1
|
Atmaca H, Çamli Pulat Ç, Ilhan S, Kalyoncu F. Hericium erinaceus Extract Induces Apoptosis via PI3K/AKT and RAS/MAPK Signaling Pathways in Prostate Cancer Cells. Chem Biodivers 2024; 21:e202400905. [PMID: 39183463 DOI: 10.1002/cbdv.202400905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Prostate cancer (PCa) is increasing globally, surpassing lung cancer in incidence. Despite available treatment options, prostate cancer remains incurable. Hence, novel therapeutic strategies are urgently needed to treat PCa. Hericium erinaceus (HE), a medicinal mushroom, offers diverse therapeutic benefits. We examined HE's effects on PCa cells, preparing an ethanol extract and identifying its volatile compounds through GC-MS. MTT assay assessed cell viability, while specific inhibitors and western blotting explored HE's impact on PI3K/AKT and RAS/MAPK pathways. Flow cytometry and ELISA evaluated apoptosis induction. HE showed concentration- and time-dependent cytotoxicity on PCa cells with minimal effects on normal cells. Mechanistically, HE suppressed PI3K/AKT and RAS/MAPK pathways, reducing phosphorylated protein levels. Moreover, it induced PCa cell apoptosis. These findings suggest HE as a potential therapeutic for prostate cancer, shedding light on its cytotoxic and apoptotic effects for further investigation.
Collapse
Affiliation(s)
- Harika Atmaca
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Çisil Çamli Pulat
- Applied Science Research Center, Manisa Celal Bayar University, Manisa, Türkiye
| | - Suleyman Ilhan
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| | - Fatih Kalyoncu
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa, Türkiye
| |
Collapse
|
2
|
Yamazaki S, Ito K, Aoki T, Arashida N, Watanabe T, Fujii T, Matsuda Y. Biological Evaluation of Antibody-Drug Conjugates Produced by Tag-Free Lipoate Ligase A Modification. Biochemistry 2024; 63:644-650. [PMID: 38350078 DOI: 10.1021/acs.biochem.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The concept of tag-free protein modification has attracted considerable interest in chemical biology because of its flexible and straightforward reaction process. In 2021, a groundbreaking approach using lipoate ligase A (LplA) for tag-free enzymatic modification of antibodies was unveiled, demonstrating its potential for the generation of precise antibody conjugates. In this study, to further explore LplA-mediated antibody-drug conjugate (ADC) synthesis, we performed initial biological evaluations of ADCs synthesized using LplA. Using the anti-HER2 antibody trastuzumab, we introduced octanoic acid azide using LplA and subsequently obtained an ADC using click chemistry with the drug DBCO-VC-PAB-MMAE. The bioactivity of the synthesized anti-HER2-ADC was evaluated using HER2-positive SKBR-3 and HER2-negative MCF7 cells. Its toxicity and selectivity were found to be comparable to those of the FDA-approved Kadcyla. In addition, a stability study involving rat and human plasma demonstrated the stability of the LplA-mediated ADC. Additionally, the affinity for the neonatal Fc receptor (FcRn) was retained after conjugation. These preliminary in vitro evaluations suggested that LplA-derived ADCs can have considerable pharmaceutical potential. Our results can set the stage for further in vivo evaluations and safety assessments. We suggest that the integration of tag-free LplA methods into the production of ADCs can offer a novel and promising approach for biopharmaceutical manufacturing.
Collapse
Affiliation(s)
- Shunsuke Yamazaki
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Kenichiro Ito
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Tsubasa Aoki
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Naoko Arashida
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Tomohiro Watanabe
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Tomohiro Fujii
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| | - Yutaka Matsuda
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Kanagawa, Japan
| |
Collapse
|
3
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
4
|
Shang L, Zhong Y, Yao Y, Liu C, Wang L, Zhang W, Liu J, Wang X, Sun C. Subverted macrophages in the triple-negative breast cancer ecosystem. Biomed Pharmacother 2023; 166:115414. [PMID: 37660651 DOI: 10.1016/j.biopha.2023.115414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are the most critical effector cells of innate immunity and the most abundant tumor-infiltrating immune cells. They play a key role in the clearance of apoptotic bodies, regulation of inflammation, and tissue repair to maintain homeostasis in vivo. With the progression of triple-negative breast cancer(TNBC), TAMs are "subverted" from tumor-promoting immune cells to tumor-promoting immune suppressor cells, which play a significant role in tumor development and are considered potential targets for cancer therapy. Here, we explored how macrophages, as the most important part of the TNBC ecosystem, are "subverted" to drive cancer evolution and the uniqueness of TAMs in TNBC progression and metastasis. Similarly, we discuss the rationale and available evidence for TAMs as potential targets for TNBC therapy.
Collapse
Affiliation(s)
- Linxiao Shang
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 264000, China
| | - Yuting Zhong
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang 261000, China
| | - Lu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, Macau 999078, China
| | - Jingyang Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250022, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang 261000, China.
| |
Collapse
|
5
|
Ilhan S, Atmaca H, Yilmaz ES, Korkmaz E, Zora M. N-Propargylic β-enaminones in breast cancer cells: Cytotoxicity, apoptosis, and cell cycle analyses. J Biochem Mol Toxicol 2023; 37:e23299. [PMID: 36647602 DOI: 10.1002/jbt.23299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Breast cancer is one of the most common cancers worldwide and the discovery of new cytotoxic agents is needed. Enaminones are regarded to be a significant structural motif that is found in a variety of pharmacologically active compounds however the number of studies investigating the anticancer activities of N-propargylic β-enaminones (NPEs) is limited. Herein we investigated the potential cytotoxic and apoptotic effects of 23 different NPEs (1-23) on human breast cancer cells. Cytotoxicity was evaluated via MTT assay. Apoptotic cell death and cell cycle distributions were investigated by flow cytometry. CM-H2DCFDA dye was used to evaluate cellular ROS levels. Expression levels of Bcl-2, Bax, p21, and Cyclin D1 were measured by quantitative real-time PCR. ADME properties were calculated using the ADMET 2.0 tool. NPEs 4, 9, 16, and 21 showed selective cytotoxic activity against breast cancer cells with SI values >2. NPEs induced apoptosis and caused significant changes in Bcl-2 and Bax mRNA levels. The cell cycle was arrested at the G0/G1 phase and levels of p21 and Cyclin D1 were upregulated in both breast cancer cells. ROS levels were significantly increased by NPEs, suggesting that the cytotoxic and apoptotic effects of NPEs were mediated by ROS. ADME analysis revealed that NPEs showed favorable distributions in both breast cancer cell lines, meaning good lipophilicity values, low unfractionated values, and high bioavailability. Therefore, these potential anticancer compounds should be further validated by in vivo studies for their appropriate function in human health with a safety profile, and a comprehensive drug interaction study should be performed.
Collapse
Affiliation(s)
- Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, Manisa, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, Manisa, Turkey
| | - Elif Serel Yilmaz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Esra Korkmaz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
6
|
Cai S, Ding Z, Liu X, Zeng J. Trabectedin induces ferroptosis via regulation of HIF-1α/IRP1/TFR1 and Keap1/Nrf2/GPX4 axis in non-small cell lung cancer cells. Chem Biol Interact 2023; 369:110262. [PMID: 36396105 DOI: 10.1016/j.cbi.2022.110262] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND OBJECTIVES Non-small cell lung cancer (NSCLC) is a global health concern. NSCLC treatment outcomes are generally poor due to treatment resistance or toxicity. Ferroptosis is a novel cell death triggered by iron accumulation, reactive oxygen species (ROS), and lipid peroxidation. Ferroptosis may kill cancer cells, particularly those resistant to apoptosis. MATERIALS AND METHODS The Cell Counting Kit-8 assay assessed NSCLC cell viability after trabectedin treatment. Flow cytometry with Annexin V-FITC staining evaluated cell death. ROS, iron, lipid peroxidation, and GSH levels were measured using commercial kits. qRT-PCR and western blots evaluated messenger RNA and protein levels. Proteins were inhibited using short interfering RNA transfection and specific inhibitors. RESULTS Trabectedin was cytotoxic to NSCLC cells regardless of p53 status. Trabectedin upregulated iron, ROS, and lipid peroxidation in NSCLC cells, causing ferroptosis. Trabectedin increases iron and ROS levels by upregulating transferrin receptor 1 and the HIF-1/IRP1 axis. In NSCLC cells, trabectedin suppresses glutathione peroxidase 4, followed by the Keap1/Nrf2 axis. CONCLUSIONS Our findings imply that trabectedin may treat NSCLC effectively.
Collapse
Affiliation(s)
- Shunv Cai
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Zewu Ding
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Xinyi Liu
- Department of Anesthesiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China
| | - Jian Zeng
- Department of Thoracic Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital). Zhejiang Key Laboratory of Diagnosis and Treatment Technology on Thoracic Oncology (Lung and Esophagus), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Atmaca H, Oğuz F, Ilhan S. Trabectedin (ET-743) in prostate cancer: Endoplasmic reticulum stress-induced apoptotic effect. Andrologia 2022; 54:e14599. [PMID: 36168116 DOI: 10.1111/and.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Trabectedin is a chemotherapy agent originating from a tunicate, Ecteinascidia turbinata. In this study, DNA-independent action mechanisms of trabectedin are investigated in prostate cancer (PCa) cells. Cell viability was assessed via XTT assay. Apoptosis was evaluated via flow cytometry. Tetramethylrodamine ethyl ester (TMRE) dye was utilized to determine mitochondrial membrane potential (MMP). Cell cycle distribution was investigated via flow cytometric analysis. Reactive oxygen species (ROS) were monitored using fluorescence CM-H2DCFDA dye. Changes in CHOP, p-eIF2α, GRP78 and p-PERK which are endoplasmic reticulum (ER) stress-involved proteins were investigated via western blot. Trabectedin induced cytotoxicity and cell cycle arrest at the G2/M phase. Trabectedin decreased MMP via ROS generation in PCa cells. ER stress-related proteins CHOP, p-eIF2α, GRP78 and p-PERK were also elevated by trabectedin treatment indicating the induction of ER stress-induced apoptosis. The results of this study show that trabectedin may be an effective chemotherapeutic for PCa.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Ferdi Oğuz
- Section of Molecular Biology, Department of Biology, Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
8
|
Atmaca H, Camli Pulat C, Cittan M. Liquidambar orientalis Mill. gum extract induces autophagy via PI3K/Akt/mTOR signaling pathway in prostate cancer cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1011-1019. [PMID: 32909456 DOI: 10.1080/09603123.2020.1818187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Liquidambar orientalis Mill (LOM), is an endemic species having a local distribution in the southwestern coastal district of Turkey. Styrax liquidus gum (SLG), is a gum-like resinous which exudates in response to injury of the trunk of LOM. The aim of the study was to investigate the cytotoxic effects and the molecular mechanisms of the ethanolic SLG extract in human prostate cancer cells. GC-MS analysis was performed to identify the volatile compound composition. Cytotoxicity was determined by XTT analysis. Apoptosis and necrosis were evaluated via ELISA assay. Autophagic cell death was detected via monodansylcadaverine (MDC) staining and by measuring the levels of LC3I and LC3II. The protein levels of p-PI3K, p-Akt and p-mTOR were evaluated by western blot analysis. In the present study, it is shown that the SLG extract containing a considerable amount of ravidomycin derivate induced autophagic cell death in prostate cancer cells via inhibiting the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Harika Atmaca
- Section of Molecular Biology, Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Turkey
| | - Cisil Camli Pulat
- Applied Science Research Center, Manisa Celal Bayar University, Muradiye, Turkey
| | - Mustafa Cittan
- Section of Analytical Chemistry, Department of Chemistry, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Turkey
| |
Collapse
|
9
|
Yazgan B, Ozcelik O, Ayar A, Renda G, Yıldırım T. Cytotoxic and Apoptotic Effect of Iris taochia Plant Extracts on Human Breast Cancer (MCF-7) Cells. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210402152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Iris taochia is an endemic plant in Turkey. Iris species has many biological
effects such as antibacterial, antiinflammatory, antioxidant and anticancer properties. Apoptosis
is a programmed cell death and this mechanism regulates the death of cancer cells.
Purpose:
The aim of our work is to investigate how the Iris taochia extracts affect the apoptotic activity
in the MCF7 cells.
Methods:
Cytotoxic dose and cell viability is determined by the MTT assay. Bad, Bax, Bcl-2, Bcl-
W, Bid, Bim, Caspase 3, Caspase 8, CD40, CD40L, cIAP-2, CytoC, DR6, Fas, FasL, HSP27,
HSP60, HSP70, HTRA, IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-5,
IGFBP-6, IGF-1sR, Livin, p21, p27, p53, SMAC, Survivin, sTNF-R1, sTNF-R2, TNF-α, TNF-β,
TRAILR-1, TRAILR-2, TRAILR-3, TRAILR-4 and XIAP proteins were measured by the membrane
array kit.
Results:
Iris taochia extracts exhibited significant cytotoxic effects on MCF7 cells and IC50 values
ranging from 1.56 to 100 μg/mL. Our results indicate that MeOH extract of Iris taochia in MCF7
cells may be a regulator of cell death proteins, cell cycle and growth factors. DCM and EtOH extracts
of Iris taochia have a limited effect on MCF7 cells, especially, HSPs, which play a significant
role in chemoresistance, downregulating DCM and EtOH extracts of Iris taochia, whereas ligands
and receptors of extrinsic apoptotic pathway are upregulated by these extracts.
Conclusion:
This is the first study to investigate the cytotoxic and apoptotic effect of Iris taochia
extracts on MCF7 cells. Results also showed that Iris taochia reduced cell viability and induced
apoptotic pathways as a potential regulator of cancer cell death.
Collapse
Affiliation(s)
- Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School,
Amasya University, Ipekköy, 05100, Amasya, Turkey
- Department of Biotechnology, Institute of Sciences, Amasya University, Ipekköy, 05100, Amasya, Turkey
| | - Ozlem Ozcelik
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekköy, 05100, Amasya, Turkey
| | - Arif Ayar
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School,
Amasya University, Ipekköy, 05100, Amasya, Turkey
- Department of Biotechnology, Institute of Sciences, Amasya University, Ipekköy, 05100, Amasya, Turkey
| | - Gülin Renda
- Department of Pharmacognosy, Faculty of Pharmacology, Karadeniz Technical
University, 61080, Trabzon, Turkey
| | - Tuba Yıldırım
- Department of Biotechnology, Institute of Sciences, Amasya University, Ipekköy, 05100, Amasya, Turkey
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekköy, 05100, Amasya, Turkey
| |
Collapse
|
10
|
Mikulčić M, Tabrizi-Wizsy NG, Bernhart EM, Asslaber M, Trummer C, Windischhofer W, Sattler W, Malle E, Hrzenjak A. 15d-PGJ 2 Promotes ROS-Dependent Activation of MAPK-Induced Early Apoptosis in Osteosarcoma Cell In Vitro and in an Ex Ovo CAM Assay. Int J Mol Sci 2021; 22:ijms222111760. [PMID: 34769194 PMCID: PMC8583949 DOI: 10.3390/ijms222111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.
Collapse
Affiliation(s)
- Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
| | - Nassim Ghaffari Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Eva M. Bernhart
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Christopher Trummer
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73860
| |
Collapse
|
11
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
12
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
13
|
Faheem, Karan Kumar B, Venkata Gowri Chandra Sekhar K, Chander S, Kunjiappan S, Murugesan S. 1,2,3,4-Tetrahydroisoquinoline (THIQ) as privileged scaffold for anticancer de novo drug design. Expert Opin Drug Discov 2021; 16:1119-1147. [PMID: 33908322 DOI: 10.1080/17460441.2021.1916464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Cancer is a dreadful disorder that is emerging as one of the leading causes of mortality across the globe. The complex tumor environment, supplemented with drawbacks of the existing drugs, has made it a global health concern. The Tetrahydroisoquinoline (THIQ) ring holds an important position in medicinal chemistry due to its wide range of pharmacological properties. Several THIQ based natural products have been previously explored for their antitumor properties, making it a vital scaffold for anticancer drug design.Areas covered: This review article addresses the potential of THIQ as anticancer agents. Various medicinal chemistry strategies employed for the design and development of THIQ analogs as inhibitors or modulators of relevant anticancer targets have been discussed in detail. Moreover, the common strategies employed for the synthesis of the core scaffold are also highlighted.Expert opinion: Evidently, THIQs have tremendous potential in anticancer drug design. Some of these analogs exhibited potent activity against various cancer molecular targets. However, there are some drawbacks, such as selectivity that need addressing. The synthetic ease for constructing the core scaffold complimented with its reactivity makes it ideal for further structure-activity relationship studies. For these reasons, THIQ is a privileged scaffold for the design and development of novel anticancer agents.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| | | | - Subhash Chander
- Amity Institute of Phytomedicine and Phytochemistry, Amity University Uttar Pradesh, Noida, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani, India
| |
Collapse
|
14
|
Malla RR, Farran B, Nagaraju GP. Understanding the function of the tumor microenvironment, and compounds from marine organisms for breast cancer therapy. World J Biol Chem 2021; 12:15-37. [PMID: 33815682 PMCID: PMC8006057 DOI: 10.4331/wjbc.v12.i2.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The pathology and physiology of breast cancer (BC), including metastasis, and drug resistance, is driven by multiple signaling pathways in the tumor microenvironment (TME), which hamper antitumor immunity. Recently, long non-coding RNAs have been reported to mediate pathophysiological develop-ments such as metastasis as well as immune suppression within the TME. Given the complex biology of BC, novel personalized therapeutic strategies that address its diverse pathophysiologies are needed to improve clinical outcomes. In this review, we describe the advances in the biology of breast neoplasia, including cellular and molecular biology, heterogeneity, and TME. We review the role of novel molecules such as long non-coding RNAs in the pathophysiology of BC. Finally, we provide an up-to-date overview of anticancer compounds extracted from marine microorganisms, crustaceans, and fishes and their synergistic effects in combination with other anticancer drugs. Marine compounds are a new discipline of research in BC and offer a wide range of anti-cancer effects that could be harnessed to target the various pathways involved in BC development, thus assisting current therapeutic regimens.
Collapse
Affiliation(s)
- Rama Rao Malla
- Department of Biochemistry and Bioinformatics, GITAM (Deemed to be University), Visakhapatnam 530045, AP, India
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, United States
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
15
|
Ilhan S, Çiçek K, Tok CV, Atmaca H. Profiling of apoptosis-associated proteins in human prostate cancer cells in response to Montivipera bulgardaghica albizona venom by protein array. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1826970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Süleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Kerim Çiçek
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Cemal Varol Tok
- Department of Biology, Faculty of Arts and Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
16
|
Canese R, Palombelli G, Chirico M, Sestili P, Bagnoli M, Canevari S, Mezzanzanica D, Podo F, Iorio E. Integration of MRI and MRS approaches to monitor molecular imaging and metabolomic effects of trabectedin on a preclinical ovarian cancer model. NMR IN BIOMEDICINE 2019; 32:e4016. [PMID: 30375088 DOI: 10.1002/nbm.4016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/14/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Although several drugs are available to treat recurrences of human epithelial ovarian cancer (EOC), clinical responses often remain short lived and lead to only marginal improvements in patients' survival. One of the new drugs proposed for recurrent platinum-resistant EOC patients is trabectedin (Trab), a marine-derived antitumor agent initially isolated from the tunicate Ecteinascidia turbinata and currently produced synthetically. Predictive biomarkers of therapy response to this drug and the potential use of non-invasive functional MRI and MRS approaches for an early assessment of Trab efficacy have not yet been evaluated, although they might be relevant for improving the clinical management of EOC patients. In the present work we combined functional and spectroscopic magnetic resonance technologies, such as in vivo diffusion-weighted MRI and 1 H MRS, with ex vivo high resolution MRS (HR-MRS) metabolomic analyses, with the aim of identifying new pharmacodynamic markers of Trab effectiveness on well characterized, highly aggressive human SKOV3.ip (a HER2-enriched cell variant derived from SKOV3 cells) EOC xenografts. In vivo treatment with Trab (three consecutive weekly 0.2 mg/kg i.v. injections) resulted in the following: (1) a significant reduction of in vivo tumor growth, along with the formation in cancer lesions of diffuse hyper-intense areas detected by T2 -weighted MRI and attributed to necrosis, in agreement with histopathology findings; (2) significant increases in the apparent diffusion coefficient mean and median values versus saline-treated control tumors; and (3) a significant reduction in the choline-containing metabolites' signal detected by quantitative in vivo MRS. Multivariate and quantitative HR-MRS analyses on ex vivo tissue samples revealed Trab-induced alterations in phospholipid and glucose metabolism identified as a decrease in phosphocholine and an increase in lactate. Collectively, these data identify Trab-induced functional MRI and MRS alterations in EOC models as a possible basis for further developments of these non-invasive imaging methods to improve the clinical management of EOC patients.
Collapse
Affiliation(s)
- Rossella Canese
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Mattea Chirico
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Bagnoli
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvana Canevari
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Delia Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Franca Podo
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Egidio Iorio
- NMR and MRI Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
17
|
Figuerola B, Avila C. The Phylum Bryozoa as a Promising Source of Anticancer Drugs. Mar Drugs 2019; 17:E477. [PMID: 31426556 PMCID: PMC6722838 DOI: 10.3390/md17080477] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Recent advances in sampling and novel techniques in drug synthesis and isolation have promoted the discovery of anticancer agents from marine organisms to combat this major threat to public health worldwide. Bryozoans, which are filter-feeding, aquatic invertebrates often characterized by a calcified skeleton, are an excellent source of pharmacologically interesting compounds including well-known chemical classes such as alkaloids and polyketides. This review covers the literature for secondary metabolites isolated from marine cheilostome and ctenostome bryozoans that have shown potential as cancer drugs. Moreover, we highlight examples such as bryostatins, the most known class of marine-derived compounds from this animal phylum, which are advancing through anticancer clinical trials due to their low toxicity and antineoplastic activity. The bryozoan antitumor compounds discovered until now show a wide range of chemical diversity and biological activities. Therefore, more research focusing on the isolation of secondary metabolites with potential anticancer properties from bryozoans and other overlooked taxa covering wider geographic areas is needed for an efficient bioprospecting of natural products.
Collapse
Affiliation(s)
- Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Catalonia, Spain.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
18
|
Cucè M, Gallo Cantafio ME, Siciliano MA, Riillo C, Caracciolo D, Scionti F, Staropoli N, Zuccalà V, Maltese L, Di Vito A, Grillone K, Barbieri V, Arbitrio M, Di Martino MT, Rossi M, Amodio N, Tagliaferri P, Tassone P, Botta C. Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. J Hematol Oncol 2019; 12:32. [PMID: 30898137 PMCID: PMC6429746 DOI: 10.1186/s13045-019-0714-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Genomic instability is a feature of multiple myeloma (MM), and impairment in DNA damaging response (DDR) has an established role in disease pathobiology. Indeed, a deregulation of DNA repair pathways may contribute to genomic instability, to the establishment of drug resistance to genotoxic agents, and to the escape from immune surveillance. On these bases, we evaluated the role of different DDR pathways in MM and investigated, for the first time, the direct and immune-mediated anti-MM activity of the nucleotide excision repair (NER)-dependent agent trabectedin. METHODS Gene-expression profiling (GEP) was carried out with HTA2.0 Affymetrix array. Evaluation of apoptosis, cell cycle, and changes in cytokine production and release have been performed in 2D and 3D Matrigel-spheroid models through flow cytometry on MM cell lines and patients-derived primary MM cells exposed to increasing nanomolar concentrations of trabectedin. DNA-damage response has been evaluated through Western blot, immunofluorescence, and DNA fragmentation assay. Trabectedin-induced activation of NK has been assessed by CD107a degranulation. miRNAs quantification has been done through RT-PCR. RESULTS By comparing GEP meta-analysis of normal and MM plasma cells (PCs), we observed an enrichment in DNA NER genes in poor prognosis MM. Trabectedin triggered apoptosis in primary MM cells and MM cell lines in both 2D and 3D in vitro assays. Moreover, trabectedin induced DDR activation, cellular stress with ROS production, and cell cycle arrest. Additionally, a significant reduction of MCP1 cytokine and VEGF-A in U266-monocytes co-cultures was observed, confirming the impairment of MM-promoting milieu. Drug-induced cell stress in MM cells led to upregulation of NK activating receptors ligands (i.e., NKG2D), which translated into increased NK activation and degranulation. Mechanistically, this effect was linked to trabectedin-induced inhibition of NKG2D-ligands negative regulators IRF4 and IKZF1, as well as to miR-17 family downregulation in MM cells. CONCLUSIONS Taken together, our findings indicate a pleiotropic activity of NER-targeting agent trabectedin, which appears a promising candidate for novel anti-MM therapeutic strategies.
Collapse
Affiliation(s)
- Maria Cucè
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Eugenia Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | | | | | - Anna Di Vito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Vito Barbieri
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Mariamena Arbitrio
- Institute of Neurological Sciences, UOS of Pharmacology, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Marco Rossi
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy.
- Medical and Translational Oncology Units, AOU Mater Domini, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
19
|
Liu M, Yang T, Chen Z, Wang Z, He N. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells. Biomater Sci 2019; 6:3152-3159. [PMID: 30349922 DOI: 10.1039/c8bm00787j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides selected by systematic evolution of ligands by exponential enrichment (SELEX), which show great potential in the diagnosis and personalized therapy of cancers, due to their specific advantages over antibodies. In the past years, though great progress has been made in molecular subtyping of breast cancer, it remains a challenge in clinical medicine, which plays a crucial role in the treatment. In this study, a ssDNA aptamer MF3 against MCF-7 breast cancer cells was developed by Cell-SELEX for differentiating breast cancer molecular subtypes, which showed favorable specificity and binding affinity towards MCF-7 cells with a Kd value of 82.25 ± 25.14 nM. The aptamer could not only successfully distinguish MCF-7 breast cancer cells from MDA-MB-231 and SK-BR-3 breast cancer cells and MCF-10A human normal mammary epithelial cells, but also could differentiate MCF-7 cells from other cancer cells or normal cells. Moreover, both in vivo and in vitro fluorescence imaging studies demonstrated that aptamer MF3 was able to distinguish tumor-bearing mice and xenograft tissue sections of MCF-7 breast cancer cells from that of MDA-MB-231 and SK-BR-3 breast cancer cells. All these results suggested that aptamer MF3 is a potential tool for differentiating molecular subtypes and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, Long K, Yeap SK. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci Rep 2019; 9:1514. [PMID: 30728391 PMCID: PMC6365513 DOI: 10.1038/s41598-018-37796-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 12/13/2018] [Indexed: 01/26/2023] Open
Abstract
Eupatorin has been reported with in vitro cytotoxic effect on several human cancer cells. However, reports on the mode of action and detail mechanism of eupatorin in vitro in breast cancer disease are limited. Hence, eupatorin's effect on the human breast carcinoma cell line MCF-7 and MDA-MB-231 was investigated. MTT assay showed that eupatorin had cytotoxic effects on MCF-7 and MDA-MB-231 cells but was non-toxic to the normal cells of MCF-10a in a time-dose dependent manner. At 24 h, the eupatorin showed mild cytotoxicity on both MCF-7 and MDA-MB-231 cells with IC50 values higher than 20 μg/mL. After 48 h, eupatorin at 5 μg/mL inhibited the proliferation of MCF-7 and MDA-MB-231 cells by 50% while the IC50 of MCF-10a was significantly (p < 0.05) high with 30 μg/mL. The concentration of eupatorin at 5 μg/mL induced apoptosis mainly through intrinsic pathway by facilitating higher fold of caspase 9 compared to caspase 8 at 48 h. The cell cycle profile also showed that eupatorin (5 μg/mL) exerted anti-proliferation activity with the cell cycle arrest of MCF-7 and MDA-MB-231 cells at sub Gθ/G1 in a time-dependent manner. In addition, wound healing assay showed an incomplete wound closure of scratched MDA-MB-231 cells, and more than 60% of the MDA-MB-231 cells were prevented to migrate and invade the membrane in the Boyden chamber after 24 h. Eupatorin also inhibited angiogenic sprouting of new blood vessels in ex vivo mouse aorta ring assay. In gene expression assay, eupatorin up-regulated pro-apoptotic genes such as Bak1, HIF1A, Bax, Bad, cytochrome c and SMAC/Diablo and blocked the Phospho-Akt pathway. In conclusion, eupatorin is a potent candidate to induce apoptosis and concurrently inhibit the invasion, migration and angiogenesis of MDA-MB-231 and MCF-7 cells through inhibition of Phospho-Akt pathway and cell cycle blockade.
Collapse
Affiliation(s)
- Nursyamirah Abd Razak
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Nadiah Abu
- UKM Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Yaa'cob Latiff, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Wan Yong Ho
- School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Jalan Broga, Semenyih, 43500, Selangor, Malaysia
| | - Nur Rizi Zamberi
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Sheau Wei Tan
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Kamariah Long
- Malaysian Agricultural Research and Development Institute (MARDI), Serdang, 43400, Selangor, Malaysia
| | - Swee Keong Yeap
- Laborotary of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, 43900, Selangor, Malaysia.
| |
Collapse
|
21
|
Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017; 22:E1037. [PMID: 28644406 PMCID: PMC6152364 DOI: 10.3390/molecules22071037] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Jose Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Galiano
- Physics and Computer Architecture Department, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain (CB12/03/30038).
| |
Collapse
|
22
|
Abstract
INTRODUCTION Trabectedin is an anti-tumor compound registered in Europe and in several other countries, for the second-line treatment of soft tissue sarcoma (STS) and for ovarian cancer in combination with liposomal doxorubicin. Trabectedin inhibits cancer cell proliferation mainly affecting the transcription regulation. Trabectedin also acts as a modulator of tumor microenvironment by reducing the number of tumor associated macrophages (TAM). Because of its unique mechanism of action, trabectedin has the potential to act as antineoplastic agent also in several solid malignancies, including breast cancer (BC). AREAS COVERED This article reviews the preclinical and clinical data of trabectedin focusing on development in metastatic BC (mBC). Comments regarding the nature and the results of these trials are included. EXPERT OPINION Trabectedin is thought to have a crucial activity with defective DNA-repair machinery and also in modulating the tumor micro-environment and the immune-system of cancer patients. From the current available data, we recognize a potential activity of trabectedin in mBC and support the renewed efforts to better elucidate the value of trabectedin in this indication.
Collapse
Affiliation(s)
- Maurizio D'Incalci
- a Department of Oncology , IRCCS - Istituto di Ricerche Farmacologiche Mario Negri , Via La Masa 19, Milan 20156 , Italy
| | - Alberto Zambelli
- b Medical Oncology , Papa Giovanni XXIII Hospital , P.zza OMS 1, Bergamo 24127 , Italy
| |
Collapse
|
23
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
24
|
Enhanced G2/M Arrest, Caspase Related Apoptosis and Reduced E-Cadherin Dependent Intercellular Adhesion by Trabectedin in Prostate Cancer Stem Cells. PLoS One 2015; 10:e0141090. [PMID: 26485709 PMCID: PMC4618065 DOI: 10.1371/journal.pone.0141090] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/03/2015] [Indexed: 11/19/2022] Open
Abstract
Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in prostate CSCs; and may be a potential effective therapeutic agent against prostate cancer.
Collapse
|
25
|
Farooqi AA, Attar R, Gasparri ML. Drugs from marine sources: modulation of TRAIL induced apoptosis in cancer cells. Asian Pac J Cancer Prev 2015; 15:9045-7. [PMID: 25374250 DOI: 10.7314/apjcp.2014.15.20.9045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
There have been overwhelming advances in molecular oncology and data obtained through high-throughput technologies have started to shed light on wide ranging molecular mechanisms that underpin cancer progression. Increasingly it is being realized that marine micro-organisms and the biodiversity of plankton are rich sources of various anticancer compounds. Marine derived compounds play major roles in inducing apoptosis in cancer cells. More importantly, various agents have been noted to enhance TRAIL induced apoptosis in cancer cells by functionalizing intrinsic and extrinsic pathways. In this commentary, a list of marine derived compounds reported to induce apoptosis is discussed.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan E-mail :
| | | | | |
Collapse
|
26
|
Reid A, Martin-Liberal J, Benson C. Trabectedin for advanced soft tissue sarcomas: optimizing use. Ther Clin Risk Manag 2014; 10:1003-11. [PMID: 25540587 PMCID: PMC4270297 DOI: 10.2147/tcrm.s49330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Patients with locally advanced or metastatic soft tissue sarcoma have a poor outlook with median survival in the order of 1 year. There is therefore an urgent need for novel agents to impact this disease. Trabectedin is one such novel agent that has demonstrated activity for patients with advanced soft tissue sarcoma and it was licensed in Europe in 2007 for patients in the second-line setting or first-line in those patients deemed unsuitable to receive cytotoxics. In order to best serve patients with novel agents, it is imperative to understand the mechanism or mechanisms of action and the best ways of assessing response in order to optimize antitumor activity. Frequently, the mechanism of action and the optimal means of assessing response will be different from those of traditional cytotoxics. Trial design should reflect these factors to ensure that active drugs are not wrongly marked as futile. This review discusses a number of factors that may influence the optimization of trabectedin use. These factors include the administration schedule, the optimal timing of trabectedin administration in the disease process, the histopathological and molecular subtypes that may be most sensitive to trabectedin, the challenge of assessing response, particularly using radiology, and, finally, the safety considerations with this agent.
Collapse
Affiliation(s)
- Alison Reid
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| | | | - Charlotte Benson
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
27
|
Cai J, Chen S, Zhang W, Zheng X, Hu S, Pang C, Lu J, Xing J, Dong Y. Salvianolic acid A reverses paclitaxel resistance in human breast cancer MCF-7 cells via targeting the expression of transgelin 2 and attenuating PI3 K/Akt pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1725-1732. [PMID: 25442283 DOI: 10.1016/j.phymed.2014.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/09/2014] [Accepted: 08/16/2014] [Indexed: 05/03/2023]
Abstract
Chemotherapy resistance represents a major problem for the treatment of patients with breast cancer and greatly restricts the use of first-line chemotherapeutics paclitaxel. The purpose of this study was to investigate the role of transgelin 2 in human breast cancer paclitaxel resistance cell line (MCF-7/PTX) and the reversal mechanism of salvianolic acid A (SAA), a phenolic active compound extracted from Salvia miltiorrhiza. Western blotting and real-time quantitative polymerase chain reaction (qRT-PCR) indicated that transgelin 2 may mediate paclitaxel resistance by activating the phosphatidylinositol 3-kinase (PI3 K)/Akt signaling pathway to suppress MCF-7/PTX cells apoptosis. The reversal ability of SAA was confirmed by MTT assay and flow cytometry, with a superior 9.1-fold reversal index and enhancement of the apoptotic cytotoxicity induced by paclitaxel. In addition, SAA effectively prevented transgelin 2 and adenosine-triphosphate binding cassette transporter (ABC transporter) including P-glycoprotein (P-gp), multidrug resistance associated protein 1 (MRP1), and breast cancer resistance protein (BCRP) up-regulation and exhibited inhibitory effect on PI3 K/Akt signaling pathway in MCF-7/PTX cells. Taken together, SAA can reverse paclitaxel resistance through suppressing transgelin 2 expression by mechanisms involving attenuation of PI3 K/Akt pathway activation and ABC transporter up-regulation. These results not only provide insight into the potential application of SAA in reversing paclitaxel resistance, thus facilitating the sensitivity of breast cancer chemotherapy, but also highlight a potential role of transgelin 2 in the development of paclitaxel resistance in breast cancer.
Collapse
Affiliation(s)
- Jiangxia Cai
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Department of Pharmacy, The People's Hospital of Bayingol Mongolian Autonomous Prefecture, Korla, Xinjiang 841000, PR China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Weipeng Zhang
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiaowei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Sasa Hu
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Chengsen Pang
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jun Lu
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jianfeng Xing
- Department of Pharmacy, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
28
|
Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014; 768:84-97. [PMID: 24685981 DOI: 10.1016/j.mrfmmm.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents particularly if the process is selective to cancer cells. Marine natural products have become important sources in the discovery of antitumour drugs, especially when recent technological and methodological advances have increased the scope of investigations of marine organisms. A high number of individual compounds from diverse organisms have induced apoptosis in several tumour cell lines via a number of mechanisms. Here, we review the effects of selected marine natural products and their synthetic derivatives on apoptosis signalling pathways in association with their pharmacological properties. Providing an outlook into the future, we also examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials.
Collapse
Affiliation(s)
- Rima Beesoo
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius; Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Vidushi Neergheen-Bhujun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Ranjeet Bhagooli
- Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Theeshan Bahorun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius.
| |
Collapse
|
29
|
Kim JY, Yi BR, Go RE, Hwang KA, Nam KH, Choi KC. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1264-74. [PMID: 24835555 DOI: 10.1016/j.etap.2014.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/20/2014] [Accepted: 04/08/2014] [Indexed: 05/15/2023]
Abstract
Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.
Collapse
Affiliation(s)
- Joo-Young Kim
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Bo-Rim Yi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-A Hwang
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gun, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Veterinary Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|