1
|
Tang R, Cao J, Shang J, Kuang Y, Geng H, Qiu X. Coupling Effect of Elemental Carbon and Organic Carbon on the Changes of Optical Properties and Oxidative Potential of Soot Particles under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19832-19842. [PMID: 39431524 DOI: 10.1021/acs.est.4c09217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Soot particles, coming from the incomplete combustion of fossil or biomass fuels, feature a core-shell structure with inner elemental carbon (EC) and outer organic carbon (OC). Both EC and OC are known to be photoactive under solar radiation. However, research on their coupling effect during photochemical aging remains limited. This study examines how the optical properties and oxidative potential (OP) of wood, coal, and diesel soot particles with varying EC and OC levels are affected by exposure to visible light. Wood soot, which has the highest OC content, showed the most significant changes in both optical properties and OP, indicating its highest sensitivity to visible light aging. Molecular composition analysis revealed that the reduction of polycyclic aromatic hydrocarbons (PAHs) and methyl-PAHs primarily affects the optical properties, while oxygenated PAHs play a major role in OP. Combined with the results from reactive oxygen species detection, it is suggested that EC initiates photoreactions by generating superoxide anions, while OC undergoes compositional changes that result in subsequent atmospheric effects. These findings enhance our understanding of the photochemical aging process of soot particles and their implications for climate and health.
Collapse
Affiliation(s)
- Rui Tang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jiong Cao
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Jing Shang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Yu Kuang
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Hong Geng
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xinghua Qiu
- SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Offer S, Di Bucchianico S, Czech H, Pardo M, Pantzke J, Bisig C, Schneider E, Bauer S, Zimmermann EJ, Oeder S, Hartner E, Gröger T, Alsaleh R, Kersch C, Ziehm T, Hohaus T, Rüger CP, Schmitz-Spanke S, Schnelle-Kreis J, Sklorz M, Kiendler-Scharr A, Rudich Y, Zimmermann R. The chemical composition of secondary organic aerosols regulates transcriptomic and metabolomic signaling in an epithelial-endothelial in vitro coculture. Part Fibre Toxicol 2024; 21:38. [PMID: 39300536 DOI: 10.1186/s12989-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The formation of secondary organic aerosols (SOA) by atmospheric oxidation reactions substantially contributes to the burden of fine particulate matter (PM2.5), which has been associated with adverse health effects (e.g., cardiovascular diseases). However, the molecular and cellular effects of atmospheric aging on aerosol toxicity have not been fully elucidated, especially in model systems that enable cell-to-cell signaling. METHODS In this study, we aimed to elucidate the complexity of atmospheric aerosol toxicology by exposing a coculture model system consisting of an alveolar (A549) and an endothelial (EA.hy926) cell line seeded in a 3D orientation at the air‒liquid interface for 4 h to model aerosols. Simulation of atmospheric aging was performed on volatile biogenic (β-pinene) or anthropogenic (naphthalene) precursors of SOA condensing on soot particles. The similar physical properties for both SOA, but distinct differences in chemical composition (e.g., aromatic compounds, oxidation state, unsaturated carbonyls) enabled to determine specifically induced toxic effects of SOA. RESULTS In A549 cells, exposure to naphthalene-derived SOA induced stress-related airway remodeling and an early type I immune response to a greater extent. Transcriptomic analysis of EA.hy926 cells not directly exposed to aerosol and integration with metabolome data indicated generalized systemic effects resulting from the activation of early response genes and the involvement of cardiovascular disease (CVD) -related pathways, such as the intracellular signal transduction pathway (PI3K/AKT) and pathways associated with endothelial dysfunction (iNOS; PDGF). Greater induction following anthropogenic SOA exposure might be causative for the observed secondary genotoxicity. CONCLUSION Our findings revealed that the specific effects of SOA on directly exposed epithelial cells are highly dependent on the chemical identity, whereas non directly exposed endothelial cells exhibit more generalized systemic effects with the activation of early stress response genes and the involvement of CVD-related pathways. However, a greater correlation was made between the exposure to the anthropogenic SOA compared to the biogenic SOA. In summary, our study highlights the importance of chemical aerosol composition and the use of cell systems with cell-to-cell interplay on toxicological outcomes.
Collapse
Affiliation(s)
- Svenja Offer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastiano Di Bucchianico
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany.
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany.
| | - Hendryk Czech
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Jana Pantzke
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Christoph Bisig
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Eric Schneider
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Stefanie Bauer
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elias J Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Sebastian Oeder
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Elena Hartner
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Thomas Gröger
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
| | - Rasha Alsaleh
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Christian Kersch
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Till Ziehm
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Thorsten Hohaus
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Christopher P Rüger
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, Friedrich-Alexander University of Erlangen-Nuremberg, Henkestr. 9-11, D-91054, Erlangen, Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Sklorz
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Troposphere (IEK-8), Wilhelm- Johen-Str, D-52428, Jülich, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot, ISR-7610001, Israel
| | - Ralf Zimmermann
- Joint Mass Spectrometry Center (JMSC) at Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
- Joint Mass Spectrometry Center (JMSC) at Analytical Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 27, D-18059, Rostock, Germany
- Department Life, Light & Matter (LLM), University of Rostock, D-18051, Rostock, Germany
| |
Collapse
|
3
|
Weatherly LM, Shane HL, Baur R, Lukomska E, McKinney W, Roberts JR, Fedan JS, Anderson SE. Effects of inhaled tier-2 diesel engine exhaust on immunotoxicity in a rat model: A hazard identification study. Part II. Immunotoxicology. Toxicol Rep 2024; 12:135-147. [PMID: 38304699 PMCID: PMC10831500 DOI: 10.1016/j.toxrep.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Diesel exhaust (DE) is an air pollutant containing gaseous compounds and particulate matter. Diesel engines are common on gas extraction and oil sites, leading to complex DE exposure to a broad range of compounds through occupational settings. The US EPA concluded that short-term exposure to DE leads to allergic inflammatory disorders of the airways. To further evaluate the immunotoxicity of DE, the effects of whole-body inhalation of 0.2 and 1 mg/m3 DE (total carbon; 6 h/d for 4 days) were investigated 1-, 7-, and 27-days post exposure in Sprague-Dawley rats using an occupationally relevant exposure system. DE exposure of 1 mg/m3 increased total cellularity, number of CD4+ and CD8+ T-cells, and B-cells at 1 d post-exposure in the lung lymph nodes. At 7 d post-exposure to 1 mg/m3, cellularity and the number of CD4+ and CD8+ T-cells decreased in the LLNs. In the bronchoalveolar lavage, B-cell number and frequency increased at 1 d post-exposure, Natural Killer cell number and frequency decreased at 7 d post-exposure, and at 27 d post-exposure CD8+ T-cell and CD11b+ cell number and frequency decreased with 0.2 mg/m3 exposure. In the spleen, 0.2 mg/m3 increased CD4+ T-cell frequency at 1 and 7 d post-exposure and at 27 d post-exposure increased CD4+ and CD8+ T-cell number and CD8+ T-cell frequency. B-cells were the only immune cell subset altered in the three tissues (spleen, LLNs, and BALF), suggesting the induction of the adaptive immune response. The increase in lymphocytes in several different organ types also suggests an induction of a systemic inflammatory response occurring following DE exposure. These results show that DE exposure induced modifications of cellularity of phenotypic subsets that may impair immune function and contribute to airway inflammation induced by DE exposure in rats.
Collapse
Affiliation(s)
- Lisa M. Weatherly
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Hillary L. Shane
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Rachel Baur
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Ewa Lukomska
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jenny R. Roberts
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jeffrey S. Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Stacey E. Anderson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Lai A, Owens K, Patel S, Nicholas M. The Impact of Air Pollution on Atopic Dermatitis. Curr Allergy Asthma Rep 2023; 23:435-442. [PMID: 37233850 PMCID: PMC10214316 DOI: 10.1007/s11882-023-01095-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) remains a dermatological disease that imposes a significant burden on society. Air pollution has previously been linked to both the onset and severity of atopic dermatitis. As air pollution remains a critical environmental factor impacting human health, this review seeks to provide an overview of the relationship between different air pollutants and AD. RECENT FINDINGS AD can develop from multiple causes that can be broadly grouped into epidermal barrier dysfunction and immune dysregulation. Air pollution imposes significant health risks and includes a wide variety of pollutant types. AD has been linked to outdoor air pollutants such as particulate matter (PM), volatile organic compounds (VOC), gaseous compounds, and heavy metals. Exposure to indoor pollutants such as tobacco smoke and fungal molds has also been associated with an increased incidence of AD. While different pollutants impact distinct molecular pathways in the cell, they mostly converge on ROS product, DNA damage, and dysregulated T-cell activity and cytokine production. The presented review suggests a strengthening tie between air pollution and AD. It points to opportunities for further studies to clarify, as well as potential therapeutic opportunities that leverage the mechanistic relationships between air pollution and AD.
Collapse
Affiliation(s)
- Austin Lai
- Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kelly Owens
- Duke University School of Medicine, Durham, NC, 27710, USA
| | - Surya Patel
- Department of Dermatology, Duke University, Durham, NC, 27710, USA
| | - Matilda Nicholas
- Department of Dermatology, Duke University, Durham, NC, 27710, USA.
- , Durham, USA.
| |
Collapse
|
5
|
Jo S, Na HG, Choi YS, Bae CH, Song SY, Kim YD. Saponin attenuates diesel exhaust particle (DEP)-induced MUC5AC expression and pro-inflammatory cytokine upregulation via TLR4/TRIF/NF-κB signaling pathway in airway epithelium and ovalbumin (OVA)-sensitized mice. J Ginseng Res 2022; 46:801-808. [PMID: 36312733 PMCID: PMC9597484 DOI: 10.1016/j.jgr.2022.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diesel exhaust particle (DEP) is a harmful kind of particulate matter known to exacerbate pre-existing respiratory diseases. Although their adverse effects on airway pathologies have been widely studied, the mechanistic analysis of signaling pathways and potential targets in reducing DEP-induced mucin secretion and pro-inflammatory cytokine production remain elusive. We, for the first time, investigated the effects of Korean Red Ginseng (KRG) extracts on mucin overproduction and airway inflammation induced by DEP. METHODS The effects of KRG and saponin on DEP-induced expression of MUC5AC and interleukin (IL)-6/8 were examined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) in human airway epithelial NCI-H292 cells. We conducted Western blotting analysis to analyze the associated signaling pathways. To evaluate the effects of saponin treatment on DEP-induced MUC5AC expression and inflammatory cell infiltrations in ovalbumin (OVA)-sensitized mice, immunohistochemical (IHC) staining and real-time PCR were implemented. RESULTS The KRG extracts markedly attenuated DEP-induced MUC5AC expression in vitro by inhibiting the TLR4/TRIF/NF-κB pathway. Furthermore, KRG and saponin inhibited DEP-induced pro-inflammatory cytokine IL-6/8 production. The in vivo study revealed that saponin blocked DEP-induced inflammation, mucin production and MUC5AC expression. CONCLUSION Our study revealed that KRG extracts have inhibitory effects on DEP-induced expression of MUC5AC and the production of pro-inflammatory cytokines. This finding provides novel insights into the mechanism by which saponin alleviates diesel-susceptible airway inflammation, elucidating its potential as a phytotherapeutic agent for inflammatory pathologies of airway.
Collapse
Affiliation(s)
- Sooyeon Jo
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyung Gyun Na
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yoon Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Chang Hoon Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Republic of Korea
| |
Collapse
|
6
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
7
|
Awolaja OO, Lawal AO, Folorunso IM, Elekofehinti OO, Umar HI. Silibinin ameliorates the cardiovascular oxidative and inflammatory effects of type-2-diabetic rats exposed to air particulate matter. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Olamide O. Awolaja
- Molecular Biology and Bioinformatics Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Akeem O. Lawal
- Molecular Biology and Bioinformatics Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Ibukun M. Folorunso
- Molecular Biology and Bioinformatics Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Olusola O. Elekofehinti
- Molecular Biology and Bioinformatics Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, Nigeria
| | - Haruna I. Umar
- Computer-Aided Therapeutic Discovery and Design Group, FUTA, Akure, Nigeria
| |
Collapse
|
8
|
Grytting VS, Chand P, Låg M, Øvrevik J, Refsnes M. The pro-inflammatory effects of combined exposure to diesel exhaust particles and mineral particles in human bronchial epithelial cells. Part Fibre Toxicol 2022; 19:14. [PMID: 35189914 PMCID: PMC8862321 DOI: 10.1186/s12989-022-00455-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND People are exposed to ambient particulate matter (PM) from multiple sources simultaneously in both environmental and occupational settings. However, combinatory effects of particles from different sources have received little attention in experimental studies. In the present study, the pro-inflammatory effects of combined exposure to diesel exhaust particles (DEP) and mineral particles, two common PM constituents, were explored in human lung epithelial cells. METHODS Particle-induced secretion of pro-inflammatory cytokines (CXCL8 and IL-1β) and changes in expression of genes related to inflammation (CXCL8, IL-1α, IL-1β and COX-2), redox responses (HO-1) and xenobiotic metabolism (CYP1A1 and CYP1B1) were assessed in human bronchial epithelial cells (HBEC3-KT) after combined exposure to different samples of DEP and mineral particles. Combined exposure was also conducted using lipophilic organic extracts of DEP to assess the contribution of soluble organic chemicals. Moreover, the role of the aryl hydrocarbon receptor (AhR) pathway was assessed using an AhR-specific inhibitor (CH223191). RESULTS Combined exposure to DEP and mineral particles induced increases in pro-inflammatory cytokines and expression of genes related to inflammation and redox responses in HBEC3-KT cells that were greater than either particle sample alone. Moreover, robust increases in the expression of CYP1A1 and CYP1B1 were observed. The effects were most pronounced after combined exposure to α-quartz and DEP from an older fossil diesel, but enhanced responses were also observed using DEP generated from a modern biodiesel blend and several stone particle samples of mixed mineral composition. Moreover, the effect of combined exposure on cytokine secretion could also be induced by lipophilic organic extracts of DEP. Pre-incubation with an AhR-specific inhibitor reduced the particle-induced cytokine responses, suggesting that the effects were at least partially dependent on AhR. CONCLUSIONS Exposure to DEP and mineral particles in combination induces enhanced pro-inflammatory responses in human bronchial epithelial cells compared with exposure to the individual particle samples. The effects are partly mediated through an AhR-dependent pathway and lipophilic organic chemicals in DEP appear to play a central role. These possible combinatory effects between different sources and components of PM warrant further attention and should also be considered when assessing measures to reduce PM-induced health effects.
Collapse
Affiliation(s)
- Vegard Sæter Grytting
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Prem Chand
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway.
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| | - Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO box 4404, 0403, Nydalen, Oslo, Norway
| |
Collapse
|
9
|
Zhang H, Qian M, Wang J, Yang G, Weng Y, Jin C, Li Y, Jin Y. Insights into the effects of difenoconazole on the livers in male mice at the biochemical and transcriptomic levels. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126933. [PMID: 34425431 DOI: 10.1016/j.jhazmat.2021.126933] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum triazole fungicide, that is extensively used in agriculture. Studies have shown that residues of DFZ and other fungicides have toxic effects on nontarget organisms. However, its hepatoxicity in mammals remains unclear. Here, we characterized the toxic hepatic effects in male C57BL/6 mice exposed to 30 and 100 mg/kg bw DFZ for 14 and 56 days, respectively. The results revealed that DFZ could increase the relative liver weights, however, the relative fat and spleen weights decreased. More importantly, DFZ exposure changed the hepatic morphology and induced hepatic oxidative stress. Gene expression analysis suggested that DFZ could induce a glycolipid metabolism disorder. Moreover, hepatic transcriptomic analysis revealed the effects of DFZ exposure on the transcriptional levels of various genes, and enrichment analysis of differentially expressed genes (DEGs) showed that energy metabolism and immune-associated pathways were mainly affected. We validated the results from transcriptomic analysis and found that some key genes related to energy metabolism were affected. In addition, flow cytometry showed that the CD3+/CD4+ and CD3+ /CD8+ levels declined in the spleen of mice. Taken together, these findings combined with transcriptome analysis highlighted that DFZ caused different endpoints in the liver, which could provide more evidence for investigating the toxic effects of DFZ in mammals.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingrong Qian
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianmei Wang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guiling Yang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cuiyuan Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinghong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
10
|
Juarez Facio AT, Yon J, Corbière C, Rogez-Florent T, Castilla C, Lavanant H, Mignot M, Devouge-Boyer C, Logie C, Chevalier L, Vaugeois JM, Monteil C. Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 2021; 78:105258. [PMID: 34653646 DOI: 10.1016/j.tiv.2021.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/26/2022]
Abstract
Air pollution has significant health effects worldwide, and airborne particles play a significant role in these effects. Ultrafine particles (UFPs) have an aerodynamic diameter of 0.1 μm or less, can penetrate deep into the respiratory tree, and are more toxic due to their large specific surface area, which should adsorb organic compounds. The aim of this study is to show the toxicological effects of UFPs with high organic content at low dose on BEAS-2B cells through at air-liquid interface (ALI) exposure using a Vitrocell® technology and a miniCAST (Combustion Aerosol Standard) generator. In conjunction with this approach, chemical analysis of particles and gas phase was performed to evaluate the presence of polycyclic aromatic hydrocarbons (PAHs). Chemical analyses confirmed the presence of PAHs in UFPs. With this experimental setup, exposure of the BEAS-2B cells induced neither cytotoxicity nor mitochondrial dysfunction. However, an increase of oxidative stress was observed, as assessed through Nrf2, NQO1, HO-1, CuZnSOD, MnSOD, and Catalase gene expression, together with significant induction of genes related to xenobiotic metabolism CYP1A1 and CYP1B1. Negative regulation of inflammatory genes expression (IL-6 and IL-8) was present three hours after the exposition to the UFPs. Taken together, this experimental approach, using repeatable conditions, should help to clarify the mechanisms by which organic UFPs induce toxicological effects.
Collapse
Affiliation(s)
| | - J Yon
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, CORIA, 76000 Rouen, France
| | - C Corbière
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | | | - C Castilla
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - H Lavanant
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - M Mignot
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Devouge-Boyer
- Normandie Univ, INSA Rouen, UMR 6014 CNRS, COBRA, 76801, Saint Etienne Du Rouvray, France
| | - C Logie
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - L Chevalier
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - J-M Vaugeois
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France
| | - C Monteil
- Normandie Univ, UNIROUEN, UNICAEN ABTE, 76000 Rouen, France.
| |
Collapse
|
11
|
Kim S, Carson KA, Chien AL. The association between urinary polycyclic aromatic hydrocarbon metabolites and atopic triad by age and body weight in the US population. J DERMATOL TREAT 2021; 33:2488-2494. [PMID: 34461804 DOI: 10.1080/09546634.2021.1970705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are generated during the incomplete combustion of coal/oil/gas and waste. The role of PAH exposure in the atopic triad remains poorly understood. Due to their lipophilic nature, PAHs deposit in adipocytes, potentially placing elderly and those who are overweight at higher risk. OBJECTIVE To investigate the association between urinary PAHs and symptoms of atopic triad (chronic pruritus, sneezing, and wheezing). METHODS Binary multivariable logistic regression was performed to estimate the association of nine urinary PAHs and atopic diseases followed by subgroup analyses by age (children 6-17, adults 18-49, elderly ≥50 years) and body mass index (BMI) (normal: BMI <25, overweight: BMI ≥ 25 kg/m2) among 2,242 participants of National Health and Nutrition Examination Survey 2005-2006 dataset. RESULTS 1-hydroxynaphthalene (1-NAP) and hydroxyfluorenes (FLUs) were positively associated with wheezing. When stratified by age, positive associations were found between 1-NAP with wheezing in children/adults and 2-/3-FLU with wheezing in adults/elderly. 3-hydroxyphenanthrene (3-PHE) and 1-hydroxypyrene were positively associated with chronic pruritus in elderly. When stratified by BMI, positive associations were found between 2-PHE with chronic pruritus, 1-NAP and FLUs with wheezing in overweight. CONCLUSION Urinary PAH levels were positively associated with atopic triad and this connection was influenced by age and BMI.
Collapse
Affiliation(s)
- Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Hospital, Seoul, South Korea.,Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathryn A Carson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Tassotti M, Mena P, Del Rio D, Palestini P. Study of the Antioxidant Effects of Coffee Phenolic Metabolites on C6 Glioma Cells Exposed to Diesel Exhaust Particles. Antioxidants (Basel) 2021; 10:antiox10081169. [PMID: 34439417 PMCID: PMC8388867 DOI: 10.3390/antiox10081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
- Correspondence:
| |
Collapse
|
13
|
Faber SC, McNabb NA, Ariel P, Aungst ER, McCullough SD. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol Sci 2021; 177:140-155. [PMID: 32525552 DOI: 10.1093/toxsci/kfaa085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a target and a mediator of the adverse effects of inhaled chemical exposures despite being separated from the inhaled material by an epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects should be considered in inhalation toxicology research and testing.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology and Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nicole A McNabb
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Emily R Aungst
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Shaun D McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| |
Collapse
|
14
|
Aryal A, Harmon AC, Dugas TR. Particulate matter air pollutants and cardiovascular disease: Strategies for intervention. Pharmacol Ther 2021; 223:107890. [PMID: 33992684 PMCID: PMC8216045 DOI: 10.1016/j.pharmthera.2021.107890] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Air pollution is consistently linked with elevations in cardiovascular disease (CVD) and CVD-related mortality. Particulate matter (PM) is a critical factor in air pollution-associated CVD. PM forms in the air during the combustion of fuels as solid particles and liquid droplets and the sources of airborne PM range from dust and dirt to soot and smoke. The health impacts of PM inhalation are well documented. In the US, where CVD is already the leading cause of death, it is estimated that PM2.5 (PM < 2.5 μm in size) is responsible for nearly 200,000 premature deaths annually. Despite the public health data, definitive mechanisms underlying PM-associated CVD are elusive. However, evidence to-date implicates mechanisms involving oxidative stress, inflammation, metabolic dysfunction and dyslipidemia, contributing to vascular dysfunction and atherosclerosis, along with autonomic dysfunction and hypertension. For the benefit of susceptible individuals and individuals who live in areas where PM levels exceed the National Ambient Air Quality Standard, interventional strategies for mitigating PM-associated CVD are necessary. This review will highlight current state of knowledge with respect to mechanisms for PM-dependent CVD. Based upon these mechanisms, strategies for intervention will be outlined. Citing data from animal models and human subjects, these highlighted strategies include: 1) antioxidants, such as vitamins E and C, carnosine, sulforaphane and resveratrol, to reduce oxidative stress and systemic inflammation; 2) omega-3 fatty acids, to inhibit inflammation and autonomic dysfunction; 3) statins, to decrease cholesterol accumulation and inflammation; 4) melatonin, to regulate the immune-pineal axis and 5) metformin, to address PM-associated metabolic dysfunction. Each of these will be discussed with respect to its potential role in limiting PM-associated CVD.
Collapse
Affiliation(s)
- Ankit Aryal
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Ashlyn C Harmon
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America
| | - Tammy R Dugas
- Louisiana State University School of Veterinary Medicine, Department of Comparative Biomedical Sciences, Skip Bertman Drive, Baton Rouge, Louisiana 70803, United States of America.
| |
Collapse
|
15
|
Tao S, Xu Y, Chen M, Zhang H, Huang X, Li Z, Pan B, Peng R, Zhu Y, Kan H, Li W, Ying Z. Exposure to different fractions of diesel exhaust PM 2.5 induces different levels of pulmonary inflammation and acute phase response. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111871. [PMID: 33422840 DOI: 10.1016/j.ecoenv.2020.111871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
AIM Ambient fine particulate matter (PM2.5) consists of various components, and their respective contributions to the toxicity of PM2.5 remains to be determined. To provide specific recommendations for preventing adverse effects due to PM2.5 pollution, we determined whether the induction of pulmonary inflammation, the putative pathogenesis for the morbidity and mortality due to PM2.5 exposure, was fractioned through solubility-dependent fractioning. METHODS In the present study, the water and heptane solubilities-dependent serial fractioning of diesel exhaust particulate matter (DEP), a prominent source of urban PM2.5 pollution, was performed. The pro-inflammatory actions of these resultant fractions were then determined using both an intratracheal instillation mouse model and cultured BEAS-2B cells, a human bronchial epithelial cell line. RESULTS Instillation of the water-insoluble, but not -soluble fraction elicited significant pulmonary inflammatory and acute phase responses, comparable to those induced by instillation of DEP. The water-insoluble fraction was further fractioned using heptane, a polar organic solvent, and instillation of heptane-insoluble, but not -soluble fraction elicited significant pulmonary inflammation and acute phase responses. Furthermore, we showed that DEP and water-insoluble DEP, but not water-soluble DEP, activated pro-inflammatory signaling in cultured BEAS-2B cells, ruling out the possibility that the solubility impacts the in vivo distribution and thus the pulmonary inflammatory response.
Collapse
Affiliation(s)
- Shimin Tao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Minjie Chen
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Xingke Huang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.
| | - Weihua Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Pharmacy, Fudan University, Shanghai 200032, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Ge J, Chu H, Xiao Q, Hao W, Shang J, Zhu T, Sun Z, Wei X. BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116452. [PMID: 33486252 DOI: 10.1016/j.envpol.2021.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
Collapse
Affiliation(s)
- Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
17
|
Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir Res 2020; 21:299. [PMID: 33187512 PMCID: PMC7666487 DOI: 10.1186/s12931-020-01563-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have found strong associations between air pollution and respiratory effects including development and/or exacerbation of asthma and chronic obstructive pulmonary disease (COPD) as well as increased occurrence of respiratory infections and lung cancer. It has become increasingly clear that also polycyclic aromatic hydrocarbons (PAHs) may affect processes linked to non-malignant diseases in the airways. The aim of the present paper was to review epidemiological studies on associations between gas phase and particle-bound PAHs in ambient air and non-malignant respiratory diseases or closely related physiological processes, to assess whether PAH-exposure may explain some of the effects associated with air pollution. Based on experimental in vivo and in vitro studies, we also explore possible mechanisms for how different PAHs may contribute to such events. Epidemiological studies show strongest evidence for an association between PAHs and asthma development and respiratory function in children. This is supported by studies on prenatal and postnatal exposure. Exposure to PAHs in adults seems to be linked to respiratory functions, exacerbation of asthma and increased morbidity/mortality of obstructive lung diseases. However, available studies are few and weak. Notably, the PAHs measured in plasma/urine also represent other exposure routes than inhalation. Furthermore, the role of PAHs measured in air is difficult to disentangle from that of other air pollution components originating from combustion processes. Experimental studies show that PAHs may trigger various processes linked to non-malignant respiratory diseases. Physiological- and pathological responses include redox imbalance, oxidative stress, inflammation both from the innate and adaptive immune systems, smooth muscle constriction, epithelial- and endothelial dysfunction and dysregulated lung development. Such biological responses may at the molecular level be initiated by PAH-binding to the aryl hydrocarbon receptor (AhR), but possibly also through interactions with beta-adrenergic receptors. In addition, reactive PAH metabolites or reactive oxygen species (ROS) may interfere directly with ion transporters and enzymes involved in signal transduction. Overall, the reviewed literature shows that respiratory effects of PAH-exposure in ambient air may extend beyond lung cancer. The relative importance of the specific PAHs ability to induce disease may differ between the biological endpoint in question.
Collapse
|
19
|
Lu H, Yao X, Li J, Yao S, Wu Z, Zhang H, Lin H, Nozaki T. Mechanism on the plasma-catalytic oxidation of graphitic carbon over Au/γ-Al 2O 3 by in situ plasma DRIFTS-mass spectrometer. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122730. [PMID: 32344365 DOI: 10.1016/j.jhazmat.2020.122730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/21/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Plasma-catalytic oxidation of particulate matter (PM) has potential applications for diesel exhaust cleaning. There is a grand requirement to explore the mechanism of carbonaceous PM oxidation for the development of plasma catalysts. Herein, Au/γ-Al2O3 was used to catalyze the gasification of the graphitic carbon. A modified diffuse reflectance infrared Fourier transform spectrometer equipped with a mass spectrometer was originally utilized to in situ characterize the surface intermediates of graphite on Au/γ-Al2O3 and the gaseous products during the discharges processes in the O2-He balanced gases. It was found that O atoms and O3 play important roles in the formation of surface oxygen complexes (SOCs) and facilitate the gasification of SOCs to CO2 in the presence of Au/γ-Al2O3. The findings are helpful to understand the plasma-catalytic oxidation mechanism of PM and further develop efficient plasma catalysts.
Collapse
Affiliation(s)
- Hao Lu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xinlei Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shuiliang Yao
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China; School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Zuliang Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China; School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Huanhuan Zhang
- Henan Bolian Smart Green Technology Group Co., Ltd., Zhengzhou, Henan 450000, China
| | - Hanghao Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
Air Pollution and Atopic Dermatitis (AD): The Impact of Particulate Matter (PM 10) on an AD Mouse-Model. Int J Mol Sci 2020; 21:ijms21176079. [PMID: 32846909 PMCID: PMC7503766 DOI: 10.3390/ijms21176079] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Air pollution reportedly contributes to the development and exacerbation of atopic dermatitis (AD). However, the exact mechanism underlying this remains unclear. To examine the relationship between air pollution and AD, a clinical, histological, and genetic analysis was performed on particulate matter (PM)-exposed mice. Five-week-old BALB/c mice were randomly divided into four groups (control group, ovalbumin (OVA) group, PM group, OVA + PM group; n = 6) and treated with OVA or PM10, alone or together. Cutaneous exposure to OVA and PM10 alone resulted in a significant increase in skin severity scores, trans-epidermal water loss (TEWL) and epidermal thickness compared to the control group at Week 6. The findings were further accentuated in the OVA + PM group showing statistical significance over the OVA group. A total of 635, 501, and 2149 genes were found to be differentially expressed following OVA, PM10, and OVA + PM10 exposure, respectively. Strongly upregulated genes included RNASE2A, S100A9, SPRR2D, THRSP, SPRR2A1 (OVA vs. control), SPRR2D, S100A9, STFA3, CHIL1, DBP, IL1B (PM vs. control) and S100A9, SPRR2D, SPRR2B, S100A8, SPRR2A3 (OVA + PM vs. control). In comparing the groups OVA + PM with OVA, 818 genes were differentially expressed with S100A9, SPRR2B, SAA3, S100A8, SPRR2D being the most highly upregulated in the OVA + PM group. Taken together, our study demonstrates that PM10 exposure induces/aggravates skin inflammation via the differential expression of genes controlling skin barrier integrity and immune response. We provide evidence on the importance of public awareness in PM-associated skin inflammation. Vigilant attention should be paid to all individuals, especially to those with AD.
Collapse
|
21
|
Carbon nanotube filler enhances incinerated thermoplastics-induced cytotoxicity and metabolic disruption in vitro. Part Fibre Toxicol 2020; 17:40. [PMID: 32787867 PMCID: PMC7424660 DOI: 10.1186/s12989-020-00371-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/28/2020] [Indexed: 11/11/2022] Open
Abstract
Background Engineered nanomaterials are increasingly being incorporated into synthetic materials as fillers and additives. The potential pathological effects of end-of-lifecycle recycling and disposal of virgin and nano-enabled composites have not been adequately addressed, particularly following incineration. The current investigation aims to characterize the cytotoxicity of incinerated virgin thermoplastics vs. incinerated nano-enabled thermoplastic composites on two in vitro pulmonary models. Ultrafine particles released from thermally decomposed virgin polycarbonate or polyurethane, and their carbon nanotube (CNT)-enabled composites were collected and used for acute in vitro exposure to primary human small airway epithelial cell (pSAEC) and human bronchial epithelial cell (Beas-2B) models. Post-exposure, both cell lines were assessed for cytotoxicity, proliferative capacity, intracellular ROS generation, genotoxicity, and mitochondrial membrane potential. Results The treated Beas-2B cells demonstrated significant dose-dependent cellular responses, as well as parent matrix-dependent and CNT-dependent sensitivity. Cytotoxicity, enhancement in reactive oxygen species, and dissipation of ΔΨm caused by incinerated polycarbonate were significantly more potent than polyurethane analogues, and CNT filler enhanced the cellular responses compared to the incinerated parent particles. Such effects observed in Beas-2B were generally higher in magnitude compared to pSAEC at treatments examined, which was likely attributable to differences in respective lung cell types. Conclusions Whilst the effect of the treatments on the distal respiratory airway epithelia remains limited in interpretation, the current in vitro respiratory bronchial epithelia model demonstrated profound sensitivity to the test particles at depositional doses relevant for occupational cohorts.
Collapse
|
22
|
Zhu J, Shang J, Chen Y, Kuang Y, Zhu T. Reactive Oxygen Species-Related Inside-to-Outside Oxidation of Soot Particles Triggered by Visible-Light Irradiation: Physicochemical Property Changes and Oxidative Potential Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8558-8567. [PMID: 32589839 DOI: 10.1021/acs.est.0c01150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Modifications of the physicochemical properties and oxidative potential (OP) of soot due to visible-light irradiation and its underlying mechanisms during atmospheric aging have not been elucidated. In this study, two types of soot obtained using different air/fuel ratios (A/F) were aged under visible light with or without ozone (O3) at an atmospherically relevant level in an environmental chamber. Physicochemical characteristics and OP of aged soot were systematically measured using the dithiothreitol (DTT) assay (OPDTT). Regardless of the presence of O3, visible light markedly promoted oxidation of soot, which led to consumption of polycyclic aromatic hydrocarbons, formation of oxygen-containing functional groups, and enhancement of OPDTT values. Compared to low-A/F soot, high-A/F soot contained more elemental carbon but less organic carbon and was more sensitive to visible light by exhibiting greater changes. It was proposed that elemental carbon in soot under visible-light irradiation initiated an inside-to-outside oxidation pathway, where reactive oxygen species played an important role. This study clarified the solar irradiation-triggered self-oxidation process in soot, which is important to its atmospheric and health effects.
Collapse
|
23
|
Xu Z, Wu H, Zhang H, Bai J, Zhang Z. Interleukins 6/8 and cyclooxygenase-2 release and expressions are regulated by oxidative stress-JAK2/STAT3 signaling pathway in human bronchial epithelial cells exposed to particulate matter ≤2.5 μm. J Appl Toxicol 2020; 40:1210-1218. [PMID: 32212198 DOI: 10.1002/jat.3977] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
Abstract
Atmospheric particulate matter with a diameter ≤2.5 μm (PM2.5) can induce inflammation of the respiratory system, which is the pathological basis of asthma or other respiratory diseases; however, the underlying regulation mechanism has not been clearly addressed. The aim of this study was to explore the potential role of the oxidative stress-JAK/STAT signaling pathway in the inflammation of human bronchial epithelial cells induced by PM2.5. The human bronchial epithelial cell line 16HBE cells were stimulated with PM2.5 at 50 and 100 μg/mL doses for 12 or 24 hours. Intracellular reactive oxygen species (ROS) was detected using flow cytometry. Gene and protein expressions of JAK2, STAT3 and cyclooxygenase 2 (COX-2) were determined using reverse transcription-polymerase chain reaction and western blotting, respectively. The ratio of intracellular glutathione/glutathione disulfide (GSH/GSSG) and the levels of interleukin (IL)-6 and IL-8 in cellular supernatant were analyzed using enzyme-linked immunosorbent assay. The results indicated that PM2.5 treatment significantly increased gene expressions of JAK2/STAT3 and protein levels of p-JAK2/p-STAT3, accompanied by increased intracellular ROS levels, decreased GSH/GSSG ratio at 50 and 100 μg/mL of PM2.5, and significantly enhanced levels of IL-6, IL-8 and COX-2 at a dose of 100 μg/mL. Pretreatment with N-acetyl-l-cysteine (NAC) attenuated the oxidative stress induced by PM2.5; similarly, pretreatment with AG490 (an inhibitor of JAK) decreased the cytokine levels stimulated by PM2.5. Therefore, we concluded that PM2.5 exposure could activate oxidative stress-JAK2/STAT3 signaling pathway, elevate the levels of IL-6, IL-8 and COX-2 in 16HBE cells, which can be inhibited by the NAC or AG490.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
24
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
25
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Holme JA, Brinchmann BC, Refsnes M, Låg M, Øvrevik J. Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environ Health 2019; 18:74. [PMID: 31439044 PMCID: PMC6704565 DOI: 10.1186/s12940-019-0514-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/09/2019] [Indexed: 05/05/2023]
Abstract
Air pollution is the most important environmental risk factor for disease and premature death, and exposure to combustion particles from vehicles is a major contributor. Human epidemiological studies combined with experimental studies strongly suggest that exposure to combustion particles may enhance the risk of cardiovascular disease (CVD), including atherosclerosis, hypertension, thrombosis and myocardial infarction.In this review we hypothesize that adhered organic chemicals like polycyclic aromatic hydrocarbons (PAHs), contribute to development or exacerbation of CVD from combustion particles exposure. We summarize present knowledge from existing human epidemiological and clinical studies as well as experimental studies in animals and relevant in vitro studies. The available evidence suggests that organic compounds attached to these particles are significant triggers of CVD. Furthermore, their effects seem to be mediated at least in part by the aryl hydrocarbon receptor (AhR). The mechanisms include AhR-induced changes in gene expression as well as formation of reactive oxygen species (ROS) and/or reactive electrophilic metabolites. This is in accordance with a role of PAHs, as they seem to be the major chemical group on combustion particles, which bind AhR and/or is metabolically activated by CYP-enzymes. In some experimental models however, it seems as PAHs may induce an inflammatory atherosclerotic plaque phenotype irrespective of DNA- and/or AhR-ligand binding properties. Thus, various components and several signalling mechanisms/pathways are likely involved in CVD induced by combustion particles.We still need to expand our knowledge about the role of PAHs in CVD and in particular the relative importance of the different PAH species. This warrants further studies as enhanced knowledge on this issue may amend risk assessment of CVD caused by combustion particles and selection of efficient measures to reduce the health effects of particular matters (PM).
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, PO Box 222, Skøyen, N-0213, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Guerrero-Castilla A, Olivero-Verbel J, Sandoval IT, Jones DA. Toxic effects of a methanolic coal dust extract on fish early life stage. CHEMOSPHERE 2019; 227:100-108. [PMID: 30986591 DOI: 10.1016/j.chemosphere.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Coal dust is a contaminant that impacts the terrestrial and aquatic environment with a complex mixture of chemicals, including PAHs and metals. This study aims to evaluate the toxic effect of a methanolic coal dust extract on a fish early life stage by analyzing phenotypic alterations, transcriptome changes, and mortality in zebrafish (ZF) embryos. ZF embryos were exposed to methanolic coal dust extract at 1-5000 mg·L-1 and monitored using bright field microscopy 24 and 48 hpf to determine malformations and mortality. In situ hybridization, RNA sequencing, and qRT-PCR were employed to identify transcriptome changes in malformed embryos. Three malformed phenotypes were generated in a dose-dependent manner. In situ hybridization analysis revealed brain, somite, dorsal cord, and heart tube development biomarker alterations. Gene expression profile analysis identified changes in genes related to structural constituent of muscle, calcium ion binding, actin binding, melanin metabolic process, muscle contraction, sarcomere organization, cardiac myofibril assembly, oxidation-reduction process, pore complex, supramolecular fiber, striated muscle thin filament, Z disc, and intermediate filament. This study shows, for the first time, the malformations generated by a mixture of pollutants from a methanolic coal dust extract on a fish early life stage, constituting a potential risk for normal embryonic development of other aquatic vertebrate organisms. Furthermore, we establish that phenotypes and changes in gene expression induced by the extract constitute a target for future studies about mechanical toxicity and their utility as sensitive tools in environmental risk assessments for biota and humans exposed to coal mining activities.
Collapse
Affiliation(s)
- Angélica Guerrero-Castilla
- Facultad de Ciencias de la Salud, Química y Farmacia, Universidad Arturo Prat, Casilla 121, Iquique, 1100000, Chile; Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia.
| | - Jesús Olivero-Verbel
- Faculty of Pharmaceutical Sciences, Environmental and Computational Chemistry Group, University of Cartagena, Cartagena, 130015, Colombia
| | - Imelda T Sandoval
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - David A Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Lawal AO, Oluyede DM, Adebimpe MO, Olumegbon LT, Awolaja OO, Elekofehinti OO, Crown OO. The cardiovascular protective effects of rooibos ( Aspalathus linearis) extract on diesel exhaust particles induced inflammation and oxidative stress involve NF-κB- and Nrf2-dependent pathways modulation. Heliyon 2019; 5:e01426. [PMID: 30976698 PMCID: PMC6441828 DOI: 10.1016/j.heliyon.2019.e01426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/14/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Studies have shown that diesel exhaust particles (DEP) induced oxidative stress and inflammation. This present study examined the molecular effects of aqueous rooibos extract (RE) on the cardiovascular toxic effect of methanol extract of DEP in exposed Wistar rats. The results showed that DEP caused significant (p < 0.001) increase in MDA and CDs levels in the aorta and heart but this increase was significantly (p < 0.001) attenuated by rooibos extract. DEP induced IL-8, TNFα, IL-1β and decreased IL-10 gene expressions, all of which were reversed in the presence of rooibos extract. The expression of NF-κB, and IκKB genes were also significantly (p < 0.001) induced by DEP in both tissues, but pre-treatment with RE attenuated these effects. In contrast, DEP repressed IκB mRNA level, which was significantly (p < 0.001) reversed by rooibos extract pre-treatment. In addition, pre-treatment with rooibos extract attenuated the increased Nrf2 and HO-1 mRNA levels caused by DEP. This indicates the potential of rooibos extract to protect against DEP-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Akeem O Lawal
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Dare M Oluyede
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Monsurat O Adebimpe
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Lateefat T Olumegbon
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olamide O Awolaja
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olusola O Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| | - Olamide O Crown
- Biochemical Pharmacology and Phytomedicine Unit, Department of Biochemistry, School of Sciences, Federal University of Technology, Akure, P.M.B. 704, Akure, Ondo-State, Nigeria
| |
Collapse
|
29
|
Magnusson P, Dziendzikowska K, Oczkowski M, Øvrevik J, Eide DM, Brunborg G, Gutzkow KB, Instanes C, Gajewska M, Wilczak J, Sapierzynski R, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Duale N, Gromadzka-Ostrowska J, Myhre O. Lung effects of 7- and 28-day inhalation exposure of rats to emissions from 1st and 2nd generation biodiesel fuels with and without particle filter - The FuelHealth project. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:8-20. [PMID: 30685595 DOI: 10.1016/j.etap.2019.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Increased use of 1st and 2nd generation biofuels raises concerns about health effects of new emissions. We analyzed cellular and molecular lung effects in Fisher 344 rats exposed to diesel engine exhaust emissions (DEE) from a Euro 5-classified diesel engine running on B7: petrodiesel fuel containing 7% fatty acid methyl esters (FAME), or SHB20 (synthetic hydrocarbon biofuel): petrodiesel fuel containing 7% FAME and 13% hydrogenated vegetable oil. The Fisher 344 rats were exposed for 7 consecutive days (6 h/day) or 28 days (6 h/day, 5 days/week), both with and without diesel particle filter (DPF) treatment of the exhaust in whole body exposure chambers (n = 7/treatment). Histological analysis and analysis of cytokines and immune cell numbers in bronchoalveolar lavage fluid (BALF) did not reveal adverse pulmonary effects after exposure to DEE from B7 or SHB20 fuel. Significantly different gene expression levels for B7 compared to SHB20 indicate disturbed redox signaling (Cat, Hmox1), beta-adrenergic signaling (Adrb2) and xenobiotic metabolism (Cyp1a1). Exhaust filtration induced higher expression of redox genes (Cat, Gpx2) and the chemokine gene Cxcl7 compared to non-filtered exhaust. Exposure time (7 versus 28 days) also resulted in different patterns of lung gene expression. No genotoxic effects in the lungs were observed. Overall, exposure to B7 or SHB20 emissions suggests only minor effects in the lungs.
Collapse
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Dag M Eide
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Kristine B Gutzkow
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Rafał Sapierzynski
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland; Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Poland
| | - Nur Duale
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Norway.
| |
Collapse
|
30
|
Hüls A, Abramson MJ, Sugiri D, Fuks K, Krämer U, Krutmann J, Schikowski T. Nonatopic eczema in elderly women: Effect of air pollution and genes. J Allergy Clin Immunol 2019; 143:378-385.e9. [DOI: 10.1016/j.jaci.2018.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/30/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022]
|
31
|
Organic chemicals from diesel exhaust particles affects intracellular calcium, inflammation and β-adrenoceptors in endothelial cells. Toxicol Lett 2018; 302:18-27. [PMID: 30503853 DOI: 10.1016/j.toxlet.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/14/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022]
Abstract
Exposure to diesel exhaust particles (DEP) may contribute to endothelial dysfunction and cardiovascular disease. DEP, extractable organic material from DEP (DEP-EOM) and certain PAHs seem to trigger [Ca2+]i increase as well as inflammation via GPCRs like βARs and PAR-2. In the present study we explored the involvement of βARs and PAR-2 in effects of DEP-EOM on [Ca2+]i and expression of inflammation-associated genes in the endothelial cell-line HMEC-1. We exposed the human microvascular endothelial cell line HMEC-1 to DEP-EOM fractionated by sequential extraction with solvents of increasing polarity: n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol (Methanol-EOM) and water (Water-EOM). While Methanol-EOM and Water-EOM had no marked effects, n-Hex-EOM and DCM-EOM enhanced [Ca2+]i (2-3 times baseline) and expression of inflammation-associated genes (IL-1α, IL-1β, COX-2 and CXCL8; 2-15 times baseline) in HMEC-1. The expression of βARs (60-80% of baseline) and βAR-inhibitor carazolol suppressed the increase in [Ca2+]i induced by both n-Hex- and DCM-EOM. Carazolol as well as the Ca2+-channel inhibitor SKF-96365 reduced the DCM-EOM-induced pro-inflammatory gene-expression. Overexpression of βARs increased DCM-EOM-induced [Ca2+]i responses in HEK293 cells, while βAR-overexpression suppressed [Ca2+]i responses from n-Hex-EOM. Furthermore, the PAR-2-inhibitor ENMD-1068 attenuated [Ca2+]i responses to DCM-EOM, but not n-Hex-EOM in HMEC-1. The results suggest that βAR and PAR-2 are partially involved in effects of complex mixtures of chemicals extracted from DEP on calcium signalling and inflammation-associated genes in the HMEC-1 endothelial cell-line.
Collapse
|
32
|
Onishi T, Honda A, Tanaka M, Chowdhury PH, Okano H, Okuda T, Shishido D, Terui Y, Hasegawa S, Kameda T, Tohno S, Hayashi M, Nishita-Hara C, Hara K, Inoue K, Yasuda M, Hirano S, Takano H. Ambient fine and coarse particles in Japan affect nasal and bronchial epithelial cells differently and elicit varying immune response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1693-1701. [PMID: 30086990 DOI: 10.1016/j.envpol.2018.07.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
Ambient particulate matter (PM) epidemiologically exacerbates respiratory and immune health, including allergic rhinitis (AR) and bronchial asthma (BA). Although fine and coarse particles can affect respiratory tract, the differences in their effects on the upper and lower respiratory tract and immune system, their underlying mechanism, and the components responsible for the adverse health effects have not been yet completely elucidated. In this study, ambient fine and coarse particles were collected at three different locations in Japan by cyclone technique. Both particles collected at all locations decreased the viability of nasal epithelial cells and antigen presenting cells (APCs), increased the production of IL-6, IL-8, and IL-1β from bronchial epithelial cells and APCs, and induced expression of dendritic and epithelial cell (DEC) 205 on APCs. Differences in inflammatory responses, but not in cytotoxicity, were shown between both particles, and among three locations. Some components such as Ti, Co, Zn, Pb, As, OC (organic carbon) and EC (elemental carbon) showed significant correlations to inflammatory responses or cytotoxicity. These results suggest that ambient fine and coarse particles differently affect nasal and bronchial epithelial cells and immune response, which may depend on particles size diameter, chemical composition and source related particles types.
Collapse
Affiliation(s)
- Toshinori Onishi
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akiko Honda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Michitaka Tanaka
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Pratiti H Chowdhury
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitoshi Okano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Daiki Shishido
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Yoshihiro Terui
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | | | | | - Susumu Tohno
- Graduate School of Energy Science, Kyoto University, Japan
| | - Masahiko Hayashi
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | - Chiharu Nishita-Hara
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | - Keiichiro Hara
- Fukuoka Institute of Atmospheric Environment and Health, Fukuoka University, Japan
| | | | - Makoto Yasuda
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Savary CC, Bellamri N, Morzadec C, Langouët S, Lecureur V, Vernhet L. Long term exposure to environmental concentrations of diesel exhaust particles does not impact the phenotype of human bronchial epithelial cells. Toxicol In Vitro 2018; 52:154-160. [DOI: 10.1016/j.tiv.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 11/26/2022]
|
34
|
An J, Zhou Q, Wu M, Wang L, Zhong Y, Feng J, Shang Y, Chen Y. Interactions between oxidative stress, autophagy and apoptosis in A549 cells treated with aged black carbon. Toxicol In Vitro 2018; 54:67-74. [PMID: 30240709 DOI: 10.1016/j.tiv.2018.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/17/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
After emitted from incomplete combustion of fossil fuels and biomass, ambient black carbon (BC) was then undergone photochemical oxidization processes in the air to form aged BC particles, also called oxidized BC (OBC). This study aimed to investigate the interactions between oxidative stress, autophagy and apoptosis induced by OBC in A549 cells and to explore associated molecular mechanisms. First, OBC could stimulate oxidative stress, autophagy and apoptosis dose-dependently, as evidenced by increased intercellular reactive oxygen species (ROS) levels, up-regulated autophagosome markers (light chain 3, LC3), and elevated apoptosis rate. Inhibitors of oxidative stress (N-acetylcysteine, NAC), autophagy (bafilomycin A1, Baf) and apoptosis (Z-DEVD-FMK) were used to investigate their interactions. NAC pretreatment could significantly reduce autophagy and apoptosis. Additionally, pretreatment with Baf or Z-DEVD-FMK could also significantly suppress the other two biological effects. Furthermore, OBC up regulated the expressions of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), phosphorylated protein kinase B (Akt) and mammalian target of rapamycin (mTOR). The Akt inhibitor (MK-2206) significantly reduced both autophagy and apoptosis. Taken together, dual-direction regulation existed between each two of oxidative stress, autophagy, and apoptosis in A549 cells exposed to OBC. In addition, the autophagy process is modulated by the PI3K/Akt pathway regardless of mTOR activity.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Qian Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Meiying Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
35
|
Crawford G, Hayes MD, Seoane RC, Ward S, Dalessandri T, Lai C, Healy E, Kipling D, Proby C, Moyes C, Green K, Best K, Haniffa M, Botto M, Dunn-Walters D, Strid J. Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response. Nat Immunol 2018; 19:859-870. [PMID: 30013146 PMCID: PMC6071860 DOI: 10.1038/s41590-018-0161-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development.
Collapse
MESH Headings
- Animals
- Anthracenes/toxicity
- B-Lymphocytes/physiology
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/immunology
- Cell Death
- Cells, Cultured
- Complementarity Determining Regions/genetics
- DNA Damage
- Epithelial Cells/physiology
- Female
- High-Throughput Nucleotide Sequencing
- Immunoglobulin Class Switching
- Immunoglobulin E/genetics
- Immunoglobulin E/metabolism
- Immunologic Surveillance
- Intraepithelial Lymphocytes/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/chemically induced
- Neoplasms, Experimental/immunology
- Piperidines/toxicity
- Prognosis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, IgE/metabolism
Collapse
Affiliation(s)
- Greg Crawford
- Department of Medicine, Imperial College London, London, UK
| | | | | | - Sophie Ward
- Department of Medicine, Imperial College London, London, UK
| | | | - Chester Lai
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Eugene Healy
- Dermatopharmacology, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Dermatology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David Kipling
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Charlotte Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Colin Moyes
- Department of Pathology, Greater Glasgow and Clyde NHS, Queen Elizabeth University Hospital, Glasgow, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Katie Best
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and Newcastle Biomedical Research Centre, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and Newcastle Biomedical Research Centre, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marina Botto
- Department of Medicine, Imperial College London, London, UK
| | - Deborah Dunn-Walters
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, UK
| | - Jessica Strid
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
36
|
Milani C, Corsetto PA, Farina F, Botto L, Lonati E, Massimino L, Rizzo AM, Bulbarelli A, Palestini P. Early evidence of stress in immortalized neurons exposed to diesel particles: the role of lipid reshaping behind oxidative stress and inflammation. Toxicology 2018; 409:63-72. [PMID: 30055298 DOI: 10.1016/j.tox.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 01/10/2023]
Abstract
Diesel combustion is the major source of fine particle road emission, whose solid fraction is represented by diesel exhaust particles (DEP). Many studies indicate the contribution of DEP to the onset of different neurological diseases, such as Alzheimer's disease (AD), identifying oxidative stress and neuroinflammation as two cardinal processes of brain damage. This study aimed to investigate the effects of different concentrations of DEP (10 μg/ml and 50 μg/ml) on the mouse HT22 cells treated for 3 h or 24 h. Our results demonstrated that DEP contributed to an increased oxidative stress, defined by overexpression of HO-1, Hsp70 and Cyp1b1 protein levels. Moreover, an inflammatory-related processes were also observed, as COX-2 and iNOS levels were higher in treated cells when compared to the control. Furthermore, our investigations highlighted the alteration of fatty acid composition, total cholesterol content in cells and media, and of membrane fluidity, suggesting a lipid reshaping after DEP treatment. Finally, we detected APP and BACE1 increase after 24 h of treatment with 50 μg/ml of DEP. Indeed, our results propose a role of acute exposure in the onset of a deleterious mechanism for AD neurodegeneration, even though no differences were observed in p-APP Thr668 levels, BACE1 activity and APP C-terminal fragment beta amount.
Collapse
Affiliation(s)
- Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.
| | | | - Francesca Farina
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele scientific institute, Milan, Italy
| | - Angela Maria Rizzo
- Departments of Pharmacology and Biomolecular Science, University of Milan, Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; NeuroMi, Milan Centre for Neuroscience, Department of Neurology and Neuroscience, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
37
|
Longhin E, Holme JA, Gualtieri M, Camatini M, Øvrevik J. Milan winter fine particulate matter (wPM2.5) induces IL-6 and IL-8 synthesis in human bronchial BEAS-2B cells, but specifically impairs IL-8 release. Toxicol In Vitro 2018; 52:365-373. [PMID: 30048734 DOI: 10.1016/j.tiv.2018.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/11/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023]
Abstract
Inflammatory responses have an important role in the onset of many lung diseases associated with urban airborne particulate matter (PM). Here we investigate effects and mechanisms linked to PM-induced expression and release of two main interleukins, IL-6 and IL-8, in human bronchial epithelial BEAS-2B cells. The cells were exposed to well characterized Milan city PM, winter PM2.5 (wPM2.5) and summer PM10 (sPM10), representing combustion and non-combustion sources, respectively. Both wPM2.5 and sPM10 increased mRNA-synthesis and intracellular protein levels of IL-6 and IL-8. Exposure to sPM10 also resulted in continuous and time-dependent increases in release of IL-6 and IL-8 for up to 48 h. By comparison, in wPM2.5-exposed cells IL-8 release was not significantly augmented, while extracellular IL-6 levels were increased but remained constant beyond 24 h exposure. Moreover, wPM2.5 also reduced the lipopolysaccharide (LPS)-increased release of IL-8. No cytotoxicity or significant adsorption of cytokines to wPM2.5 were observed. Immunofluorescence microscopy revealed an accumulation of IL-8 in intracellular vesicles and alterations in actin filament organization in wPM2.5 exposed cells, suggesting that the trafficking of vesicles carrying interleukins to the plasma membrane might be inhibited. Thus, wPM2.5 appeared to impair cytokine release in BEAS-2B cells, in particular of IL-8, possibly by damaging cytoskeletal function involved in protein secretion.
Collapse
Affiliation(s)
- Eleonora Longhin
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy.
| | - Jørn A Holme
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| | - Maurizio Gualtieri
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Marina Camatini
- Polaris Research Centre, Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza, 1, Milan 20126, Italy
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo N-0403, Norway
| |
Collapse
|
38
|
Schnass W, Hüls A, Vierkötter A, Krämer U, Krutmann J, Schikowski T. Traffic-related air pollution and eczema in the elderly: Findings from the SALIA cohort. Int J Hyg Environ Health 2018; 221:861-867. [PMID: 29908909 DOI: 10.1016/j.ijheh.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/25/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022]
Abstract
Childhood eczema results from an interplay of genetic and environmental factors including Traffic-Related Air Pollution (TRAP). In contrast, little is known about eczema in the elderly in general and its association with TRAP in particular. Animal experiments indicate that the arylhydrocarbon receptor (AHR) might link TRAP and eczema. We investigated (i) incidence and prevalence of eczema in elderly women, (ii) its association with long-term TRAP exposure and (iii) the effect modification by AHR polymorphism rs2066853. The study is based on the SALIA cohort. The women's average age was 55 years at baseline (1985-1994) and 74 years at follow-up (2008-2009) examination. Incidence and prevalence of eczema were assessed by an adapted version of the International Study of Asthma and Allergies in Childhood (ISAAC) symptom questionnaire. TRAP was determined using land-use regression models. Adjusted logistic regression models were used. After age 55, the incidence and prevalence of eczema symptoms were 7.9% and 8.8%, respectively. Significant associations (p < 0.05) were found between all parameters of TRAP at the baseline visit and eczema incidence. The risk was higher for minor allele carriers of rs2066853 e.g. NOx: OR = 3.75, p = 0.030 vs. OR = 1.34, p = 0.317 in non-carriers (p(interaction) = 0.122). These results indicate a high incidence for eczema in elderly women, which is associated with chronic exposure to TRAP and possibly mediated by AHR.
Collapse
Affiliation(s)
- Winnie Schnass
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Anke Hüls
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Vierkötter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ursula Krämer
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
39
|
De Grove KC, Provoost S, Brusselle GG, Joos GF, Maes T. Insights in particulate matter-induced allergic airway inflammation: Focus on the epithelium. Clin Exp Allergy 2018; 48:773-786. [PMID: 29772098 DOI: 10.1111/cea.13178] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Abstract
Outdoor air pollution is a major environmental health problem throughout the world. In particular, exposure to particulate matter (PM) has been associated with the development and exacerbation of several respiratory diseases, including asthma. Although the adverse health effects of PM have been demonstrated for many years, the underlying mechanisms have not been fully identified. In this review, we focus on the role of the lung epithelium and specifically highlight multiple cytokines in PM-induced respiratory responses. We describe the available literature on the topic including in vitro studies, findings in humans (ie observations in human cohorts, human controlled exposure and ex vivo studies) and in vivo animal studies. In brief, it has been shown that exposure to PM modulates the airway epithelium and promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, IL-33, TNF-α, TSLP and GM-CSF. Further, we propose that PM-induced type 2-promoting cytokines are important mediators in the acute and aggravating effects of PM on airway inflammation. Targeting these cytokines could therefore be a new approach in the treatment of asthma.
Collapse
Affiliation(s)
- K C De Grove
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - S Provoost
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G G Brusselle
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - G F Joos
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| | - T Maes
- Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
40
|
Cytotoxicity of Air Pollutant 9,10-Phenanthrenequinone: Role of Reactive Oxygen Species and Redox Signaling. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9523968. [PMID: 29984252 PMCID: PMC6015725 DOI: 10.1155/2018/9523968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 01/22/2023]
Abstract
Atmospheric pollution has been a principal topic recently in the scientific and political community due to its role and impact on human and ecological health. 9,10-phenanthrenequinone (9,10-PQ) is a quinone molecule found in air pollution abundantly in the diesel exhaust particles (DEP). This compound has studied extensively and has been shown to develop cytotoxic effects both in vitro and in vivo. 9, 10-PQ has been proposed to play a critical role in the development of cytotoxicity via generation of reactive oxygen species (ROS) through redox cycling. This compound also reduces expression of glutathione (GSH), which is critical in Phase II detoxification reactions. Understanding the underlying cellular mechanisms involved in cytotoxicity can allow for the development of therapeutics designed to target specific molecules significantly involved in the 9,10-PQ-induced ROS toxicity. This review highlights the developments in the understanding of the cytotoxic effects of 9, 10-PQ with special emphasis on the possible mechanisms involved.
Collapse
|
41
|
Brinchmann BC, Skuland T, Rambøl MH, Szoke K, Brinchmann JE, Gutleb AC, Moschini E, Kubátová A, Kukowski K, Le Ferrec E, Lagadic-Gossmann D, Schwarze PE, Låg M, Refsnes M, Øvrevik J, Holme JA. Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s). Part Fibre Toxicol 2018; 15:21. [PMID: 29751765 PMCID: PMC5948689 DOI: 10.1186/s12989-018-0257-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/01/2018] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-inflammatory reactions, a central step on the path to atherosclerosis. Results Exposure-relevant concentrations of DEP (0.12 μg/cm2) applied on the epithelial side of an alveolar 3D tri-culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation. Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors. Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 μg/cm2) induced low to moderate increases in IL-1α, IL-1β, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects, there was no straight-forward link between chemical composition and biological effects. Conclusion Lipophilic and semi-lipophilic chemicals seemed to detach from DEP, translocate through alveolar epithelial cells and trigger pro-inflammatory reactions in endothelial cells at exposure-relevant concentrations. These effects appeared to be triggered by AhR agonists, and involve PAR-2 signaling. Electronic supplementary material The online version of this article (10.1186/s12989-018-0257-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.,Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Mia H Rambøl
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Krisztina Szoke
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Jan E Brinchmann
- Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Arno C Gutleb
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Elisa Moschini
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Belvaux, Grand Duchy of Luxembourg
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND, USA
| | - Eric Le Ferrec
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm U1085, Institut de Recherche en Santé, Environnement, Travail (IRSET), Rennes, France.,Université de Rennes 1, Faculté des Sciences pharmaceutiques et biologiques, Rennes, France
| | - Per E Schwarze
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Magne Refsnes
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Jørn A Holme
- Department of Air Pollution and Noise, Domain of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| |
Collapse
|
42
|
Brinchmann BC, Le Ferrec E, Podechard N, Lagadic-Gossmann D, Shoji KF, Penna A, Kukowski K, Kubátová A, Holme JA, Øvrevik J. Lipophilic Chemicals from Diesel Exhaust Particles Trigger Calcium Response in Human Endothelial Cells via Aryl Hydrocarbon Receptor Non-Genomic Signalling. Int J Mol Sci 2018; 19:E1429. [PMID: 29748474 PMCID: PMC5983734 DOI: 10.3390/ijms19051429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022] Open
Abstract
Exposure to diesel exhaust particles (DEPs) affects endothelial function and may contribute to the development of atherosclerosis and vasomotor dysfunction. As intracellular calcium concentration [Ca2+]i is considered important in myoendothelial signalling, we explored the effects of extractable organic matter from DEPs (DEP-EOM) on [Ca2+]i and membrane microstructure in endothelial cells. DEP-EOM of increasing polarity was obtained by pressurized sequential extraction of DEPs with n-hexane (n-Hex-EOM), dichloromethane (DCM-EOM), methanol, and water. Chemical analysis revealed that the majority of organic matter was extracted by the n-Hex- and DCM-EOM, with polycyclic aromatic hydrocarbons primarily occurring in n-Hex-EOM. The concentration of calcium was measured in human microvascular endothelial cells (HMEC-1) using micro-spectrofluorometry. The lipophilic n-Hex-EOM and DCM-EOM, but not the more polar methanol- and water-soluble extracts, induced rapid [Ca2+]i increases in HMEC-1. n-Hex-EOM triggered [Ca2+]i increase from intracellular stores, followed by extracellular calcium influx consistent with store operated calcium entry (SOCE). By contrast, the less lipophilic DCM-EOM triggered [Ca2+]i increase via extracellular influx alone, resembling receptor operated calcium entry (ROCE). Both extracts increased [Ca2+]i via aryl hydrocarbon receptor (AhR) non-genomic signalling, verified by pharmacological inhibition and RNA-interference. Moreover, DCM-EOM appeared to induce an AhR-dependent reduction in the global plasma membrane order, as visualized by confocal fluorescence microscopy. DCM-EOM-triggered [Ca2+]i increase and membrane alterations were attenuated by the membrane stabilizing lipid cholesterol. In conclusion, lipophilic constituents of DEPs extracted by n-hexane and DCM seem to induce rapid AhR-dependent [Ca2+]i increase in HMEC-1 endothelial cells, possibly involving both ROCE and SOCE-mediated mechanisms. The semi-lipophilic fraction extracted by DCM also caused an AhR-dependent reduction in global membrane order, which appeared to be connected to the [Ca2+]i increase.
Collapse
Affiliation(s)
- Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
- Division of Laboratory Medicine, Faculty of Medicine, University of Oslo, N-0315 Oslo, Norway.
| | - Eric Le Ferrec
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Kenji F Shoji
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Aubin Penna
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), Univ. Rennes, UMR_S 1085, F-35000 Rennes, France.
| | - Klara Kukowski
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, N-0403 Oslo, Norway.
| |
Collapse
|
43
|
Diesel Exhaust Particles and the Induction of Macrophage Activation and Dysfunction. Inflammation 2017; 41:356-363. [DOI: 10.1007/s10753-017-0682-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Magnusson P, Oczkowski M, Øvrevik J, Gajewska M, Wilczak J, Biedrzycki J, Dziendzikowska K, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Brunborg G, Instanes C, Gromadzka-Ostrowska J, Myhre O. No adverse lung effects of 7- and 28-day inhalation exposure of rats to emissions from petrodiesel fuel containing 20% rapeseed methyl esters (B20) with and without particulate filter – the FuelHealth project. Inhal Toxicol 2017; 29:206-218. [DOI: 10.1080/08958378.2017.1339149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pål Magnusson
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Johan Øvrevik
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Malgorzata Gajewska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Katarzyna Dziendzikowska
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Radiobiology and Immunology, Jan Kochanowski University, Kielce, Warsaw, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Gunnar Brunborg
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christine Instanes
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Oddvar Myhre
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
45
|
Robinson RK, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Chen S, McGilvery CM, Hu S, Shaffer MSP, Bonvini SJ, Maher SA, Mudway IS, Porter AE, Carlsten C, Tetley TD, Belvisi MG. Mechanistic link between diesel exhaust particles and respiratory reflexes. J Allergy Clin Immunol 2017; 141:1074-1084.e9. [PMID: 28532657 PMCID: PMC5840514 DOI: 10.1016/j.jaci.2017.04.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/14/2017] [Accepted: 04/26/2017] [Indexed: 02/09/2023]
Abstract
Background Diesel exhaust particles (DEPs) are a major component of particulate matter in Europe's largest cities, and epidemiologic evidence links exposure with respiratory symptoms and asthma exacerbations. Respiratory reflexes are responsible for symptoms and are regulated by vagal afferent nerves, which innervate the airway. It is not known how DEP exposure activates airway afferents to elicit symptoms, such as cough and bronchospasm. Objective We sought to identify the mechanisms involved in activation of airway sensory afferents by DEPs. Methods In this study we use in vitro and in vivo electrophysiologic techniques, including a unique model that assesses depolarization (a marker of sensory nerve activation) of human vagus. Results We demonstrate a direct interaction between DEP and airway C-fiber afferents. In anesthetized guinea pigs intratracheal administration of DEPs activated airway C-fibers. The organic extract (DEP-OE) and not the cleaned particles evoked depolarization of guinea pig and human vagus, and this was inhibited by a transient receptor potential ankyrin-1 antagonist and the antioxidant N-acetyl cysteine. Polycyclic aromatic hydrocarbons, major constituents of DEPs, were implicated in this process through activation of the aryl hydrocarbon receptor and subsequent mitochondrial reactive oxygen species production, which is known to activate transient receptor potential ankyrin-1 on nociceptive C-fibers. Conclusions This study provides the first mechanistic insights into how exposure to urban air pollution leads to activation of guinea pig and human sensory nerves, which are responsible for respiratory symptoms. Mechanistic information will enable the development of appropriate therapeutic interventions and mitigation strategies for those susceptible subjects who are most at risk.
Collapse
Affiliation(s)
- Ryan K Robinson
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Mark A Birrell
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - John J Adcock
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Michael A Wortley
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Eric D Dubuis
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Shu Chen
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Catriona M McGilvery
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Sheng Hu
- Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Milo S P Shaffer
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom; Department of Chemistry and London Centre for Nanotechnology, Imperial College London, London, United Kingdom
| | - Sara J Bonvini
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah A Maher
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Ian S Mudway
- MRC-PHE Centre for Environment and Health, King's College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London, United Kingdom; NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom
| | - Chris Carlsten
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Teresa D Tetley
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, London, United Kingdom; Lung Cell Biology, Airways Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - Maria G Belvisi
- Respiratory Pharmacology Group, Airway Disease, National Heart & Lung Institute, Imperial College London, London, United Kingdom; MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom.
| |
Collapse
|
46
|
Honda A, Fukushima W, Oishi M, Tsuji K, Sawahara T, Hayashi T, Kudo H, Kashima Y, Takahashi K, Sasaki H, Ueda K, Takano H. Effects of Components of PM 2.5 Collected in Japan on the Respiratory and Immune Systems. Int J Toxicol 2017; 36:153-164. [PMID: 28056587 DOI: 10.1177/1091581816682224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies have reported that particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) affect respiratory diseases, including asthma. The components and/or factors of PM2.5 that contribute to the exacerbation of asthma have not been identified. We investigated the effects of extracts of PM2.5 collected in Japan on the respiratory and immune systems. PM2.5 was collected from an industrial area and an urban area in December 2013. Airway epithelial cells and immune cells were exposed to aqueous or organic extracts of PM2.5. Exposure to extracts from both areas, especially to organic extracts rather than aqueous extracts, caused a pro-inflammatory response via interleukin (IL) 6 production from airway epithelial cells, and it induced the maturation/activation of bone marrow-derived antigen-presenting cells via dendritic and epithelial cell (DEC) 205 and cluster of differentiation (CD) 86 expression and proportional changes in the constitution of the splenocytes. The extracts collected from the industrial area tended to show greater effects than those from the urban area. These results suggest that organic components of PM2.5 affect the respiratory and immune systems. These effects can differ by the collection areas. In addition, IL-6, DEC205, and CD86 can be predictive biomarkers for the respiratory and immune effects of ambient PM2.5.
Collapse
Affiliation(s)
- Akiko Honda
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wataru Fukushima
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Mizuki Oishi
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kenshi Tsuji
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Takahiro Sawahara
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tomohiro Hayashi
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hitomi Kudo
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuji Kashima
- 2 Japan Environmental Sanitation Center, Kanagawa, Japan
| | | | - Hideki Sasaki
- 2 Japan Environmental Sanitation Center, Kanagawa, Japan
| | - Kayo Ueda
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hirohisa Takano
- 1 Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| |
Collapse
|
47
|
Hidaka T, Ogawa E, Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Fujimura T, Aiba S, Nakayama K, Okuyama R, Yamamoto M. The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nat Immunol 2016; 18:64-73. [PMID: 27869817 DOI: 10.1038/ni.3614] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Atopic dermatitis is increasing worldwide in correlation with air pollution. Various organic components of pollutants activate the transcription factor AhR (aryl hydrocarbon receptor). Through the use of AhR-CA mice, whose keratinocytes express constitutively active AhR and that develop atopic-dermatitis-like phenotypes, we identified Artn as a keratinocyte-specific AhR target gene whose product (the neurotrophic factor artemin) was responsible for epidermal hyper-innervation that led to hypersensitivity to pruritus. The activation of AhR via air pollutants induced expression of artemin, alloknesis, epidermal hyper-innervation and inflammation. AhR activation and ARTN expression were positively correlated in the epidermis of patients with atopic dermatitis. Thus, AhR in keratinocytes senses environmental stimuli and elicits an atopic-dermatitis pathology. We propose a mechanism of air-pollution-induced atopic dermatitis via activation of AhR.
Collapse
Affiliation(s)
- Takanori Hidaka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eisaku Ogawa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eri H Kobayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical-Megabank Organization, Sendai, Japan
| |
Collapse
|
48
|
Wang B, Li N, Deng F, Buglak N, Park G, Su S, Ren A, Shen G, Tao S, Guo X. Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents. J Environ Sci (China) 2016; 47:201-210. [PMID: 27593287 DOI: 10.1016/j.jes.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 12/16/2015] [Indexed: 06/06/2023]
Abstract
Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter (PM) exposure. The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM<2.5μm (PM2.5) pollution in China have led to serious concerns regarding the health effects of PM2.5 during Asian sandstorms. We investigated how changes in PM2.5 composition, as the weather transitioned towards a sandstorm, affected human airway epithelial cells. Six PM2.5 samples covering two sandstorm events and their respective background and transition periods were collected in Baotou, an industrial city near the Gobi Desert in China. PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B, which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals. All PM samples potently increased the release of interleukin-6 (IL-6) and interleukin-8 (IL-8). Endotoxin in all samples contributed significantly to the IL-6 response, with only a minor effect on IL-8. Cr was positively correlated with both IL-6 and IL-8 release, while Si was only associated with the increase of IL-6. Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Ning Li
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | - Furong Deng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Nicholas Buglak
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - George Park
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - Shu Su
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Aiguo Ren
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinbiao Guo
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
49
|
Involvement of MEK-ERK1-2 pathway in the anti-oxidant response in C6 glioma cells after diesel exhaust particles exposure. Toxicol Lett 2016; 250-251:57-65. [DOI: 10.1016/j.toxlet.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/18/2022]
|
50
|
Lawal A, Davids L, Marnewick J. Diesel exhaust particles and endothelial cells dysfunction: An update. Toxicol In Vitro 2016; 32:92-104. [DOI: 10.1016/j.tiv.2015.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/23/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
|