1
|
Suramya, Javed M, Mangla A, Kumar S, Shahid S, Bhutto HN, Ahmad S, Ahmad B, Raisuddin S. Dietary protein deficiency exacerbates perfluorohexane sulfonate (PFHxS)-induced reproductive abnormalities and metabolic disruptions in female rats. Reprod Toxicol 2025; 135:108921. [PMID: 40250573 DOI: 10.1016/j.reprotox.2025.108921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Perfluorohexane sulfonate (PFHxS) is a persistent environmental contaminant linked with several health implications. Humans are exposed to PFHxS mainly through ingestion. Studies have reported that a diet deficient in essential nutrients may have confounding effect on the toxicity outcome of chemicals. We evaluated the potential impact of PFHxS exposure on the reproductive damage in animals maintained on the diet deficient in protein. Female Wistar rats (n = 6) were divided as controls and treatment groups (5 ppm and 25 ppm PFHxS, protein deficient, protein deficient +5 ppm PFHxS and protein deficient +25 ppm PFHxS). PFHxS exposure disrupted the estrous cycle with an increased duration of the diestrus stage at 25 ppm and protein deficient + 25 ppm PFHxS showing 55.56 % and 78.77 % disorder, respectively. There was a significant elevation (P < 0.01) in LH/FSH ratio and reduction in testosterone (P < 0.01), estradiol (P < 0.01), and progesterone (P < 0.001) in protein deficient + 25 ppm PFHxS group. A high order of increase in lipid profile parameters was found in protein deficient + 25 ppm PFHxS group. However, high-density lipoprotein decreased in this group. Protein deficient + 25 ppm PFHxS group animals also revealed high level of oxidative stress. Histopathological findings revealed the presence of cystic follicles and theca cell degeneration in ovaries in the protein deficient + 25 ppm PFHxS group with a significant decrease (P < 0.01) in the myometrium and endometrial area of uterus. The combined effect of protein deficiency and PFHxS exposure caused a greater reprotoxicity compared to either factor alone implying an increased vulnerability of reproductive function in malnourished populations to environmental contaminants.
Collapse
Affiliation(s)
- Suramya
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mehjbeen Javed
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Anuradha Mangla
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Suraj Kumar
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shaesta Shahid
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Humaira Naaz Bhutto
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Shahzad Ahmad
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Basir Ahmad
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Sheikh Raisuddin
- Molecular Toxicology Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
2
|
Saati AA. Naringenin's Neuroprotective Effect on Diazino-Induced Cerebellar Damage in Male Albino Rats, with Modulation of Acetylcholinesterase. Brain Sci 2025; 15:242. [PMID: 40149763 PMCID: PMC11940817 DOI: 10.3390/brainsci15030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Diazinon, a well-known organophosphorus compound, is recognized for its neurotoxic effects, primarily through the inhibition of acetylcholinesterase (AChE) and induction of oxidative stress. AIM This study evaluates the neuroprotective effects of naringenin, a citrus flavonoid, against diazinon-induced cerebellar damage in male albino rats. MATERIALS AND METHODS Twenty-four rats were divided into four groups: control, naringenin, diazinon, and diazinon with naringenin. RESULTS Histological examination revealed altered structures of Purkinje cells in the cerebellum of the diazinon group. Naringenin co-treatment significantly improved cerebellar histology and modulated oxidative stress markers by decreasing malondialdehyde (MDA) and increasing glutathione (GSH) and glutathione peroxidase (GPx) levels. Additionally, naringenin exhibited anti-inflammatory effects by decreasing nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) levels, while increasing interleukin-10 (IL-10). It also reduced apoptotic markers, including p53, Bax, caspase-9, caspase-8, and caspase-3, while increasing the anti-apoptotic marker Bcl-2. Furthermore, naringenin modulated AChE activity, leading to decreased acetylcholine levels and reduced neurotoxicity. CONCLUSIONS These findings suggest that naringenin's antioxidant, anti-inflammatory, and anti-apoptotic properties contribute to its neuroprotective role against diazinon-induced cerebellar damage.
Collapse
Affiliation(s)
- Abdullah A Saati
- Department of Community Medicine and Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| |
Collapse
|
3
|
Čakar U, Čolović M, Milenković D, Pagnacco M, Maksimović J, Krstić D, Đorđević B. Strawberry and Drupe Fruit Wines Antioxidant Activity and Protective Effect Against Induced Oxidative Stress in Rat Synaptosomes. Antioxidants (Basel) 2025; 14:155. [PMID: 40002342 PMCID: PMC11851380 DOI: 10.3390/antiox14020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study was to investigate the antioxidant capacity of fruit wines and their protective effects against hydrogen peroxide-induced oxidative stress in rat synaptosomes in vitro. The wines were produced from strawberries and drupe fruits (i.e., plum, sweet cherry, peach, and apricot) through microvinification with a pure S. cerevisiae yeast culture. Fruit wines were produced with and without added sugar before the start of fermentation, whereas subvariants with and without pits were only applied to drupe fruit wines. First, synaptosomes were treated with the wines, while oxidative stress was induced with H2O2. Subsequently, the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) and the content of malondialdehyde (MDA), an indicator of membrane injury, were determined. In addition, the Briggs-Rauscher reaction (BR) was used to evaluate the inhibition capacity against free radicals. All investigated fruit wines increased the activity of the studied antioxidant enzymes and decreased MDA content compared to the corresponding controls (synaptosomes treated with H2O2). After synaptosomal treatment with plum wine, the highest activities were observed for SOD (5.57 U/mg protein) and GPx (0.015 U/mg protein). Strawberry wine induced the highest CAT activity (0.047 U/mg protein) and showed the best ability to reduce lipid peroxidation, yielding the lowest MDA level (2.68 nmol/mg). Strawberry, plum, and sweet cherry wines were identified as samples with higher antioxidant activity in both principal component analysis (PCA) and hierarchical cluster analysis (HCA). Finally, plum wine exhibited the highest inhibitory activity in the BR reaction (397 s). The results suggest that fruit wines could be considered potential functional food due to their protective effects against oxidative stress.
Collapse
Affiliation(s)
- Uroš Čakar
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Mirjana Čolović
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11 351 Belgrade, Serbia;
| | - Danijela Milenković
- Department of Physics and Mathematics, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Maja Pagnacco
- Department of Catalysis and Chemical Engineering, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jelena Maksimović
- Faculty of Physical Chemistry, University of Belgrade, 11 158 Belgrade, Serbia;
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Brižita Đorđević
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
4
|
Dong G, Li Q, Yu C, Wang Q, Zuo D, Li X. n-Acetylcysteine protects against diazinon-induced histopathological damage and apoptosis in renal tissue of rats. Toxicol Res 2024; 40:285-295. [PMID: 38525131 PMCID: PMC10959863 DOI: 10.1007/s43188-024-00226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 03/26/2024] Open
Abstract
Diazinon (DZN) is a member of organophosphorus insecticides that has cytotoxic effects on different organs. n-Acetyl cysteine (NAC) is a widely used antioxidant in clinical, in vivo and in vitro studies. We evaluated the protective role of NAC against DZN-induced toxicity in kidney tissue of Wistar rats. 30 male Wistar rats were divided into 5 groups of control, single dose of DZN, continuous dose of DZN, single doses of DZN + NAC and continuous doses of DZN + NAC. Kidney function test (blood urea nitrogen, creatinine and uric acid) was provided. Levels of malondialdehyde (MDA), total antioxidant capacity (TAC) and total sulfhydryl (T-SH) were determined in renal tissues. Renal cells apoptosis was detected using TUNEL assay. The mRNA expressions of apoptosis, oxidative stress and inflammatory mediators, including B-cell lymphoma-2 (Bcl2), Bcl-2-associated X protein (Bax), superoxide dismutase (SOD), catalase (CAT), Interleukin 10 (IL-10), Tumor necrosis factor-α (TNF-α), Caspase-3 and Caspase-8 were analyzed in kidney tissues using Real Time PCR method. Chronic exposure to DZN was associated with severe morphological changes in the kidney, as well as impairment of its function and decreased kidney weights. Continues treatment with DZN significantly decreased the percentage of renal apoptotic cells as compared to rats treated with continuous dose of DZN alone (17.69 ± 3.67% vs. 39.46% ± 2.44%; p < 0.001). Continuous exposure to DZN significantly decreased TAC and T-SH contents, as well as SOD and CAT expression, but increased MDA contents in the kidney tissues (p < 0.001). A significant increase was observed in mRNA expression of Bax, Caspase-3, Caspase-8, as well as TNF-α following exposure to DZN, but the expression of IL-10 and Bcl2 was significantly decreased. NAC can protect kidney tissue against DZN-induced toxicity by elevating antioxidants capacity, mitigating oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Gaiqin Dong
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, 225001 Jiangsu China
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Qingfeng Li
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Chun Yu
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Qing Wang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Danhua Zuo
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou, 225000 Jiangsu China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children’s Hospital of Soochow University, Suzhou, 225001 Jiangsu China
| |
Collapse
|
5
|
Farkhondeh T, Zardast M, Rajabi S, Abdollahi-Karizno M, Roshanravan B, Havangi J, Aschner M, Samarghandian S. Neuroprotective Effects of Curcumin against Chronic Chlorpyrifos- Induced Oxidative Damage in Rat Brain Tissue. Curr Aging Sci 2024; 17:205-209. [PMID: 38347791 DOI: 10.2174/0118746098244014240119112706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chlorpyrifos (CPF) is an organophosphate pesticide that inhibits acetylcholinesterase (AChE) activity. Investigations have also focused on its neurotoxicity, which is independent of AChE inhibition. Here, we evaluated the effect of CPF on oxidative indices in the brain tissue and explored the protective effect of curcumin (Cur) against its toxicity. METHODS Forty male Wistar rats were divided into five groups, each consisting of eight rats (n = 8) per group. Animals were administrated by oral gavage for 90 days with the following treatments: control (C), CPF, CPF + CUR 25 mg/kg, CPF + CUR50, and CPF + cur 100 received olive oil, CPF, CPF plus 25 mg/kg of CUR, CPF plus 50 mg/kg of CUR, and CPF plus 100 mg/kg of CUR, respectively. After anesthetization, animal brain tissues were obtained for assessment of oxidative stress indices. RESULTS The concentration of MDA significantly increased in the brains of the CPF group as compared to the control group (p < 0.01). Also, a significant decrease in MDA concentrations was observed in the brains of rats in the CPF + Cur 100 group compared to the CPF group (p < 0.05). A significant decrease was noted in the GSH concentration in the brains of the CPF group compared to the control group (p < 0.05). Treatment with Cur at 100 mg/kg exhibited a significant increase in GSH concentrations in the brains of the CPF-exposed group compared to the CPF group without Cur administration (p < 0.05). The concentration of NO exhibited a significant increase in the brains of the CPF group when compared to the control group (p < 0.05). Also, a significant decrease in NO concentration was observed in the brain tissue of the CPF + Cur 100 group compared to the CPF group (p < 0.05). CONCLUSION Our data establish that chronic exposure to CPF induced oxidative stress in brain tissue, which was reversed by CUR administration. Additional experimental and clinical investigations are needed to validate the efficacy of CUR as a potential antidote for CPF poisoning.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Havangi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
6
|
Ebrahimnejad P, Davoodi A, Irannejad H, Akhtari J, Mohammadi H. Polyethyleneglycol-serine nanoparticles as a novel antidote for organophosphate poisoning: synthesis, characterization, in vitro and in vivo studies. Drug Chem Toxicol 2023; 46:915-930. [PMID: 35938408 DOI: 10.1080/01480545.2022.2107661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 11/03/2022]
Abstract
Acute organophosphate pesticide poisoning causes considerable worldwide mortality and morbidity. In this study, serine was attached to the polyethylene glycol-bisaldehyde (PEG) as a novel antidote for diazinon (DZ) poisoning. Serine and PEG were conjugated with a reductive amination reaction. PEG-serine NPs (PEG-NPs) were purified and their structure was analyzed by 1H NMR, 13 C NMR, IR, and particle size was determined via dynamic light scattering. In vitro studies, including hemolysis assay and cytotoxicity on SK-BR-3 and HFFF2 cell lines, were performed. In vivo studies of PEG-NPs were evaluated on DZ-exposed mice. PEG-NPs were administered (i.p.) 20 min after a single dose of DZ (LD50; 166 mg/kg). Atropine (20 mg/kg, i.p.) with pralidoxime (20 mg/kg, i.p.) was used as the standard therapy compared to PEG-NPs. NMR and IR data confirmed that the conjugation of PEG to serine occurred successfully. The average NP size was 22.1 ± 1.8 nm. The hemolysis of the PEG-NPs was calculated at 0.867%, 50% inhibitory concentration (IC50) was calculated 36 ± 4.5, and 41 ± 3.4 mg/mL on SK-BR-3 and HFFF2 cell lines, respectively. Percentage of surviving significantly improved by 12.5, 25, and 25% through the usage of PEG-NPs at doses of 100, 200, and 400 mg/kg, respectively, when compared with the DZ group. Cholinesterase enzyme activity, lipid peroxidation, and mitochondrial function significantly improved through PEG-NPs when compared with the DZ group. PEG conjugated serine is very biocompatible with low toxicity and can reduce the acute toxicity of DZ as a new combination therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Davoodi
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- The Health of Plant and Livestock Products Research Center, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamidreza Mohammadi
- Pharmacutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
7
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
8
|
Miranda CA, Beretta EM, Ferreira LA, da Silva ES, Coimbra BZ, Pereira PT, Miranda RG, Dorta DJ, Rodrigues FTV, Mingatto FE. Role of biotransformation in the diazinon-induced toxicity in HepG2 cells and antioxidant protection by tetrahydrocurcumin. Toxicol Rep 2022; 10:32-39. [PMID: 36578673 PMCID: PMC9791245 DOI: 10.1016/j.toxrep.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022] Open
Abstract
Diazinon (DZN) is an insecticide extensively used to control pests in crops and animals. However, its indicriminated use may lead to liver damage in animals and humans. This study aimed to evaluate the toxicity of DZN (25-150 µM) on human hepatoblastoma (HepG2) cells after 24 and 48 h of exposure and the role of its biotransformation on the toxicological potential. We also tested the protective effect of tetrahydrocurcumin (THC), an antioxidant agent, in the DZN-induced citotoxicity. DZN caused cytotoxicity in the HepG2 cells, inhibiting cell proliferation and reducing cell viability in a dose- and time-dependent manner. The pre-incubation of HepG2 cells with chemical inducers of cytochrome P450 monooxygenase 3-methylcholanthrene and phenobarbital resulted in a further decrease of cell viability associated with DZN exposure. In addition, the metabolite diazoxon was more toxic than DZN. Our results also revealed that THC alleviated DZN-induced cytotoxicity and reactive oxygen and nitrogen species (RONS) generation in HepG2 cells. In conclusion, our data provide novel insights into the involvement of biotransformation in the mechanisms of DZN-induced cytotoxicity and suggest that amelioration of RONS accumulation might be involved in the protective effect of THC on DZN-induced liver injury.
Collapse
Affiliation(s)
- Camila Araújo Miranda
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Eduardo Morais Beretta
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
- Medical School, Unifadra, Faculdades de Dracena, Dracena, SP, Brazil
| | - Layra Araújo Ferreira
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | | | | | | | - Raul Ghiraldelli Miranda
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Thomaz Verechia Rodrigues
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, SP, Brazil
- Correspondence to: Department of Animal Science, College of Agricultural and Technological Sciences, São Paulo State University (Unesp), Dracena, 17900–000, SP, Brazil.
| |
Collapse
|
9
|
Thosapornvichai T, Huangteerakul C, Jensen AN, Jensen LT. Mitochondrial dysfunction from malathion and chlorpyrifos exposure is associated with degeneration of GABAergic neurons in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104000. [PMID: 36252730 DOI: 10.1016/j.etap.2022.104000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Toxicity resulting from off-target effects, beyond acetylcholine esterase inhibition, for the commonly used organophosphate (OP) insecticides chlorpyrifos (CPS) and malathion (MA) was investigated using Saccharomyces cerevisiae and Caenorhabditis elegans model systems. Mitochondrial damage and dysfunction were observed in yeast following exposure to CPS and MA, suggesting this organelle is a major target. In the C. elegans model, the mitochondrial unfolded protein response pathway showed the most robust induction from CPS and MA treatment among stress responses examined. GABAergic neurodegeneration was observed with CPS and MA exposure. Impaired movement observed in C. elegans exposed to CPS and MA may be the result of motor neuron damage. Our analysis suggests that stress from CPS and MA results in mitochondrial dysfunction, with GABAergic neurons sensitized to these effects. These findings may aid in the understanding of toxicity from CPS and MA from high concentration exposure leading to insecticide poisoning.
Collapse
Affiliation(s)
| | | | | | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
10
|
Čolović MB. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732904220207113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Wu X, Li J, Zhou Z, Lin Z, Pang S, Bhatt P, Mishra S, Chen S. Environmental Occurrence, Toxicity Concerns, and Degradation of Diazinon Using a Microbial System. Front Microbiol 2021; 12:717286. [PMID: 34790174 PMCID: PMC8591295 DOI: 10.3389/fmicb.2021.717286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/08/2021] [Indexed: 12/07/2022] Open
Abstract
Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
12
|
Khovarnagh N, Seyedalipour B. Antioxidant, histopathological and biochemical outcomes of short-term exposure to acetamiprid in liver and brain of rat: The protective role of N-acetylcysteine and S-methylcysteine. Saudi Pharm J 2021; 29:280-289. [PMID: 33981177 PMCID: PMC8084716 DOI: 10.1016/j.jsps.2021.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/06/2021] [Indexed: 01/24/2023] Open
Abstract
The present study was conducted to investigate the protective effects of N-Acetyl-L-cysteine (NAC) and S-methyl- L-cysteine (SMC) against hepatic oxidative stress and brain damage induced by acetamiprid (ACP) in rats, which were evaluated by histopathological changes, measuring serum biomarkers and antioxidant defense systems. In this study, 42 rats were randomly divided into 6 groups and administered by intraperitoneally for one week: the control group, the sham group (normal saline), ACP alone (5 mg/kg) (group1), NAC alone (160 mg/kg) (group2), ACP + SMC (100 mg/kg) (group3), ACP + NAC (group 4) and ACP + NAC + SMC (group 5). Our results showed that acetamiprid induces liver injures including infiltration of inflammatory cells, congestion and altered histo-architecture and brain damages including gliosis, hyperemia and necrosis. The biochemical analyses showed that acetamiprid significantly altered the structural and biochemical profiles of liver which may be due to the loss of integrity of cell membranes. Furthermore, antioxidant parameters results of ACP group revealed that glutathione (GSH) and total antioxidant capacity (TAC) levels decreased significantly, while lipid peroxidation (LPO) content and glutathione-S-transferase (GST) and catalase (CAT) activities increased in both tissues (P < 0.05), suggesting tissue oxidative damage, which was also confirmed histopathological. Conversely, administration of NAC and SMC ameliorated LPO, GSH content and antioxidant enzymes system considerably (P < 0.05) in both tissues. Moreover, NAC and SMC administration also improved liver and brain malfunction. These results indicate that both NAC and in to a lesser amount SMC have a potent antioxidant protection in both tissues of rat against ACP-induced oxidative stress.
Collapse
|
13
|
Rahimi Anbarkeh F, Jalali M, Nikravesh MR, Soukhtanloo M. Protective effects of alpha-lipoic acid on diazinon-induced renal toxicity in rats: an immunohistochemistry study. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1812659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fatemeh Rahimi Anbarkeh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Jalali
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Miranda CA, Guimarães ARDJS, Bizerra PFV, Mingatto FE. Diazinon impairs bioenergetics and induces membrane permeability transition on mitochondria isolated from rat liver. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:616-629. [PMID: 32787525 DOI: 10.1080/15287394.2020.1805078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diazinon (DZN) is a broad-spectrum insecticide extensively used to control pests in crops and animals. Several investigators demonstrated that DZN produced tissue toxicity especially to the liver. In addition, the mitochondrion was implicated in DZN-induced toxicity, but the precise role of this organelle remains to be determined. The aim of this study was thus to examine the effects of DZN (50 to 150 μM) on the bioenergetics and mitochondrial permeability transition (MPT) associated processes in isolated rat liver mitochondria. DZN inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I, and succinate, substrate of complex II of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. MPT was estimated by the extent of mitochondrial swelling, in the presence of 10 µM Ca2+. DZN elicited MPT in a concentration-dependent manner, via a mechanism sensitive to cyclosporine A, EGTA, ruthenium red and N-ethylmaleimide, which was associated with mitochondrial Ca2+ efflux and cytochrome c release. DZN did not result in hydrogen peroxide accumulation or glutathione oxidation, but this insecticide oxidized endogenous NAD(P)H and protein thiol groups. Data suggest the involvement of mitochondria, via apoptosis, in the hepatic cytotoxicity attributed to DZN.
Collapse
Affiliation(s)
- Camila Araújo Miranda
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| | | | - Paulo Francisco Veiga Bizerra
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| | - Fábio Erminio Mingatto
- Department of Animal Production, College of Agricultural and Technological Sciences, São Paulo State University (Unesp) , Dracena, Brazil
| |
Collapse
|
15
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
16
|
Saberi F, Bahrami F, Saberi M, Mashhadi Akbar Boojar M. The pro-convulsant effects of diazinon low dose in male rats under amygdala kindling. Drug Chem Toxicol 2020; 45:625-632. [PMID: 32249606 DOI: 10.1080/01480545.2020.1746801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Organophosphates can damage the brain in systemic intoxication. In this study, the effects of a minimum toxic dose (MTD) of diazinon (DZ) on amygdala afterdischarge threshold (ADT), kindling acquisition and kindled seizure parameters were evaluated. Intact male rats were stereotactically implanted with a tripolar and two monopolar electrodes in the amygdala and dura respectively. After recovery, animals received daily either, olive oil (control), 15 or 30 mg/kg (MTD) of DZ intraperitoneally, and ADT, afterdischarge duration (ADD) at each stage (S1 to S5) of kindling and number of trials for kindling acquisition were determined daily. Also, the effect of DZ on stage 4 latency (S4L), ADD, stage 5 duration (S5D) and the activity of the red blood cholinesterase (ChE) were evaluated. The ADT was lower and the ADD was longer significantly in DZ treated group in comparison to control (p < 0.01) and the number of trials to reach each stage of kindling acquisition was reduced (p < 0.001). The total amount of ADDs during the kindling procedure increased significantly 5 days after DZ treatment. While the S4L was reduced, the S5D increased significantly after DZ treatment. The ChE activity was inhibited significantly after 20 min of DZ treatment and continued till 24 h (p < 0.01). Data indicate that even half of the MTD of DZ could increase the sensitivity and excitability of the CNS to the epileptic activity at least via reduction of stimulation threshold and AD prolongation. Furthermore, repeated exposure to the low concentrations of organophosphates may be pro-convulsant and should be restricted.
Collapse
Affiliation(s)
- Fatemeh Saberi
- Department of Dermatology, Razi Skin Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Bahrami
- Department of Physiology and Biophysics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Mashhadi Akbar Boojar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abdel-Daim MM, Abushouk AI, Bahbah EI, Bungău SG, Alyousif MS, Aleya L, Alkahtani S. Fucoidan protects against subacute diazinon-induced oxidative damage in cardiac, hepatic, and renal tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11554-11564. [PMID: 31965500 DOI: 10.1007/s11356-020-07711-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/09/2020] [Indexed: 05/07/2023]
Abstract
Fucoidans (FUC) are organic sulfated polysaccharides from natural seaweeds with multiple biological actions. The current study was performed to assess the chemoprotective, antioxidant, and anti-inflammatory effects of FUC from Laminaria japonicum against diazinon (DZN)-induced injuries to rat cardiac, hepatic, and renal tissues. Forty male Wistar rats were assigned into five groups, receiving saline, oral FUC 200 mg/kg/day, subcutaneous DZN 20 mg/kg/day, DZN plus FUC 100 mg/kg/day, or DZN plus FUC 200 mg/kg/day (each treatment was given daily for 4 weeks). Data analysis showed that DZN-intoxicated rats exhibited significantly higher (p < 0.05) serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatine, creatine kinase, creatine kinase-MB, lactate dehydrogenase, cholesterol, interleukin-6, and tumor necrosis factor-α, as well as lower levels of acetylcholinesterase, compared to control rats. In addition, DZN intoxication was associated with significantly higher (p < 0.05) cardiac, hepatic, and renal tissue concentrations of malondialdehyde and nitric oxide, as well as lower glutathione concentrations, and activities of glutathione peroxidase, superoxide dismutase, and catalase enzymes in comparison to control rats. Treatment with FUC (at 100 or 200 mg/kg/day) ameliorated all the aforementioned alterations in a dose-dependent manner. In conclusion, FUC from Laminaria japonicum ameliorated DZN-induced oxidative stress, pro-inflammatory effects, and injuries to the cardiac, hepatic, and renal tissues. These effects may be related to the antioxidant and anti-inflammatory effects of FUC.
Collapse
Affiliation(s)
- Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | | | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Simona G Bungău
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Mohamed S Alyousif
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, Bourgogne Franche-Comté University, UMR CNRS 6249, 25030, Besançon Cedex, France
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
18
|
Savall ASP, Fidélis EM, Gutierrez MEZ, Martins BB, Gervini VC, Puntel RL, Roos DH, Ávila DS, Pinton S. Pre‐clinical evidence of safety and protective effect of isatin and oxime derivatives against malathion‐induced toxicity. Basic Clin Pharmacol Toxicol 2019; 126:399-410. [DOI: 10.1111/bcpt.13359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
|
19
|
Rodrigues NR, Batista JEDS, de Souza LR, Martins IK, Macedo GE, da Cruz LC, da Costa Silva DG, Pinho AI, Coutinho HDM, Wallau GL, Posser T, Franco JL. Activation of p38MAPK and NRF2 signaling pathways in the toxicity induced by chlorpyrifos in Drosophila melanogaster: Protective effects of Psidium guajava pomífera L. (Myrtaceae) hydroalcoholic extract. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Leung MCK, Meyer JN. Mitochondria as a target of organophosphate and carbamate pesticides: Revisiting common mechanisms of action with new approach methodologies. Reprod Toxicol 2019; 89:83-92. [PMID: 31315019 PMCID: PMC6766410 DOI: 10.1016/j.reprotox.2019.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
Mitochondrial toxicity has been proposed as a potential cause of developmental defects in humans. We evaluated 51 organophosphate and carbamate pesticides using the U.S. EPA ToxCast and Tox21 databases. Only a small number of them bind directly to cholinesterases in the parent form. The hydrophobicity of organophosphate pesticides is correlated significantly to TSPO binding affinity, mitochondrial membrane potential reduction in HepG2 cells, and developmental toxicity in Caenorhabditis elegans and Danio rerio (p < 0.05). Structural analysis suggests that in some cases the Krebs cycle is a potential target of organophosphate and carbamate exposure at early life stages. The results support the hypothesis that mitochondrial effects of some organophosphate pesticides-particularly those that require enzymatic activation to the oxon form-may augment the documented effects of disruption of acetylcholine signaling. This study provides a proof of concept for applying new approach methodologies to interrogate mechanisms of action for cumulative risk assessment.
Collapse
Affiliation(s)
- Maxwell C K Leung
- Department of Environmental Toxicology, University of California, Davis, CA, United States; Nicholas School of the Environment, Duke University, Durham, NC, United States.
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
21
|
Ahmadifard T, Heydari R, Tarrahi MJ, Khorramabadi GS. Photocatalytic Degradation of Diazinon in Aqueous Solutions Using Immobilized MgO Nanoparticles on Concrete. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Photocatalytic degradation of diazinon in the aqueous solution using UV light and MgO nanoparticle (NPs) immobilized on the concrete was investigated. Prepared catalyst was characterized using TEM, XRD, SEM, and EDX techniques. The results showed that the average particle size of immobilized MgO NPs was 38.3 nm and NPs appropriately was coated on the concrete surface. The performance of degradation and mineralization of diazinon was evaluated by HPLC and TOC techniques, respectively. The effect of operational parameters including pH value, initial pesticide concentration, and contact time were studied on the removal and mineralization of diazinon by a photocatalytic process. The results showed that the MgO NPs and UV light had little effect in removing pesticide when used individually. On the other hand, diazinon can be effectively degraded by immobilized MgO NPs in the presence of UV light. Degradation products of diazinon using the proposed photocatalytic technique were identified by the GC-MS analysis. The maximum diazinon removal (99.46 %) was obtained under the conditions; pH 7, diazinon concentration of 5 mg/L, and contact time of 120 minutes. Also, the lowest energy consumption conditions were as follow; pH 7, diazinon concentration of 5 mg/L, and contact time of 30 minutes.
Collapse
|
22
|
Low-molecular-weight chondroitin sulfate attenuated injury by inhibiting oxidative stress in amyloid β-treated SH-SY5Y cells. Neuroreport 2019; 29:1174-1179. [PMID: 29985831 DOI: 10.1097/wnr.0000000000001092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neurotoxicity of aggregated amyloid β (Aβ) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease. In a previous work, we have shown that low-molecular-weight chondroitin sulfate (LMWCS), a derivative of chondroitin sulfate, protected the SH-SY5Y neuroblastoma cells from Aβ25-35-induced neurotoxicity, decreased intracellular reactive oxygen species level and inhibited the cell apoptosis. However, the underlying mechanism of the antioxidative effect of LMWCS in the SH-SY5Y cells has not been well explored. In the present study, the SH-SY5Y cells were cultured and exposed to 30 μM Aβ25-35 in the absence or presence of LMWCS (50, 100 and 200 μg/ml). Results indicate that incubation of cells with LMWCS before Aβ25-35 exposure increased superoxide dismutase, glutathione peroxidase and Na/K-ATPase activities and decreased the malondialdehyde content. In addition, LMWCS inhibited the imbalance of Bcl-2 and Bax and decreased caspase-3 and caspase-9 expressions. LMWCS antagonizes Aβ25-35-induced neurotoxicity by attenuating oxidative stress, and our results suggest that LMWCS might be used as a potential compound for Alzheimer's disease prevention.
Collapse
|
23
|
Biological impacts of organophosphates chlorpyrifos and diazinon on development, mitochondrial bioenergetics, and locomotor activity in zebrafish (Danio rerio). Neurotoxicol Teratol 2018; 70:18-27. [DOI: 10.1016/j.ntt.2018.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022]
|
24
|
Harchegani AB, Rahmani A, Tahmasbpour E, Kabootaraki HB, Rostami H, Shahriary A. Mechanisms of diazinon effects on impaired spermatogenesis and male infertility. Toxicol Ind Health 2018; 34:653-664. [DOI: 10.1177/0748233718778665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Diazinon (DZN) is an organophosphate insecticide that has cytotoxic and pathological effects on the reproductive system. It causes a wide variety of pathological effects on the reproductive system such as testicular atrophy, disturbance in sex hormones, impaired spermatogenesis, low quality of sperm, and fertility problems. However, molecular and cellular mechanisms of its adverse effects are not well understood. General events such as testicular damage, inflammation, mitochondrial deficiency, DNA fragmentation, disintegration of sperm plasma membrane, apoptosis, and cell death are observed in DZN-exposed animals. Oxidative stress (OS) induced by reactive oxygen species may be a main mechanism, which can be associated with sperm DNA fragmentation, reduced integrity of sperm cell membrane, apoptosis, depletion of antioxidants, and subsequently poor sperm quality and male infertility. Therefore, identification of these pathways may provide valuable information regarding the mechanisms of DZN action on the male reproductive system. In this review, we aim to discuss the proposed cellular and molecular mechanisms of DZN action on male reproductive system, the importance of OS and mechanisms by which DZN induces OS and depletion of other antioxidants.
Collapse
Affiliation(s)
- Asghar Beigi Harchegani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Eisa Tahmasbpour
- Laboratory of Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Bakhiari Kabootaraki
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Rostami
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Cortés-Iza SC, Rodríguez AI. Oxidative stress and pesticide disease: a challenge for toxicology. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n2.60783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introducción. En los últimos decenios, la síntesis de compuestos químicos ha producido un alto número de sustancias utilizadas para proteger los cultivos y las cosechas de las plagas. La mayoría de pesticidas han sido usados en grandes cantidades para fines agrícolas y la exposición tóxica a estos compuestos es un problema de gran envergadura para la toxicología, pues tiene impacto en la salud pública por su importante morbilidad y discapacidad. Así, las intoxicaciones agudas y crónicas pueden ser comunes entre trabajadores agrícolas y población general. Estos compuestos desencadenan mecanismos moleculares relacionados con la peroxidación lipídica, donde las especies reactivas de oxigeno pueden incrementar procesos oxidativos intracelulares.Objetivo. Realizar una revisión de la literatura científica relacionada con enfermedades por estrés oxidativo producido por pesticidas.Materiales y métodos. Revisión de artículos que utilizó las palabras clave Estrés oxidativo; Pesticidas; Peroxidación de lípido; Toxicidad. Se eligieron los artículos relacionados con las enfermedades por estrés oxidativo producido por pesticidas.Resultados. Se encontró que algunas enfermedades hematológicas, neurológicas, metabólicas y genotóxicas pueden estar relacionadas con la peroxidación lipídica que producen los pesticidas.Conclusión. Se presenta una revisión de la literatura científica sobre el estrés oxidativo, la peroxidación lipídica inducida por pesticidas y las diferentes enfermedades que pueden afectar a la población en general.
Collapse
|
26
|
Salehzadeh A, Abbasalipourkabir R, Shisheian B, Rafaat A, Nikkhah A, Rezaii T. The alleviating effects of sesame oil on diazinon-induced toxicity in male wistar rats. Drug Chem Toxicol 2018; 42:280-285. [DOI: 10.1080/01480545.2018.1449852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Aref Salehzadeh
- Department of Medical Entomology and Vector Control, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghaye Abbasalipourkabir
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Behrooz Shisheian
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Rafaat
- Department of Anatomy and Embryology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Nikkhah
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tahereh Rezaii
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Vahidirad M, Arab-Nozari M, Mohammadi H, Zamani E, Shaki F. Protective effect of captopril against diazinon induced nephrotoxicity and neurotoxicity via inhibition of ROS-NO pathway. Drug Chem Toxicol 2017; 41:287-293. [PMID: 29115169 DOI: 10.1080/01480545.2017.1391830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Diazinon (Dz) is a widely used insecticide. It can induce nephrotoxicity and neurotoxicity via oxidative stress. Captopril, an angiotensin-converting enzyme inhibitor, is known for its antioxidant properties. In this study, we used captopril for ameliorating of Dz-induced kidney and brain toxicity in rats. Animals were divided into five groups as follows: negative control (olive oil), Dz (150 mg kg-1), captopril (60 and 100 mg kg-1) and positive control (N-acetylcysteine 200 mg kg-1) were injected intraperitoneally 30 min before Dz. After 24 h, animals were anesthetized and the brain and kidney tissues were separated. Then oxidative stress factors were evaluated. Also, blood was collected for assessment of blood urea nitrogen (BUN), creatinine (Cr) and nitric oxide (NO) levels. Dz significantly increased oxidative stress markers such as reactive oxygen species (ROS), lipid peroxidation, and protein carbonyl as well as glutathione (GSH) oxidation in both tissues. Increased levels of the BUN, Cr and NO were observed after Dz injection. Interestingly, captopril administration significantly decreased ROS production in both tissues. Captopril significantly protected kidney and brain against lipid peroxidation and GSH oxidation. Administration of captopril could markedly inhibit protein carbonyl production in kidney and brain after Dz injection. Furthermore, captopril ameliorated the increased level of BUN, Cr and NO. These results suggested that captopril can prevent Dz-induced oxidative stress, nephrotoxicity and neurotoxicity because of its antioxidant activity.
Collapse
Affiliation(s)
- Milad Vahidirad
- a Department of Toxicology and Pharmacology, Faculty of Pharmacy , Pharmaceutical Sciences Branch, Islamic Azad University , Tehran , Iran
| | - Milad Arab-Nozari
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Hamidreza Mohammadi
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ehsan Zamani
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Fatemeh Shaki
- b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
28
|
Chaudhary S, Parvez S. Phytanic acid induced neurological alterations in rat brain synaptosomes and its attenuation by melatonin. Biomed Pharmacother 2017; 95:37-46. [PMID: 28826095 DOI: 10.1016/j.biopha.2017.07.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) (Phyt) is a saturated branched chain fatty acid which originates after the breakdown of chlorophyll molecule, phytol. It plays an important role in a variety of metabolic disorders with peroxisomal impairments. The aim of our investigation was to evaluate the adverse effects of Phyt on synaptic functions by using synaptosomal preparation of rat brain as an in vitro model and the possible protective role of melatonin against Phyt-induced neurotoxicity. Melatonin is an antioxidant, secreted by the pineal gland. Melatonin and its metabolites have neuroprotective effects on cellular stress, by reducing reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present investigation, synaptosomes prepared from rat brain were co-treated with melatonin (10μM) and Phyt (50μM) for 2h. Co-treatment of Phyt with melatonin significantly restored the altered levels of protein carbonyl (PC) contents and lipid peroxidation (LPO). It also replenished the Phyt-induced alterations on the levels of non-enzymatic antioxidant defence reduced glutathione (GSH), enzymatic antioxidants such as catalase (CAT) and superoxide dismutase (SOD) and synaptosomal integral enzymes such as AChE, Na+, K+-ATPase and MAO. We observed that Phyt induced oxidative stress in synaptosomes as indicated by an elevation in the generation of ROS and melatonin was able to inhibit the elevated ROS generation. Moreover, the neurotoxic effects elicited by Phyt on NO level and membrane potential were totally prevented by the treatment of melatonin. The results of our investigation emphasize the potential use of melatonin as a nutraceutical and mitigatory agent against Phyt-induced oxidative stress.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
29
|
Gao B, Bian X, Mahbub R, Lu K. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:198-206. [PMID: 27203275 PMCID: PMC5289904 DOI: 10.1289/ehp202] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. OBJECTIVES We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. METHODS We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. RESULTS 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. CONCLUSIONS Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Address correspondence to K. Lu, 140 Environmental Health Science Building, University of Georgia, Athens, GA 30602 USA. Telephone: (706) 542-1001. E-mail:
| |
Collapse
|
30
|
Voorhees JR, Rohlman DS, Lein PJ, Pieper AA. Neurotoxicity in Preclinical Models of Occupational Exposure to Organophosphorus Compounds. Front Neurosci 2017; 10:590. [PMID: 28149268 PMCID: PMC5241311 DOI: 10.3389/fnins.2016.00590] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/08/2016] [Indexed: 01/06/2023] Open
Abstract
Organophosphorus (OPs) compounds are widely used as insecticides, plasticizers, and fuel additives. These compounds potently inhibit acetylcholinesterase (AChE), the enzyme that inactivates acetylcholine at neuronal synapses, and acute exposure to high OP levels can cause cholinergic crisis in humans and animals. Evidence further suggests that repeated exposure to lower OP levels insufficient to cause cholinergic crisis, frequently encountered in the occupational setting, also pose serious risks to people. For example, multiple epidemiological studies have identified associations between occupational OP exposure and neurodegenerative disease, psychiatric illness, and sensorimotor deficits. Rigorous scientific investigation of the basic science mechanisms underlying these epidemiological findings requires valid preclinical models in which tightly-regulated exposure paradigms can be correlated with neurotoxicity. Here, we review the experimental models of occupational OP exposure currently used in the field. We found that animal studies simulating occupational OP exposures do indeed show evidence of neurotoxicity, and that utilization of these models is helping illuminate the mechanisms underlying OP-induced neurological sequelae. Still, further work is necessary to evaluate exposure levels, protection methods, and treatment strategies, which taken together could serve to modify guidelines for improving workplace conditions globally.
Collapse
Affiliation(s)
- Jaymie R. Voorhees
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
| | - Diane S. Rohlman
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa College of Public HealthIowa City, IA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, DavisDavis, CA, USA
| | - Andrew A. Pieper
- Department of Psychiatry, University of Iowa Carver College of MedicineIowa City, IA, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Neurology, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Free Radical and Radiation Biology Program, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Radiation Oncology Holden Comprehensive Cancer Center, University of Iowa Carver College of MedicineIowa City, IA, USA
- Department of Veteran Affairs, University of Iowa Carver College of MedicineIowa City, IA, USA
- Weill Cornell Autism Research Program, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|
31
|
Ademiluyi AO, Ogunsuyi OB, Oboh G. Alkaloid extracts from Jimson weed (Datura stramonium L.) modulate purinergic enzymes in rat brain. Neurotoxicology 2016; 56:107-117. [PMID: 27450719 DOI: 10.1016/j.neuro.2016.06.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/27/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Although some findings have reported the medicinal properties of Jimson weed (Datura stramonium L.), there exist some serious neurological effects such as hallucination, loss of memory and anxiety, which has been reported in folklore. Consequently, the modulatory effect of alkaloid extracts from leaf and fruit of Jimson weed on critical enzymes of the purinergic [ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), ecto-5'-nucleotidase (E-NTDase), alkaline phosphatase (ALP) and Na+/K+ ATPase] system of neurotransmission was the focus of this study. Alkaloid extracts were prepared by solvent extraction method and their interaction with the activities of these enzymes were assessed (in vitro) in rat brain tissue homogenate and in vivo in rats administered 100 and 200mg/kg body weight (p.o) of the extracts for thirty days, while administration of single dose (1mg/kg body weight; i.p.) of scopolamine served as the positive control. The extracts were also investigated for their Fe2+ and Cu2+ chelating abilities and GC-MS characterization of the extracts was also carried out. The results revealed that the extracts inhibited activates of E-NTPDase, E-NTDase and ALP in a concentration dependent manner, while stimulating the activity of Na+/K+ ATPase (in vitro). Both extracts also exhibited Fe2+ and Cu2+ chelating abilities. Considering the EC50 values, the fruit extract had significantly higher (P<0.05) modulatory effect on the enzymes' activity as well as metal chelating abilities, compared to the leaf extract; however, there was no significant difference (P>0.05) in both extracts' inhibitory effects on E-NTDase. The in vivo study revealed reduction in the activities of ENTPDase, E-NTDase, and Na+/K+ ATPase in the extract-administered rat groups compared to the control group, while an elevation in ALP activity was observed in the extract-administered rat groups compared to the control group. GC-MS characterization revealed the presence of atropine, scopolamine, amphetamine, 3-methyoxyamphetamine, 3-ethoxyamhetamine cathine, spermine, phenlyephirine and 3-piperidinemethanol, among others in the extracts. Hence, alterations of activities of critical enzymes of purinergic signaling (in vitro and in vivo) by alkaloid extracts from leaf and fruit of Jimson weed suggest one of the mechanisms behind its neurological effects as reported in folklore.
Collapse
Affiliation(s)
- Adedayo O Ademiluyi
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria.
| | - Opeyemi B Ogunsuyi
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria.
| | - Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, Akure, P.M.B. 704, Akure 340001, Nigeria
| |
Collapse
|
32
|
Bagherpour Shamloo H, Golkari S, Faghfoori Z, Movassaghpour A, Lotfi H, Barzegari A, Yari Khosroushahi A. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line. Adv Pharm Bull 2016; 6:201-10. [PMID: 27478782 DOI: 10.15171/apb.2016.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Exposure to diazinon can trigger acute and chronic toxicity and significantly induces DNA damage and proapoptotic effects in different human cells. Due to the significance of probiotic bacteria antitoxin effect, this study aimed to investigate the effect of Lactobacillus casei on diazinon (DZN) cytotoxicity in human umbilical vein endothelial cells (HUVEC) in vitro. METHODS The cytotoxicity assessments were performed by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, DAPI (4',6-diamidino-2-phenylindole) staining and flow cytometric methodologies. RESULTS Cytotoxic assessments through flow cytometry/ DAPI staining demonstrated that apoptosis is the main cytotoxic mechanism of diazinon in HUVEC cells and L. casei could decrease the diazinon cytotoxic effects on toxicants. CONCLUSION the screen of total bacterial secreted metabolites can be considered as a wealthy source to find the new active compounds to introduce as reducing agricultural remained pesticide cytotoxicity effects on the human food chain.
Collapse
Affiliation(s)
- Hasan Bagherpour Shamloo
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | - Saber Golkari
- Dryland Agricultural Research Institute (DARI), Agricultural Research, Education and Extension Organization (AREEO), Maragheh, Iran
| | - Zeinab Faghfoori
- Tuberculosis & Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliAkbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Boussabbeh M, Ben Salem I, Hamdi M, Ben Fradj S, Abid-Essefi S, Bacha H. Diazinon, an organophosphate pesticide, induces oxidative stress and genotoxicity in cells deriving from large intestine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2882-2889. [PMID: 26490884 DOI: 10.1007/s11356-015-5519-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
Diazinon (DZ) (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl]phosphorothioate) is an organophosphate pesticide which is extensively used to control household insects and fruit and vegetable crops. The exposure to this pesticide has been linked to the development of the serious problem in several experimental animals. The contamination of food by DZ may increase its danger to humans. The aim of this study was to investigate the toxic effect of DZ on intestine using an in vitro model (HCT116). Therefore, we evaluated the cell viability, elucidated the generation of free radicals, measured the mitochondrial membrane potential, and valued DNA fragmentation. Our results showed that DZ is cytotoxic to HCT116. It causes oxidative damage through the generation of free radicals and induces lipid peroxidation and DNA fragmentation. We also demonstrated that such effects can be responsible for DZ-induced apoptosis.
Collapse
|