatriz R Oliveira
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana T Mata
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal
| | - João P Ferreira
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal
| | - Maria T Barreto Crespo
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Vanessa J Pereira
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Maria R Bronze
- IBET - Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
- iMED, Faculdade de Farmácia Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-019, Lisbon, Portugal.
| |
Collapse
|
25
|
Mehrzad J, Bahari A, Bassami MR, Mahmoudi M, Dehghani H. Immunobiologically relevant level of aflatoxin B1 alters transcription of key functional immune genes, phagocytosis and survival of human dendritic cells. Immunol Lett 2018; 197:44-52. [DOI: 10.1016/j.imlet.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023]
|
26
|
Aflatoxin B1 impairs sperm quality and fertilization competence. Toxicology 2017; 393:42-50. [PMID: 29113834 DOI: 10.1016/j.tox.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Aflatoxins are poisonous byproducts of the soilborne fungus Aspergillus, involved in the decomposition of plant materials. Aflatoxins can be found in various food products, such as maize, sorghum, millet, rice and wheat. AFB1 is the most toxic of these, classified as a carcinogen and mutagen for both humans and animals. AFB1 has been detected in human cord blood and placenta; however, its toxic effect on sperm is less known. The current study examines sperm responses associated with AFB1 exposure. These included acrosome integrity and function, mitochondrial polarity, DNA fragmentation, fertilization competence and early embryonic development. Spermatozoa were obtained from bull ejaculate and epididymis and capacitated in vitro for 4h with 0, 0.1, 1, 10 and 100μM AFB1. Following capacitation, acrosome reaction (AR) was induced by Ca2+ ionophore. The integrity and functionality of sperm were examined simultaneously by florescent staining. A Halosperm DNA fragmentation kit was used to evaluate DNA integrity. An in-vitro culture system was used to evaluate fertilization competence and blastocyst formation rate, using bovine oocytes. Findings indicate dose-responsive variation among compartments to AFB1 exposure. Sperm viability, expressed by integrity of the plasma membrane, was lower in sperm isolated from ejaculate or epididymis after culturing with AFB1. Exposure to AFB1 reduced the proportion of sperm from the epididymis tail undergoing acrosome reaction induced by Ca2+ ionophore. AFB1 impaired mitochondrial membrane potential (ΔYm) in sperm isolated from ejaculate and the epididymis tail. Exposing ejaculated sperm to AFB1 increased the proportion of sperm with fragmented DNA and reduced the proportion of embryos that cleaved to the 2- to 4-cell stage, 42h postfertilization, however, the proportion of embryos that developed to blastocysts, 7days postfertilization, did not differ among groups. The findings explore the harmful effects of AFB1 on sperm viability, ΔΨm and DNA integrity associated with fertility competence. We postulate that AFB1-induced fragmentation in paternal DNA might have a carryover effect on the quality of developing embryos. Further evaluation for the quality of blastocysts derived from sperm exposed to AFB1 is warranted.
Collapse
|
27
|
Yip KY, Wan MLY, Wong AST, Korach KS, El-Nezami H. Combined low-dose zearalenone and aflatoxin B1 on cell growth and cell-cycle progression in breast cancer MCF-7 cells. Toxicol Lett 2017; 281:139-151. [PMID: 28965971 DOI: 10.1016/j.toxlet.2017.09.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 01/05/2023]
Abstract
Zearalenone (ZEA) has long been recognized as a xenoestrogen, while the endocrine disrupting effects of aflatoxin B1 (AFB1) have been identified recently. Due to co-occurrence and endocrine disrupting potentials of ZEA and AFB1, it was hypothesized that co-exposure to ZEA and AFB1 might affect breast cancer cell growth. Consequently, the aim of this study was to evaluate the combined effects of ZEA and AFB1 (1nM-100nM) on cell growth and cell cycle progression, using a human breast cancer cell line MCF-7. Our results showed that ZEA and AFB1 produced significant interactive effects on cell growth, DNA synthesis and cell cycle progression. While ZEA promoted growth, DNA synthesis and cell cycle progression, AFB1 was cytotoxic and counteracted the effects of ZEA. ZEA altered the expression of several breast cancer related genes, whereas AFB1 had minimal effects on gene expression. With the use of specific inhibitors, ERα, GPER and MAPK pathways were found to be responsible for ZEA's effects on cell growth; while MAPK pathways might be involved in cytotoxic effects by AFB1. This study is first to report the effects of co-exposure of ZEA and AFB1 on breast cancer cell growth, possibly through ER dependent pathway. This suggested that endocrine-disrupting mycotoxins that co-occur in human food can interact and influence human health. Future work on interactive effects of endocrine-disrupting mycotoxins or other xenoestrogens is warranted, which will contribute to improved risk assessments.
Collapse
Affiliation(s)
- Ka Yiu Yip
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Murphy Lam Yim Wan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Alice Sze Tsai Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Kenneth S Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | - Hani El-Nezami
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
28
|
Pesonen M, Rysä J, Storvik M, Rilla K, Pasanen M, Vähäkangas K. Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro 2017; 42:247-254. [DOI: 10.1016/j.tiv.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/02/2017] [Accepted: 05/02/2017] [Indexed: 01/19/2023]
|
29
|
Zhu Y, Tan YQ, Leung LK. Aflatoxin B1 disrupts transient receptor potential channel activity and increases COX-2 expression in JEG-3 placental cells. Chem Biol Interact 2016; 260:84-90. [PMID: 27818125 DOI: 10.1016/j.cbi.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023]
Abstract
Aflatoxins are fungal metabolites which pose a major threat to food safety. Although these mycotoxins are established hepatocarcinogens, their effect on the reproductive organ is unknown. Transient Receptor Potential Channels (TRPs) are ubiquitously expressed in human tissues, including the placenta. These channels are associated with various functions in the placenta. The fetus and the placenta are especially sensitive to xenobiotic assault; therefore, exposure to the aflatoxins during gestation might lead to the undesirable outcome. Previously we have shown that aflatoxin B1 administered in late gestation may increase cox-2 expression in mouse placentae. In the present study, we examined the effect of aflatoxin B1 on COX-2 by using the placental cell model JEG-3 and the respective signaling pathway. In our result, COX-2 expression was induced by the mycotoxin administration. The intracellular calcium levels were also increased in cells by aflatoxin B1 treatment as little as 1 nM. Immunoblot result showed that some TRP expressions were elevated. As inflated intracellular calcium might activate MAPKs, the underlying signaling pathway was investigated. With the help of TRP-specific inhibitors, the mycotoxin appeared to increase the expression of TRPC-3 and activate PKCβ and ERK. The significance of COX-2 in pregnancy has been well established. Exposure to this mycotoxin may perturb the physiological processes dictated by COX-2 in pregnancy.
Collapse
Affiliation(s)
- Yun Zhu
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yan Qin Tan
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
30
|
Wang Y, Tan W, Wang CC, Leung LK. Exposure to aflatoxin B1 in late gestation alters protein kinase C and apoptotic protein expression in murine placenta. Reprod Toxicol 2016; 61:68-74. [PMID: 26968497 DOI: 10.1016/j.reprotox.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 02/07/2023]
Abstract
Mycotoxins are chemicals with diverse toxicities that are produced by fungi. Aflatoxin B1 is commonly found in plant food, and is generally regarded as one of the most toxic mycotoxins. In the present study, pregnant ICR mice were given p.o. daily doses of aflatoxin B1 at 0, 0.05, 0.5, 5mg/kg for 4days (from E13.5 to E16.5). Compared to the control group, time of delivery was shortened and low birth weight was induced in mice treated with 0.5 and 5mg aflatoxin B1/kg, respectively. Placental tissue isolated from pregnant mice at E17.5 showed that the mRNA expression of crh was increased in aflatoxin-treated groups. This upregulation might signify premature delivery. Further analysis indicated that Pkc proteins were activated and Bcl-2 was reduced in the placental tissue of the aflatoxin-treated groups. Reduction of the anti-apoptotic proteins, on the other hand, might affect the morphorgenesis and maintenance of the placenta.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, Institute of Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China; Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Wenjuan Tan
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - C C Wang
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Lai K Leung
- Biochemistry Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Food and Nutritional Sciences Programme, School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
31
|
Supriya C, Akhila B, Pratap Reddy K, Girish BP, Sreenivasula Reddy P. Effects of maternal exposure to aflatoxin B1 during pregnancy on fertility output of dams and developmental, behavioral and reproductive consequences in female offspring using a rat model. Toxicol Mech Methods 2016; 26:202-10. [DOI: 10.3109/15376516.2016.1151967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Pesonen M, Storvik M, Kokkola T, Rysä J, Vähäkangas K, Pasanen M. Transcriptomic Analysis of Human Primary Bronchial Epithelial Cells after Chloropicrin Treatment. Chem Res Toxicol 2015; 28:1926-35. [PMID: 26352163 DOI: 10.1021/acs.chemrestox.5b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chloropicrin is a vaporizing toxic irritant that poses a risk to human health if inhaled, but the mechanism of its toxicity in the respiratory tract is poorly understood. Here, we exposed human primary bronchial epithelial cells (HBEpC) to two concentrations of chloropicrin (10-50 μM) for 6 or 48 h and used genomic microarray, flow cytometry, and TEM-analysis to monitor cellular responses to the exposures. The overall number of differentially expressed transcripts with a fold-change > ± 2 compared to controls increased with longer exposure times. The initial response was activation of genes with a higher number of up- (512 by 10 μM and 408 by 40 μM chloropicrin) rather than down-regulated transcripts (40 by 10 μM and 215 by 40 μM chloropicrin) at 6 h seen with both exposure concentrations. The number of down-regulated transcripts, however, increased with the exposure time. The differentially regulated transcripts were further examined for enriched Gene Ontology Terms (GO) and KEGG-pathways. According to this analysis, the "ribosome" and "oxidative phosphorylation" were the KEGG-pathways predominantly affected by the exposure. The predominantly affected (GO) biological processes were "protein metabolic process" including "translation," "cellular protein complex assembly," and "response to unfolded protein." Furthermore, the top pathways, "NRF2-activated oxidative stress" and "Ah-receptor signaling," were enriched in our data sets by IPA-analysis. Real time qPCR assay of six selected genes agreed with the microarray analysis. In addition, chloropicrin exposure increased the numbers of late S and/or G2/M-phase cells as analyzed by flow cytometry and induced autophagy as revealed by electron microscopy. The targets identified are critical for vital cellular functions reflecting acute toxic responses and are potential causes for the reduced viability of epithelial cells after chloropicrin exposure.
Collapse
Affiliation(s)
- Maija Pesonen
- Research and Development, Centre for Military Medicine, Finnish Defence Forces , Tukholmankatu 8A, PL 50, 00301 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
33
|
Huuskonen P, Auriola S, Pasanen M. Zearalenone metabolism in human placental subcellular organelles, JEG-3 cells, and recombinant CYP19A1. Placenta 2015; 36:1052-5. [PMID: 26188906 DOI: 10.1016/j.placenta.2015.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 11/18/2022]
Abstract
Zearalenone (ZEN) and its derivative, zearalanone (ZAN), are endocrine disruptive mycotoxins produced by Fusarium species. We investigated the human placental metabolism of ZEN and ZAN in vitro in JEG-3 cells, human term placental subcellular fractions and recombinant enzymes. Human placental enzymes were capable of metabolizing ZEN and ZAN to their primary OH-metabolites which have higher affinity for estrogen receptors than their parent compounds. These metabolites may interfere with physiological placental estrogen signaling and thus disrupt the progress of gestation.
Collapse
Affiliation(s)
- Pasi Huuskonen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland.
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, FIN-70211 Kuopio, Finland
| |
Collapse
|
34
|
Aflatoxin B1 augments the synthesis of corticotropin releasing hormone in JEG-3 placental cells. Chem Biol Interact 2015; 237:73-9. [PMID: 26026912 DOI: 10.1016/j.cbi.2015.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/22/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
Aflatoxins pose a major threat to food safety. These toxins are classified as hepatocarcinogens; however, their effect on the other tissues is unclear. During pregnancy, the fetus and placental tissues are especially sensitive to toxin exposure. In the present study aflatoxin B1 was found to induce the mRNA expression of corticotrophin-releasing hormone (CRH) in placental cells. A corresponding increase in CRH peptide in the culture medium was also observed. Since signal transduction pathways have been described previously in the control of CRH transcription, the status of protein kinase Cs (PKCs) and mitogen-activated protein kinases (MAPKs) were determined by Western analysis. In the aflatoxin B1-treated cultures, PKC α/βII/δ and ERK-1/2 were activated. As the PKC inhibitor bisindolylmaleimide I and the ERK inhibitor PD98059 could revert the induced CRH expression, the pathways dictated by PKC and ERK were likely involved in the transcriptional regulation. Electrophoretic mobility shift assay showed that C/EBP could be the ultimate activated transcription factor. Taken together, this study demonstrated that aflatoxin B1 could increase the parturition-related placental hormone in vitro. These findings might have significant implications for public health.
Collapse
|
35
|
Storvik M, Huuskonen P, Pehkonen P, Pasanen M. The unique characteristics of the placental transcriptome and the hormonal metabolism enzymes in placenta. Reprod Toxicol 2014; 47:9-14. [DOI: 10.1016/j.reprotox.2014.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/24/2014] [Accepted: 04/30/2014] [Indexed: 11/24/2022]
|
36
|
Assessing the effect of food mycotoxins on aromatase by using a cell-based system. Toxicol In Vitro 2014; 28:640-6. [DOI: 10.1016/j.tiv.2014.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 11/21/2022]
|
37
|
Bahari A, Mehrzad J, Mahmoudi M, Bassami MR, Dehghani H. Cytochrome P450 isoforms are differently up-regulated in aflatoxin B₁-exposed human lymphocytes and monocytes. Immunopharmacol Immunotoxicol 2013; 36:1-10. [PMID: 24168324 DOI: 10.3109/08923973.2013.850506] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT Aflatoxins (AFs) are highly hazardous mycotoxins with potent carcinogenic, mutagenic and immune disregulatory properties. Cytochrome P450 (CYP) isoforms are central for enhanced AFB₁ toxicity in situ. It remains to be seen whether and how these AFB₁ activators work in human leukocytes. OBJECTIVE To investigate the involvement of CYP isoforms in AFB₁ toxicity of circulating mononuclear cells, we examined the impact of environmentally relevant levels of AFB1 on lymphocytes and monocytes. MATERIALS AND METHODS Very low and moderate doses of AFB₁ with/without CYP inducers on transcription of key CYP isoforms and toll-like receptor 4 (TLR4) were examined in human lymphocytes, monocytes and HepG2 cells; cell cycle distribution and viability were also analyzed in AFB₁-exposed lymphocytes and monocytes. RESULTS Only CYP1A1, CYP1B1, CYP3A4, CYP3A5 and CYP3A7 expressed in lymphocytes and monocytes. TLR4 much more expressed in monocytes than in lymphocytes, but HepG2 showed little TLR4 transcription. While CYP1A1, CYP1B1 and CYP3A4 were highly induced by AFB₁ in monocytes, in lymphocytes only CYP1A1 was induced. Among CYP1A1, CYP1B1 and CYP3A4 only CYP1A1 responded to low and moderate levels of AFB₁. Enhanced transcripts of CYPs by AFB₁ yielded little synergies on TLR4 transcription in lymphocytes and monocytes. Cell cycle arrest and necrosis were also detected in AFB₁-exposed lymphocytes and monocytes. CONCLUSIONS Our novel findings indicate that AFB₁ more intensively stimulates CYP genes expression in monocytes than in lymphocytes. Mechanistically, this could explain a more pronounced immunotoxicity of AFB₁ in myeloid than in lymphoid lineage cells in vitro/situ/vivo.
Collapse
Affiliation(s)
- Abbas Bahari
- Department of Pathobiology, Section Immunology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad , Mashhad , Iran
| | | | | | | | | |
Collapse
|
38
|
Chiapella G, Flores-Martín J, Ridano M, Reyna L, Magnarelli de Potas G, Panzetta-Dutari G, Genti-Raimondi S. The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta 2013; 34:792-8. [DOI: 10.1016/j.placenta.2013.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 01/07/2023]
|
39
|
Santos R, Schoevers E, Roelen B, Fink-Gremmels J. Mycotoxins and female reproduction: in vitro approaches. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2013.1596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to mycotoxins has been linked to adverse effects on female reproduction by interfering with the synthesis, metabolism or degradation of steroid hormones, interaction with steroid receptors or impairing oocyte maturation and competence. To assess such effects, many studies initially focussed on possible endocrine actions of mycotoxins using specific cell lines known to express key enzymes involved in the synthesis of steroid hormones. Using these models, zearalenone, deoxynivalenol, ochratoxin A, T-2 and HT-2 toxins, and aflatoxin B1 were claimed to be endocrine active substances. As yet, zearalenone is the only mycotoxin for which a direct interaction with oestrogen receptors could be demonstrated, classifying this mycotoxin as an endocrine disruptor. Mycotoxin exposure of complex cell systems like ovarian follicles at the earliest (primordial) to most advanced (pre-ovulatory) stages can serve not only as the first indication of the potential of a mycotoxin to affect female reproduction, but also provides insight in specific mechanisms involved in such an effect and identifies vulnerable phases in follicle development. Zearalenone is the most widely studied mycotoxin regarding female reproduction, but effects on oocyte maturation have also been demonstrated for deoxynivalenol. Exposure to zearalenone impairs the formation of primordial, while its metabolite ?-zearalenol is more harmful to fertilised oocytes than zearalenone itself. This short overview aims to provide an introduction into the different models, such as cell lines and oocytes, commonly used to assess the potential adverse effects of mycotoxins on female reproduction.
Collapse
Affiliation(s)
- R.R. Santos
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80152, 3508 TD Utrecht, the Netherlands
- Laboratory of Wild Animal Biology and Medicine, Federal University of Pará, Rua Augusto Corrêa, Campus Básico, CEP 66075-110, Belém, Pará, Brazil
| | - E.J. Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, the Netherlands
| | - B.A.J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80151, 3508 TD Utrecht, the Netherlands
| | - J. Fink-Gremmels
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80152, 3508 TD Utrecht, the Netherlands
| |
Collapse
|
40
|
Woo CSJ, Wan MLY, Ahokas J, El-Nezami H. Potential endocrine disrupting effect of ochratoxin A on human placental 3β-hydroxysteroid dehydrogenase/isomerase in JEG-3 cells at levels relevant to human exposure. Reprod Toxicol 2013; 38:47-52. [DOI: 10.1016/j.reprotox.2013.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/02/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
41
|
Huuskonen P, Myllynen P, Storvik M, Pasanen M. The effects of aflatoxin B1 on transporters and steroid metabolizing enzymes in JEG-3 cells. Toxicol Lett 2013; 218:200-6. [PMID: 23402939 DOI: 10.1016/j.toxlet.2013.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
Abstract
Effects of 96 h aflatoxin B1 (AFB1) exposure at concentrations from 0.2 μM to 6 μM on the mRNA and protein expression levels of the following transporters ABCB1/B4, ABCC1, ABCC2, ABCG2, OAT4 and the mRNA expression of steroid-metabolizing enzymes CYP1A1, CYP19A1, HSD3B1 and HSD17B1, and conjugating enzyme family UGT1A were evaluated in trophoblastic JEG-3 cells. Statistically significant dose-dependent five-fold increases in the expression levels with ABCC2 and OAT4 were recorded at 2 and 6μM AFB1. Protein expression of ABCG2 was decreased dose-dependently with 0.2-6 μM AFB1. With the other transporters, only a trend of increased expression was observed. Analogously, a three-fold increase in the expressions of CYP19A1, HSD3B1, HSD17B1 and UGT1A-family were observed at 0.3 μM AFB1. When an inhibitor of CYP19A1, finrozole, was dosed simultaneously with AFB1, no increases in the transcripts of transporters or steroid hydroxylases or CYP19A1 were observed. This delayed increase in the expression levels - only after 96h incubations - may indicate that the response is due to a secondary metabolite of AFB1 or other secondary controlling cascades rather than the parent compound itself. In conclusion, AFB1 affected the placental steroid synthesizing, metabolizing and conjugating enzymes as well as the expression levels of several transporter proteins in JEG-3 cells. These alterations may lead to anomalies in the foetoplacental hormonal homeostasis.
Collapse
Affiliation(s)
- Pasi Huuskonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
42
|
Myllynen P, Vähäkangas K. Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue. Toxicol In Vitro 2012; 27:507-12. [PMID: 22960472 DOI: 10.1016/j.tiv.2012.08.027] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
Abstract
Over the decades several ex vivo and in vitro models which utilize delivered human placenta have been developed to study various placental functions. The use of models originating from human placenta to study transplacental transfer and related mechanisms is an attractive option because human placenta is relatively easily available for experimental studies. After delivery placenta has served its purpose and is usually disposed of. The purpose of this review is to give an overview of the use of human placental models for the studies on human placental transfer and related mechanisms such as transporter functions and xenobiotic metabolism. Human placental perfusion, the most commonly used continuous cell lines, primary cells and tissue culture, as well as subcellular fractions are briefly introduced and their major advantages and disadvantages are discussed.
Collapse
Affiliation(s)
- Päivi Myllynen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | | |
Collapse
|
43
|
Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier. Expert Opin Drug Metab Toxicol 2012; 8:1263-75. [PMID: 22780574 DOI: 10.1517/17425255.2012.699041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Placenta plays an obligatory role in fetal growth and development by performing a multitude of functions, including embryo implantation, transport of nutrients and elimination of metabolic waste products and endocrine activity. Drugs and chemicals can transfer across the placental barrier from mother to fetus either by passive diffusion mechanisms and/or via a network of active transporters, which may lead to potential fetotoxicity effects. Placenta also expresses a wide variety of enzymes, being capable of metabolizing a large diversity of drugs and chemicals to metabolites of lower or even higher toxicity than parent compounds. AREAS COVERED The present review aims to summarize the current toxicological aspects in the emerging topic of drug transport and metabolism across the human placental barrier. EXPERT OPINION There is an emerging demand for accurate assessment of drug transport and metabolism across the human placental barrier, on the basis of a high throughput screening process in the early stages of drug design, to avoid drug candidates from potential fetotoxicity effects. In this aspect, combined studies, which take into account in vivo and in vitro investigations, as well as the ex vivo perfusion method and the recently developed computer-aided technologies, may significantly contribute to this direction.
Collapse
Affiliation(s)
- Constantinos Giaginis
- University of the Aegean, Department of Food Science and Nutrition, 2 Mitropoliti Ioakeim Street, Myrina, Lemnos 81400, Greece.
| | | | | |
Collapse
|