1
|
Sone H. [Development of Methods for the Early Detection of Chemical Hazard and the Prevention of Pre-disease, Focusing on Environment, Food, and Health]. YAKUGAKU ZASSHI 2025; 145:201-221. [PMID: 40024733 DOI: 10.1248/yakushi.24-00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Based on the perspectives of the environment, food, and health, this review reflects on previous research examining stem cells for the early detection of chemical hazards and the development of preventive health tools. The risks posed by endocrine-disrupting chemicals in the environment are investigated, including studies on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), phthalate esters, and bisphenol A. Building on the findings of these studies, this review identifies emerging challenges in the field of endocrine-disrupting chemical research. Moreover, this paper explores innovative testing methods aimed at accurately evaluating the impact of chemicals on human health. The key topics covered include the implementation of developmental neurotoxicity testing methods, the species-specific effects of methylmercury, nanomaterials and the application of human pluripotent cells to assess the effects of low-dose radiation. Additionally, this review highlights transformative approaches in chemical health impact assessment that integrate cell science and artificial intelligence, and addresses challenges related to the application of multi-omics technologies in environmental health and toxicology.
Collapse
Affiliation(s)
- Hideko Sone
- Graduate School of Pharmaceutical Sciences, Yokohama University of Pharmacy
| |
Collapse
|
2
|
Kurita H, Masuda H, Okuda A, Go S, Ohuchi K, Yoshioka H, Fujimura M, Hozumi I, Inden M. Epigenetic alternations in the SYP and DLG4 genes due to low-level methylmercury exposure during neuronal differentiation in vitro. J Appl Toxicol 2024; 44:1986-1996. [PMID: 39187442 DOI: 10.1002/jat.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Methylmercury (MeHg) is an environmental toxin known to damage the central nervous system. When pregnant women ingest seafood, which may contain accumulated MeHg, fetal development may be affected. The embryonic period, a time of major epigenetic change, is susceptible to epigenetic disruptions due to chemical exposure. Therefore, understanding the molecular mechanism underlying MeHg's effects on neuronal development requires consideration of epigenetic factors. In this study, we investigated epigenetic modifications in the synaptophysin (SYP) and discs large MAGUK scaffold protein 4 (DLG4) genes. LUHMES cells were exposed to 1 nM MeHg for 6 days during days 2-8 of neural differentiation. MeHg exposure significantly reduced the number of spikes observed on day 16 of differentiation. Both mRNA and protein expression levels of SYP and DLG4 were significantly decreased by MeHg exposure. Additionally, MeHg treatment reduced acetyl histone H3 levels associated with transcriptional activity in the SYP gene while increasing histone H3 lysine 27 tri-methylation (H3K27me3) levels related to transcriptional repression. Conversely, regarding the DLG4 gene, MeHg exposure increased H3K27me3 levels. Differential changes in DNA methylation (high and low methylation states) were observed in the SYP and DLG4 genes due to MeHg exposure depending on CpG site position. In conclusion, this study suggests that epigenetic changes, particularly histone modifications, contribute to decreased MeHg exposure-induced SYP and DLG4 expression during neuronal differentiation.
Collapse
Affiliation(s)
- Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Haruka Masuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Ayu Okuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Suzuna Go
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuki Ohuchi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Yoshioka
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, Kani, Japan
- Department of Hygiene, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masatake Fujimura
- Basic Medical Sciences, National Institute for Minamata Disease, Minamata, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
3
|
Hongen T, Sakai K, Ito T, Qin XY, Sone H. Human-Induced Pluripotent Stem Cell-Derived Neural Organoids as a Novel In Vitro Platform for Developmental Neurotoxicity Assessment. Int J Mol Sci 2024; 25:12523. [PMID: 39684235 DOI: 10.3390/ijms252312523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
There has been a recent drive to replace in vivo studies with in vitro studies in the field of toxicity testing. Therefore, instead of conventional animal or planar cell culture models, there is an urgent need for in vitro systems whose conditions can be strictly controlled, including cell-cell interactions and sensitivity to low doses of chemicals. Neural organoids generated from human-induced pluripotent stem cells (iPSCs) are a promising in vitro platform for modeling human brain development. In this study, we developed a new tool based on various iPSCs to study and predict chemical-induced toxicity in humans. The model displayed several neurodevelopmental features and showed good reproducibility, comparable to that of previously published models. The results revealed that basic fibroblast growth factor plays a key role in the formation of the embryoid body, as well as complex neural networks and higher-order structures such as layered stacking. Using organoid models, pesticide toxicities were assessed. Cells treated with low concentrations of rotenone underwent apoptosis to a greater extent than those treated with high concentrations of rotenone. Morphological changes associated with the development of neural progenitor cells were observed after exposure to low doses of chlorpyrifos. These findings suggest that the neuronal organoids developed in this study mimic the developmental processes occurring in the brain and nerves and are a useful tool for evaluating drug efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Tsunehiko Hongen
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| | - Kenta Sakai
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Xian-Yang Qin
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hideko Sone
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, 601 Matano, Totsuka, Yokohama 245-0066, Japan
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| |
Collapse
|
4
|
Kang B, Wang J, Guo S, Yang L. Mercury-induced toxicity: Mechanisms, molecular pathways, and gene regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173577. [PMID: 38852866 DOI: 10.1016/j.scitotenv.2024.173577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 05/25/2024] [Indexed: 06/11/2024]
Abstract
Mercury is a well-known neurotoxicant for humans and wildlife. The epidemic of mercury poisoning in Japan has clearly demonstrated that chronic exposure to methylmercury (MeHg) results in serious neurological damage to the cerebral and cerebellar cortex, leading to the dysfunction of the central nervous system (CNS), especially in infants exposed to MeHg in utero. The occurrences of poisoning have caused a wide public concern regarding the health risk emanating from MeHg exposure; particularly those eating large amounts of fish may experience the low-level and long-term exposure. There is growing evidence that MeHg at environmentally relevant concentrations can affect the health of biota in the ecosystem. Although extensive in vivo and in vitro studies have demonstrated that the disruption of redox homeostasis and microtube assembly is mainly responsible for mercurial toxicity leading to adverse health outcomes, it is still unclear whether we could quantitively determine the occurrence of interaction between mercurial and thiols and/or selenols groups of proteins linked directly to outcomes, especially at very low levels of exposure. Furthermore, intracellular calcium homeostasis, cytoskeleton, mitochondrial function, oxidative stress, neurotransmitter release, and DNA methylation may be the targets of mercury compounds; however, the primary targets associated with the adverse outcomes remain to be elucidated. Considering these knowledge gaps, in this article, we conducted a comprehensive review of mercurial toxicity, focusing mainly on the mechanism, and genes/proteins expression. We speculated that comprehensive analyses of transcriptomics, proteomics, and metabolomics could enhance interpretation of "omics" profiles, which may reveal specific biomarkers obviously correlated with specific pathways that mediate selective neurotoxicity.
Collapse
Affiliation(s)
- Bolun Kang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
5
|
Li B, Jin X, Chan HM. Effects of low doses of methylmercury (MeHg) exposure on definitive endoderm cell differentiation in human embryonic stem cells. Arch Toxicol 2023; 97:2625-2641. [PMID: 37612375 PMCID: PMC10475006 DOI: 10.1007/s00204-023-03580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023]
Abstract
Fetal development is one of the most sensitive windows to methylmercury (MeHg) toxicity. Laboratory and epidemiological studies have shown a dose-response relationship between fetal MeHg exposure and neuro performance in different life stages from infants to adults. In addition, MeHg exposure has been reported to be associated with disorders in endoderm-derived organs, such as morphological changes in liver cells and pancreatic cell dysfunctions. However, the mechanisms of the effects of MeHg on non-neuronal organs or systems, especially during the early development of endoderm-derived organs, remain unclear. Here we determined the effects of low concentrations of MeHg exposure during the differentiation of definitive endoderm (DE) cells from human embryonic stem cells (hESCs). hESCs were exposed to MeHg (0, 10, 100, and 200 nM) that covers the range of Hg concentrations typically found in human maternal blood during DE cell induction. Transcriptomic analysis showed that sub-lethal doses of MeHg exposure could alter global gene expression patterns during hESC to DE cell differentiation, leading to increased expression of endodermal genes/proteins and the over-promotion of endodermal fate, mainly through disrupting calcium homeostasis and generating ROS. Bioinformatic analysis results suggested that MeHg exerts its developmental toxicity mainly by disrupting ribosome biogenesis during early cell lineage differentiation. This disruption could lead to aberrant growth or dysfunctions of the developing endoderm-derived organs, and it may be the underlying mechanism for the observed congenital diseases later in life. Based on the results, we proposed an adverse outcome pathway for the effects of MeHg exposure during human embryonic stem cells to definitive endoderm differentiation.
Collapse
Affiliation(s)
- Bai Li
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Xiaolei Jin
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
6
|
Go S, Masuda H, Tsuru M, Inden M, Hozumi I, Kurita H. Exposure to a low concentration of methylmercury in neural differentiation downregulates NR4A1 expression with altered epigenetic modifications and inhibits neuronal spike activity in vitro. Toxicol Lett 2023; 374:68-76. [PMID: 36565944 DOI: 10.1016/j.toxlet.2022.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Methylmercury (MeHg) is a well-known developmental neurotoxin. Our previous research showed that the inhibition of neurite extension by exposure to a low level of MeHg (1 nM) was attributed to the decrease of acetylation of histone H3 and the increase of DNA methylation. However, the target molecules responsible for the neurological dysfunctions caused by MeHg exposure have not been identified. This study focused on a nuclear receptor subfamily 4 group A member 1 (NR4A1), which is reported to be related to synaptic plasticity and neurite extension. LUHMES cells, which are derived from human fetal brain, were treated with 0.1 and 1 nM MeHg beginning at two days of differentiation and continued for 6 consecutive days. The present study showed that exposure to a 1 nM MeHg during neural differentiation inhibited neuronal spike activity and neurite extension. Furthermore, MeHg exposure increased DNA methylation, and altered histone modifications for transcriptional repression in the NR4A1 promoter region to decrease the levels of NR4A1 expression. In addition, MeHg exposure inhibited the mobilization of cAMP response element-binding protein (CREB) and CREB binding protein (CBP) in the NR4A1 promoter region. These results suggest that MeHg inhibits the recruitment of the CREB-CBP complex to the NR4A1 promoter region and impairs neuronal functions associated with NR4A1 repression via a decrease in acetylation of histone H3 lysine 14 levels. Conclusively, this study demonstrated that MeHg exposure during neuronal differentiation could induce neurological dysfunctions even at a low concentration in vitro. These dysfunctions could be associated with the transcriptional repression of NR4A1 by the dissociation of CREB and CBP from the NR4A1 promoter region due to the alterations of epigenetic modifications.
Collapse
Affiliation(s)
- Suzuna Go
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Haruka Masuda
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Mizuki Tsuru
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan.
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu city, Gifu, 501-1196, Japan.
| |
Collapse
|
7
|
Katayama M, Onuma M, Kato N, Nakajima N, Fukuda T. Organoids containing neural-like cells derived from chicken iPSCs respond to poly:IC through the RLR family. PLoS One 2023; 18:e0285356. [PMID: 37141289 PMCID: PMC10159107 DOI: 10.1371/journal.pone.0285356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
There is still much room for development in pluripotent stem cell research on avian species compared to human stem cell studies. Neural cells are useful for the evaluation of risk assessment of infectious diseases since several avian species die of encephalitis derived from infectious diseases. In this study, we attempted to develop induced pluripotent stem cells (iPSCs) technology for avian species by forming organoids containing neural-like cells. In our previous study, we established two types iPSCs from chicken somatic cells, the first is iPSCs with PB-R6F reprogramming vector and the second is iPSCs with PB-TAD-7F reprogramming vector. In this study, we first compared the nature of these two cell types using RNA-seq analysis. The total gene expression of iPSCs with PB-TAD-7F was closer to that of chicken ESCs than that of iPSCs with PB-R6F; therefore, we used iPSCs with PB-TAD-7F to form organoids containing neural-like cells. We successfully established organoids containing neural-like cells from iPSCs using PB-TAD-7F. Furthermore, our organoids responded to poly:IC through the RIG-I-like receptor (RLR) family. In this study, we developed iPSCs technology for avian species via organoid formation. In the future, organoids containing neural-like cells from avian iPSCs can develop as a new evaluation tool for infectious disease risk in avian species, including endangered avian species.
Collapse
Affiliation(s)
- Masafumi Katayama
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Manabu Onuma
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Noriko Kato
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Ueda, Morioka-city, Japan
| |
Collapse
|
8
|
Kumar Rai R, Shankar Pati R, Islam A, Roy G. Detoxification of organomercurials by thiones and selones: A short review. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Environmentally relevant developmental methylmercury exposures alter neuronal differentiation in a human-induced pluripotent stem cell model. Food Chem Toxicol 2021; 152:112178. [PMID: 33831500 DOI: 10.1016/j.fct.2021.112178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Developmental methylmercury (MeHg) exposure selectively targets the cerebral and cerebellar cortices, as seen by disruption of cytoarchitecture and glutamatergic (GLUergic) neuron hypoplasia. To begin to understand the mechanisms of this loss of GLUergic neurons, we aimed to develop a model of developmental MeHg neurotoxicity in human-induced pluripotent stem cells differentiating into cortical GLUergic neurons. Three dosing paradigms at 0.1 μM and 1.0 μM MeHg, which span different stages of neurodevelopment and reflect toxicologically relevant accumulation levels seen in human studies and mammalian models, were established. With these exposure paradigms, no changes were seen in commonly studied endpoints of MeHg toxicity, including viability, proliferation, and glutathione levels. However, MeHg exposure induced changes in mitochondrial respiration and glycolysis and in markers of neuronal differentiation. Our novel data suggests that GLUergic neuron hypoplasia seen with MeHg toxicity may be due to the partial inhibition of neuronal differentiation, given the increased expression of the early dorsal forebrain marker FOXG1 and corresponding decrease in expression on neuronal markers MAP2 and DCX and the deep layer cortical neuronal marker TBR1. Future studies should examine the persistent and latent functional effects of this MeHg-induced disruption of neuronal differentiation as well as transcriptomic and metabolomic alterations that may mediate MeHg toxicity.
Collapse
|
10
|
DNA methyltransferase- and histone deacetylase-mediated epigenetic alterations induced by low-level methylmercury exposure disrupt neuronal development. Arch Toxicol 2021; 95:1227-1239. [PMID: 33454822 DOI: 10.1007/s00204-021-02984-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Methylmercury (MeHg) is a chemical substance that causes adverse effects on fetal development. However, the molecular mechanisms by which environmental MeHg affects fetal development have not been clarified. Recently, it has been suggested that the toxic effects of chemicals on fetal development are related alterations in epigenetics, such as DNA methylation and histone modification. In order to analyze the epigenetic effects of low-level MeHg exposure on neuronal development, we evaluated neuronal development both in vivo and in vitro. Pregnant mice (C57BL/6J) were orally administrated 3 mg/kg of MeHg once daily from embryonic day 12-14. Fetuses were removed on embryonic day 19 and brain tissues were collected. LUHMES cells were treated with 1 nM of MeHg for 6 days and collected on the last day of treatment. In both in vivo and in vitro samples, MeHg significantly suppressed neurite outgrowth. Decreased acetylated histone H3 (AcH3) levels and increased histone deacetylase (HDAC) 3 and HDAC6 levels were observed in response to MeHg treatment in both in vivo and in vitro experiments. In addition, increased DNA methylation and DNA methyltransferase 1 (DNMT1) levels were observed in both in vivo and in vitro experiments. The inhibition of neurite outgrowth resulting from MeHg exposure was restored by co-treatment with DNMT inhibitor or HDAC inhibitors. Our results suggest that neurological effects such as reduced neurite outgrowth due to low-level MeHg exposure result from epigenetic changes, including a decrease in AcH3 via increased HDAC levels and an increase in DNA methylation via increased DNMT1 levels.
Collapse
|
11
|
Kikegawa M, Qin XY, Ito T, Nishikawa H, Nansai H, Sone H. Early Transcriptomic Changes upon Thalidomide Exposure Influence the Later Neuronal Development in Human Embryonic Stem Cell-Derived Spheres. Int J Mol Sci 2020; 21:ijms21155564. [PMID: 32756504 PMCID: PMC7432054 DOI: 10.3390/ijms21155564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/30/2020] [Indexed: 01/14/2023] Open
Abstract
Stress in early life has been linked with the development of late-life neurological disorders. Early developmental age is potentially sensitive to several environmental chemicals such as alcohol, drugs, food contaminants, or air pollutants. The recent advances using three-dimensional neural sphere cultures derived from pluripotent stem cells have provided insights into the etiology of neurological diseases and new therapeutic strategies for assessing chemical safety. In this study, we investigated the neurodevelopmental effects of exposure to thalidomide (TMD); 2,2′,4,4′-tetrabromodiphenyl ether; bisphenol A; and 4-hydroxy-2,2′,3,4′,5,5′,6-heptachlorobiphenyl using a human embryonic stem cell (hESC)-derived sphere model. We exposed each chemical to the spheres and conducted a combinational analysis of global gene expression profiling using microarray at the early stage and morphological examination of neural differentiation at the later stage to understand the molecular events underlying the development of hESC-derived spheres. Among the four chemicals, TMD exposure especially influenced the differentiation of spheres into neuronal cells. Transcriptomic analysis and functional annotation identified specific genes that are TMD-induced and associated with ERK and synaptic signaling pathways. Computational network analysis predicted that TMD induced the expression of DNA-binding protein inhibitor ID2, which plays an important role in neuronal development. These findings provide direct evidence that early transcriptomic changes during differentiation of hESCs upon exposure to TMD influence neuronal development in the later stages.
Collapse
Affiliation(s)
- Mami Kikegawa
- Laboratory of Kampo Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Japan;
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan;
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
| | - Hiromi Nishikawa
- Department of Psychiatry and Behavioral Science, Kanazawa University School of Medicine, Kanazawa, Ishikawa 920-0942, Japan;
| | - Hiroko Nansai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
| | - Hideko Sone
- Laboratory of Kampo Pharmacology, Yokohama University of Pharmacy, Yokohama 245-0066, Japan;
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan; (T.I.); (H.N.)
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Correspondence:
| |
Collapse
|
12
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2019; 165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.
Collapse
Affiliation(s)
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| |
Collapse
|
13
|
Li J, Settivari R, LeBaron MJ, Marty MS. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. Neurotoxicology 2019; 73:17-30. [DOI: 10.1016/j.neuro.2019.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
|
14
|
Sarma SN, Nagano R, Ohsako S. Tyroxine Hydroxylase-Positive Neuronal Cell Population is Increased by Temporal Dioxin Exposure at Early Stage of Differentiation from Human Embryonic Stem Cells. Int J Mol Sci 2019; 20:ijms20112687. [PMID: 31159217 PMCID: PMC6600215 DOI: 10.3390/ijms20112687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The neurological effects of short-term dioxin exposure during the fetal period is an important health risk in humans. Here, we investigated the effects of dioxin on neural differentiation using human embryonic stem cells (hESCs) to evaluate human susceptibility to dioxin. Methods: Using an enzymatic bulk passage, neural differentiation from human ESCs was carried out. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) was added to various stages of culture. The expression levels of the neuronal markers microtubule-associated protein 2 (MAP2) and thyroxine hydroxylase (TH) were measured by RT-qPCR and image analysis of immunostaining. Results: Although early-stage neuronal cells are quite resistant to TCDD, the numbers of neural rosettes and increases in mRNA expression levels and the number of cells positive for MAP2 and TH were significant by temporal exposure at embryoid body stage (Day9-exposure group). In contrast, the TCDD exposures against ESCs (Day0-exposure group) and differentiated neural cells (Day35-exposure group) were not affected at all. The increment was similarly observed by continuous exposure of TCDD from Day9 through Day60. Conclusions: These results indicated that dioxin exposure during the early stage of differentiation from hESCs increases the contents of neuronal cells, especially TH-positive neuronal cells. Regulations of aryl hydrocarbon receptor (AHR) signaling in an early stage of embryogenesis should be investigated extensively to understand the mechanism underlying the increase in neuronal cell populations and to apply the knowledge to regenerative medicine.
Collapse
Affiliation(s)
- Sailendra Nath Sarma
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Nagano
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
15
|
Liang S, Yin N, Faiola F. Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges. Stem Cells Dev 2019; 28:755-768. [PMID: 30990109 DOI: 10.1089/scd.2019.0007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human central nervous system (CNS) is very sensitive to perturbations, since it performs sophisticated biological processes and requires cooperation from multiple neural cell types. Subtle interference from exogenous chemicals, such as environmental pollutants, industrial chemicals, drug components, food additives, and cosmetic constituents, may initiate severe developmental neural toxicity (DNT). Human pluripotent stem cell (hPSC)-based neural differentiation assays provide effective and promising tools to help evaluate potential DNT caused by those toxicants. In fact, the specification of neural lineages in vitro recapitulates critical CNS developmental processes, such as patterning, differentiation, neurite outgrowth, synaptogenesis, and myelination. Hence, the established protocols to generate a repertoire of neural derivatives from hPSCs greatly benefit the in vitro evaluation of DNT. In this review, we first dissect the various differentiation protocols inducing neural cells from hPSCs, with an emphasis on the signaling pathways and endpoint markers defining each differentiation stage. We then highlight the studies with hPSC-based protocols predicting developmental neural toxicants, and discuss remaining challenges. We hope this review can provide insights for the further progress of DNT studies.
Collapse
Affiliation(s)
- Shengxian Liang
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Identification of RNA biomarkers for chemical safety screening in neural cells derived from mouse embryonic stem cells using RNA deep sequencing analysis. Biochem Biophys Res Commun 2019; 512:641-646. [DOI: 10.1016/j.bbrc.2018.11.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/21/2018] [Indexed: 01/13/2023]
|
17
|
Assessment of Toxic Effects of Ochratoxin A in Human Embryonic Stem Cells. Toxins (Basel) 2019; 11:toxins11040217. [PMID: 30974856 PMCID: PMC6521021 DOI: 10.3390/toxins11040217] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by different Aspergillus and Penicillium species, and it is considered a common contaminant in food and animal feed worldwide. On the other hand, human embryonic stem cells (hESCs) have been suggested as a valuable model for evaluating drug embryotoxicity. In this study, we have evaluated potentially toxic effects of OTA in hESCs. By using in vitro culture techniques, specific cellular markers, and molecular biology procedures, we found that OTA produces mild cytotoxic effects in hESCs by inhibiting cell attachment, survival, and proliferation in a dose-dependent manner. Thus, we suggest that hESCs provide a valuable human and cellular model for toxicological studies regarding preimplantation stage of human fetal development.
Collapse
|
18
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
19
|
MeHg Causes Ultrastructural Changes in Mitochondria and Autophagy in the Spinal Cord Cells of Chicken Embryo. J Toxicol 2018; 2018:8460490. [PMID: 30228816 PMCID: PMC6136469 DOI: 10.1155/2018/8460490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/16/2023] Open
Abstract
Methylmercury (MeHg) is a known neurodevelopmental toxicant, which causes changes in various structures of the central nervous system (CNS). However, ultrastructural studies of its effects on the developing CNS are still scarce. Here, we investigated the effect of MeHg on the ultrastructure of the cells in spinal cord layers. Chicken embryos at E3 were treated in ovo with 0.1 μg MeHg/50 μL saline solution and analyzed at E10. Then, we used transmission electron microscopy (TEM) to identify possible damage caused by MeHg to the structures and organelles of the spinal cord cells. After MeHg treatment, we observed, in the spinal cord mantle layer, a significant number of altered mitochondria with external membrane disruptions, crest disorganization, swelling in the mitochondrial matrix, and vacuole formation between the internal and external mitochondrial membranes. We also observed dilations in the Golgi complex and endoplasmic reticulum cisterns and the appearance of myelin-like cytoplasmic inclusions. We observed no difference in the total mitochondria number between the control and MeHg-treated groups. However, the MeHg-treated embryos showed an increased number of altered mitochondria and a decreased number of mitochondrial fusion profiles. Additionally, unusual mitochondrial shapes were found in MeHg-treated embryos as well as autophagic vacuoles similar to mitophagic profiles. In addition, we observed autophagic vacuoles with amorphous, homogeneous, and electron-dense contents, similar to the autophagy. Our results showed, for the first time, the neurotoxic effect of MeHg on the ultrastructure of the developing spinal cord. Using TEM we demonstrate that changes in the endomembrane system, mitochondrial damage, disturbance in mitochondrial dynamics, and increase in mitophagy were caused by MeHg exposure.
Collapse
|
20
|
Go S, Kurita H, Matsumoto K, Hatano M, Inden M, Hozumi I. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model. Biochem Biophys Res Commun 2018; 502:435-441. [PMID: 29856999 DOI: 10.1016/j.bbrc.2018.05.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
Methylmercury (MeHg) is the causative substance of Minamata disease, which is associated with various neurological disorders such as sensory disturbance and ataxia. It has been suggested low-level dietary intake of MeHg from MeHg-containing fish during gestation adversely affects the fetus. In our study, we investigated the toxicological effects of MeHg exposure on neuronal differentiation focusing on epigenetics. We used human fetal brain-derived immortalized cells (LUHMES cells) as a human neuronal differentiation model. Cell viability, neuronal, and catecholamine markers in LUHMES cells were assessed after exposure to MeHg (0-1000 nM) for 6 days (from day 2 to day 8 of neuronal differentiation). Cell viability on day 8 was not affected by exposure to 1 nM MeHg for 6 days. mRNA levels of AADC, DBH, TUJ1, and SYN1 also were unaffected by MeHg exposure. In contrast, levels of TH, the rate-limiting enzyme for dopamine synthesis, were significantly decreased after MeHg exposure. Acetylated histone H3, acetylated histone H3 lysine 9, and tri-methyl histone H3 lysine 9 levels at the TH gene promoter were not altered by MeHg exposure. However, tri-methylation of histone H3 lysine 27 levels, related to transcriptional repression, were significantly increased at the TH gene promotor after MeHg exposure. In summary, MeHg exposure during neuronal differentiation led to epigenetic changes that repressed TH gene expression. This study provides useful insights into the toxicological mechanisms underlying the effects of developmental MeHg exposure during neuronal differentiation.
Collapse
Affiliation(s)
- Suzuna Go
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan
| | - Kana Matsumoto
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan
| | - Manami Hatano
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Department Biomedical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi Gifu City, Gifu, 501-1196, Japan.
| |
Collapse
|
21
|
Fang H, Zhi Y, Yu Z, Lynch RA, Jia X. The embryonic toxicity evaluation of deoxynivalenol (DON) by murine embryonic stem cell test and human embryonic stem cell test models. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:306-352. [PMID: 29485663 DOI: 10.14573/altex.1712081] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/29/2018] [Indexed: 01/06/2023]
Abstract
Multiple non-animal-based test methods have never been formally validated. In order to use such new approach methods (NAMs) in a regulatory context, criteria to define their readiness are necessary. The field of developmental neurotoxicity (DNT) testing is used to exemplify the application of readiness criteria. The costs and number of untested chemicals are overwhelming for in vivo DNT testing. Thus, there is a need for inexpensive, high-throughput NAMs, to obtain initial information on potential hazards, and to allow prioritization for further testing. A background on the regulatory and scientific status of DNT testing is provided showing different types of test readiness levels, depending on the intended use of data from NAMs. Readiness criteria, compiled during a stakeholder workshop, uniting scientists from academia, industry and regulatory authorities are presented. An important step beyond the listing of criteria, was the suggestion for a preliminary scoring scheme. On this basis a (semi)-quantitative analysis process was assembled on test readiness of 17 NAMs with respect to various uses (e.g. prioritization/screening, risk assessment). The scoring results suggest that several assays are currently at high readiness levels. Therefore, suggestions are made on how DNT NAMs may be assembled into an integrated approach to testing and assessment (IATA). In parallel, the testing state in these assays was compiled for more than 1000 compounds. Finally, a vision is presented on how further NAM development may be guided by knowledge of signaling pathways necessary for brain development, DNT pathophysiology, and relevant adverse outcome pathways (AOP).
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (EC JRC), Ispra (VA), Italy
| | - Helena T Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD, USA
| | - Kevin M Crofton
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Rex E FitzGerald
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine & Heinrich-Heine-University, Düsseldorf, Germany
| | - Tuula Heinonen
- Finnish Centre for Alternative Methods (FICAM), University of Tampere, Tampere, Finland
| | | | - Stefanie Klima
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Aldert H Piersma
- RIVM, National Institute for Public Health and the Environment, Bilthoven, and Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Timothy J Shafer
- National Centre for Computational Toxicology, US EPA, RTP, Washington, NC, USA
| | | | - Florianne Monnet-Tschudi
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Tanja Waldmann
- In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Remco H S Westerink
- Neurotoxicology Research Group, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin F Wilks
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland
| | - Hilda Witters
- VITO, Flemish Institute for Technological Research, Unit Environmental Risk and Health, Mol, Belgium
| | - Marie-Gabrielle Zurich
- Swiss Centre for Human Applied Toxicology, SCAHT, University of Basle, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Marcel Leist
- Center for Alternatives to Animal Testing, CAAT-Europe, University of Konstanz, Konstanz, Germany.,In vitro Toxicology and Biomedicine, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
23
|
Buzanska L, Zychowicz M, Kinsner-Ovaskainen A. Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results Probl Cell Differ 2018; 66:207-230. [PMID: 30209661 DOI: 10.1007/978-3-319-93485-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human neural stem/progenitor cells of the developing and adult organisms are surrounded by the microenvironment, so-called neurogenic niche. The developmental processes of stem cells, such as survival, proliferation, differentiation, and fate decisions, are controlled by the mutual interactions between cells and the niche components. Such interactions are tissue specific and determined by the biochemical and biophysical properties of the niche constituencies and the presence of other cell types. This dynamic approach of the stem cell niche, when translated into in vitro settings, requires building up "biomimetic" microenvironments resembling natural conditions, where the stem/progenitor cell is provided with diverse extracellular signals exerted by soluble and structural cues, mimicking those found in vivo. The neural stem cell niche is characterized by a unique composition of soluble components including neurotransmitters and trophic factors as well as insoluble extracellular matrix proteins and proteoglycans. Biotechnological innovations provide tools such as a new generation of tunable biomaterials capable of releasing specific signals in a spatially and temporally controlled manner, thus creating in vitro nature-like conditions and, when combined with stem cell-derived tissue specific progenitors, producing differentiated neuronal tissue structures. In addition, substantial progress has been made on the protocols to obtain stem cell-derived cell aggregates such as neurospheres and self-assembled organoids.In this chapter, we have assessed the application of bioengineered human neural stem cell microenvironments to produce in vitro models of different levels of biological complexity for the efficient control of stem cell fate. Examples of biomaterial-supported two-dimensional and three-dimensional (2D and 3D) complex culture systems that provide artificial neural stem cell niches are discussed in the context of their application for basic research and neurotoxicity testing.
Collapse
Affiliation(s)
- Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Marzena Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kinsner-Ovaskainen
- European Commission, Joint Research Centre, Directorate for Health Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
24
|
Abstract
The development of stem cell biology has revolutionized regenerative medicine and its clinical applications. Another aspect through which stem cells would benefit human health is their use in toxicology. In fact, owing to their ability to differentiate into all the lineages of the human body, including germ cells, stem cells, and, in particular, pluripotent stem cells, can be utilized for the assessment, in vitro, of embryonic, developmental, reproductive, organ, and functional toxicities, relevant to human physiology, without employing live animal tests and with the possibility of high throughput applications. Thus, stem cell toxicology would tremendously assist in the toxicological evaluation of the increasing number of synthetic chemicals that we are exposed to, of which toxicity information is limited. In this review, we introduce stem cell toxicology, as an emerging branch of in vitro toxicology, which offers quick and efficient alternatives to traditional toxicology assessments. We first discuss the development of stem cell toxicology, and we then emphasize its advantages and highlight the achievements of human pluripotent stem cell-based toxicity research.
Collapse
Affiliation(s)
- Shuyu Liu
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences, Beijing, P.R. China .,2 College of Resources and Environment, University of Chinese Academy of Sciences , Beijing, P.R. China
| |
Collapse
|
25
|
Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes. EBioMedicine 2017; 24:257-266. [PMID: 28927749 PMCID: PMC5652006 DOI: 10.1016/j.ebiom.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 02/08/2023] Open
Abstract
The acute phase protein orosomucoid-1 (Orm1) is mainly expressed by hepatocytes (HPCs) under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH). Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs. Serum Orm1 levels increased approximately 1.3- to 2.5-folds in both humans and mice after partial hepatectomy. Transcriptome analysis revealed that Orm1 mostly induced in hepatocytes as a regulator of mouse liver regeneration. Orm1 knockdown in mice impaired liver regeneration with poor hepatocyte growth and suppressed cell cycle signaling.
Orosomucoid-1 (Orm1) is an acute phase protein mainly expressed by hepatocytes under stress conditions. Beginning from the finding that Orm1 was induced after partial hepatectomy in humans and mice, we showed enrichment of Orm1 in regenerating hepatocytes of hepatectomized mice by transcriptome analysis and following culture and animal experiments. Knockdown of Orm1 in mice resulted in decreases in hepatocyte growth accompanying suppressed signaling in controlling chromatin replication. Therefore, Orm1 would be a potential therapeutic and prognostic biomarker for liver diseases, especially after surgical resection of cancer-bearing liver, through its newly found ability to stimulate the cell cycle in regenerating hepatocytes.
Collapse
|
26
|
Chan MC, Bautista E, Alvarado-Cruz I, Quintanilla-Vega B, Segovia J. Inorganic mercury prevents the differentiation of SH-SY5Y cells: Amyloid precursor protein, microtubule associated proteins and ROS as potential targets. J Trace Elem Med Biol 2017; 41:119-128. [PMID: 28209268 DOI: 10.1016/j.jtemb.2017.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/16/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
Abstract
Exposure to mercury (Hg) occurs through different pathways and forms including methylmecury (MeHg) from seafood and rice, ethylmercury (EtHg), and elemental Hg (Hg0) from dental amalgams and artisanal gold mining. Once in the brain all these forms are transformed to inorganic Hg (I-Hg), where it bioaccumulates and remains for long periods. Hg is a well-known neurotoxicant, with its most damaging effects reported during brain development, when cellular key events, such as cell differentiation take place. A considerable number of studies report an impairment of neuronal differentiation due to MeHg exposure, however the effects of I-Hg, an important form of Hg found in brain, have received less attention. In this study, we decided to examine the effects of I-Hg exposure (5, 10 and 20μM) on the differentiation of SH-SY5Y cells induced by retinoic acid (RA, 10μM). We observed extension of neuritic processes and increased expression of neuronal markers (MAP2, tubulin-βIII, and Tau) after RA stimulation, all these effects were decreased by the co-exposure to I-Hg. Interestingly, I-Hg increased the levels of reactive oxygen species (ROS) and nitric oxide (NO) accompanied with increased levels of inducible nitric oxide synthase (iNOS) and, dimethylarginine dimethylaminohydrolase 1 (DDHA1). Remarkably I-Hg decreased levels of nitric oxide synthase neuronal (nNOS). Moreover I-Hg reduced the levels of tyrosine hydroxylase (TH) and amyloid precursor protein (APP) a protein recently involved in neuronal differentiation. These data suggest that the exposure to I-Hg impairs cell differentiation, and point to new potential targets of Hg toxicity such as APP and NO signaling.
Collapse
Affiliation(s)
- Miguel Chin Chan
- Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico; Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Campeche, Campeche 4039, Mexico
| | - Elizabeth Bautista
- Departmento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico; Facultad de Ciencias de la Salud, Universidad Anáhuac Norte, 52786, Huixquilucan, Mexico
| | - Isabel Alvarado-Cruz
- Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - Betzabet Quintanilla-Vega
- Departmento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico
| | - José Segovia
- Departmento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, 07360, Mexico.
| |
Collapse
|
27
|
Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int J Mol Sci 2016; 17:ijms17122058. [PMID: 27941687 PMCID: PMC5187858 DOI: 10.3390/ijms17122058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA.
Collapse
|
28
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-160. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
29
|
Yamane J, Aburatani S, Imanishi S, Akanuma H, Nagano R, Kato T, Sone H, Ohsako S, Fujibuchi W. Prediction of developmental chemical toxicity based on gene networks of human embryonic stem cells. Nucleic Acids Res 2016; 44:5515-28. [PMID: 27207879 PMCID: PMC4937330 DOI: 10.1093/nar/gkw450] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Predictive toxicology using stem cells or their derived tissues has gained increasing importance in biomedical and pharmaceutical research. Here, we show that toxicity category prediction by support vector machines (SVMs), which uses qRT-PCR data from 20 categorized chemicals based on a human embryonic stem cell (hESC) system, is improved by the adoption of gene networks, in which network edge weights are added as feature vectors when noisy qRT-PCR data fail to make accurate predictions. The accuracies of our system were 97.5–100% for three toxicity categories: neurotoxins (NTs), genotoxic carcinogens (GCs) and non-genotoxic carcinogens (NGCs). For two uncategorized chemicals, bisphenol-A and permethrin, our system yielded reasonable results: bisphenol-A was categorized as an NGC, and permethrin was categorized as an NT; both predictions were supported by recently published papers. Our study has two important features: (i) as the first study to employ gene networks without using conventional quantitative structure-activity relationships (QSARs) as input data for SVMs to analyze toxicogenomics data in an hESC validation system, it uses additional information of gene-to-gene interactions to significantly increase prediction accuracies for noisy gene expression data; and (ii) using only undifferentiated hESCs, our study has considerable potential to predict late-onset chemical toxicities, including abnormalities that occur during embryonic development.
Collapse
Affiliation(s)
- Junko Yamane
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Sachiyo Aburatani
- Computational Biology Research Center, Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Satoshi Imanishi
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiromi Akanuma
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Reiko Nagano
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Tsuyoshi Kato
- Department of Computer Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Hideko Sone
- Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Seiichiroh Ohsako
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Computational Biology Research Center, Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
30
|
Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells. Toxicol In Vitro 2016; 34:257-263. [PMID: 27133438 DOI: 10.1016/j.tiv.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/02/2016] [Accepted: 04/24/2016] [Indexed: 01/07/2023]
Abstract
Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT is also known to cause various forms of cytotoxicity, including neurotoxicity and immunotoxicity. However, TBT toxicity has not been identified in normal stem cells. In the present study, we examined the effects of TBT on cell growth in human induced pluripotent stem cells (iPSCs). We found that exposure to nanomolar concentrations of TBT decreased intracellular ATP levels and inhibited cell viability in iPSCs. Because TBT suppressed energy production, which is a critical function of the mitochondria, we further assessed the effects of TBT on mitochondrial dynamics. Staining with MitoTracker revealed that nanomolar concentrations of TBT induced mitochondrial fragmentation. TBT also reduced the expression of mitochondrial fusion protein mitofusin 1 (Mfn1), and this effect was abolished by knockdown of the E3 ubiquitin ligase membrane-associated RING-CH 5 (MARCH5), suggesting that nanomolar concentrations of TBT could induce mitochondrial dysfunction via MARCH5-mediated Mfn1 degradation in iPSCs. Thus, mitochondrial function in normal stem cells could be used to assess cytotoxicity associated with metal exposure.
Collapse
|
31
|
Tani H, Takeshita JI, Aoki H, Abe R, Toyoda A, Endo Y, Miyamoto S, Gamo M, Torimura M. Genome-wide gene expression analysis of mouse embryonic stem cells exposed to p-dichlorobenzene. J Biosci Bioeng 2016; 122:329-33. [PMID: 26975756 DOI: 10.1016/j.jbiosc.2016.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 12/22/2015] [Accepted: 02/12/2016] [Indexed: 12/15/2022]
Abstract
Because of the limitations of whole animal testing approaches for toxicological assessment, new cell-based assay systems have been widely studied. In this study, we focused on two biological products for toxicological assessment: mouse embryonic stem cells (mESCs) and long noncoding RNAs (lncRNAs). mESCs possess the abilities of self-renewal and differentiation into multiple cell types. LlncRNAs are an important class of pervasive non-protein-coding transcripts involved in the molecular mechanisms associated with responses to chemicals. We exposed mESCs to p-dichlorobenzene (p-DCB) for 1 or 28 days (daily dose), extracted total RNA, and performed deep sequencing analyses. The genome-wide gene expression analysis indicated that mechanisms modulating proteins occurred following acute and chronic exposures, and mechanisms modulating genomic DNA occurred following chronic exposure. Moreover, our results indicate that three novel lncRNAs (Snora41, Gm19947, and Scarna3a) in mESCs respond to p-DCB exposure. We propose that these lncRNAs have the potential to be surrogate indicators of p-DCB responses in mESCs.
Collapse
Affiliation(s)
- Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Jun-Ichi Takeshita
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Ryosuke Abe
- College of Engineering Systems, School of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Akinobu Toyoda
- College of Engineering Systems, School of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yasunori Endo
- Department of Risk Engineering, Faculty of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Sadaaki Miyamoto
- Department of Risk Engineering, Faculty of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masashi Gamo
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
32
|
Yoshie S, Ogasawara Y, Ikehata M, Ishii K, Suzuki Y, Wada K, Wake K, Nakasono S, Taki M, Ohkubo C. Evaluation of biological effects of intermediate frequency magnetic field on differentiation of embryonic stem cell. Toxicol Rep 2016; 3:135-140. [PMID: 28959531 PMCID: PMC5615788 DOI: 10.1016/j.toxrep.2015.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 01/05/2023] Open
Abstract
The embryotoxic effect of intermediate frequency (IF) magnetic field (MF) was evaluated using murine embryonic stem (ES) cells and fibroblast cells based on the embryonic stem cell test (EST). The cells were exposed to 21 kHz IF-MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days) or the cell differentiation process (10 days) during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF-MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF-MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2, and an early developmental gene, Hba-x, in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH) cooktop, etc. in our daily lives, these results suggested that IF-MF in which the public is exposed to in general living environment would not have embryotoxic effect.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Differentiation
- EB, embryonic body
- ELF, extremely low frequency
- EMF, electromagnetic field
- ES, embryonic stem
- EST, embryonic stem cell test
- Embryonic stem cell
- Gene expression
- ICNIRP, International Commission of Non-Ionizing Radiation Protection
- IF, intermediate frequency
- IH, induction heating
- Intermediate frequency magnetic field
- MF, magnetic field
- RF, radiofrequency
- WHO, World Health Organization
Collapse
Affiliation(s)
- Sachiko Yoshie
- Biotechnology Laboratory, Human Science Division, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Yuki Ogasawara
- Hygienic Chemistry, Health and Environmental Sciences, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| | - Masateru Ikehata
- Biotechnology Laboratory, Human Science Division, Railway Technical Research Institute, 2-8-38, Hikari-cho, Kokubunji, Tokyo 185-8540, Japan
| | - Kazuyuki Ishii
- Hygienic Chemistry, Health and Environmental Sciences, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo 204-8588, Japan
| | - Yukihisa Suzuki
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Keiji Wada
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Kanako Wake
- Electromagnetic Compatibility Laboratory, Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-Kitamachi, Koganei, Tokyo 184-8795, Japan
| | - Satoshi Nakasono
- EMF Environment Sector, Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| | - Masao Taki
- Faculty of Electrical & Electronic Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan
| | - Chiyoji Ohkubo
- Japan EMF Information Center, 2-9-11 Shiba, Minato-ku, Tokyo 105-0014, Japan
| |
Collapse
|
33
|
Meganathan K, Jagtap S, Srinivasan SP, Wagh V, Hescheler J, Hengstler J, Leist M, Sachinidis A. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis 2015; 6:e1756. [PMID: 25950486 PMCID: PMC4669700 DOI: 10.1038/cddis.2015.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) may be applied to develop human-relevant sensitive in vitro test systems for monitoring developmental toxicants. The aim of this study was to identify potential developmental toxicity mechanisms of the histone deacetylase inhibitors (HDAC) valproic acid (VPA), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) relevant to the in vivo condition using a hESC model in combination with specific differentiation protocols and genome-wide gene expression and microRNA profiling. Analysis of the gene expression data showed that VPA repressed neural tube and dorsal forebrain (OTX2, ISL1, EMX2 and SOX10)-related transcripts. In addition, VPA upregulates axonogenesis and ventral forebrain-associated genes, such as SLIT1, SEMA3A, DLX2/4 and GAD2. HDACi-induced expression of miR-378 and knockdown of miR-378 increases the expression of OTX2 and EMX2, which supports our hypothesis that HDACi targets forebrain markers through miR-378. In conclusion, multilineage differentiation in vitro test system is very sensitive for monitoring molecular activities relevant to in vivo neuronal developmental toxicity. Moreover, miR-378 seems to repress the expression of the OTX2 and EMX2 and therefore could be a regulator of the development of neural tube and dorsal forebrain neurons.
Collapse
Affiliation(s)
- K Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S Jagtap
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - S P Srinivasan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - V Wagh
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| | - J Hengstler
- Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund (IfADo), Dortmund, Germany
| | - M Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - A Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Str. 39, Cologne, Germany
| |
Collapse
|