1
|
Miranowicz-Dzierżawska K, Zapór L, Skowroń J, Chojnacka-Puchta L, Sawicka D. The effects of co-exposure to methyl paraben and dibutyl phthalate on cell line derived from human skin. Toxicol Res 2022; 39:71-89. [PMID: 36721678 PMCID: PMC9839924 DOI: 10.1007/s43188-022-00151-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 02/03/2023] Open
Abstract
Data on the cumulative effects of chemical substances are necessary for the proper risk assessment, but their availability is still insufficient. The aim of the study was to evaluate the cytotoxic effect of methyl paraben (MePB) and dibutyl phthalate (DBP) on the cells of the skin line (A431) and to compare the cytotoxic effects of the tested substances after single application to A431 cells with the effects of an equimolar/equitoxic (1:1) binary mixture of these compounds as well as their mixtures in ratio 1:3: and 3:1. On the basis of the obtained results, it was found that there were interactions between the tested compounds in terms of cytotoxic effect on A431, assessed on the basis of metabolic activity of cells (MTT test) and integrity of their cell membranes (NRU test). The obtained values of synergy coefficients (SI) and isobolographic analysis indicate that between the tested chemicals in a two-component equimolar mixture (1:1) there is a synergism of action, which, at a high DBP content in the mixture (> 50%) turned into antagonism. Observations using a holotomographic microscope show morphological changes in A431 cells after exposure to both DBP and MePB separately and binary mixtures of these compounds, compared to untreated cells. The observed changes in cell morphology seem to be more pronounced when the cells are exposed to the binary mixtures of DBP and MePB than when exposed to these substances individually, which may confirm the synergy of cytotoxic activity between them (this phenomenon was observed for the higher of the tested concentrations in all tested proportions). It is important to consider such effects when considering the effects of cumulative exposure in the risk assessment in order not to underestimate the risk of adverse effects associated with exposure to chemical mixtures.
Collapse
Affiliation(s)
| | - Lidia Zapór
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Jolanta Skowroń
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Luiza Chojnacka-Puchta
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Dorota Sawicka
- Central Institute for Labour Protection-National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| |
Collapse
|
2
|
Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:351-375. [DOI: 10.1007/978-3-030-88071-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci 2022; 29:2085-2094. [PMID: 35531241 PMCID: PMC9073040 DOI: 10.1016/j.sjbs.2022.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Silver nanoparticles are well received in the cosmeceutical industry due to their broad spectrum of pharmacology applications. Research on the therapeutic properties exhibited by silver nanoparticles revealed that the antimicrobial and anti-inflammatory properties are the main attraction in the establishment of nanocosmeceutical products whereby their mechanisms of action are reviewed in this paper. In addition, studies on other uses of silver nanoparticles acknowledged that the particles act as antifungal agents in nail polishes and pigments in coloured beauty products such as lipsticks and eye shadows. Despite the extensive use of silver nanoparticles in the cosmetic line, there are still limited resources on the mechanism of actions and the effect of the particles on the bio-functionality of the body. The safety of silver nanoparticles could be comprehended from their skin penetration ability and toxicity to the human body in which it could be justified that both features are mainly influenced by the morphology of the particles and the method of application. This article summarizes exclusively on the synthesis of silver nanoparticles, the biomedical mechanisms and applications as well the limitations with respect to skin penetration ability and toxicity effects which will contribute significantly to the vast research on the association of nanotechnology and cosmetics.
Collapse
Affiliation(s)
| | - Kar Lin Nyam
- Corresponding author at: UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
4
|
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021; 12:728250. [PMID: 34659351 PMCID: PMC8511513 DOI: 10.3389/fgene.2021.728250] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid advancement of nanotechnology enhances the production of different nanoparticles that meet the demand of various fields like biomedical sciences, industrial, material sciences and biotechnology, etc. This technological development increases the chances of nanoparticles exposure to human beings, which can threaten their health. It is well known that various cellular processes (transcription, translation, and replication during cell proliferation, cell cycle, cell differentiation) in which genetic materials (DNA and RNA) are involved play a vital role to maintain any structural and functional modification into it. When nanoparticles come into the vicinity of the cellular system, chances of uptake become high due to their small size. This cellular uptake of nanoparticles enhances its interaction with DNA, leading to structural and functional modification (DNA damage/repair, DNA methylation) into the DNA. These modifications exhibit adverse effects on the cellular system, consequently showing its inadvertent effect on human health. Therefore, in the present study, an attempt has been made to elucidate the genotoxic mechanism of nanoparticles in the context of structural and functional modifications of DNA.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| | - Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| |
Collapse
|
5
|
Rakowski M, Porębski S, Grzelak A. Silver Nanoparticles Modulate the Epithelial-to-Mesenchymal Transition in Estrogen-Dependent Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:9203. [PMID: 34502112 PMCID: PMC8431224 DOI: 10.3390/ijms22179203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are frequently detected in many convenience goods, such as cosmetics, that are applied directly to the skin. AgNPs accumulated in cells can modulate a wide range of molecular pathways, causing direct changes in cells. The aim of this study is to assess the capability of AgNPs to modulate the metastasis of breast cancer cells through the induction of epithelial-to-mesenchymal transition (EMT). The effect of the AgNPs on MCF-7 cells was investigated via the sulforhodamine B method, the wound healing test, generation of reactive oxygen species (ROS), the standard cytofluorimetric method of measuring the cell cycle, and the expression of EMT marker proteins and the MTA3 protein via Western blot. To fulfill the results, calcium flux and HDAC activity were measured. Additionally, mitochondrial membrane potential was measured to assess the direct impact of AgNPs on mitochondria. The results indicated that the MCF-7 cells are resistant to the cytotoxic effect of AgNPs and have higher mobility than the control cells. Treatment with AgNPs induced a generation of ROS; however, it did not affect the cell cycle but modulated the expression of EMT marker proteins and the MTA3 protein. Mitochondrial membrane potential and calcium flux were not altered; however, the AgNPs did modulate the total HDAC activity. The presented data support our hypothesis that AgNPs modulate the metastasis of MCF-7 cells through the EMT pathway. These results suggest that AgNPs, by inducing reactive oxygen species generation, alter the metabolism of breast cancer cells and trigger several pathways related to metastasis.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Szymon Porębski
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| | - Agnieszka Grzelak
- Cytometry Laboratory, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
6
|
Krzyzanowski D, Kruszewski M, Grzelak A. Differential Action of Silver Nanoparticles on ABCB1 (MDR1) and ABCC1 (MRP1) Activity in Mammalian Cell Lines. MATERIALS 2021; 14:ma14123383. [PMID: 34207361 PMCID: PMC8234686 DOI: 10.3390/ma14123383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023]
Abstract
Silver nanoparticles (AgNPs), due to their unique properties have been receiving immense attention in recent years. In addition to their antibacterial and antifungal activities, AgNPs also cause apoptosis, mitochondria disfunction, nucleic acid damage and show potent anticancer properties in both multidrug resistance (MDR) and sensitive tumors. The MDR phenomenon, caused by the presence of ATP-binding cassette (ABC) proteins, is responsible for the failure of chemotherapy. Thus, investigating the influence of widely used AgNPs on ABC transporters is crucial. In the present study, we have examined the cytotoxicity of silver nanoparticles of a nominal size of 20 nm (Ag20) on the cell lines of different tissue origins. In addition, we have checked the ATP-binding cassette transporters’ activity and expression under AgNP exposure. The results indicate that Ag20 shows a toxic effect on tested cells, as well as modulating the expression and transport activity of ABC proteins.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 91-738 Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland
- Correspondence:
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
| | - Agnieszka Grzelak
- Department of Molecular Biophysics, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
7
|
|
8
|
Sawicka D, Zapor L, Chojnacka-Puchta L, Miranowicz-Dzierzawska K. The in vitro toxicity evaluation of halloysite nanotubes (HNTs) in human lung cells. Toxicol Res 2020; 37:301-310. [PMID: 34290973 PMCID: PMC8249553 DOI: 10.1007/s43188-020-00062-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Halloysite nanotubes (HNTs) have been increasingly used in many industrial and biomedical fields. Therefore, the assessment of risk and consequences of exposure to HNTs is very important to better protect human safety. This study aims to investigate the short- (24 or 72 h) and long-term (7 days) cytotoxic effects of HNTs at doses 10-200 µg/mL on human alveolar carcinoma epithelial cells (A549) and human bronchial epithelial cells (BEAS-2B). The effect of HNTs on cell viability, apoptosis, cell proliferation, oxidative/antioxidative status and cell morphology was evaluated. Our results showed that cytotoxicity of HNTs is dependent on dose, cell model and time of exposure. During the time of exposition toxic effects were intensified. To the best of our knowledge, this is the first study to use holo-tomographic microscopy (HTM) to visualise changes in cell morphology due to exposure from HNTs. We observed cells contraction, changes in the size and shape, cell surface folding and cytoplasmic vacuolization, peripheral arrangement of cell nuclei and even increase number of nucleus, which undoubtedly confirmed cytotoxic effect of HNTs at low doses (5 µg/mL and 25 µg/mL). Our results demonstrated that HTM technique provides a new insight into the assessment of HNTs toxicity. Further studies with different cell models are recommended to assess the toxic effect of HNTs on whole human body.
Collapse
Affiliation(s)
- Dorota Sawicka
- Central Institute for Labour Protection, National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Lidia Zapor
- Central Institute for Labour Protection, National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | - Luiza Chojnacka-Puchta
- Central Institute for Labour Protection, National Research Institute, Czerniakowska 16, 00-701 Warsaw, Poland
| | | |
Collapse
|
9
|
Paciorek P, Żuberek M, Grzelak A. Products of Lipid Peroxidation as a Factor in the Toxic Effect of Silver Nanoparticles. MATERIALS 2020; 13:ma13112460. [PMID: 32481688 PMCID: PMC7321096 DOI: 10.3390/ma13112460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022]
Abstract
In our previous study we have shown that nanoparticles have different effects depending on the energy metabolism of the cell, which is an important factor in the context of oncology and diabetes. Here we assess the influence of AgNPs on cellular lipid components in varying glucose concentrations. To assess the effect of silver nanoparticles on cell lipids, we measured cell viability, the fluidity of the cell membranes, the content of amino groups in proteins, the level of lipid peroxidation products, the concentration of 4-hydroxynonenal (4-HNE), and the concentration of lipid peroxides. The obtained results show differences in the formation of lipid peroxidation products in cells exposed to oxidative stress induced by nanoparticles. In addition, we have shown that the metabolic state of the cell is a factor significantly affecting this process.
Collapse
|
10
|
Matysiak-Kucharek M, Czajka M, Jodłowska-Jędrych B, Sawicki K, Wojtyła-Buciora P, Kruszewski M, Kapka-Skrzypczak L. Two Sides to the Same Coin-Cytotoxicity vs. Potential Metastatic Activity of AgNPs Relative to Triple-Negative Human Breast Cancer MDA-MB-436 Cells. Molecules 2020; 25:E2375. [PMID: 32443890 PMCID: PMC7287686 DOI: 10.3390/molecules25102375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022] Open
Abstract
Silver nanoparticles (AgNPs) are used in many fields of industry and medicine. Despite the well-established antimicrobial activity, AgNPs are foreseen to be used as anticancer drugs due to the unusual feature-inability to induce drug resistance in cancer cells. The aim of the study was to assess biological activity of AgNPs against MDA-MB-436 cells. The cells were derived from triple-negative breast cancer, a type of breast cancer with poor prognosis and is particularly difficult to cure. AgNPs were toxic to MDA-MB-436 cells and the probable mechanism of toxicity was the induction of oxidative stress. These promising effects, giving the opportunity to use AgNPs as an anti-cancer agent should, however, be treated with caution in the light of further results. Namely, the treatment of MDA-MB-436 cells with AgNPs was associated with the increased secretion of several cytokines and chemokines, which were important in breast cancer metastasis. Finally, changes in the actin cytoskeleton of MDA-MB-436 cells under the influence of AgNPs treatment were also observed.
Collapse
Affiliation(s)
- Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| | - Paulina Wojtyła-Buciora
- The President Stanisław Wojciechowski State University of Applied Sciences, 62-800 Kalisz, Poland;
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.C.); (K.S.); (L.K.-S.)
| |
Collapse
|
11
|
Męczyńska-Wielgosz S, Wojewódzka M, Matysiak-Kucharek M, Czajka M, Jodłowska-Jędrych B, Kruszewski M, Kapka-Skrzypczak L. Susceptibility of HepG2 Cells to Silver Nanoparticles in Combination with other Metal/Metal Oxide Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2221. [PMID: 32408639 PMCID: PMC7287770 DOI: 10.3390/ma13102221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 05/11/2020] [Indexed: 12/28/2022]
Abstract
The fast-growing use of nanomaterials in everyday life raises the question about the safety of their use. Unfortunately, the risks associated with the use of nanoparticles (NPs) have not yet been fully assessed. The majority of studies conducted so far at the molecular and cellular level have focused on a single-type exposure, assuming that NPs act as the only factor. In the natural environment, however, we are likely exposed to a mixture of nanoparticles, whose interactions may modulate their impact on living organisms. This study aimed to evaluate the toxicological effects caused by in vitro exposure of HepG2 cells to AgNPs in combination with AuNPs, CdTe quantum dot (QD) NPs, TiO2NPs, or SiO2NPs. The results showed that the toxicity of nanoparticle binary mixtures depended on the type and ratio of NPs used. In general, the toxicity of binary mixtures of NPs was lower than the sum of toxicities of NPs alone (protective effect).
Collapse
Affiliation(s)
- Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
| | - Maria Wojewódzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.M.-K.); (M.C.)
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.M.-K.); (M.C.)
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwiłowska 11, 20-080 Lublin, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.W.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.M.-K.); (M.C.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.M.-K.); (M.C.)
| |
Collapse
|
12
|
Wang F, Wang Y, Qu G, Yao X, Ma C, Song M, Wang H, Jiang G. Ultralong AgNWs-induced toxicity in A549 cells and the important roles of ROS and autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109742. [PMID: 31593826 DOI: 10.1016/j.ecoenv.2019.109742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Safety concerns have been raised with regard to silver nanowires (AgNWs) because of their extensive applications. Recently, ultralong AgNWs have shown physical properties superior to those of short AgNWs. However, little is known about their toxicity and potential risks. In this study, we demonstrated a series of ultralong AgNWs-induced biological effects in human lung cancer epithelial cells (A549). Ultralong AgNWs treatments induced ROS generation, mitochondria-mediated apoptosis, and self-protective autophagy at nonlethal concentrations. In contrast to some previous reports, apoptosis was found not to correlate with the reduction of intracellular ROS. Measuring the processing of ROS generation, apoptosis and autophagy, we demonstrated that ROS not only enhance mitochondrial damage, but also raise protective autophagic flux in ultralong AgNW-treated cells. Moreover, ultralong AgNWs were found to be internalized into the cytoplasm of the epithelial cells. This study not only investigates ultralong AgNWs-induced cytotoxicity but also pinpoints ROS as a key signal in mechanisms of their toxicity.
Collapse
Affiliation(s)
- Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
13
|
García-Rodríguez A, Rubio L, Vila L, Xamena N, Velázquez A, Marcos R, Hernández A. The Comet Assay as a Tool to Detect the Genotoxic Potential of Nanomaterials. NANOMATERIALS 2019; 9:nano9101385. [PMID: 31569740 PMCID: PMC6835278 DOI: 10.3390/nano9101385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 01/04/2023]
Abstract
The interesting physicochemical characteristics of nanomaterials (NMs) has brought about their increasing use and, consequently, their increasing presence in the environment. As emergent contaminants, there is an urgent need for new data about their potential side-effects on human health. Among their potential effects, the potential for DNA damage is of paramount relevance. Thus, in the context of the EU project NANoREG, the establishment of common robust protocols for detecting genotoxicity of NMs became an important aim. One of the developed protocols refers to the use of the comet assay, as a tool to detect the induction of DNA strand breaks. In this study, eight different NMs—TiO2NP (2), SiO2NP (2), ZnONP, CeO2NP, AgNP, and multi-walled carbon nanotubes (MWCNT)—were tested using two different human lung epithelial cell lines (A549 and BEAS-2B). The comet assay was carried out with and without the use of the formamidopyrimidine glycosylase (FPG) enzyme to detect the induction of oxidatively damaged DNA bases. As a high throughput approach, we have used GelBond films (GBF) instead of glass slides, allowing the fitting of 48 microgels on the same GBF. The results confirmed the suitability of the comet assay as a powerful tool to detect the genotoxic potential of NMs. Specifically, our results indicate that most of the selected nanomaterials showed mild to significant genotoxic effects, at least in the A549 cell line, reflecting the relevance of the cell line used to determine the genotoxic ability of a defined NM.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Laura Rubio
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Santiago de los Caballeros 50000, Dominican Republic.
| | - Laura Vila
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Noel Xamena
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Antonia Velázquez
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Ricard Marcos
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| | - Alba Hernández
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Institute of Health, 28029 Madrid, Spain.
| |
Collapse
|
14
|
Vijayakumar S, Malaikozhundan B, Saravanakumar K, Durán-Lara EF, Wang MH, Vaseeharan B. Garlic clove extract assisted silver nanoparticle – Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111558. [DOI: 10.1016/j.jphotobiol.2019.111558] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023]
|
15
|
Elespuru R, Pfuhler S, Aardema MJ, Chen T, Doak SH, Doherty A, Farabaugh CS, Kenny J, Manjanatha M, Mahadevan B, Moore MM, Ouédraogo G, Stankowski LF, Tanir JY. Genotoxicity Assessment of Nanomaterials: Recommendations on Best Practices, Assays, and Methods. Toxicol Sci 2019; 164:391-416. [PMID: 29701824 DOI: 10.1093/toxsci/kfy100] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Collapse
Affiliation(s)
- Rosalie Elespuru
- Division of Biology, Chemistry and Materials Science, US Food and Drug Administration, CDRH/OSEL, Silver Spring, Maryland 20993
| | - Stefan Pfuhler
- The Procter & Gamble Company, Mason Business Centre, Mason, Ohio 45040
| | | | - Tao Chen
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, Wales SA2 8PP, UK
| | - Ann Doherty
- Discovery Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca Genetic Toxicology, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Julia Kenny
- Genetic Toxicology & Photosafety, David Jack Centre for Research & Development, GlaxoSmithKline, Ware, Hertfordshire SG12 0DP, UK
| | - Mugimane Manjanatha
- Division of Genetic and Molecular Toxicology, US Food and Drug Administration, NCTR, Jefferson, Arkansas 72079
| | - Brinda Mahadevan
- Global Pre-clinical Development Innovation & Development, Established Pharmaceuticals, Abbott, Mumbai 400072, India
| | | | | | | | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia 20005
| |
Collapse
|
16
|
Brzóska K, Grądzka I, Kruszewski M. Silver, Gold, and Iron Oxide Nanoparticles Alter miRNA Expression but Do Not Affect DNA Methylation in HepG2 Cells. MATERIALS 2019; 12:ma12071038. [PMID: 30934809 PMCID: PMC6479689 DOI: 10.3390/ma12071038] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
The increasing use of nanoparticles (NPs) in various applications entails the need for reliable assessment of their potential toxicity for humans. Originally, studies concerning the toxicity of NPs focused on cytotoxic and genotoxic effects, but more recently, attention has been paid to epigenetic changes induced by nanoparticles. In the present research, we analysed the DNA methylation status of genes related to inflammation and apoptosis as well as the expression of miRNAs related to these processes in response to silver (AgNPs), gold (AuNPs), and superparamagnetic iron oxide nanoparticles (SPIONs) at low cytotoxic doses in HepG2 cells. There were no significant differences between treated and control cells in the DNA methylation status. We identified nine miRNAs, the expression of which was significantly altered by treatment with nanoparticles. The highest number of changes was induced by AgNPs (six miRNAs), followed by AuNPs (four miRNAs) and SPIONs (two miRNAs). Among others, AgNPs suppressed miR-34a expression, which is of particular interest since it may be responsible for the previously observed AgNPs-mediated HepG2 cells sensitisation to tumour necrosis factor (TNF). Most of the miRNAs affected by NP treatment in the present study have been previously shown to inhibit cell proliferation and tumourigenesis. However, based on the observed changes in miRNA expression we cannot draw definite conclusions regarding the pro- or anti-tumour nature of the NPs under study. Further research is needed to fully elucidate the relation between observed changes in miRNA expression and the effect of NPs observed at the cellular level. The results of the present study support the idea of including epigenetic testing during the toxicological assessment of the biological interaction of nanomaterials.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Iwona Grądzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
- University of Information Technology and Management, Faculty of Medicine, Department of Medical Biology and Translational Research, Sucharskiego 2, 35-225 Rzeszów, Poland.
- Institute of Rural Health, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland.
| |
Collapse
|
17
|
Yang YF, Wang WM, Chen CY, Lu TH, Liao CM. Assessing human exposure risk and lung disease burden posed by airborne silver nanoparticles emitted by consumer spray products. Int J Nanomedicine 2019; 14:1687-1703. [PMID: 30880973 PMCID: PMC6407905 DOI: 10.2147/ijn.s171510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background No systematic investigations have been conducted to assess the lung burden imposed by the chronic inhalation of silver nanoparticles (AgNPs) emitted by spray products. Objective The objective of this study was to formulate a study framework that integrates a probabilistic risk assessment scheme with a mechanistic lung burden model for the estimation of health risks associated with the long-term inhalation of AgNP-containing spray products. Materials and methods A compartmentalized physiologically based alveolar deposition (PBAD) model was used to estimate AgNP lung burden. Dose–response relationships were established using nanotoxicity data sets obtained from rats (as a model organism). Weibull model-based thresholds of AgNP lung burden based on neutrophil-elevated inflammation bio-markers were estimated from Hill-based exposure–response relationships. Finally, the risks of lung disease posed by various AgNP-containing spray products were assessed. Results Conservative thresholds for the prevention of pulmonary disease were estimated as follows (mean ± SE): 34 nm AgNPs (0.32±0.22 mg) and 60 nm AgNPs (1.08±0.64 mg). Our results indicate that the risk probability was ~0.5 that the hazard quotient (HQ) estimates of deodorant with a count median diameter (CMD) ≈30 nm exceeded 1. The primary risk posed by AgNPs is transferred from the interstitial region to lymph nodes. Under the condition of 50% risk probability, the 97.5 percentile of HQ for the spray products were as follows: CMD ≈30 nm (~3.4) and CMD ≈60 nm (~1.1). Conclusion Our application of the proposed risk assessment scheme to the results obtained in an in vivo animal model proved highly effective in elucidating the relationship between the characteristics of metallic NP-containing spray products and their corresponding toxicity. The integration of the proposed PBAD model with a risk assessment framework enables the rapid assessment of risk posed by spray products containing metallic NPs over various time scales.
Collapse
Affiliation(s)
- Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China,
| | - Wei-Ming Wang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China,
| | - Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China,
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China,
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China,
| |
Collapse
|
18
|
Klingelfus T, Disner GR, Voigt CL, Alle LF, Cestari MM, Leme DM. Nanomaterials induce DNA-protein crosslink and DNA oxidation: A mechanistic study with RTG-2 fish cell line and Comet assay modifications. CHEMOSPHERE 2019; 215:703-709. [PMID: 30347365 DOI: 10.1016/j.chemosphere.2018.10.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Genotoxic effects of nanomaterials (NMs) have been controversially reported in literature, and the mode of action (MoA) via DNA oxidation is cited as the main damage caused by them. Evidence of nano-silver as a crosslinker has been previously reported by the present research team in an in vivo fish genotoxicity study. Thus, aiming to confirm the evidence about NMs as crosslinker agent, the present investigation elucidated the genotoxic potential of NMs and their genotoxic MoA through in vitro assay with RTG-2 cells line (rainbow trout gonadal) by exposure to nano-silver (PVP-coated) and nano-titanium. The types and levels of DNA damage were assessed by the Comet assay (standard alkaline, hOGG1-modified alkaline, and two crosslink-modified alkaline versions). It was demonstrated that the use of the standard alkaline Comet assay alone may inaccurately predict the genotoxicity of NMs since oxidative and crosslink DNA damages were also verified in RTG-2 cells when assessed by the modified versions of the alkaline protocol. More importantly, it was confirmed that both nano-silver and nano-titanium acted as DNA-protein crosslinkers through the Comet assay version with proteinase K. As both nano-silver and nano-titanium present a great risk to aquatic life, these findings reinforce the need of genotoxicity testing strategies that encompass the assessment of different types of DNA damage, in order to ensure an accurate prediction of the genotoxic potential of NMs.
Collapse
Affiliation(s)
- T Klingelfus
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - G R Disner
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - C L Voigt
- Chemistry Department, State University of Ponta Grossa, Ponta Grossa, Paraná State, Brazil.
| | - L F Alle
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - M M Cestari
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| | - D M Leme
- Genetics Department, Federal University of Paraná, Curitiba, Paraná State, Brazil.
| |
Collapse
|
19
|
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul Toxicol Pharmacol 2018; 98:257-267. [DOI: 10.1016/j.yrtph.2018.08.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
|
20
|
Abstract
Application of nanomaterials in nearly every single branch of industry results in their accumulation in both abiotic environment and tissues of living organisms. Despite the common use of nanomaterials, we are not able to precisely define their toxicity towards humans and surrounding biota. Although we were able to determine final effects of chronic exposure to nanoparticles which consist of many pathologies such as respiratory diseases, allergies, diseases of cardiovascular system, disorders in embryonic life differentiation and growth disorders, toxic effects on the immune system and cancers. The most predominantly investigated feature of most nanoparticles is their ability to induce oxidative stress on cellular level. Imbalance in redox state of cells can lead to various malfunctions in their internal metabolism, which in turn can lead to mentioned pathologies on the organismal level if the exposure is persistent and spread wide enough. Imbalance in redox state translate into production of reactive oxygen species in amounts impossible to be scavenged in given time. Many reactive oxygen species play crucial role in physiological processes in properly functioning cells. It was proven on numerous occasions that abundance of ROS, aside from oxidative damage, can lead to more subtle adverse effects tied to disturbances in intra- and intercellular signaling pathways. In this chapter we would like to address the nanoparticle-induced redox imbalance in cells and its effects.
Collapse
|
21
|
Brzóska K, Grądzka I, Kruszewski M. Impact of silver, gold, and iron oxide nanoparticles on cellular response to tumor necrosis factor. Toxicol Appl Pharmacol 2018; 356:140-150. [PMID: 30096344 DOI: 10.1016/j.taap.2018.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/22/2022]
Abstract
Metallic nanomaterials are utilized in an increasing number of applications in medicine and industry. Their general toxicity was tested in numerous reports both in vitro and in vivo but limited data exist on how nanomaterials affect the activity of cellular signaling pathways activated by growth factors and cytokines. The aim of the present work was to test the hypothesis predicting that silver, gold and superparamagnetic iron oxide nanoparticles may interfere with cellular signaling activated by tumor necrosis factor (TNF) and change the final cellular outcome of TNF action. Such interference may result in disruption of homeostasis and contribute to the development of malignancies such as cancer or autoimmune diseases. Experiments were performed on HepG2 and A549 cell lines. We did not observe any interaction between nanoparticles and TNF at the level of clonogenic growth, apoptosis/necrosis induction or cell cycle. At all these endpoints, the effects of TNF and nanoparticles were additive. In contrast, gene expression analysis revealed synergistic effects. A group of genes was significantly affected only by simultaneous treatment with TNF and nanoparticles and not by any of the factors alone. Observed synergistic effect on IL10 and IL8 expression seems to be of particular importance since these cytokines are often expressed by tumor cells to inhibit tumor-targeted immune response. The observed synergistic effects of TNF and nanoparticles on cytokines expression may have significant consequences for tissue homeostasis and tumor promotion and therefore should be taken into account during development of new nanoparticle-based anticancer therapies.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - Iwona Grądzka
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland; University of Information Technology and Management, Department of Medical Biology and Translational Research, Sucharskiego 2, 35-225 Rzeszów, Poland; Institute of Rural Health, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
22
|
Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: Study on proliferating and post-mitotic LUHMES cells. Mech Ageing Dev 2018; 171:7-14. [DOI: 10.1016/j.mad.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
|
23
|
Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity. Redox Biol 2018; 15:435-440. [PMID: 29351884 PMCID: PMC5975067 DOI: 10.1016/j.redox.2018.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Damage to mitochondria and subsequent ROS leakage is a commonly accepted mechanism of nanoparticle toxicity. However, malfunction of mitochondria results in generation of superoxide anion radical (O2•-), which due to the relatively low chemical reactivity is rather unlikely to cause harmful effects triggered by nanoparticles. We show that treatment of HepG2 cells with silver nanoparticles (AgNPs) resulted in generation of H2O2 instead of O2•-, as measured by ROS specific mitochondrial probes. Moreover, addition of a selective iron chelator diminished AgNPs toxicity. Altogether these results suggest that O2•- generated during NPs induced mitochondrial collapse is rapidly dismutated to H2O2, which in the presence of iron ions undergoes a Fenton reaction to produce an extremely reactive hydroxyl radical (•OH). Clarification of the mechanism of NPs-dependent generation of •OH and demonstration of the crucial role of iron ions in NPs toxicity will facilitate our understanding of NPs toxicity and the design of safe nanomaterials. Superoxide radical is the main product generated by nanosilver exposed mitochondria. Iron chelation prevent the cell from nanosilver induced DNA damage. Iron chelation diminish nanosilver cytotoxicity. Nanosilver toxicity depends on Fenton reaction involving superoxide-derived H2O2.
Collapse
|
24
|
Roszak J, Domeradzka-Gajda K, Smok-Pieniążek A, Kozajda A, Spryszyńska S, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Cieślak M, Puchowicz D, Stępnik M. Genotoxic effects in transformed and non-transformed human breast cell lines after exposure to silver nanoparticles in combination with aluminium chloride, butylparaben or di-n-butylphthalate. Toxicol In Vitro 2017; 45:181-193. [PMID: 28893613 DOI: 10.1016/j.tiv.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/22/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022]
Abstract
In the present study genotoxic effects after combined exposure of human breast cell lines (MCF-10A, MCF-7 and MDB-MB-231) to silver nanoparticles (AgNP, citrate stabilized, 15 and 45nm by STEM, Ag15 and Ag45, respectively) with aluminium chloride, butylparaben, or di-n-butylphthalate were studied. In MCF-10A cells exposed for 24h to Ag15 at the concentration of 23.5μg/mL a statistically significant increase in DNA damage in comet assay (SSB) was observed. In the presence of the test chemicals the genotoxic effect was decreased to a level comparable to control values. In MCF-7 cells a significant increase in SSB level was observed after exposure to Ag15 at 16.3μg/mL. The effect was also diminished in the presence of the three test chemicals. In MDA-MB-231 cells no significant increase in SSB was observed, however increased level of oxidative DNA damage (incubation with Fpg enzyme) was observed after exposure to combinations of both AgNP with aluminium chloride. No increase in micronuclei formation was observed in neither cell line after the single nor combined treatments. Our results point to a low risk of increased genotoxic effects of AgNP when used in combination with aluminium salts, butylparaben or di-n-butylphthalate in consumer products.
Collapse
Affiliation(s)
- J Roszak
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - K Domeradzka-Gajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Smok-Pieniążek
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - A Kozajda
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - S Spryszyńska
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - J Grobelny
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - E Tomaszewska
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - K Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, University of Łódź, Poland
| | - M Cieślak
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - D Puchowicz
- Scientific Department of Unconventional Technologies and Textiles, Textile Research Institute, Łódź, Poland
| | - M Stępnik
- Toxicology and Carcinogenesis Department, Nofer Institute of Occupational Medicine, Łódź, Poland.
| |
Collapse
|
25
|
Collins A, El Yamani N, Dusinska M. Sensitive detection of DNA oxidation damage induced by nanomaterials. Free Radic Biol Med 2017; 107:69-76. [PMID: 28161308 DOI: 10.1016/j.freeradbiomed.2017.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
From a toxicological point of view, nanomaterials are of interest; because - on account of their great surface area relative to mass - they tend to be more reactive than the bulk chemicals from which they are derived. They might in some cases have the potential to damage DNA directly, or could act via the induction of oxidative stress. The comet assay (single cell gel electrophoresis) is widely used to measure DNA strand breaks and also oxidised bases, by including in the procedure digestion with lesion-specific enzymes such as formamidopyrimidine DNA glycosylase (which converts oxidised purines to breaks) or endonuclease III (recognising oxidised pyrimidines). We summarise reports in which these enzymes have been used to study a variety of nanomaterials in diverse cell types. We also stress that it is important to carry out tests of cell viability alongside the genotoxicity assay, since cytotoxicity can lead to adventitious DNA damage. Different concentrations of nanomaterials should be investigated, concentrating on a non-cytotoxic range; and incubating for short and longer periods can give valuable information about the mode of damage induction. The use of lesion-specific enzymes can substantially enhance the sensitivity of the comet assay in detecting genotoxic effects.
Collapse
Affiliation(s)
- Andrew Collins
- University of Oslo, Department of Nutrition, Oslo, Norway; NorGenotech AS, Skreia, Norway.
| | - Naouale El Yamani
- NorGenotech AS, Skreia, Norway; Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| | - Maria Dusinska
- Norwegian Institute for Air Research, Department of Environmental Chemistry, Kjeller, Norway
| |
Collapse
|
26
|
Sollazzo A, Shakeri-Manesh S, Fotouhi A, Czub J, Haghdoost S, Wojcik A. Interaction of low and high LET radiation in TK6 cells-mechanistic aspects and significance for radiation protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2016; 36:721-735. [PMID: 27631423 DOI: 10.1088/0952-4746/36/4/721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Most environmental, occupational and medical exposures to ionising radiation are associated with a simultaneous action of different radiation types. An open question remains whether radiations of different qualities interact with each other to yield effects stronger than expected based on the assumption of additivity. It is possible that DNA damage induced by high linear energy transfer (LET) radiation will lead to an opening of the chromatin structure making the DNA more susceptible to attack by reactive oxygen species (ROS) generated by the low LET radiation. In such case, the effect of mixed beams should be strongly expressed in cells that are sensitive to ROS. The present investigation was carried out to test if cells with an impaired capacity to handle oxidative stress are particularly sensitive to the effect of mixed beams of alpha particles and x-rays. Clonogenic cell survival curves and mutant frequencies were analysed in TK6 wild type (wt) cells and in TK6 cells with a knocked down hMYH glycosylase. The results showed a synergistic effect of mixed beams on clonogenic cell survival of TK6wt but not TK6MYH- cells. The frequencies of mutants showed a high degree of interexperimental variability without any indications for synergistic effects of mixed beams. TK6MYH- cells were generally more tolerant to radiation exposure with respect to clonogenic cell survival but showed a strong increase in mutant frequency. The results demonstrate that exposure of wt cells to a mixed beam of alpha particles and x-rays leads to a detrimental effect which is stronger than expected based on the assumption of additivity. The role of oxidative stress in the reaction of cells to mixed beams remains unclear.
Collapse
Affiliation(s)
- Alice Sollazzo
- MBW Department, Centre for Radiation Protection Research, Stockholm University, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Maharani V, Sundaramanickam A, Balasubramanian T. In vitro anticancer activity of silver nanoparticle synthesized by Escherichia coli VM1 isolated from marine sediments of Ennore southeast coast of India. Enzyme Microb Technol 2016; 95:146-154. [DOI: 10.1016/j.enzmictec.2016.09.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
|
28
|
Thongkam W, Gerloff K, van Berlo D, Albrecht C, Schins RPF. Oxidant generation, DNA damage and cytotoxicity by a panel of engineered nanomaterials in three different human epithelial cell lines. Mutagenesis 2016; 32:105-115. [PMID: 27834732 DOI: 10.1093/mutage/gew056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Due to the steeply increased use of nanomaterials (NMs) for commercial and industrial applications, toxicological assessment of their potential harmful effects is urgently needed. In this study, we compared the DNA-damaging properties and concurrent cytotoxicity of a panel of 10 engineered NMs in three different cell lines in relation to their intrinsic oxidant generating properties. The human epithelial cell lines A549, HK-2 and HepG2 were chosen to represent relevant target organs for NMs in the lung, kidney and liver. Cytotoxicity, evaluated by WST-1 assay in the treatment concentration range of 0.3-80 µg/cm2, was shown for Ag and ZnO NM in all three cell lines. Cytotoxicity was absent for all other NMs, i.e. five types of TiO2 and two types of multiwalled carbon nanotubes. DNA damage, evaluated by the alkaline comet assay, was observed with Ag and ZnO, albeit only at cytotoxic concentrations. DNA damage varied considerably with the cell line. The oxidant generating properties of the NMs, evaluated by electron spin resonance spectroscopy in cell free conditions, did not correlate with their cytotoxic or DNA-damaging properties. DNA damage by the nanosilver could be partly attributed to its surfactant-containing dispersant. The coating of a TiO2 sample with the commercial surfactant Curosurf augmented its DNA-damaging properties in A549 cells, while surface modification with serum tended to reduce damage. Our findings indicate that measurement of the intrinsic oxidant-generating capacity of NMs is a poor predictor of DNA damage and that the cytotoxic and DNA-damaging properties of NMs can vary substantially with experimental conditions. Our study also underlines the critical importance of selecting appropriate cell systems and aligned testing protocols. Selection of a cell line on the mere basis of its origin may provide only poor insight on organ-specific hazards of NMs.
Collapse
Affiliation(s)
- Waluree Thongkam
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Kirsten Gerloff
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Damien van Berlo
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany.,Present address: Triskelion B.V., Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 DE Düsseldorf, Germany
| |
Collapse
|
29
|
Silver Nanoparticle-Mediated Cellular Responses in Various Cell Lines: An in Vitro Model. Int J Mol Sci 2016; 17:ijms17101603. [PMID: 27669221 PMCID: PMC5085636 DOI: 10.3390/ijms17101603] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/09/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted increased interest and are currently used in various industries including medicine, cosmetics, textiles, electronics, and pharmaceuticals, owing to their unique physical and chemical properties, particularly as antimicrobial and anticancer agents. Recently, several studies have reported both beneficial and toxic effects of AgNPs on various prokaryotic and eukaryotic systems. To develop nanoparticles for mediated therapy, several laboratories have used a variety of cell lines under in vitro conditions to evaluate the properties, mode of action, differential responses, and mechanisms of action of AgNPs. In vitro models are simple, cost-effective, rapid, and can be used to easily assess efficacy and performance. The cytotoxicity, genotoxicity, and biocompatibility of AgNPs depend on many factors such as size, shape, surface charge, surface coating, solubility, concentration, surface functionalization, distribution of particles, mode of entry, mode of action, growth media, exposure time, and cell type. Cellular responses to AgNPs are different in each cell type and depend on the physical and chemical nature of AgNPs. This review evaluates significant contributions to the literature on biological applications of AgNPs. It begins with an introduction to AgNPs, with particular attention to their overall impact on cellular effects. The main objective of this review is to elucidate the reasons for different cell types exhibiting differential responses to nanoparticles even when they possess similar size, shape, and other parameters. Firstly, we discuss the cellular effects of AgNPs on a variety of cell lines; Secondly, we discuss the mechanisms of action of AgNPs in various cellular systems, and try to elucidate how AgNPs interact with different mammalian cell lines and produce significant effects; Finally, we discuss the cellular activation of various signaling molecules in response to AgNPs, and conclude with future perspectives on research into AgNPs.
Collapse
|
30
|
Effects of silver nanoparticles and ions on a co-culture model for the gastrointestinal epithelium. Part Fibre Toxicol 2016; 13:9. [PMID: 26888332 PMCID: PMC4756536 DOI: 10.1186/s12989-016-0117-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 01/26/2016] [Indexed: 11/28/2022] Open
Abstract
Background The increased incorporation of silver nanoparticles (Ag NPs) into consumer products makes the characterization of potential risk for humans and other organisms essential. The oral route is an important uptake route for NPs, therefore the study of the gastrointestinal tract in respect to NP uptake and toxicity is very timely. The aim of the present study was to evaluate the effects of Ag NPs and ions on a Caco-2/TC7:HT29-MTX intestinal co-culture model with mucus secretion, which constitutes an important protective barrier to exogenous agents in vivo and may strongly influence particle uptake. Methods The presence of the mucus layer was confirmed with staining techniques (alcian blue and toluidine blue). Mono and co-cultures of Caco-2/TC7 and HT29-MTX cells were exposed to Ag NPs (Ag 20 and 200 nm) and AgNO3 and viability (alamar blue), ROS induction (DCFH-DA assay) and IL-8 release (ELISA) were measured. The particle agglomeration in the media was evaluated with DLS and the ion release with ultrafiltration and ICP-MS. The effects of the Ag NPs and AgNO3 on cells in co-culture were studied at a proteome level with two-dimensional difference in gel electrophoresis (2D-DIGE) followed by Matrix Assisted Laser Desorption Ionization - Time Of Flight/ Time Of Flight (MALDI-TOF/TOF) mass spectrometry (MS). Intracellular localization was assessed with NanoSIMS and TEM. Results The presence of mucus layer led to protection against ROS and decrease in IL-8 release. Both Ag 20 and 200 nm NPs were taken up by the cells and Ag NPs 20 nm were mainly localized in organelles with high sulfur content. A dose- and size-dependent increase in IL-8 release was observed with a lack of cytotoxicity and oxidative stress. Sixty one differentially abundant proteins were identified involved in cytoskeleton arrangement and cell cycle, oxidative stress, apoptosis, metabolism/detoxification and stress. Conclusions The presence of mucus layer had an impact on modulating the induced toxicity of NPs. NP-specific effects were observed for uptake, pro-inflammatory response and changes at the proteome level. The low level of overlap between differentially abundant proteins observed in both Ag NPs and AgNO3 treated co-culture suggests size-dependent responses that cannot only be attributed to soluble Ag. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0117-9) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
|
32
|
Krawczyńska A, Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Herman AP, Oczkowski M, Królikowski T, Wilczak J, Wojewódzka M, Kruszewski M. Silver and titanium dioxide nanoparticles alter oxidative/inflammatory response and renin–angiotensin system in brain. Food Chem Toxicol 2015; 85:96-105. [DOI: 10.1016/j.fct.2015.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 12/28/2022]
|
33
|
Glucose availability determines silver nanoparticles toxicity in HepG2. J Nanobiotechnology 2015; 13:72. [PMID: 26493216 PMCID: PMC4618757 DOI: 10.1186/s12951-015-0132-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022] Open
Abstract
Background The increasing body of evidence suggest that nanomaterials toxicity is associated with generation of oxidative stress. In this paper we investigated the role of respiration in silver nanoparticles (AgNPs) generated oxidative stress and toxicity. Since cancer cells rely on glucose as the main source of energy supply, glucose availability might be an important determinant of NPs toxicity. Methods AgNPs of 20 nm nominal diameter were used as a model NPs. HepG2 cells were cultured in the media with high (25 mM) or low (5.5 mM) glucose content and treated with 20 nm AgNPs. AgNPs-induced toxicity was tested by neutral red assay. Generation of H2O2 in mitochondria was evaluated by use of mitochondria specific protein indicator HyPer-Mito. Expression of a 77 oxidative stress related genes was assessed by qPCR. The activity of antioxidant enzymes was estimated colorimetrically by dedicated methods in cell homogenates. Results AgNPs-induced dose-dependent generation of H2O2 and toxicity was observed. Toxicity of AgNPs towards cells maintained in the low glucose medium was significantly lower than the toxicity towards cells growing in the high glucose concentration. Scarceness of glucose supply resulted in upregulation of the endogenous antioxidant defence mechanisms that in turn alleviated AgNPs dependent ROS generation and toxicity. Conclusion Glucose availability can modify toxicity of AgNPs via elevation of antioxidant defence triggered by oxidative stress resulted from enhanced oxidative phosphorylation in mitochondria and associated generation of ROS. Presented results strengthen the idea of strong linkage between NPs toxicity and intracellular respiration and possibly other mitochondria dependent processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0132-2) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Asare N, Duale N, Slagsvold HH, Lindeman B, Olsen AK, Gromadzka-Ostrowska J, Meczynska-Wielgosz S, Kruszewski M, Brunborg G, Instanes C. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology 2015; 10:312-21. [PMID: 26923343 DOI: 10.3109/17435390.2015.1071443] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, we showed that silver nanoparticles (AgNPs) caused apoptosis, necrosis and DNA strand breaks in different cell models in vitro. These findings warranted analyses of their relevance in vivo. We investigated the genotoxic potential and gene expression profiles of silver particles of nano- (Ag20, 20 nm) and submicron- (Ag200, 200 nm) size and titanium dioxide nanoparticles (TiO2-NPs, 21 nm) in selected tissues from exposed male mice including the gonades. A single dose of 5 mg/kg bw nanoparticles was administered intravenously to male mice derived from C57BL6 (WT) and 8-oxoguanine DNA glycosylase knock-out (Ogg1(-/-) KO). Testis, lung and liver were harvested one and seven days post-exposure and analyzed for DNA strand breaks and oxidized purines employing the Comet assay with Formamidopyrimidine DNA glycosylase (Fpg) treatment, and sperm DNA fragmentation by the sperm chromatin structure assay (SCSA). Based on an initial screening of a panel of 21 genes, seven genes were selected and their expression levels were analyzed in all lung and testis tissues sampled from all animals (n = 6 mice/treatment group) using qPCR. AgNPs, in particular Ag200, caused significantly increased levels of DNA strand breaks and alkali labile sites in lung, seven days post-exposure. Fpg-sensitive lesions were significantly induced in both testis and lung. The transcript level of some key genes; Atm, Rad51, Sod1, Fos and Mmp3, were significantly induced compared to controls, particularly in lung samples from Ag200-exposed KO mice. We conclude that the Ag200 causes genotoxicity and distinct gene expression patterns in selected DNA damage response and repair related genes.
Collapse
Affiliation(s)
- Nana Asare
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Nur Duale
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Hege H Slagsvold
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway .,b Norwegian Directorate for Civil Protection , Tønsberg , Norway
| | - Birgitte Lindeman
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Ann Karin Olsen
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | | | - Sylwia Meczynska-Wielgosz
- d Institute of Nuclear Chemistry and Technology, Center for Radiobiology and Biological Dosimetry , Warsaw , Poland
| | - Marcin Kruszewski
- e Department of Molecular Biology and Translational Research , Institute of Rural Health , Lublin , Poland , and.,f Faculty of Medicine , University of Information Technology and Management in Rzeszów , Rzeszów , Poland
| | - Gunnar Brunborg
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| | - Christine Instanes
- a Department of Chemicals and Radiation, Division of Environmental Medicine , Norwegian Institute of Public Health , Oslo , Norway
| |
Collapse
|
35
|
Yoisungnern T, Choi YJ, Han JW, Kang MH, Das J, Gurunathan S, Kwon DN, Cho SG, Park C, Chang WK, Chang BS, Parnpai R, Kim JH. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci Rep 2015; 5:11170. [PMID: 26054035 PMCID: PMC4459204 DOI: 10.1038/srep11170] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/18/2015] [Indexed: 11/09/2022] Open
Abstract
Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs.
Collapse
Affiliation(s)
- Ton Yoisungnern
- 1] Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea [2] Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Yun-Jung Choi
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Jae Woong Han
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Min-Hee Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Joydeep Das
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Sangiliyandi Gurunathan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Chankyu Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Won Kyung Chang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| | - Byung-Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, Chungnam 356-706, Korea
| | - Rangsun Parnpai
- Embryo Technology and Stem Cell Research Center, School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
36
|
Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:82-96. [PMID: 25488706 DOI: 10.1002/em.21933] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The comet assay is a sensitive method to detect DNA strand breaks as well as oxidatively damaged DNA at the level of single cells. Today the assay is commonly used in nano-genotoxicology. In this review we critically discuss possible interactions between nanoparticles (NPs) and the comet assay. Concerns for such interactions have arisen from the occasional observation of NPs in the "comet head", which implies that NPs may be present while the assay is being performed. This could give rise to false positive or false negative results, depending on the type of comet assay endpoint and NP. For most NPs, an interaction that substantially impacts the comet assay results is unlikely. For photocatalytically active NPs such as TiO2 , on the other hand, exposure to light containing UV can lead to increased DNA damage. Samples should therefore not be exposed to such light. By comparing studies in which both the comet assay and the micronucleus assay have been used, a good consistency between the assays was found in general (69%); consistency was even higher when excluding studies on TiO2 NPs (81%). The strong consistency between the comet and micronucleus assays for a range of different NPs-even though the two tests measure different endpoints-implies that both can be trusted in assessing the genotoxicity of NPs, and that both could be useful in a standard battery of test methods.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
37
|
Møller P, Jensen DM, Christophersen DV, Kermanizadeh A, Jacobsen NR, Hemmingsen JG, Danielsen PH, Karottki DG, Roursgaard M, Cao Y, Jantzen K, Klingberg H, Hersoug LG, Loft S. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:97-110. [PMID: 25196723 DOI: 10.1002/em.21899] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Increased levels of oxidatively damaged DNA have been documented in studies of metal, metal oxide, carbon-based and ceramic engineered nanomaterials (ENMs). In particular, 8-oxo-7,8-dihydroguanine-2'-deoxyguanosine (8-oxodG) is widely assessed as a DNA nucleobase oxidation product, measured by chromatographic assays, antibody-based methods or the comet assay with DNA repair enzymes. However, spurious oxidation of DNA has been a problem in certain studies applying chromatographic assays, yielding high baseline levels of 8-oxodG. Antibody-based assays detect high 8-oxodG baseline levels, related to cross-reactivity with other molecules in cells. This review provides an overview of efforts to reliably detect oxidatively damaged DNA and a critical assessment of the published studies on DNA damage levels. Animal studies with high baseline levels of oxidatively damaged DNA are more likely to show positive associations between exposure to ENMs and oxidized DNA in tissue than studies showing acceptable baseline levels (odds ratio = 12.1, 95% confidence interval: 1.2-124). Nevertheless, reliable studies indicate that intratracheal instillation of nanosized carbon black is associated with increased levels of oxidatively damaged DNA in lung tissue. Oral exposure to nanosized carbon black, TiO2 , carbon nanotubes and ZnO is associated with elevated levels of oxidatively damaged DNA in tissues. These observations are supported by cell culture studies showing concentration-dependent associations between ENM exposure and oxidatively damaged DNA measured by the comet assay. Cell culture studies show relatively high variation in the ability of ENMs to oxidatively damage DNA; hence, it is currently impossible to group ENMs according to their DNA damaging potential.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brzóska K, Męczyńska-Wielgosz S, Stępkowski TM, Kruszewski M. Adaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expression. Mutagenesis 2015; 30:431-9. [PMID: 25681789 DOI: 10.1093/mutage/gev001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Silver nanoparticles (AgNPs) are one of the most widely used nanomaterials due to their antibacterial properties. Owing to the recent boost in the usage of AgNPs-containing products, human exposure to AgNPs is increasing, highlighting the need for careful evaluation of AgNPs toxicity in humans. We used two cellular models, hepatic HepG2 and epithelial A549 cell lines, to study the mechanism of AgNPs-induced toxicity at the cellular level. These two cell lines differ significantly in their response to AgNPs treatment. In the case of A549 cells, a minor decrease in viability and increase in the extent of DNA breakage were observed. A markedly different response to AgNPs was observed in HepG2 cells. In short term, a massive induction of DNA breakage was observed, suggesting that the basal activity of antioxidant defence in these cells was not sufficient to effectively protect them from the nanoparticle-induced oxidative stress. After prolonged exposure, the extent of DNA breakage decreased to the level observed in the control cells proving that a successful adaptation to the new conditions had taken place. The cells that were unable to adapt must have died, as revealed by the Neutral Red assay that indicated less than half viable cells after 24-h treatment with 100 µg/ml of 20nm AgNPs. The gene expression analysis revealed that the observed adaptation was underlain by a pro-proliferative, anti-apoptotic signal leading to up-regulation of the genes promoting proliferation and inflammatory response (EGR1, FOS, JUN, HK2, IL4, MMP10, VEGFA, WISP1, CEBPB, IL8, SELPLG), genes coding the anti-apoptotic proteins (BCL2A1, CCL2) and factors involved in the response to stress (HSPB1, GADD45A). Such a selection of highly resistant population of cells should be taken into account in the case of medical applications of nanoparticles since the sustained proliferative signalling and resistance to cell death are hallmarks of cancer, acquired by the cells in the process of carcinogenesis.
Collapse
Affiliation(s)
- Kamil Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland,
| | - Sylwia Męczyńska-Wielgosz
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland
| | - Tomasz M Stępkowski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland
| | | |
Collapse
|
39
|
Sussman EM, Casey BJ, Dutta D, Dair BJ. Different cytotoxicity responses to antimicrobial nanosilver coatings when comparing extract-based and direct-contact assays. J Appl Toxicol 2015; 35:631-9. [DOI: 10.1002/jat.3104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Eric M. Sussman
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health; US Food and Drug Administration; 10903 New Hampshire Ave. Silver Spring MD 20993 USA
| | - Brendan J. Casey
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health; US Food and Drug Administration; 10903 New Hampshire Ave. Silver Spring MD 20993 USA
| | - Debargh Dutta
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health; US Food and Drug Administration; 10903 New Hampshire Ave. Silver Spring MD 20993 USA
| | - Benita J. Dair
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health; US Food and Drug Administration; 10903 New Hampshire Ave. Silver Spring MD 20993 USA
| |
Collapse
|
40
|
Arunachalam KD, Arun LB, Annamalai SK, Arunachalam AM. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles. Int J Nanomedicine 2014; 10:31-41. [PMID: 25565802 PMCID: PMC4274148 DOI: 10.2147/ijn.s71182] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. METHODS The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. RESULTS The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. CONCLUSION Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.
Collapse
Affiliation(s)
| | - Lilly Baptista Arun
- Center for Environmental Nuclear Research, SRM University, Potheri, Tamil Nadu, India
| | | | | |
Collapse
|
41
|
Gao M, Lin R, Li L, Jiang L, Ye B, He H, Qiu L. Label-free silver nanoparticles for the naked eye detection of entecavir. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 126:178-183. [PMID: 24607467 DOI: 10.1016/j.saa.2014.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 06/03/2023]
Abstract
A simple, rapid, field-portable colorimetric method for the detection of entecavir was proposed based on the color change caused by the aggregation of silver nanoparticles. Neutralization of the electrostatic repulsion from each silver nanoparticle resulted in the aggregation of AgNPs and a consequent color change of AgNPs from yellow to wine-red, which provided a platform for rapid and field-portable colorimetric detection of entecavir. The concentration of entecavir could be determined with naked eye or UV-vis spectrometer. The proposed method can be used to detect entecavir in human urine with a detection limit of 1.51μg mL(-1), within 25min by naked eye observation without the aid of any advanced instrument or complex pretreatment. Results from UV-vis spectra showed that the absorption ratio was linear with the concentration of entecavir in the range of 5.04-25.2μg mL(-1) and 1.01-5.04μg mL(-1) with linear coefficients of 0.9907 and 0.9955, respectively. The selectivity of AgNPs detection system for entecavir is excellent comparing with other ions and analytes. Due to its rapid, visible color changes, and excellent selectivity, the AgNPs synthesized in this study are suitable to be applied to on-site screening of entecavir in human urine.
Collapse
Affiliation(s)
- Mengmeng Gao
- Division of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Rui Lin
- Yancheng Health Vocational and Technical College, Yancheng 224005, China
| | - Lili Li
- Medical School, Pingdingshan University, Pingdingshan 467000, China
| | - Li Jiang
- Department of Pharmacy, Jiangxi Cancer Hospital, 519 Beijing East Road, Nanchang 330029, China
| | - Baofen Ye
- Division of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Hua He
- Division of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, China.
| | - Lanlan Qiu
- Yancheng Health Vocational and Technical College, Yancheng 224005, China
| |
Collapse
|
42
|
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal 2014; 22:116-127. [PMID: 24673909 PMCID: PMC4281024 DOI: 10.1016/j.jfda.2014.01.010] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/27/2013] [Indexed: 12/12/2022] Open
Abstract
Silver is an ancient antibiotic that has found many new uses due to its unique properties on the nanoscale. Due to its presence in many consumer products, the toxicity of nanosilver has become a hot topic. This review summarizes recent advances, particularly the molecular mechanism of nanosilver toxicity. The surface of nanosilver can easily be oxidized by O2 and other molecules in the environmental and biological systems leading to the release of Ag+, a known toxic ion. Therefore, nanosilver toxicity is closely related to the release of Ag+. In fact, it is difficult to determine what portion of the toxicity is from the nano-form and what is from the ionic form. The surface oxidation rate is closely related to the nanosilver surface coating, coexisting molecules, especially thiol-containing compounds, lighting conditions, and the interaction of nanosilver with nucleic acids, lipid molecules, and proteins in a biological system. Nanosilver has been shown to penetrate the cell and become internalized. Thus, nanosilver often acts as a source of Ag+ inside the cell. One of the main mechanisms of toxicity is that it causes oxidative stress through the generation of reactive oxygen species and causes damage to cellular components including DNA damage, activation of antioxidant enzymes, depletion of antioxidant molecules (e.g., glutathione), binding and disabling of proteins, and damage to the cell membrane. Several major questions remain to be answered: (1) the toxic contribution from the ionic form versus the nano-form; (2) key enzymes and signaling pathways responsible for the toxicity; and (3) effect of coexisting molecules on the toxicity and its relationship to surface coating.
Collapse
Affiliation(s)
- Danielle McShan
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Paresh C Ray
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA
| | - Hongtao Yu
- Department of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA.
| |
Collapse
|
43
|
Stępkowski TM, Brzóska K, Kruszewski M. Silver nanoparticles induced changes in the expression of NF-κB related genes are cell type specific and related to the basal activity of NF-κB. Toxicol In Vitro 2014; 28:473-8. [PMID: 24462830 DOI: 10.1016/j.tiv.2014.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in industry and medicine but the recent evidence for their cytotoxicity rise a concern about the safety of their use. We have previously shown that human A549 cells are resistant to AgNPs cytotoxicity, as compared with similarly treated HepG2 cells. In order to check for the role of the NF-κB signaling pathway in response of A549 and HepG2 cell lines to the treatment with 20 nm and 200 nm AgNps, we analyzed the expression of 84 key genes related to the functionality of the NF-κB signaling pathway. We observed considerable alternations in gene expression in HepG2 cells treated with 20 nm AgNPs, and minor changes when exposed to 200 nm AgNPs. Surprisingly, no changes in gene expression were observed in A549 cells treated with both size AgNPs. Using the NF-κB luciferase reporter system, we further tested the basal activity and inducibility of the NF-κB pathway in both cell lines and found that the inducibility of NF-κB signaling in A549 cells is approximately 5 times lower than this of HepG2 cells, but the basal activity is approximately 3.5 times higher. In accordance, the NF-κB activation after AgNPs treatment was observed in HepG2 but not in A549. Altogether indicate that NF-kB mediated cellular response to AgNPs is cell type specific and related to the basal activity of NF-κB.
Collapse
Affiliation(s)
- T M Stępkowski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - K Brzóska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland.
| | - M Kruszewski
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Dorodna 16, 03-195 Warsaw, Poland; Institute of Agricultural Medicine, Department of Molecular Biology and Translational Research, Jaczewskiego 2, 20-090 Lublin, Poland.
| |
Collapse
|