1
|
Wang H, He X, Zhang M, Fan N, Yang Z, Shen T, Guo J, Song Y, Cao G, Liu Y, Li X, Nashun B. Development of Sheep Intestinal Organoids for Studying Deoxynivalenol-Induced Toxicity. Int J Mol Sci 2025; 26:955. [PMID: 39940725 PMCID: PMC11816529 DOI: 10.3390/ijms26030955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Sheep are an important livestock species whose gastrointestinal tract is essential for overall health. Feed contaminants such as bacterial toxins and mycotoxins severely damage the sheep intestine, yet the mechanisms remain mostly elusive partially due to the lack of physiologically relevant in vitro models. Here, we investigated molecular mechanisms underlying deoxynivalenol (DON)-induced toxicity by developing intestinal organoids from isolated intestinal crypts of Hu sheep. The organoids had a central lumen and monolayer epithelium, and could be continuously passaged, cryopreserved, and resuscitated. Histological and transcriptomic analysis showed that the intestinal organoids recapitulate the cell lineages and gene expression characteristics of the original intestinal tissues. Statistical analysis indicated that DON exposure significantly inhibited organoid formation efficiency, as well as the proliferation and activity of intestinal organoid cells. RNA-seq and Western blotting analysis further revealed that DON exposure induces intestinal toxicity by inhibiting the PI3K/AKT/GSK3β/β-catenin signaling pathway. Our study provides a novel example of organoid application in toxicity studies and reveals the signaling pathway involved in DON-induced toxicity in sheep, which is of great significance for improving mitigation strategies for DON.
Collapse
Affiliation(s)
- Hongyu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
| | - Xige He
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
| | - Miaomiao Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
| | - Zongxuan Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
| | - Ting Shen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
| | - Jiaojiao Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
| | - Yongli Song
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
| | - Guifang Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot 011517, China
| | - Yongbin Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot 011517, China
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot 010070, China; (H.W.); (X.H.); (M.Z.); (N.F.); (Z.Y.); (T.S.); (J.G.); (Y.S.); (G.C.); (Y.L.)
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010040, China
| |
Collapse
|
2
|
He J, Zhao G, Chen M, Ren X, Zhu P, Liu Z, Zhou J, Chen H, Xiao C, Li XG. Identification and functional analysis of hub genes involved in deoxynivalenol-induced enterotoxicity in porcine (Sus scrofa). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117544. [PMID: 39675078 DOI: 10.1016/j.ecoenv.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Deoxynivalenol (DON) is a type of mycotoxin commonly found in food and animal feed. When consumed, it can have harmful effects on the intestine. The porcine digestive system is physiologically similar to that of humans, making pigs a suitable model for studying DON-induced enterotoxicity. However, the exact ways DON causes intestinal damage in pigs still need to be fully understood. To address this knowledge gap, this study aimed to identify hub genes associated with enterotoxicity caused by DON exposure. Transcriptomic datasets from porcine jejunal explants exposed to DON were extensively analyzed using bioinformatic techniques in this study. A total of 265 differentially expressed genes (DEGs) were identified, with 238 being up-regulated and 27 being down-regulated, indicating that exposure to DON tends to increase gene expression. Further analysis revealed that the up-regulated DEGs were enriched in tumor necrosis factor, nuclear factor kappa-B, mitogen-activated protein kinases, and Janus kinase/signal transducer and activator of transcription-related signaling pathways. In addition, Weighted gene co-expression network analysis was performed to identify highly co-expressed modules. Then, genes in the highest co-expressed module were intersected with the up-regulated DEGs to construct a Protein-Protein Interaction network, resulting in 237 overlapping genes. Subsequently, 6 hub genes (CXCR4, PTGS2, ICAM1, IL-1A, IL-1B, and IL-10) that played a central role in the response to DON were identified using cytohubba in conjunction with the Molecular Complex Detection. In summary, exposure to DON is more likely to result in increased rather than decreased gene expression. Six of the upregulated genes, which are involved in immunoregulation and inflammation, were identified as hub genes related to DON-induced enterotoxicity in pigs. This study provides new insights into the mechanisms underlying DON-induced enterotoxicity and could guide interventions for this condition.
Collapse
Affiliation(s)
- Jinhua He
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Geng Zhao
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Mingxia Chen
- School of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Qingyuan 511500, China
| | - Ximing Ren
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peizhi Zhu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhizhong Liu
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hanwei Chen
- Central Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China; Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou 511450, China
| | - Chuqiao Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Lee MG, Lee BR, Lee P, Choi S, Kim JH, Oh MH, Yoo JG. Apical-out intestinal organoids as an alternative model for evaluating deoxynivalenol toxicity and Lactobacillus detoxification in bovine. Sci Rep 2024; 14:31373. [PMID: 39733018 PMCID: PMC11682149 DOI: 10.1038/s41598-024-82928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/10/2024] [Indexed: 12/30/2024] Open
Abstract
Small intestinal organoids are similar to actual small intestines in structure and function and can be used in various fields, such as nutrition, disease, and toxicity research. However, the basal-out type is difficult to homogenize because of the diversity of cell sizes and types, and the Matrigel-based culture conditions. Contrastingly, the apical-out form of small intestinal organoids is relatively uniform and easy to manipulate without Matrigel. Therefore, we sought to investigate the possibility of replacing animal testing with bovine apical-out small intestinal organoids (Apo-IOs) by confirming the toxicity of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents. The characteristics and functions of Apo-IOs were first confirmed. The gene and protein expression of stem cell, proliferation, mucous, and adherence markers were detected, and the absorption capacity of amino and fatty acids was also confirmed. FITC-4 kDa dextran, a marker of intestinal barrier function, did not penetrate the Apo-IOs, confirming the role of the organoids as a barrier. However, when co-treated with deoxynivalenol (DON), FITC-4 kDa dextran was detected deep within the organoids. Moreover, qPCR and immunofluorescence staining confirmed a decrease in the expression of key markers, such as LGR5, Ki67, Mucin2, Villin2, and E-cadherin. In addition, when Apo-IOs were treated with Lactobacillus plantarum ATCC14917 culture supernatant (LCS) and DON together, cell death was reduced compared to when treated with DON alone, and FITC-4 kDa dextran was confirmed to flow only to the peripheral part of the organoid. The qPCR and immunofluorescence staining results of LCS and DON co-treatment group showed that LGR5, Ki67, Mucin2, Villin2, and E-cadherin were expressed at significant higher levels than those in the DON treatment group alone. In this study, we found that the characteristics and functions of bovine Apo-IOs were similar to those of the intestinal structure in vivo. Additionally, the effects of mycotoxins and effectiveness of L. plantarum as mycotoxin-reducing agents were confirmed using bovine Apo-IOs. Therefore, bovine Apo-IOs could be applied in toxicity studies of mycotoxins and could also be used as in vitro models to replace animal testing and improve animal welfare.
Collapse
Affiliation(s)
- Min Gook Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bo Ram Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Poongyeon Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Soyoung Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jong-Hui Kim
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Hwa Oh
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Jae Gyu Yoo
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea.
| |
Collapse
|
4
|
Cheng X, Shen H, Zhang W, Chen B, Xu S, Wu L. Characterizing the effects of triclosan and triclocarban on the intestinal epithelial homeostasis using small intestinal organoids. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135734. [PMID: 39244982 DOI: 10.1016/j.jhazmat.2024.135734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Intestinal epithelium has the largest surface of human body, contributes dramatically to defense of toxicant-associated intestinal injury. Triclosan (TCS) and triclocarban (TCC), extensively employed as antibacterial agents in personal care products (PCPs) and healthcare facilities, caused serious damage to human intestine. However, the role of the intestinal epithelium in TCS/TCC-induced intestinal toxicity and its underlying toxic mechanisms remain incompletely understood. In this study, a novel 3D intestinal organoid model was utilized to investigate that exposure to TCS/TCC led to a compromised self-renewal and differentiation of intestinal stem cells (ISCs). Consequently, this disrupted intestinal epithelial homeostasis ultimately caused a reduction in nutrient absorption and deficient of epithelial defense to exogenous and endogenous pathogens stimulation. The inhibition of the Wnt signaling pathway in intestinal stem cell was contributed to the intestinal toxicity of TCS/TCC. These results were further confirmed in vivo with mice exposed to TCS/TCC. The findings of this study provide evidence that TCS/TCC possess the capacity to disturb the homeostasis of the intestinal epithelium, and emphasize the credibility of organoids as a valuable model for toxicological studies, as they could faithfully recapitulate in vivo phenomena.
Collapse
Affiliation(s)
- Xiaowen Cheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Hongzhi Shen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Wen Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Biao Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, PR China
| |
Collapse
|
5
|
Ding X, Tang R, Zhao J, Xu Y, Fu A, Zhan X. Lactobacillus reuteri alleviates LPS-induced intestinal mucosal damage by stimulating the expansion of intestinal stem cells via activation of the Wnt/β-catenin signaling pathway in broilers. Poult Sci 2024; 103:104072. [PMID: 39068698 PMCID: PMC11332868 DOI: 10.1016/j.psj.2024.104072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The continuous expansion of intestinal stem cells (ISCs) is crucial for maintaining the renewal of the intestinal epithelium, particularly in inflammatory conditions. It remains largely unknown how the internal microbiota repair damage to the internal mucosal barrier. Hence, investigating potential anti-inflammatory probiotics from the intestinal symbolic microbes of broilers and analyzing their mechanism of action to support the intestinal mucosal barrier function can offer novel regulatory tools to alleviate broiler enteritis. In this research, we utilized in vivo broilers plus ex vivo organoids model to thoroughly examine the effectiveness of Lactobacillus reuteri (LR) in protecting the integrity of the intestinal mucosa during lipopolysaccharide-induced (LPS-induced) enteritis in broilers. The findings indicated that LR feeding maintained intestinal morphological and structural integrity, enhanced proliferation of intestinal epithelial cells, and inhibited cell apoptosis and inflammatory response against the deleterious effects triggered by LPS. Simultaneously, LR enhanced ISCs activity and stimulated intestinal epithelial regeneration to protect the intestinal barrier during LPS-induced injury conditions. The coculture system of LR and ileum organoids revealed that LR increased the growth of organoids and attenuated LPS-stimulated damage to organoids. Furthermore, the LPS-induced decrease in ISC activity was rescued by reactivation of Wnt/β-catenin signaling by LR ex vivo and in vivo. This research revealed that LR promoted the expansion of ISCs and intestinal epithelial cell renewal by regulating the Wnt/β-catenin signaling pathway, thereby maintaining the integrity of the intestinal mucosal barrier. This finding provided theoretical support for lactobacillus as a probiotic additive in livestock feed to improve intestinal inflammation and treat intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Runzi Tang
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Jiayue Zhao
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Aikun Fu
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed in East China, Ministry of Agriculture and Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China.
| |
Collapse
|
6
|
Zhou JY, Xie WW, Hu TC, Wang XF, Yan HC, Wang XQ. Mulberry Leaf-Derived Morin Activates β-Catenin by Binding to Frizzled7 to Promote Intestinal Stem Cell Expansion upon Heat-Stable Enterotoxin b Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10366-10375. [PMID: 38651967 DOI: 10.1021/acs.jafc.3c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/β-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated β-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Wen-Wen Xie
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Ting-Cai Hu
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiao-Fan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| |
Collapse
|
7
|
Zhu M, Fang Y, Cheng Y, Xu E, Zhang Y, Zhai Z. The Alleviating Effect of Taxifolin on Deoxynivalenol-Induced Damage in Porcine Intestinal Epithelial Cells. Vet Sci 2024; 11:156. [PMID: 38668423 PMCID: PMC11053803 DOI: 10.3390/vetsci11040156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Deoxynivalenol (DON) contamination in feed is a global concern that severely threatens the health of animals and humans. Taxifolin (TA) is a natural flavonoid, a member of the polyphenols, that possesses robust antioxidant properties. This study aimed to investigate the effect of TA on DON-induced damage in porcine intestinal epithelial cells (IPEC-J2). The cells were pre-incubated with a series of concentrations of TA for 24 h and exposed to DON (0.5 μg/mL) for another 24 h. The results showed that pretreatment with TA (150 μM) significantly inhibited the DON-induced decline in cell viability (p < 0.05) and cell proliferation (p < 0.01). Additionally, 150 μM TA also alleviated DON-induced apoptosis (p < 0.01). Moreover, TA decreased the production of reactive oxygen species (ROS) induced by DON (p < 0.01). In addition, TA attenuated DON-induced cell junction damage (p < 0.05). Further experiments showed that TA reversed the DON-induced reduction in antioxidant capacity in the IPEC-J2 cells, probably via activating the Nrf2 signaling pathway (p < 0.05). Collectively, these findings suggest that 150 μM TA can protect against 0.5 μg/mL DON-induced damage to IPEC-J2 cells, potentially via the activation of the Nrf2 signaling pathway. This study provides insight into TA's potential to act as a green feed additive in the pig farming industry and its efficacy in counteracting DON-induced intestinal damage.
Collapse
Affiliation(s)
- Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yujie Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (Y.F.); (Y.C.); (E.X.); (Y.Z.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Zhenya Zhai
- Jiangxi Functional Feed Additive Engineering Laboratory, Institute of Biological Resource, Jiangxi Academy of Sciences, Nanchang 330096, China
| |
Collapse
|
8
|
Yao F, Du Y, Tian S, Chang G, Zhang Y, Zhu R, Cai C, Shao S, Zhou T. Identification and characterization of Achromobacter spanius P-9 and elucidation of its deoxynivalenol-degrading potential. Arch Microbiol 2024; 206:178. [PMID: 38498224 DOI: 10.1007/s00203-024-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/20/2024]
Abstract
Deoxynivalenol (DON) poses significant challenges due to its frequent contamination of grains and associated products. Microbial strategies for mitigating DON toxicity showed application potential. Eight bacterial isolates with DON degradation activity over 5% were obtained from various samples of organic fertilizer in this study. One of the isolates emerged as a standout, demonstrating a substantial degradation capability, achieving a 99.21% reduction in DON levels. This isolate, underwent thorough morphological, biochemical, and molecular characterization to confirm its identity, and was identified as a new strain of Achromobacter spanius P-9. Subsequent evaluations revealed that the strain P-9 retains its degradation activity after a 24-h incubation, reaching optimal performance at 35 °C with a pH of 8.0. Further studies indicated that Ca2+ ions enhance the degradation process, whereas Zn2+ ions exert an inhibitory effect. This is the pioneering report of DON degradation by Achromobacter spanius, illuminating its prospective utility in addressing DON contamination challenges.
Collapse
Affiliation(s)
- Feng Yao
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yaowen Du
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Siyi Tian
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Guoli Chang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Yanping Zhang
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Ruiyu Zhu
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Chenggang Cai
- College of Biological and Chemical Engineering, Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Farm Product, Zhejiang University of Science and Technology, Hangzhou, 310023, China.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| |
Collapse
|
9
|
Cai Z, Chen F, Wang Y, Wang X, Yang X, Zhang C. Lycopene Maintains Mitochondrial Homeostasis to Counteract the Enterotoxicity of Deoxynivalenol. Antioxidants (Basel) 2023; 12:1958. [PMID: 38001811 PMCID: PMC10669674 DOI: 10.3390/antiox12111958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The intestinal tract is a target organ for Deoxynivalenol (DON) absorption and toxicity. Mitochondrial homeostasis imbalance is the gut toxicity mechanism of DON. Lycopene (LYC) has intestinal protective effects and can maintain mitochondrial homeostasis in response to various danger signals. The purpose of this study was to explore the protective effect of LYC on DON-induced IPEC-J2 cells damage. These results showed that DON exposure induced an increase in the levels of malondialdehyde and reactive oxygen species (ROS) in IPEC-J2 cells. DON impaired IPEC-J2 cell barrier function and caused mitochondrial dysfunction by inducing mitochondrial permeability transition pore (MPTP) opening, mitochondrial membrane potential (MMP) reducing, destroying mitochondrial fission factors, mitochondrial fusion factors, and mitophagy factors expression. However, adding LYC can reduce the toxic effects of DON-induced IPEC-J2 cells and decrease cellular oxidative stress, functional damage, mitochondrial dynamics imbalance, and mitophagy processes. In conclusion, LYC maintains mitochondrial homeostasis to counteract the IPEC-J2 cells' toxicity of DON.
Collapse
Affiliation(s)
- Zihui Cai
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| |
Collapse
|
10
|
Cui C, Wang X, Zheng Y, Li L, Wang F, Wei H, Peng J. Paneth cells protect intestinal stem cell niche to alleviate deoxynivalenol-induced intestinal injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115457. [PMID: 37688865 DOI: 10.1016/j.ecoenv.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Deoxynivalenol (DON) is a common toxin in grains and feeds, and DON exposure triggers severe small intestinal injury and inflammation, which harms the health of humans and livestock. DON treatment leads to a decrease in Paneth cells, whereas the role of Paneth cells in DON-induced intestinal injury is poorly understood. We utilized dithizone (40 mg/kg) to keep murine Paneth cell number at a low level. The results showed that dithizone-mediated long-term disruption of Paneth cells aggravated intestinal injury, intestinal stem cell (ISC) loss, and microbiota disorder in DON (2 mg/kg)-treated mice. Unexpectedly, the number of goblet cells and proliferative cells was boosted in mice treated with dithizone and DON. After dithizone and DON treatments, the Firmicutes/Bacteroidetes (F/B) ratio was reduced, and the increased abundance of Dubosiella and the decreased abundance of Lactobacillus were observed in mice. The functional recovery of Paneth cells by lysozyme (200 U/day) supplementation improved intestinal injury and ISC loss in mice after DON challenge. In addition, lysozyme also promoted the growth and ISC activity of intestinal organoids. Taken together, these results demonstrate the protective role of Paneth cells in DON-induced intestinal injury. Our study raises a novel target, Paneth cell, for the treatment of DON exposure.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangke Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 400700, China.
| |
Collapse
|
11
|
Zhu M, Lai W, Yao L, Xu E, Chen X, Zhang YY, Li XG. Glutamine Regulates Gene Expression Profiles to Increase the Proliferation of Porcine Intestinal Epithelial Cells and the Expansion of Intestinal Stem Cells. Animals (Basel) 2023; 13:2917. [PMID: 37760316 PMCID: PMC10525449 DOI: 10.3390/ani13182917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal epithelium is known for its rapid self-renewal, and glutamine is crucial in providing carbon and nitrogen for biosynthesis. However, understanding how glutamine affects gene expression in the intestinal epithelium is limited, and identifying the essential genes and signals involved in regulating intestinal epithelial cell growth is particularly challenging. In this study, glutamine supplementation exhibited a robust acceleration of intestinal epithelial cell proliferation and stem cell expansion. RNA sequencing indicated diverse transcriptome changes between the control and glutamine supplementation groups, identifying 925 up-regulated and 1152 down-regulated genes. The up-regulated DEGs were enriched in the KEGG pathway of cell cycle and GO terms of DNA replication initiation, regulation of phosphatidylinositol 3-kinase activity, DNA replication, minichromosome maintenance protein (MCM) complex, and ATP binding, whereas the down-regulated DEGs were enriched in the KEGG pathway of p53 signaling pathway, TNF signaling pathway, and JAK-STAT signaling pathway and GO terms of inflammatory response and intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress. Furthermore, GSEA analysis revealed a significant up-regulation of the cell cycle, DNA replication initiation, ATP-dependent RNA helicase activity, and down-regulation of the TNF signaling pathway. The protein-protein association network of the intersecting genes highlighted the significance of DNA replication licensing factors (MCM3, MCM6, and MCM10) in promoting intestinal epithelial growth in response to glutamine. Based on these findings, we propose that glutamine may upregulate DNA replication licensing factors, leading to increased PI3K/Akt signaling and the suppression of TNF, JAK-STAT, and p53 pathways. Consequently, this mechanism results in the proliferation of porcine intestinal epithelial cells and the expansion of intestinal stem cells.
Collapse
Affiliation(s)
- Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Weiming Lai
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - Lewen Yao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Yi-yu Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, China; (M.Z.); (E.X.); (X.C.)
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.L.); (L.Y.)
| |
Collapse
|
12
|
Zhang YR, Li FY, Lu ZJ, Wang XF, Yan HC, Wang XQ, Gao CQ. l-Malic Acid Facilitates Stem Cell-Driven Intestinal Epithelial Renewal through the Amplification of β-Catenin Signaling by Targeting Frizzled7 in Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13079-13091. [PMID: 37632443 DOI: 10.1021/acs.jafc.3c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/β-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 μM l-MA significantly increased cell viability, and the Wnt/β-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/β-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/β-catenin signaling. Collectively, l-MA stimulated β-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fu-Yong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhu-Jin Lu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
15
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
16
|
Zingales V, Esposito MR, Torriero N, Taroncher M, Cimetta E, Ruiz MJ. The Growing Importance of Three-Dimensional Models and Microphysiological Systems in the Assessment of Mycotoxin Toxicity. Toxins (Basel) 2023; 15:422. [PMID: 37505691 PMCID: PMC10467068 DOI: 10.3390/toxins15070422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Current investigations in the field of toxicology mostly rely on 2D cell cultures and animal models. Although well-accepted, the traditional 2D cell-culture approach has evident drawbacks and is distant from the in vivo microenvironment. To overcome these limitations, increasing efforts have been made in the development of alternative models that can better recapitulate the in vivo architecture of tissues and organs. Even though the use of 3D cultures is gaining popularity, there are still open questions on their robustness and standardization. In this review, we discuss the current spheroid culture and organ-on-a-chip techniques as well as the main conceptual and technical considerations for the correct establishment of such models. For each system, the toxicological functional assays are then discussed, highlighting their major advantages, disadvantages, and limitations. Finally, a focus on the applications of 3D cell culture for mycotoxin toxicity assessments is provided. Given the known difficulties in defining the safety ranges of exposure for regulatory agency policies, we are confident that the application of alternative methods may greatly improve the overall risk assessment.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Noemi Torriero
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - Mercedes Taroncher
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (M.R.E.); (N.T.); (E.C.)
- Fondazione Istituto di Ricerca Pediatrica Cittá Della Speranza (IRP)—Lab BIAMET, Corso Stati Uniti 4, 35127 Padova, Italy
| | - María-José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Valencia, Spain;
| |
Collapse
|
17
|
Tian J, Li Y, Bao X, Yang F, Tang X, Jiang Q, Yin Y, Yao K. Early weaning causes small intestinal atrophy by inhibiting the activity of intestinal stem cells: involvement of Wnt/β-catenin signaling. Stem Cell Res Ther 2023; 14:65. [PMID: 37020258 PMCID: PMC10077674 DOI: 10.1186/s13287-023-03293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Early weaning and shorter breastfeeding duration are applied by a proportion of young mothers, especially in the social spheres of poverty-stricken areas. Early childhood is a critical period for intestinal development, which is driven by intestinal stem cells (ISCs). However, how early weaning practice affects the function of ISCs to mediate intestinal development remains unclear. METHODS We established an excellent early weaning mice model that has significant intestinal atrophy and growth arrest symptoms to explore the responses of ISCs to early weaning. The primary and passaged intestinal organoids from the suckling or early weaning mice were cultured to explore the underlying mechanism of early weaning affecting the ISCs. RESULTS Early weaning depressed the self-renewal of ISCs and attenuated the activity of ISCs-driven intestinal epithelial regeneration and crypt expansion in vivo and ex-vivo. Further results showed that early weaning retarded the differentiation of ISCs into transit-amplifying cells and Paneth cells, and accelerated the apoptosis of villous epithelial cells, jointly leading to intestinal epithelial atrophy. Mechanistically, early weaning inhibited Wnt signaling in ISCs, while an exogenous Wnt amplifier restored ISCs' function in ex-vivo. CONCLUSION Our findings indicate that early weaning depresses the activity of ISCs via attenuating Wnt/β-catenin signaling and triggers the proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-17 in jejunum, thereby impeding ISCs-driven epithelial regeneration and intestinal growth, which may provide a basal theory for the development of infant nutrients targeting stem cells to alleviate early weaning-induced intestinal problems.
Collapse
Affiliation(s)
- Junquan Tian
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Yuying Li
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Xuetai Bao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Fan Yang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Xiongzhuo Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Qian Jiang
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100008, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Kang Yao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Sciences, Beijing, 100008, China.
| |
Collapse
|
18
|
Liang SJ, Wang XQ. Deoxynivalenol induces intestinal injury: insights from oxidative stress and intestinal stem cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48676-48685. [PMID: 36856999 DOI: 10.1007/s11356-023-26084-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 04/16/2023]
Abstract
Mycotoxins are fungal secondary metabolites that frequently occur in human and animal diets. Deoxynivalenol (DON) is one of the most widely occurring mycotoxins globally and poses significant harm to the animal husbandry industry and human health. People are increasingly aware of the adverse effects of DON on vulnerable structures and functions in the intestine, especially in the field of intestinal stem cells (ISCs). In this review, we present insights into DON that induces oxidative stress and affects the expansion of ISCs. Related studies of strategies for reducing its harm are summarized. We also discussed promising approaches such as regulation of microbiota, molecular docking, and modulation of the redox status via reducing the expression of Keap1 protein and single-cell sequencing, which may be critical for further revealing the mechanism of DON that induces oxidative stress and affects the expansion of ISCs.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
19
|
Xian C, Zhang J, Zhao S, Li XG. Gut-on-a-chip for disease models. J Tissue Eng 2023; 14:20417314221149882. [PMID: 36699635 PMCID: PMC9869227 DOI: 10.1177/20417314221149882] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
The intestinal tract is a vital organ responsible for digestion and absorption in the human body and plays an essential role in pathogen invasion. Compared with other traditional models, gut-on-a-chip has many unique advantages, and thereby, it can be considered as a novel model for studying intestinal functions and diseases. Based on the chip design, we can replicate the in vivo microenvironment of the intestine and study the effects of individual variables on the experiment. In recent years, it has been used to study several diseases. To better mimic the intestinal microenvironment, the structure and function of gut-on-a-chip are constantly optimised and improved. Owing to the complexity of the disease mechanism, gut-on-a-chip can be used in conjunction with other organ chips. In this review, we summarise the human intestinal structure and function as well as the development and improvement of gut-on-a-chip. Finally, we present and discuss gut-on-a-chip applications in inflammatory bowel disease (IBD), viral infections and phenylketonuria. Further improvement of the simulation and high throughput of gut-on-a-chip and realisation of personalised treatments are the problems that should be solved for gut-on-a-chip as a disease model.
Collapse
Affiliation(s)
| | | | | | - Xiang-Guang Li
- Xiang-Guang Li, Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, No. 100 Waihuan Xi Road (GDUT), Panyu District, Guangzhou 510006, China.
| |
Collapse
|
20
|
Zhu C, Liang S, Zan G, Wang X, Gao C, Yan H, Wang X, Zhou J. Selenomethionine Alleviates DON-Induced Oxidative Stress via Modulating Keap1/Nrf2 Signaling in the Small Intestinal Epithelium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:895-904. [PMID: 36535023 DOI: 10.1021/acs.jafc.2c07885] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The small intestinal epithelium is regulated in response to various beneficial or harmful environmental information. Deoxynivalenol (DON), a mycotoxin widely distributed in cereal-based feeds, induces oxidative stress damage in the intestine due to the mitochondrial stress. As a functional nutrient, selenomethionine (Se-Met) is involved in synthesizing several antioxidant enzymes, yet whether it can replenish the intestinal epithelium upon DON exposure remains unknown. Therefore, the in vivo model C57BL/6 mice and the in vitro model MODE-K cells were treated with l-Se-Met and DON alone or in combination to confirm the status of intestinal stem cell (ISC)-driven epithelial regeneration. The results showed that 0.1 mg/kg body weight (BW) Se-Met reinstated the growth performance and integrity of jejunal structure and barrier function in DON-challenged mice. Moreover, Lgr5+ ISCs and PCNA+ mitotic cells in crypts were prominently increased by Se-Met in the presence of DON, concomitant with a significant increase in absorptive cells, goblet cells, and Paneth cells. Simultaneously, crypt-derived jejunal organoids from the Se-Met + DON group exhibited more significant growth advantages ex vivo. Furthermore, Se-Met-stimulated Keap1/Nrf2-dependent antioxidant system (T-AOC and GSH-Px) to inhibit the accumulation of ROS and MDA in the jejunum and serum. Moreover, Se-Met failed to rescue the DON-triggered impairment of cell antioxidant function after Nrf2 perturbation using its specific inhibitor ML385 in MODE-K cells. In conclusion, Se-Met protects ISC-driven intestinal epithelial integrity against DON-induced oxidative stress damage by modulating Keap1/Nrf2 signaling.
Collapse
Affiliation(s)
- Chao Zhu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Shaojie Liang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Gengxiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiaofan Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Chunqi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Huichao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Xiuqi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
| | - Jiayi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
21
|
Wang D, Kuang Y, Wan Z, Li P, Zhao J, Zhu H, Liu Y. Aspartate Alleviates Colonic Epithelial Damage by Regulating Intestinal Stem Cell Proliferation and Differentiation via Mitochondrial Dynamics. Mol Nutr Food Res 2022; 66:e2200168. [PMID: 36310136 DOI: 10.1002/mnfr.202200168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/26/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Proliferation and differentiation of intestinal stem cells (ISCs) are crucial for functional restoration after injury, which can be regulated by nutritional molecules. Aspartate is implicated in maintaining intestinal barrier after injury, but underlying mechanisms remain elusive. Here, this study seeks to investigate if aspartate alleviates colonic epithelial damage by regulating ISC function, and to elucidate its mechanisms. METHODS AND RESULTS Eight-week-old male C57BL/6 mice supplement with or without 1% L-aspartate are subjected to drinking water or 2.5% DSS to induce colitis. In this study, aspartate administration alleviates the severity of colitis, as indicated by reduced body weight loss, colon shortening, and inhibited pro-inflammatory cytokine expression in DSS-challenged mice. Additionally, aspartate promotes colonic epithelial cell proliferation and differentiation after DSS-induced damage in mice. Pretreatment with aspartate not only enhances ISC proliferation but also induces ISC differentiation toward enterocytes and goblet cells, which prevent TNF-α-induced colonoid damage. Mechanistically, aspartate ameliorates DSS/TNF-α-induced perturbation of mitochondrial metabolism and maintains mitochondrial dynamics in colonic epithelium and colonoids. Moreover, aspartate-mediated ISC proliferation and differentiation are primarily dependent on mitochondrial fusion rather than fission. CONCLUSIONS The findings indicate that aspartate promotes ISC proliferation and differentiation to alleviate colonic epithelial damage by regulation of mitochondrial metabolism and dynamics.
Collapse
Affiliation(s)
- Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yanling Kuang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhicheng Wan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Pei Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Jiangchao Zhao
- Division of Agriculture, Department of Animal Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| |
Collapse
|
22
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Qin YC, Zhou JY, Zhu M, Zan GX, Gao CQ, Yan HC, Li XG, Wang XQ. L-glutamate requires β-catenin signalling through Frizzled7 to stimulate porcine intestinal stem cell expansion. Cell Mol Life Sci 2022; 79:523. [PMID: 36121491 PMCID: PMC11803067 DOI: 10.1007/s00018-022-04545-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/03/2022]
Abstract
Intestinal stem cells (ISCs) decode and coordinate various types of nutritional information from the diet to support the crypt-villus axis architecture, but how specific dietary molecules affect intestinal epithelial homeostasis remains unclear. In the current study, L-glutamate (Glu) supplementation in either a nitrogen-free diet (NFD) or a corn-soybean meal diet (CSMD) stimulated gut growth and ISC expansion in weaned piglets. Quantitative proteomics screening identified the canonical Wnt signalling pathway as a central regulator of intestinal epithelial development and ISC activity in vivo. Importantly, the Wnt transmembrane receptor Frizzled7 (FZD7) was upregulated in response to dietary Glu patterns, and its perturbations in intestinal organoids (IOs) treated with a specific inhibitor and in FZD7-KO IPEC-J2 cells disrupted the link between Glu inputs and β-catenin signalling and a subsequent reduction in cell viability. Furthermore, co-localization, coimmunoprecipitation (Co-IP), isothermal titration calorimetry (ITC), and microscale thermophoresis (MST) revealed that Glu served as a signalling molecule directly bound to FZD7. We propose that FZD7-mediated integration of the extracellular Glu signal controls ISC proliferation and differentiation, which provides new insights into the crosstalk of nutrients and ISCs.
Collapse
Affiliation(s)
- Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Min Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Zhou JY, Zan GX, Zhu QJ, Gao CQ, Yan HC, Wang XQ. Recombinant Porcine R-Spondin 1 Facilitates Intestinal Stem Cell Expansion along the Crypt-Villus Axis through Potentiating Wnt/β-Catenin Signaling in Homeostasis and Deoxynivalenol Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10644-10653. [PMID: 35997221 DOI: 10.1021/acs.jafc.2c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-spondin 1 (RSPO1) is a ligand for the intestinal stem cell (ISC) marker Lgr5 in the crypt, which functions to amplify canonical Wnt signaling to stimulate the division of ISCs. Despite the crucial role of recombinant human RSPO1 (rhRSPO1) in homeostasis and regeneration, little is known about RSPO1 among different species. Here, we cloned the porcine RSPO1 (pRSPO1) gene and obtained rpRSPO1 protein through the expression system of the recombinant Escherichia coli Rosetta (DE3) chemical competent cells. Using the in vitro IPEC-J2 model that combines cell proliferation evaluation approaches, we identified the rpRSPO1 activity in stimulating jejunal epithelial cells. And upon deoxynivalenol challenge in mice, we found that rpRSPO1 ameliorated their growth retardation and jejunal epithelial integrity. Importantly, the ISCs in the jejunum had greater proliferation and differentiation potential that was accompanied by Wnt/β-catenin pathway activation after rpRSPO1 modulation. Subsequently, the jejunal organoids expanded from these ISCs ex vivo presented robust growth advantages. And the rpRSPO1 was able to guide Wnt/β-catenin activity to increase ISC activity. Our work systematically demonstrates that rpRSPO1 facilitates ISC expansion by potentiating Wnt/β-catenin signaling during homeostasis and responding to deoxynivalenol perturbations.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Geng-Xiu Zan
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Jie Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
25
|
Zhang Y, Yin L, Zeng X, Li J, Yin Y, Wang Q, Li J, Yang H. Dietary High Dose of Iron Aggravates the Intestinal Injury but Promotes Intestinal Regeneration by Regulating Intestinal Stem Cells Activity in Adult Mice With Dextran Sodium Sulfate-Induced Colitis. Front Vet Sci 2022; 9:870303. [PMID: 35782573 PMCID: PMC9240710 DOI: 10.3389/fvets.2022.870303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of excessive dietary iron intake on the body have been an important topic. The purpose of this study was to investigate the effects of high-dose iron on intestinal damage and regeneration in dextran sodium sulfate (DSS)-induced colitis model mice. A total of 72 8-week-old adult C57BL/6 mice were randomly divided into two dietary treatment groups: the basal diet supplemented with 45 (control) and 450 mg/kg iron (high-iron) from ferrous sulfate. The mice were fed different diets for 2 weeks, and then 2.5% DSS was orally administered to all mice for 7 days. Samples of different tissues were collected on days 0, 3, and 7 post administration (DPA). High-iron treatment significantly decreased the relative weight of the large intestine at 7 DPA but not at 0 DPA or 3 DPA. High dietary iron increased the jejunal villus width at 0 DPA, decreased the villus width and the crypt depth of the jejunum at 3 DPA, and decreased the number of colonic crypts at 7 DPA. Meanwhile, high dietary iron decreased the number of goblet cells in the jejunal villi and the Paneth cells in the jejunal crypts at 0 DPA, increased the number of goblet cells per crypt of the colon at 3 DPA, and the number of Paneth cells in the jejunal crypts, the goblet cells in the colon, the Ki67-positive proliferating cells in the colon, and the Sex-determining region Y-box transcription factor 9+ (SOX9) cells in the jejunum crypts and colon at 7 DPA. The organoid formation rate was increased by high-iron treatments at 3 DPA and 7 DPA. High dietary iron treatment decreased the mRNA level of jejunal jagged canonical Notch ligand 2 (Jag-2) at 0 DPA and bone morphogenetic protein 4 (Bmp4) and neural precursor cell-expressed developmentally downregulated 8 (Nedd8) in the jejunum and colon at 7 DPA, whereas it increased the mRNA expression of the serum/glucocorticoid-regulated kinase 1 (Sgk1) in the colon at 3 DPA. The results suggested that a high dose of iron aggravated intestinal injury but promoted intestinal repair by regulating intestinal epithelial cell renewal and intestinal stem cell activity in adult mice with colitis.
Collapse
Affiliation(s)
- Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lanmei Yin
| | - Xianglin Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, China
- Huansheng Yang
| |
Collapse
|
26
|
Ma P, Fang P, Ren T, Fang L, Xiao S. Porcine Intestinal Organoids: Overview of the State of the Art. Viruses 2022; 14:1110. [PMID: 35632851 PMCID: PMC9147602 DOI: 10.3390/v14051110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
The intestinal tract is a crucial part of the body for growth and development, and its dysregulation can cause several diseases. The lack of appropriate in vitro models hampers the development of effective preventions and treatments against these intestinal tract diseases. Intestinal organoids are three-dimensional (3D) polarized structures composed of different types of cells capable of self-organization and self-renewal, resembling their organ of origin in architecture and function. Porcine intestinal organoids (PIOs) have been cultured and are used widely in agricultural, veterinary, and biomedical research. Based on the similarity of the genomic sequence, anatomic morphology, and drug metabolism with humans and the difficulty in obtaining healthy human tissue, PIOs are also considered ideal models relative to rodents. In this review, we summarize the current knowledge on PIOs, emphasizing their culturing, establishment and development, and applications in the study of host-microbe interactions, nutritional development, drug discovery, and gene editing potential.
Collapse
Affiliation(s)
- Panpan Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tianze Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (P.M.); (T.R.); (L.F.); (S.X.)
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
27
|
Kawasaki M, Goyama T, Tachibana Y, Nagao I, Ambrosini YM. Farm and Companion Animal Organoid Models in Translational Research: A Powerful Tool to Bridge the Gap Between Mice and Humans. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:895379. [PMID: 35647577 PMCID: PMC9133531 DOI: 10.3389/fmedt.2022.895379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/26/2022] [Indexed: 12/19/2022] Open
Abstract
Animal organoid models derived from farm and companion animals have great potential to contribute to human health as a One Health initiative, which recognize a close inter-relationship among humans, animals and their shared environment and adopt multi-and trans-disciplinary approaches to optimize health outcomes. With recent advances in organoid technology, studies on farm and companion animal organoids have gained more attention in various fields including veterinary medicine, translational medicine and biomedical research. Not only is this because three-dimensional organoids possess unique characteristics from traditional two-dimensional cell cultures including their self-organizing and self-renewing properties and high structural and functional similarities to the originating tissue, but also because relative to conventional genetically modified or artificially induced murine models, companion animal organoids can provide an excellent model for spontaneously occurring diseases which resemble human diseases. These features of companion animal organoids offer a paradigm-shifting approach in biomedical research and improve translatability of in vitro studies to subsequent in vivo studies with spontaneously diseased animals while reducing the use of conventional animal models prior to human clinical trials. Farm animal organoids also could play an important role in investigations of the pathophysiology of zoonotic and reproductive diseases by contributing to public health and improving agricultural production. Here, we discuss a brief history of organoids and the most recent updates on farm and companion animal organoids, followed by discussion on their potential in public health, food security, and comparative medicine as One Health initiatives. We highlight recent evolution in the culturing of organoids and their integration with organ-on-a-chip systems to overcome current limitations in in vitro studies. We envision multidisciplinary work integrating organoid culture and organ-on-a-chip technology can contribute to improving both human and animal health.
Collapse
Affiliation(s)
| | | | | | | | - Yoko M. Ambrosini
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| |
Collapse
|
28
|
Cai G, Zhong F, Cao Q, Bai Y, Zou H, Gu J, Yuan Y, Zhu G, Liu Z, Bian J. ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113470. [PMID: 35395601 DOI: 10.1016/j.ecoenv.2022.113470] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
The complex microbial community in food environment is a major problem of human or animal health and safety. Mycotoxins and food-borne bacteria can both induce inflammation in the body and cause a series of changes in biological functions. In this study, mice were gavaged with low doses of ZEA, DON, or ZEA + DON, and then infected with L. monocytogenes. A cytokine microarray, including 40 inflammation-related serum cytokines, and proteomics were used to verify the effects of ZEA, DON, and ZEA + DON on the host inflammation and biological function after L. monocytogenes infection. The results showed that mononucleosis after bacterial infection was inhibited by ZEA, DON, and ZEA + DON, while the balance of macrophage differentiation was shifted toward M2-type. ZEA, DON, and ZEA + DON decreased the levels of serum proinflammatory cytokines IL-1β and IL-12 after infection. In addition, the signal of the NF-κB pathway was inhibited. Proteomic results showed that ZEA, DON, and ZEA + DON led to biological dysfunction in ribosomal and metabolic cells, primarily leading to abnormal ribosomal hyperfunction. This study showed that ZEA, DON, and ZEA + DON can aggravate disease progression by inhibiting the inflammatory response following foodborne bacterial infection. These metabolites may also disrupt normal biological functions, which may lead to ribosomal hyperfunction, making bacterial clearance more difficult.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Qianying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yuni Bai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
29
|
Yin L, Li J, Zhang Y, Yang Q, Yang C, Yi Z, Yin Y, Wang Q, Li J, Ding N, Zhang Z, Yang H, Yin Y. Changes in progenitors and differentiated epithelial cells of neonatal piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:265-276. [PMID: 34988308 PMCID: PMC8693152 DOI: 10.1016/j.aninu.2021.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
This study aimed to assess the changes of small intestinal morphology, progenitors, differentiated epithelial cells, and potential mechanisms in neonatal piglets. Hematoxylin and eosin staining of samples from 36 piglets suggested that dramatic changes were observed in the jejunum crypts depth and crypt fission index of neonatal piglets (P < 0.001). The number of intestinal stem cells (ISC) tended to increase (P < 0.10), and a decreased number of enteroendocrine cells appeared in the jejunal crypt on d 7 (P < 0.05). Furthermore, the mRNA expression of jejunal chromogranin A (ChgA) was down-regulated in d 7 piglets (P < 0.05). There was an up-regulation of the adult ISC marker gene of SPARC related modular calcium binding 2 (Smoc2), and Wnt/β-catenin target genes on d 7 (P < 0.05). These results were further verified in vitro enteroid culture experiments. A mass of hollow spheroids was cultured from the fetal intestine of 0-d-old piglets (P < 0.001), whereas substantial organoids with budding and branching structures were cultured from the intestine of 7-d-old piglets (P < 0.001). The difference was reflected by the organoid budding efficiency, crypt domains per organoid, and the surface area of the organoid. Furthermore, spheroids on d 0 had more Ki67-positive cells and enteroendocrine cells (P < 0.05) and showed a decreasing trend in the ISC and goblet cells (P < 0.10). Moreover, the mRNA expression of spheroids differed markedly from that of organoids, with low expression of intestinal differentiation gene (Lysozyme; P < 0.05), epithelial-specific markers (Villin, E-cadherin; P < 0.05), and adult ISC markers (leucine-rich repeat-containing G protein-coupled receptor 5 [Lgr5], Smoc2; P < 0.001), and up-regulation of fetal marker (connexin 43 [Cnx43]; P < 0.05). The mRNA expression of relevant genes was up-regulated, and involved in Wnt/β-catenin, epidermal growth factor (EGF), Notch, and bone morphogenetic protein (BMP) signaling on d 7 organoids (P < 0.05). Spheroids displayed low differentiated phenotype and high proliferation, while organoids exhibited strong differentiation potential. These results indicated that the conversion from the fetal progenitors (spheroids) to adult ISC (normal organoids) might largely be responsible for the fast development of intestinal epithelial cells in neonatal piglets.
Collapse
Affiliation(s)
- Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Qing Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Cuiyan Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhenfeng Yi
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Nengshui Ding
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Zhigang Zhang
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, Fujian, 363000, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Yulong Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
30
|
Joo SS, Gu BH, Park YJ, Rim CY, Kim MJ, Kim SH, Cho JH, Kim HB, Kim M. Porcine Intestinal Apical-Out Organoid Model for Gut Function Study. Animals (Basel) 2022; 12:ani12030372. [PMID: 35158695 PMCID: PMC8833427 DOI: 10.3390/ani12030372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Pigs have been used in various animal model studies on the gastrointestinal tract (GIT) across both animal science and biomedical science fields. Recently, intestinal organoids have been used as a research tool for the GIT, and they have also been applied to farm animals, including pigs. However, to our knowledge, no functional studies of the porcine intestine using intestinal organoids have been conducted to date. In the present study, we developed two porcine intestinal organoid models (basal-out and apical-out organoids) and compared their characteristics. We also confirmed the possibility of conducting research related to intestinal functions, such as nutrient uptake and gut barrier function. The present study suggests that porcine intestinal organoids can be used as potential models for future GIT mechanism studies, such as host–microbe interactions, harmful ingredient tests, and nutritional research. Abstract Pig models provide valuable research information on farm animals, veterinary, and biomedical sciences. Experimental pig gut models are used in studies on physiology, nutrition, and diseases. Intestinal organoids are powerful tools for investigating intestinal functions such as nutrient uptake and gut barrier function. However, organoids have a basal-out structure and need to grow in the extracellular matrix, which causes difficulties in research on the intestinal apical membrane. We established porcine intestinal organoids from jejunum tissues and developed basal-out and apical-out organoids using different sub-culture methods. Staining and quantitative real-time PCR showed the difference in axis change of the membrane and gene expression of epithelial cell marker genes. To consider the possibility of using apical-out organoids for intestinal function, studies involving fatty acid uptake and disruption of the epithelial barrier were undertaken. Fluorescence fatty acid was more readily absorbed in apical-out organoids than in basal-out organoids within the same time. To determine whether apical-out organoids form a functional barrier, a fluorescent dextran diffusion assay was performed. Hence, we successfully developed porcine intestinal organoid culture systems and showed that the porcine apical-out organoid model is ideal for the investigation of the intestinal environment. It can be used in future studies related to the intestine across various research fields.
Collapse
Affiliation(s)
- Sang-Seok Joo
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Yei-Ju Park
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Chae-Yun Rim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
| | - Min-Ji Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; (M.-J.K.); (S.-H.K.)
| | - Sang-Ho Kim
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea; (M.-J.K.); (S.-H.K.)
| | - Jin-Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Hyeun-Bum Kim
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, Korea;
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Korea; (S.-S.J.); (Y.-J.P.); (C.-Y.R.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
- Correspondence: ; Tel.: +82-55-350-5516; Fax: +82-55-350-5519
| |
Collapse
|
31
|
Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Stem Cell Rev Rep 2022; 18:2137-2151. [PMID: 34181185 PMCID: PMC8237043 DOI: 10.1007/s12015-021-10205-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Intestinal dysfunction is frequently driven by abnormalities of specific genes, microbiota, or microenvironmental factors, which usually differ across individuals, as do intestinal physiology and pathology. Therefore, it's necessary to develop personalized therapeutic strategies, which are currently limited by the lack of a simulated intestine model. The mature human intestinal mucosa is covered by a single layer of columnar epithelial cells that are derived from intestinal stem cells (ISCs). The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments. However, a simulated intestine model will serve as an indispensable foundation for personalized drug screening. In this article, we review the advantages and disadvantages of conventional 2-dimensional models, intestinal organoid models, and current microfluidic intestine-on-a-chip (IOAC) models. The main technological strategies are summarized, and an advanced microfluidic primary IOAC model is proposed for personalized intestinal medicine. In this model, primary ISCs and the microbiome are isolated from individuals and co-cultured in a multi-channel microfluidic chip to establish a microengineered intestine device. The device can faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions. Moreover, the ISCs can be genetically edited before seeding, and monitoring sensors and post-analysis abilities can also be incorporated into the device to achieve high-throughput and rapid pharmaceutical studies. We also discuss the potential future applications and challenges of the microfluidic platform. The development of cell biology, biomaterials, and tissue engineering will drive the advancement of the simulated intestine, making a significant contribution to personalized medicine in the future. Graphical abstract The intestine is a primary organ for digestion, absorption, and metabolism, as well as a major site for the host-commensal microbiota interaction and mucosal immunity. The complexity of the organ dramatically increases the difficulty of faithfully mimicking in vivo microenvironments, though physiological 3-dimensional of the native small intestinal epithelial tissue has been well documented. An intestinal stem cells-based microfluidic intestine-on-a-chip model that faithfully simulate in vivo fluidic flow, peristalsis-like motions, host-microbe crosstalk, and multi-cell type interactions will make a significant contribution.
Collapse
|
32
|
Segura-Wang M, Grenier B, Ilic S, Ruczizka U, Dippel M, Bünger M, Hackl M, Nagl V. MicroRNA Expression Profiling in Porcine Liver, Jejunum and Serum upon Dietary DON Exposure Reveals Candidate Toxicity Biomarkers. Int J Mol Sci 2021; 22:ijms222112043. [PMID: 34769473 PMCID: PMC8585098 DOI: 10.3390/ijms222112043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
Deoxynivalenol (DON), a frequent mycotoxin worldwide, impairs human and animal health. The response of microRNAs, small non-coding RNAs, to DON has been scarcely investigated, but holds remarkable potential for biomarker applications. Hence, we aimed to investigate DON-induced changes in the microRNA expression in porcine liver, jejunum and serum by combining targeted and untargeted analyses. Piglets received uncontaminated feed or feed containing 900 µg/kg and 2500 µg/kg DON for four weeks, followed by a wash-out period. In tissue, only slight changes in microRNA expression were detected, with ssc-miR-10b being downregulated in liver of DON-exposed piglets. In serum, several microRNAs were differentially expressed upon DON exposure, four of which were validated by qPCR (ssc-miR-16, ssc-miR-128, ssc-miR-451, ssc-miR-205). The serum microRNA response to DON increased over time and declined after removal of contaminated diets. Receiver operating curve analyses for individual microRNAs were significant, and a combination of the four microRNAs increased the predictive capacity for DON exposure. Predicted microRNA target genes showed enrichment of several pathways including PIK3-AKT, Wnt/β-catenin, and adherens junctions. This study gives, for the first time, a comprehensive view of the porcine microRNA response to DON, providing a basis for future research on microRNAs as biomarkers for mycotoxins.
Collapse
Affiliation(s)
- Maia Segura-Wang
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (M.S.-W.); (B.G.); (S.I.)
| | - Bertrand Grenier
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (M.S.-W.); (B.G.); (S.I.)
| | - Suzana Ilic
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (M.S.-W.); (B.G.); (S.I.)
| | - Ursula Ruczizka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | - Maximiliane Dippel
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | | | - Veronika Nagl
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (M.S.-W.); (B.G.); (S.I.)
- Correspondence: ; Tel.: +43-2272-81166-0
| |
Collapse
|
33
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|
34
|
Liu ZH, Xie WW, Zan GX, Gao CQ, Yan HC, Zhou JY, Wang XQ. Lauric acid alleviates deoxynivalenol-induced intestinal stem cell damage by potentiating the Akt/mTORC1/S6K1 signaling axis. Chem Biol Interact 2021; 348:109640. [PMID: 34506767 DOI: 10.1016/j.cbi.2021.109640] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022]
Abstract
Intestinal stem cell (ISC)-driven intestinal homeostasis is subjected to dual regulation by dietary nutrients and toxins. Our study investigated the use of lauric acid (LA) to alleviate deoxynivalenol (DON)-induced intestinal epithelial damage. C57BL/6 mice in the control, LA, DON, and LA + DON groups were orally administered PBS, 10 mg/kg BW LA, 2 mg/kg BW DON, and 10 mg/kg BW LA + 2 mg/kg BW DON for 10 days. The results showed that LA increased the average daily gain and average daily feed intake of the mice exposed to DON. Moreover, the DON-triggered impairment of jejunal morphology and barrier function was significantly improved after LA supplementation. Moreover, LA rescued ISC proliferation, inhibited intestinal cell apoptosis, and promoted ISC differentiation into absorptive cells, goblet cells, and Paneth cells. The jejunum crypt cells from the mice in the LA group expanded into enteroids, resulting in a significantly greater enteroid area than that in the DON group. Furthermore, LA reversed the DON-mediated inhibition of the Akt/mTORC1/S6K1 signaling axis in the jejunum. Our results indicated that LA accelerates ISC regeneration to repair intestinal epithelial damage after DON insult by reactivating the Akt/mTORC1/S6K1 signaling pathway, which provides new implications for the function of LA in ISCs.
Collapse
Affiliation(s)
- Zhen-Hua Liu
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Wen-Wen Xie
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Rajput SA, Liang SJ, Wang XQ, Yan HC. Lycopene Protects Intestinal Epithelium from Deoxynivalenol-Induced Oxidative Damage via Regulating Keap1/Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10091493. [PMID: 34573125 PMCID: PMC8466454 DOI: 10.3390/antiox10091493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Deoxynivalenol (DON) is a threatening mycotoxin primarily present in the agricultural environment, especially in food commodities and animal forages, and exerts significant global health hazards. Lycopene (LYC) is a potent antioxidant carotenoid mainly present in tomatoes and other fruits with enormous health benefits. The present study was designed to ascertain whether LYC could protect DON-induced intestinal epithelium oxidative injury by regulating Keap1/Nrf2 signaling in the intestine of mice. A total of forty-eight mice were randomly distributed into four groups (n = 12), Control (CON), 10 mg/kg BW LYC, 3 mg/kg BW DON, and 3 mg/kg DON + 10 mg/kg LYC BW (DON + LYC). The experimental groups were treated by intragastric administration for 11 days. Our results showed that LYC significantly increased average daily feed intake (ADFI), average daily gain (ADG), and repaired intestinal injury and barrier dysfunction, as evident by increased trans-epithelial electrical resistance (TEER) and decreased diamine oxidase (DAO) activity, as well as up-regulated tight junction proteins (occludin, claudin-1) under DON exposure. Furthermore, LYC treatment stabilized the functions of intestinal epithelial cells (Lgr5, PCNA, MUC2, LYZ, and Villin) under DON exposure. Additionally, LYC alleviated DON-induced oxidative stress by reducing ROS and MDA accumulation and enhancing the activity of antioxidant enzymes (CAT, T-SOD, T-AOC, and GSH-Px), which was linked with the activation of Nrf2 signaling and degradation of Keap1 expression. Conclusively, our findings demonstrated that LYC protects intestinal epithelium from oxidative injury by modulating the Keap1/Nrf2 signaling pathway under DON exposure. These novel findings could lead to future research into the therapeutic use of LYC to protect the DON-induced harmful effects in humans and/or animals.
Collapse
Affiliation(s)
| | | | - Xiu-Qi Wang
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| | - Hui-Chao Yan
- Correspondence: (X.-Q.W.); (H.-C.Y.); Tel./Fax: +86-20-38295462 (X.-Q.W.)
| |
Collapse
|
36
|
Zhou JY, Lin HL, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. l-Carnosine Protects Against Deoxynivalenol-Induced Oxidative Stress in Intestinal Stem Cells by Regulating the Keap1/Nrf2 Signaling Pathway. Mol Nutr Food Res 2021; 65:e2100406. [PMID: 34216418 DOI: 10.1002/mnfr.202100406] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Indexed: 12/23/2022]
Abstract
SCOPE The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, 510642, China
| |
Collapse
|
37
|
Cai G, Xia S, Zhong F, Liu S, Gu J, Yuan Y, Zhu G, Zou H, Liu Z, Bian J. Zearalenone and deoxynivalenol reduced Th1-mediated cellular immune response after Listeria monocytogenes infection by inhibiting CD4 + T cell activation and differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117514. [PMID: 34261220 DOI: 10.1016/j.envpol.2021.117514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Based on the fact that mycotoxins and the food-borne bacteria coexist in the natural environment and pose a significant health hazard to humans and animals, it is important to investigate the immunosuppressive mechanism of ZEA (zearalenone), DON (deoxynivalenol), and their combination in bacterial infections. In this study, we established a mouse model of mycotoxin low-dose exposure combined with Listeria monocytogenes infection and investigated the effects of ZEA, DON and their combination on Th1-mediated anti-intracellular bacterial infection based on CD4+ T cell activation and differentiation using both in vitro and in vivo analyses. The present study showed that both ZEA and DON aggravated Listeria monocytogenes infection in mice and affected the activation of CD4+ T cells and Th1 differentiation, including the effects on costimulatory molecules CD28 and CD152 and on cross-linking of IL-12 and IL-12R, by inhibiting T cell receptor (TCR) signaling. When compared with ZEA, DON was found to have a greater impact on many related indicators. Surprisingly, the combined effects of ZEA and DON did not appear to enhance toxicity compared to treatment with the individual mycotoxins. Our findings more clearly revealed that exposure to low-dose ZEA and DON caused immunosuppression in the body by mechanisms including inhibition of CD4+ T cells activation and reduction of Th1 cell differentiation, thus exacerbating infection of animals by Listeria monocytogenes.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shuangshuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
38
|
Yin L, Yang Q, Zhang Y, Wan D, Yin Y, Wang Q, Huang J, Li J, Yang H, Yin Y. Dietary Copper Improves Intestinal Morphology via Modulating Intestinal Stem Cell Activity in Pigs. Animals (Basel) 2021; 11:2513. [PMID: 34573479 PMCID: PMC8471658 DOI: 10.3390/ani11092513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Copper (Cu) is an essential micronutrient for animals. Many studies have been conducted on the effects of dietary Cu on growth performance, intestinal morphology, and function of piglets. However, the underlying mechanism remains to be explored. Intestinal stem cells (ISC) drive the development and constant renewal of intestinal epithelium. Therefore, we hypothesized that dietary Cu affects piglets' intestinal development via modulating ISC activity. A total of eighty-five 21-day-old piglets were randomly assigned to five groups, where 25, 50, 75, 100, and 125 mg CuSO4/kg on a dry matter basis were supplemented to the basal diet at phase 1 (day 0 to 21). Increasing the dietary Cu concentration decreased (p < 0.05) villus width but increased (p < 0.001) the number of Ki67-positive cells. At phase 2 (day 22 to 163), the other 45 pigs were offered the same diets. Villus height in the 125 mg/kg Cu group was greater (p < 0.001) than in the other groups. Moreover, the effects of Cu on ISC activity in vitro were tested to explore the underlying mechanism. Compared to the control group, 10 μmol/L CuSO4·5H2O increased (p < 0.001) the organoid budding efficiency, crypt depth, and crypts per organoid. Dietary Cu improved the intestinal morphology of finishing pigs via promoting cell proliferation and modulating ISC activity.
Collapse
Affiliation(s)
- Lanmei Yin
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Qing Yang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Yiming Zhang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Dan Wan
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| | - Qiye Wang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Jing Huang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
| | - Jianzhong Li
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huansheng Yang
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yulong Yin
- Laboratory of Animal Nutrition and Human Health, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (L.Y.); (Q.Y.); (Y.Z.); (Q.W.); (J.H.); (J.L.); (Y.Y.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (D.W.); (Y.Y.)
| |
Collapse
|
39
|
Vermeire B, Gonzalez LM, Jansens RJJ, Cox E, Devriendt B. Porcine small intestinal organoids as a model to explore ETEC-host interactions in the gut. Vet Res 2021; 52:94. [PMID: 34174960 PMCID: PMC8235647 DOI: 10.1186/s13567-021-00961-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Small intestinal organoids, or enteroids, represent a valuable model to study host–pathogen interactions at the intestinal epithelial surface. Much research has been done on murine and human enteroids, however only a handful studies evaluated the development of enteroids in other species. Porcine enteroid cultures have been described, but little is known about their functional responses to specific pathogens or their associated virulence factors. Here, we report that porcine enteroids respond in a similar manner as in vivo gut tissues to enterotoxins derived from enterotoxigenic Escherichia coli, an enteric pathogen causing postweaning diarrhoea in piglets. Upon enterotoxin stimulation, these enteroids not only display a dysregulated electrolyte and water balance as shown by their swelling, but also secrete inflammation markers. Porcine enteroids grown as a 2D-monolayer supported the adhesion of an F4+ ETEC strain. Hence, these enteroids closely mimic in vivo intestinal epithelial responses to gut pathogens and are a promising model to study host–pathogen interactions in the pig gut. Insights obtained with this model might accelerate the design of veterinary therapeutics aimed at improving gut health.
Collapse
Affiliation(s)
- Bjarne Vermeire
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Liara M Gonzalez
- Laboratory of Intestinal Regenerative Medicine, College of Veterinary Medicine, NCSU, Raleigh, NC, USA
| | - Robert J J Jansens
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Eric Cox
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Laboratory of Immunology, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
40
|
Kar SK, Wells JM, Ellen ED, Te Pas MFW, Madsen O, Groenen MAM, Woelders H. Organoids: a promising new in vitro platform in livestock and veterinary research. Vet Res 2021; 52:43. [PMID: 33691792 PMCID: PMC7943711 DOI: 10.1186/s13567-021-00904-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids are self-organizing, self-renewing three-dimensional cellular structures that resemble organs in structure and function. They can be derived from adult stem cells, embryonic stem cells, or induced pluripotent stem cells. They contain most of the relevant cell types with a topology and cell-to-cell interactions resembling that of the in vivo tissue. The widespread and increasing adoption of organoid-based technologies in human biomedical research is testament to their enormous potential in basic, translational- and applied-research. In a similar fashion there appear to be ample possibilities for research applications of organoids from livestock and companion animals. Furthermore, organoids as in vitro models offer a great possibility to reduce the use of experimental animals. Here, we provide an overview of studies on organoids in livestock and companion animal species, with focus on the methods developed for organoids from a variety of tissues/organs from various animal species and on the applications in veterinary research. Current limitations, and ongoing research to address these limitations, are discussed. Further, we elaborate on a number of fields of research in animal nutrition, host-microbe interactions, animal breeding and genomics, and animal biotechnology, in which organoids may have great potential as an in vitro research tool.
Collapse
Affiliation(s)
- Soumya K Kar
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands.
| | - Jerry M Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Esther D Ellen
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Marinus F W Te Pas
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
41
|
Beaumont M, Blanc F, Cherbuy C, Egidy G, Giuffra E, Lacroix-Lamandé S, Wiedemann A. Intestinal organoids in farm animals. Vet Res 2021; 52:33. [PMID: 33632315 PMCID: PMC7905770 DOI: 10.1186/s13567-021-00909-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding tissue-derived intestinal epithelial stem cells in a 3-dimensional culture environment reproducing in vitro the stem cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithelial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of the native epithelium. The phenotype of intestinal organoids is stable in long-term culture and reflects characteristics of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most of the studies using livestock intestinal organoids were used to investigate host-microbe interactions at the epithelial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, including the presence of non-epithelial cell types and of the gut microbiota. Harmonization of the methods used to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in farm animals, present their phenotypes and discuss current and future applications of this innovative culture system of the digestive epithelium.
Collapse
Affiliation(s)
- Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, 31326, France.
| | - Fany Blanc
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Claire Cherbuy
- Micalis, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Giorgia Egidy
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | - Elisabetta Giuffra
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, France
| | | | - Agnès Wiedemann
- ISP, INRAE, Université de Tours, Nouzilly, 37380, France.,IRSD - Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| |
Collapse
|
42
|
Holanda DM, Kim SW. Mycotoxin Occurrence, Toxicity, and Detoxifying Agents in Pig Production with an Emphasis on Deoxynivalenol. Toxins (Basel) 2021; 13:toxins13020171. [PMID: 33672250 PMCID: PMC7927007 DOI: 10.3390/toxins13020171] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review aimed to investigate the occurrence of mycotoxins, their toxic effects, and the detoxifying agents discussed in scientific publications that are related to pig production. Mycotoxins that are of major interest are aflatoxins and Fusarium toxins, such as deoxynivalenol and fumonisins, because of their elevated frequency at a global scale and high occurrence in corn, which is the main feedstuff in pig diets. The toxic effects of aflatoxins, deoxynivalenol, and fumonisins include immune modulation, disruption of intestinal barrier function, and cytotoxicity leading to cell death, which all result in impaired pig performance. Feed additives, such as mycotoxin-detoxifying agents, that are currently available often combine organic and inorganic sources to enhance their adsorbability, immune stimulation, or ability to render mycotoxins less toxic. In summary, mycotoxins present challenges to pig production globally because of their increasing occurrences in recent years and their toxic effects impairing the health and growth of pigs. Effective mycotoxin-detoxifying agents must be used to boost pig health and performance and to improve the sustainable use of crops.
Collapse
|
43
|
Zhu M, Qin YC, Gao CQ, Yan HC, Wang XQ. l-Glutamate drives porcine intestinal epithelial renewal by increasing stem cell activity via upregulation of the EGFR-ERK-mTORC1 pathway. Food Funct 2021; 11:2714-2724. [PMID: 32163057 DOI: 10.1039/c9fo03065d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
l-Glutamate (Glu) is a nutritionally functional amino acid for pigs. In addition, intestinal stem cells (ISCs) maintain epithelial renewal and homeostasis by dynamically regulating proliferation and differentiation to cope with environmental cues. The rapid renewal of the intestinal epithelium requires a continuous supply of energy sources such as Glu. However, the effects of Glu on ISCs and epithelial renewal are poorly understood. In this study, we found that dietary Glu accelerated intestinal epithelial renewal and gut growth. The epidermal growth factor receptor (EGFR)/extracellular regulated protein kinase (ERK) pathway and mechanistic target of rapamycin complex 1 (mTORC1) signaling were involved in this response in piglets. Subsequent cellular assessment suggested that the EGFR/ERK pathway was upstream of Glu-induced mTORC1 signaling activation. Furthermore, we found that Glu activated the EGFR/ERK pathway and promoted ISC proliferation and differentiation in porcine intestinal organoids. Collectively, our findings suggest that Glu drives intestinal epithelial renewal by increasing ISC activity via the EGFR/ERK/mTORC1 pathway. The present study provides direct evidence that mTORC1 is activated by extracellular Glu through EGFR and that Glu acts as a nutritionally functional amino acid for piglets to maintain intestinal growth and health.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China.
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China.
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China.
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China.
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou 510642, China.
| |
Collapse
|
44
|
Zhou JY, Huang DG, Gao CQ, Yan HC, Zou SG, Wang XQ. Heat-stable enterotoxin inhibits intestinal stem cell expansion to disrupt the intestinal integrity by downregulating the Wnt/β-catenin pathway. Stem Cells 2021; 39:482-496. [PMID: 33373490 DOI: 10.1002/stem.3324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Enterotoxigenic Escherichia coli causes severe infectious diarrhea with high morbidity and mortality in newborn and weanling pigs mainly through the production of heat-stable enterotoxins (STs). However, the precise regulatory mechanisms involved in ST-induced intestinal epithelium injury remain unclear. Consequently, we conducted the experiments in vivo (mice), ex vivo (mouse and porcine enteroids), and in vitro (MODE-K and IPEC-J2 cells) to explore the effect of STp (one type of STa) on the integrity of the intestinal epithelium. The results showed that acute STp exposure led to small intestinal edema, disrupted intestinal integrity, induced crypt cell expansion into spheroids, and downregulated Wnt/β-catenin activity in the mice. Following a similar trend, the enteroid-budding efficiency and the expression of Active β-catenin, β-catenin, Lgr5, PCNA, and KRT20 were significantly decreased after STp treatment, as determined ex vivo. In addition, STp inhibited cell proliferation, induced cell apoptosis, destroyed cell barriers, and reduced Wnt/β-catenin activity by downregulating its membrane receptor Frizzled7 (FZD7). In contrast, Wnt/β-catenin reactivation protected the IPEC-J2 cells from STp-induced injury. Taking these findings together, we conclude that STp inhibits intestinal stem cell expansion to disrupt the integrity of the intestinal mucosa through the downregulation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, People's Republic of China
| | - Deng-Gui Huang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, People's Republic of China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, People's Republic of China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, People's Republic of China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, People's Republic of China
| | - Shi-Geng Zou
- Wen's Group Academy, Wen's Foodstuffs Group Co, Ltd, Xinxing, People's Republic of China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, People's Republic of China
| |
Collapse
|
45
|
Seeger B. Farm Animal-derived Models of the Intestinal Epithelium: Recent Advances and Future Applications of Intestinal Organoids. Altern Lab Anim 2020; 48:215-233. [PMID: 33337913 DOI: 10.1177/0261192920974026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Farm animals play an important role in translational research as large animal models of the gastrointestinal (GI) tract. The mechanistic investigation of zoonotic diseases of the GI tract, in which animals can act as asymptomatic carriers, could provide important information for therapeutic approaches. In veterinary medicine, farm animals are no less relevant, as they can serve as models for the development of diagnostic and therapeutic approaches of GI diseases in the target species. However, farm animal-derived cell lines of the intestinal epithelium are rarely available from standardised cell banks and, in addition, are not usually specific for certain sections of the intestine. Immortalised porcine or bovine enterocytic cell lines are more widely available, compared to goat or sheep-derived cell lines; no continuous cell lines are available from the chicken. Other epithelial cell types with intestinal section-specific distribution and function, such as goblet cells, enteroendocrine cells, Paneth cells and intestinal stem cells, are not represented in those cell line-based models. Therefore, intestinal organoid models of farm animal species, which are already widely used for mice and humans, are gaining importance. Crypt-derived or pluripotent stem cell-derived intestinal organoid models offer the possibility to investigate the mechanisms of inter-cell or host-pathogen interactions and to answer species-specific questions. This review is intended to give an overview of cell culture models of the intestinal epithelium of farm animals, discussing species-specific differences, culture techniques and some possible applications for intestinal organoid models. It also highlights the need for species-specific pluripotent stem cell-derived or crypt-derived intestinal organoid models for promotion of the Three Rs principles (replacement, reduction and refinement).
Collapse
Affiliation(s)
- Bettina Seeger
- Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, Institute for Food Toxicology, 460510University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
46
|
Signaling Network Centered on mTORC1 Dominates Mammalian Intestinal Stem Cell Ageing. Stem Cell Rev Rep 2020; 17:842-849. [PMID: 33201440 DOI: 10.1007/s12015-020-10073-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
The intestine integrates the function of digestion, absorption, and barrier, which is easily damaged by the external factors upon ageing. The intestinal stem cells (ISCs) exist at the intestinal crypt base and play an indispensable role in intestinal homeostasis and regeneration. The intestine ageing contributes to malabsorption and other associated illnesses, which were considered to be related to ISCs. Here, we summarize the current research progress of mammalian ISCs ageing and pay more attention to the central regulatory role of the mTORC1 signaling pathway in regulating mammalian ISCs ageing, and its related AMPK, FOXO, Wnt signaling pathways. Furthermore, we also discuss the interventions aimed at mTORC1 and its associated signaling pathways, which may provide potential strategies for rejuvenating aged ISCs and the therapy of age-related intestinal diseases. Graphical abstract Many signaling pathways are altered in the ageing ISCs, thereby inducing the decrease of ISC self-renewal, differentiation, and regeneration, an increasing of oxidative stress may contribute to damage to the ISCs. Interventions such as calorie restriction, fasting and so on can effectively alleviate these adverse effects.
Collapse
|
47
|
The Compromised Intestinal Barrier Induced by Mycotoxins. Toxins (Basel) 2020; 12:toxins12100619. [PMID: 32998222 PMCID: PMC7600953 DOI: 10.3390/toxins12100619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are fungal metabolites that occur in human foods and animal feeds, potentially threatening human and animal health. The intestine is considered as the first barrier against these external contaminants, and it consists of interconnected physical, chemical, immunological, and microbial barriers. In this context, based on in vitro, ex vivo, and in vivo models, we summarize the literature for compromised intestinal barrier issues caused by various mycotoxins, and we reviewed events related to disrupted intestinal integrity (physical barrier), thinned mucus layer (chemical barrier), imbalanced inflammatory factors (immunological barrier), and dysfunctional bacterial homeostasis (microbial barrier). We also provide important information on deoxynivalenol, a leading mycotoxin implicated in intestinal dysfunction, and other adverse intestinal effects induced by other mycotoxins, including aflatoxins and ochratoxin A. In addition, intestinal perturbations caused by mycotoxins may also contribute to the development of mycotoxicosis, including human chronic intestinal inflammatory diseases. Therefore, we provide a clear understanding of compromised intestinal barrier induced by mycotoxins, with a view to potentially develop innovative strategies to prevent and treat mycotoxicosis. In addition, because of increased combinatorial interactions between mycotoxins, we explore the interactive effects of multiple mycotoxins in this review.
Collapse
|
48
|
Mycotoxin Deoxynivalenol Has Different Impacts on Intestinal Barrier and Stem Cells by Its Route of Exposure. Toxins (Basel) 2020; 12:toxins12100610. [PMID: 32987679 PMCID: PMC7598581 DOI: 10.3390/toxins12100610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
The different effects of deoxynivalenol (DON) on intestinal barrier and stem cells by its route of exposure remain less known. We explored the toxic effects of DON on intestinal barrier functions and stem cells after DON microinjection (luminal exposure) or addition to a culture medium (basolateral exposure) using three-dimensional mouse intestinal organoids (enteroids). The influx test using fluorescein-labeled dextran showed that basolateral DON exposure (1 micromolar (µM) disrupted intestinal barrier functions in enteroids compared with luminal DON exposure at the same concentration. Moreover, an immunofluorescence experiment of intestinal epithelial proteins, such as E-cadherin, claudin, zonula occludens-1 (ZO-1), and occludin, exhibited that only basolateral DON exposure broke down intestinal epithelial integrity. A time-lapse analysis using enteroids from leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)-enhanced green fluorescence protein (EGFP) transgenic mice and 5-ethynyl-2-deoxyuridine (EdU) assay indicated that only the basolateral DON exposure, but not luminal DON exposure, suppressed Lgr5+ stem cell count and proliferative cell ratio, respectively. These results revealed that basolateral DON exposure has larger impacts on intestinal barrier function and stem cells than luminal DON exposure. This is the first report that DON had different impacts on intestinal stem cells depending on the administration route. In addition, RNA sequencing analysis showed different expression of genes among enteroids after basolateral and luminal DON exposure.
Collapse
|
49
|
Holanda DM, Yiannikouris A, Kim SW. Investigation of the Efficacy of a Postbiotic Yeast Cell Wall-Based Blend on Newly-Weaned Pigs under a Dietary Challenge of Multiple Mycotoxins with Emphasis on Deoxynivalenol. Toxins (Basel) 2020; 12:toxins12080504. [PMID: 32781569 PMCID: PMC7472238 DOI: 10.3390/toxins12080504] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Pigs are highly susceptible to mycotoxins. This study investigated the effects of a postbiotic yeast cell wall-based blend (PYCW; Nicholasville, KY, USA) on growth and health of newly-weaned pigs under dietary challenge of multiple mycotoxins. Forty-eight newly-weaned pigs (21 d old) were individually allotted to four dietary treatments, based on a three phase-feeding, in a randomized complete block design (sex; initial BW) with two factors for 36 d. Two factors were dietary mycotoxins (deoxynivalenol: 2000 μg/kg supplemented in three phases; and aflatoxin: 200 μg/kg supplemented only in phase 3) and PYCW (0.2%). Growth performance (weekly), blood serum (d 34), and jejunal mucosa immune and oxidative stress markers (d 36) data were analyzed using MIXED procedure of SAS. Mycotoxins reduced (p < 0.05) average daily feed intake (ADFI) and average daily gain (ADG) during the entire period whereas PYCW did not affect growth performance. Mycotoxins reduced (p < 0.05) serum protein, albumin, creatinine, and alanine aminotransferase whereas PYCW decreased (p < 0.05) serum creatine phosphokinase. Neither mycotoxins nor PYCW affected pro-inflammatory cytokines and oxidative damage markers in the jejunal mucosa. No interaction was observed indicating that PYCW improved hepatic enzymes regardless of mycotoxin challenge. In conclusion, deoxynivalenol (2000 μg/kg, for 7 to 25 kg body weight) and aflatoxin B1 (200 μg/kg, for 16 to 25 kg body weight) impaired growth performance and nutrient digestibility of newly-weaned pigs, whereas PYCW could partially improve health of pigs regardless of mycotoxin challenge.
Collapse
Affiliation(s)
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA;
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA;
- Correspondence:
| |
Collapse
|
50
|
Zhou JY, Lin HL, Wang Z, Zhang SW, Huang DG, Gao CQ, Yan HC, Wang XQ. Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114290. [PMID: 32155551 DOI: 10.1016/j.envpol.2020.114290] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The micronutrient, zinc, plays a vital role in modulating cellular signaling recognition and enhancing intestinal barrier function. However, the precise mechanisms underlying the zinc regulation of intestinal stem cell (ISC) renewal and regeneration ability, which drive intestinal epithelial turnover to maintain the intestinal barrier, under physiological and pathological conditions are unknown. In this study, we used in vivo mouse plus ex vivo enteroid model to investigate thoroughly the protection efficacy of zinc L-aspartate (Zn-Asp) on intestinal mucosal integrity exposed to deoxynivalenol (DON). The results showed that 10 rather than 20 mg/kg body weight (BW) Zn-Asp (calculation in zinc) significantly increased the jejunum mass and ameliorated mucosa injury caused by 2 mg/kg BW DON treatment, including improvement of the intestinal morphology and barrier, as well as enteroid-forming and -budding efficiency, which was expanded from crypt cells isolated from jejunum of mice in each group. The repair process stimulated by Zn-Asp was also accompanied by increased fluorescence signal intensity of KRT20 and Villin; increased numbers of MUC2+, CAG+, LYZ+, BrdU+ and Ki67+ cells in mouse jejunum; and protein expression of Ki67 and PCNA in the jejunum, crypt and enteroid. Simultaneously, Zn-Asp increased ISC activity to promote intestinal epithelial renewal even under physiological conditions. These results were further verified in ex vivo enteroid culture experiments, which were treated with 100 μmol/L Zn-Asp (calculation in zinc) and 100 ng/mL DON for 72 h. Furthermore, we demonstrated that Zn-Asp improved intestinal integrity or accelerated wound healing along with Wnt/β-catenin signaling upregulation or reactivation. Our findings indicate Zn-Asp, especially Zn, enhances ISC activity to maintain the intestinal integrity by activating the Wnt/β-catenin signaling, which sheds some light upon effective preventive strategies for intestinal injury induced by mycotoxin based on ISCs with exogenous zinc preparations in the proper drugs, health foods or qualified feed.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Hua-Lin Lin
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Zhe Wang
- College of Letters & Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Sai-Wu Zhang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China; Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China.
| |
Collapse
|