1
|
Han L, Yu GR, Chen Z, Wang QF, Zhu XJ, Zhang WK, Wang TJ, Yan ZF, Zhang TY, Chen SP, Wang HM, Yan JH, Zhang FW, Li YN, Zhang YP, Sha LQ, Shi PL, Wu JB, Hao YB, Zhao L, Jiang SC, Zhou L, Wang F. Cascading environmental, phenological, and physiological influences on spatial variability of annual gross primary productivity in the Northern Hemisphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179290. [PMID: 40199200 DOI: 10.1016/j.scitotenv.2025.179290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/04/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Accurately assessing spatiotemporal variations in terrestrial gross primary productivity (GPP) is crucial for understanding the interactions between the terrestrial carbon cycle and climate change. Environmental factors influence annual GPP (AGPP) either directly or indirectly through plant phenology and physiology. However, it remains unclear how environment, plant phenology, and physiology interact to influence the spatial patterns of global AGPP. In this study, we analyzed the geographic patterns and primary controls of the phenological and physiological properties of GPP using 827 site-years of eddy covariance data from 101 sites in the Northern Hemisphere. Specifically, the cascading relationships among environmental, phenological, and physiological factors that contribute to the spatial patterns of AGPP were tested. While the majority of ecosystems across different biomes displayed unimodal GPP seasonal patterns, significant geographical variations were observed in their phenological and physiological properties. The growing season length (GSL) decreased with increasing latitude (P < 0.001), while the maximum photosynthetic capacity (GPPmax) increased from 20°N to 70°N (P < 0.001). The foremost drivers of the spatial variation in the start date of the growing season (SGS), the end date of the growing season (EGS), and GPPmax were winter air temperature, summer precipitation, and spring solar radiation, respectively, which in turn influenced the spatial variation in AGPP. The cascade effects (0.95) of environmental factors on AGPP were larger than the direct effects (0.28). The cascading relationships among environmental factors, SGS, EGS, and GPPmax explained 93 % of the spatial pattern in AGPP. GPPmax exerted the strongest direct influence (0.60) on AGPP, followed by SGS (0.33). Environmental factors influenced the spatial variability of AGPP through cascading effects mediated by plant phenology and physiology. These findings not only provide fundamental parameters for model validation but also enhance our understanding of the intricate environmental and biotic controls governing the spatial pattern of AGPP.
Collapse
Affiliation(s)
- Lang Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Gui-Rui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; Yanshan Earth Critical Zone and Surface Fluxes Research Station, University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Feng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Jin Zhu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Wei-Kang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; National Institute of Natural Hazards, Beijing, China
| | - Tie-Jun Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China
| | - Zhi-Feng Yan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Tian-You Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Shi-Ping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hui-Min Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jun-Hua Yan
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Fa-Wei Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Ying-Nian Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yi-Ping Zhang
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Li-Qing Sha
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | - Pei-Li Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jia-Bing Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yan-Bin Hao
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shi-Cheng Jiang
- School of Life Sciences, Northeast Normal University, Changchun, China
| | - Li Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
| | - Fei Wang
- College of Forestry, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
2
|
Epstein TEG, Rorie AC, Ramon GD, Keswani A, Bernstein J, Codina R, Codispoti C, Craig T, Dykewicz M, Ferastraoaru D, Katz D, Kim J, Larenas-Linnemann D, Nanda A, Nguyen A, Anand MP, Patterson A, Ponda P, Toskala E, Wasan AN. Impact of climate change on aerobiology, rhinitis, and allergen immunotherapy: Work Group Report from the Aerobiology, Rhinitis, Rhinosinusitis & Ocular Allergy, and Immunotherapy, Allergen Standardization & Allergy Diagnostics Committees of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2025:S0091-6749(25)00268-4. [PMID: 40252075 DOI: 10.1016/j.jaci.2025.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 04/21/2025]
Abstract
Climate change is imposing a profound effect on health conditions triggered by environmental exposures. Climate change has affected aeroallergens in numerous ways, including: (1) changes in the vegetation microbiome distribution, (2) increases in C4 grasses globally, (3) increased occurrence of acute weather events, (4) increases in ambient temperature that amplify fungal spore concentration and pollen season duration, and (5) increased allergenicity of pollen and fungi due to exposure to higher levels of carbon dioxide, ozone, and diesel exhaust particles. In addition, greenhouse gases and air pollutants disrupt the epithelial barrier, trigger eosinophilic inflammation, and serve as adjuvants that stimulate IgE-mediated responses. All of these factors have influenced the prevalence and morbidity of allergic rhinitis, nonallergic rhinitis, and chronic rhinosinusitis. Data regarding changes in aeroallergen exposures due to climate change are lacking, and longitudinal sensitization data are rarely available. Allergists need to adapt diagnostic and treatment strategies to limit aeroallergen and air pollutant exposure and facilitate desensitization. Steps needed to address these challenges include: (1) expanding local measurement of pollen and fungal spores, (2) increasing the intensity of allergen avoidance measures, (3) addressing supply chain issues, and (4) promoting collaboration between allergists, insurance companies, aeroallergen manufacturers, and regulatory agencies.
Collapse
Affiliation(s)
- Tolly E G Epstein
- University of Cincinnati School of Medicine, Division of Rheumatology, Allergy, & Immunology, Cincinnati, and Allergy Partners of Central Indiana, Indianapolis, Ind.
| | - Andrew C Rorie
- Department of Medicine, Division of Allergy and Immunology, University of Nebraska Medical Center, Omaha, Neb
| | - German D Ramon
- Instituto de Alergia e Inmunología del Sur, Hospital Italiano Regional del Sur, Bahía Blanca, Argentina
| | - Anjeni Keswani
- Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jonathan Bernstein
- University of Cincinnati College of Medicine, Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Cincinnati, Ohio
| | - Rosa Codina
- Allergen Science & Consulting, Lenoir, and the Division of Allergy and Immunology, University of South Florida College of Medicine, Tampa, Fla
| | - Christopher Codispoti
- Department of Internal Medicine and Pediatrics, Rush University Medical Center, Chicago, Ill
| | - Timothy Craig
- Medicine, Pediatrics, and Biomedical Sciences, Penn State University, Hershey, and Vinmec International Hospital, Times City, Hanoi, Vietnam
| | - Mark Dykewicz
- Section of Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St Louis, Mo
| | - Denisa Ferastraoaru
- Division of Allergy-Immunology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY
| | - Daniel Katz
- School of Integrative Plant Science, Cornell University, Ithaca, NY
| | - Jean Kim
- Johns Hopkins University School of Medicine, Johns Hopkins Asthma and Allergy Center, Department of Otolaryngology-Head and Neck Surgery, Division of Rhinology, Allergy and Clinical Immunology, Baltimore, Md
| | | | - Anil Nanda
- Asthma and Allergy Center, Lewisville and Flower Mound, and the Division of Allergy and Immunology, University of Texas-Southwestern Medical Center, Dallas, Tex
| | - Anh Nguyen
- Division of Pediatric Allergy, Immunology & Rheumatology, University of California Davis Health, Davis, Calif
| | - Mahesh Padukudru Anand
- Department of Respiratory Medicine, JSS Medical College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Amber Patterson
- ENT and Allergy Specialists of Northwest Ohio, Findlay, Ohio
| | - Punita Ponda
- Department of Medicine and Pediatrics, Division of Allergy & Immunology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, NY
| | - Elina Toskala
- Department of Otolaryngology, Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pa
| | | |
Collapse
|
3
|
Sabir IA, Hu X, Khan I, Qin Y. Regulatory Mechanisms of Bud Dormancy: Environmental, Hormonal, and Genetic Perspectives. Int J Mol Sci 2025; 26:2517. [PMID: 40141161 PMCID: PMC11942119 DOI: 10.3390/ijms26062517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Dormancy is a vital adaptive strategy in temperate and boreal plants, particularly fruit trees, enabling them to withstand harsh winter conditions and ensure survival and synchronized growth resumption in spring. This review comprehensively examines dormancy, focusing on its physiological, environmental, and molecular mechanisms. Dormancy is characterized by two distinct phases: endodormancy, which is regulated by internal plant signals and requires cold temperatures for release, and ecodormancy, which is influenced by external environmental factors. These stages are intricately linked to seasonal temperature fluctuations and the plant's ability to synchronize growth cycles, ensuring survival through harsh winters and optimal growth in warmer seasons. The review delves into the role of chilling requirements, temperature thresholds, and hormonal regulation in the dormancy process, highlighting how these factors influence critical growth events such as budbreak, flowering, and fruiting. Plant hormones, including abscisic acid, gibberellins, and cytokinins, regulate dormancy by modulating gene expression and growth activity. Additionally, we explore the historical development of dormancy research, from early observations of chilling requirements to the formulation of the chilling hours model. Considering ongoing climate change, the review examines how rising winter temperatures may disrupt dormancy cycles, potentially affecting the timing of flowering, fruiting, and overall crop productivity. This shift necessitates new strategies for managing dormancy, particularly in regions experiencing inconsistent or insufficient chilling. The review concludes by discussing practical approaches to enhance dormancy release and mitigate the impact of environmental stress on deciduous fruit tree growth, offering insights into improving agricultural practices amidst a changing climate.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xinglong Hu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Imran Khan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yonghua Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Mura C, Charrier G, Buttò V, Delagrange S, Surget-Groba Y, Raymond P, Rossi S, Deslauriers A. Local conditions have greater influence than provenance on sugar maple (Acer saccharum Marsh.) frost hardiness at its northern range limit. TREE PHYSIOLOGY 2025; 45:tpae167. [PMID: 39728919 PMCID: PMC11761971 DOI: 10.1093/treephys/tpae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate. We investigate the effect of local conditions and intra-specific variation on frost hardiness in sugar maple (Acer saccharum Marsh.). Seedlings belonging to seven provenances from the northern area of the species' range were planted at two sites in Quebec, Canada. LT50, i.e. the lethal temperature for 50% of the cells, was measured monthly with the relative electrolyte leakage method on branches and buds from September 2021 to July 2022. LT50 varied between -4 °C in summer (July) and -68 °C in winter (February). Autumnal acclimation rates (September to early December) and mid-winter frost hardiness (December to early March) were similar in both sites. Samples in the southern site deacclimated faster than in the northern site between March and July because of a warmer and earlier spring. No difference in frost hardiness was detected between provenances. Our results suggest that the frost hardiness trait is similar within the northern part of the sugar maple distribution, with local weather conditions having a greater influence than provenance. We demonstrate that LT50 in sugar maple can exceed -55 °C, far below the minimum temperatures occurring in winter at the northern limit of the species. In order to minimize the risk of damage from extreme frost events exceeding tree frost hardiness, a careful evaluation of site characteristics is more important than provenance selection. Other factors should also be considered within the context of changing climate, in particular, the phenology of maple and avoidance of late frost in spring.
Collapse
Affiliation(s)
- Claudio Mura
- Université du Québec à Chicoutimi, Département de Sciences Fondamentales, laboratoire écosystèmes terrestres boréaux (EcoTer), 555 boulevard de l'Université, G7H 2B1 Chicoutimi, QC, Canada
| | - Guillaume Charrier
- Université Clermont Auvergne-INRAE, UMR Integrative Physics and Physiology of Trees in Fluctuating Environments (PIAF), 5 chemin de Beaulieu, 63000 Clermont-Ferrand, France
| | - Valentina Buttò
- Université du Québec en Abitibi-Témiscamingue, Institut de recherche sur les forêts (IRF), 445 boulevard de l'Université, J9X 5E4 Rouyn-Noranda, QC, Canada
| | - Sylvain Delagrange
- Université du Québec en Outaouais, Institut des sciences de la forêt tempérée, 58 rue Principale, J0V 1V0 Ripon, QC, Canada
| | - Yann Surget-Groba
- Université du Québec en Outaouais, Institut des sciences de la forêt tempérée, 58 rue Principale, J0V 1V0 Ripon, QC, Canada
| | - Patricia Raymond
- Ministère des Ressources naturelles et des Forêts (MRNF), Direction de recherche forestière, 2700 rue Einstein, G1P 3W8 Québec, QC, Canada
| | - Sergio Rossi
- Université du Québec à Chicoutimi, Département de Sciences Fondamentales, laboratoire écosystèmes terrestres boréaux (EcoTer), 555 boulevard de l'Université, G7H 2B1 Chicoutimi, QC, Canada
| | - Annie Deslauriers
- Université du Québec à Chicoutimi, Département de Sciences Fondamentales, laboratoire écosystèmes terrestres boréaux (EcoTer), 555 boulevard de l'Université, G7H 2B1 Chicoutimi, QC, Canada
| |
Collapse
|
5
|
Zheng J, He Y, Wang F, Zheng R, Wu J, Hänninen H, Zhang R. Dormancy characteristics of lammas-growth seedlings of subtropical trees and their phenological responses to experimental warming. TREE PHYSIOLOGY 2024; 44:tpae124. [PMID: 39331733 DOI: 10.1093/treephys/tpae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Lammas growth of trees means the additional growth of the shoot after the growth cessation and bud set in late summer. In temperate tree species, lammas growth occurs irregularly and is often regarded as abnormal, disturbed growth. In subtropical tree species, however, lammas growth is a prevalent phenomenon, possibly due to the prolonged occurrence of high temperatures in the autumn. The occurrence of lammas growth extends the growing season of trees, but its influence on subsequent dormancy phenomena and bud burst phenology remains largely unexplored. By comparing seedlings showing lammas growth with others not showing it, we carried out an experimental study of how lammas growth affects the bud burst phenology and the underlying dormancy phenomena under both ambient and controlled chilling, forcing and warming conditions in four subtropical tree species: Carya illinoinensis, Cinnamomum japonicum, Phoebe chekiangensis and Torreya grandis. With the exception of C. illinoinensis, lammas growth delayed bud burst in all the species under ambient conditions. In the chilling experiment, the delayed bud burst appeared to be due to higher minimum forcing requirement, higher dormancy depth, and in T. grandis, also due to lower chilling sensitivity in the lammas-growth seedlings than in the non-lammas-growth ones. However, a spring warming experiment showed that the sensitivity of bud burst to spring temperatures was higher in the lammas-growth seedlings than in the non-lammas-growth ones. Because of this, the difference between the two phenotypes in the timing of bud burst vanished with increasing warming. Our findings elucidate the significant impact of lammas growth on the dormancy dynamics of subtropical tree species, highlighting the necessity to better understand how the physiological phenomena causing lammas growth change the trees' subsequent environmental responses under changing climatic conditions.
Collapse
Affiliation(s)
- Jinbin Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Fucheng Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rujing Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
- SFGA Research Center for Torreya grandis, 666 Wusu St, Lin'an District, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
6
|
Qiu H, Yan Q, Yang Y, Huang X, Wang J, Luo J, Peng L, Bai G, Zhang L, Zhang R, Fu YH, Wu C, Peñuelas J, Chen L. Flowering in the Northern Hemisphere is delayed by frost after leaf-out. Nat Commun 2024; 15:9123. [PMID: 39443480 PMCID: PMC11500351 DOI: 10.1038/s41467-024-53382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Late spring frosts, occurring after spring phenological events, pose a dire threat to tree growth and forest productivity. With climate warming, earlier spring phenological events have become increasingly common and led to plants experiencing more frequent and severe frost damage. However, the effect of late spring frosts after leaf-out on subsequent flowering phenology in woody species remains unknown. Utilizing 572,734 phenological records of 640 species at 5024 sites from four long-term and large-scale in situ phenological networks across the Northern Hemisphere, we show that late spring frosts following leaf-out significantly delay the onset of the subsequent flowering by approximately 6.0 days. Late-leafing species exhibit greater sensitivity to the frosts than early-leafing species, resulting in a longer delay of 2.5 days in flowering. Trees in warm regions and periods exhibit a more pronounced frost-induced flowering delay compared to those in cold regions and periods. A significant increase in the frequency of late spring frost occurrence is observed in recent decades. Our findings elucidate the intricate relationships among leaf-out, frost, and flowering but also emphasize that the sequential progression of phenological events, rather than individual phenological stages, should be considered when assessing the phenological responses to climate change.
Collapse
Affiliation(s)
- Haoyu Qiu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Qin Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Yuchuan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Xu Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Jinmei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Jiajie Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Lang Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Ge Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Liuyue Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Chaoyang Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Josep Peñuelas
- Global Ecology Unit Center for Ecological Research and Forestry Applications (CREAF)-National Research Council (CSIC)-Universitat Autonoma de Barcelona (UAB), National Research Council (CSIC), Bellaterra, Catalonia, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
7
|
Zhang Y, Hong S, Peñuelas J, Xu H, Wang K, Zhang Y, Lian X, Piao S. Weakened connection between spring leaf-out and autumn senescence in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2024; 30:e17429. [PMID: 39039847 DOI: 10.1111/gcb.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/24/2024]
Abstract
Vegetation autumn phenology is critical in regulating the ecosystem carbon cycle and regional climate. However, the dominant drivers of autumn senescence and their temporal shifts under climate change remain poorly understood. Here, we conducted a multi-factor analysis considering both direct climatic controls and biological carryover effects from start-of-season (SOS) and seasonal peak vegetation activities on the end-of-season (EOS) to fill these knowledge gaps. Combining satellite and ground observations across the northern hemisphere, we found that carryover effects from early-to-peak vegetation activities exerted greater influence on EOS than the direct climatic controls on nearly half of the vegetated land. Unexpectedly, the carryover effects from SOS on EOS have significantly weakened over recent decades, accompanied by strengthened climatic controls. Such results indicate the weakened constraint of leaf longevity on senescence due to prolonged growing season in response to climate change. These findings underscore the important role of biological carryover effects in regulating vegetation autumn senescence under climate change, which should be incorporated into the formulation and enhancement of phenology modules utilized in land surface models.
Collapse
Affiliation(s)
- Yichen Zhang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Songbai Hong
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, China
- Key Laboratory of Earth Surface System and Human-Earth Relations, Ministry of Natural Resources of China, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, Spain
| | - Hao Xu
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Kai Wang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yao Zhang
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xu Lian
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
| | - Shilong Piao
- Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Zeng ZA, Wolkovich EM. Weak evidence of provenance effects in spring phenology across Europe and North America. THE NEW PHYTOLOGIST 2024. [PMID: 38494441 DOI: 10.1111/nph.19674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
Forecasting the biological impacts of climate change requires understanding how species respond to warmer temperatures through interannual flexible variation vs through adaptation to local conditions. Yet, we often lack this information entirely or find conflicting evidence across studies, which is the case for spring phenology. We synthesized common garden studies across Europe and North America that reported spring event dates for a mix of angiosperm and gymnosperm tree species in the northern hemisphere, capturing data from 384 North American and 101 European provenances (i.e. populations) with observations from 1962 to 2019, alongside autumn event data when provided. Across continents, we found no evidence of provenance effects in spring phenology, but strong clines with latitude and mean annual temperature in autumn. These effects, however, appeared to diverge by continent and species type (gymnosperm vs angiosperm), with particularly pronounced clines in North America in autumn events. Our results suggest flexible, likely plastic responses, in spring phenology with warming, and potential limits - at least in the short term - due to provenance effects for autumn phenology. They also highlight that, after over 250 yr of common garden studies on tree phenology, we still lack a holistic predictive model of clines across species and phenological events.
Collapse
Affiliation(s)
- Ziyun Alina Zeng
- Forest Resources Management, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Elizabeth M Wolkovich
- Forest & Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
9
|
Meger J, Ulaszewski B, Chmura DJ, Burczyk J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics 2024; 25:78. [PMID: 38243199 PMCID: PMC10797717 DOI: 10.1186/s12864-023-09897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/12/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Local adaptation is a key evolutionary process that enhances the growth of plants in their native habitat compared to non-native habitats, resulting in patterns of adaptive genetic variation across the entire geographic range of the species. The study of population adaptation to local environments and predicting their response to future climate change is important because of climate change. RESULTS Here, we explored the genetic diversity of candidate genes associated with bud burst in pedunculate oak individuals sampled from 6 populations in Poland. Single nucleotide polymorphism (SNP) diversity was assessed in 720 candidate genes using the sequence capture technique, yielding 18,799 SNPs. Using landscape genomic approaches, we identified 8 FST outliers and 781 unique SNPs in 389 genes associated with geography, climate, and phenotypic variables (individual/family spring and autumn phenology, family diameter at breast height (DBH), height, and survival) that are potentially involved in local adaptation. Then, using a nonlinear multivariate model, Gradient Forests, we identified vulnerable areas of the pedunculate oak distribution in Poland that are at risk from climate change. CONCLUSIONS The model revealed that pedunculate oak populations in the eastern part of the analyzed geographical region are the most sensitive to climate change. Our results might offer an initial evaluation of a potential management strategy for preserving the genetic diversity of pedunculate oak.
Collapse
Affiliation(s)
- Joanna Meger
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Bartosz Ulaszewski
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland
| | - Daniel J Chmura
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035, Kórnik, Poland
| | - Jarosław Burczyk
- Department of Genetics, Faculty of Biological Sciences, Kazimierz Wielki University, Chodkiewicza 30, 85-064, Bydgoszcz, Poland.
| |
Collapse
|
10
|
Marqués L, Hufkens K, Bigler C, Crowther TW, Zohner CM, Stocker BD. Acclimation of phenology relieves leaf longevity constraints in deciduous forests. Nat Ecol Evol 2023; 7:198-204. [PMID: 36635342 DOI: 10.1038/s41559-022-01946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/02/2022] [Indexed: 01/13/2023]
Abstract
Leaf phenology is key for regulating total growing-season mass and energy fluxes. Long-term temporal trends towards earlier leaf unfolding are observed across Northern Hemisphere forests. Phenological dates also vary between years, whereby end-of-season (EOS) dates correlate positively with start-of-season (SOS) dates and negatively with growing-season total net CO2 assimilation (Anet). These associations have been interpreted as the effect of a constrained leaf longevity or of premature carbon (C) sink saturation-with far-reaching consequences for long-term phenology projections under climate change and rising CO2. Here, we use multidecadal ground and remote-sensing observations to show that the relationships between Anet and EOS are opposite at the interannual and the decadal time scales. A decadal trend towards later EOS persists in parallel with a trend towards increasing Anet-in spite of the negative Anet-EOS relationship at the interannual scale. This finding is robust against the use of diverse observations and models. Results indicate that acclimation of phenology has enabled plants to transcend a constrained leaf longevity or premature C sink saturation over the course of several decades, leading to a more effective use of available light and a sustained extension of the vegetation CO2 uptake season over time.
Collapse
Affiliation(s)
- Laura Marqués
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
- Institute of Geography, University of Bern, Bern, Switzerland.
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
| | - Koen Hufkens
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Christof Bigler
- Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zurich, Zurich, Switzerland
| | - Thomas W Crowther
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Constantin M Zohner
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Stocker
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Institute of Geography, University of Bern, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Sensuła B, Wilczyński S. Dynamics Changes in Basal Area Increment, Carbon Isotopes Composition and Water Use Efficiency in Pine as Response to Water and Heat Stress in Silesia, Poland. PLANTS (BASEL, SWITZERLAND) 2022; 11:3569. [PMID: 36559682 PMCID: PMC9786147 DOI: 10.3390/plants11243569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Trees can be used as archives of changes in the environment. In this paper, we present the results of the analysis of the impact of water stress and increase in air temperature on BAI and carbon stable isotopic composition and water use efficiency of pine. Dendrochronological methods together with mass spectrometry techniques give a possibility to conduct a detailed investigation of pine growing in four industrial forests in Silesia (Poland). Detailed analysis-based bootstrap and moving correlation between climatic indices (temperature, precipitation, and Standardized Precipitation-Evapotranspiration Index) and tree parameters give the chance to check if the climatic signals recorded by trees can be hidden or modified over a longer period of time. Trees have been found to be very sensitive to weather conditions, but their sensitivity can be modified and masked by the effect of pollution. Scots pine trees at all sites systematically increased the basal area increment (BAI) and the intrinsic water use efficiency (iWUE) and decreased δ13C in the last century. Furthermore, their sensitivity to the climatic factor remained at a relatively high level. Industrial pollution caused a small reduction in the wood growth of pines and an increase in the heterogeneity of annual growth responses of trees. The main factors influencing the formation of wood in the pines were thermal conditions in the winter season and pluvial conditions in the previous autumn, and also in spring and summer in the year of tree ring formation. The impact of thermal and pluvial conditions in the year of tree ring formation has also been reflected in the isotopic composition of tree rings and water use efficiency. Three different scenarios of trees' reaction link to the reduction of stomata conductance or changes in photosynthesis rate as the response to climate changes in the last 40 years have been proposed.
Collapse
Affiliation(s)
- Barbara Sensuła
- Institute of Physics-Center for Science and Education, The Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Sławomir Wilczyński
- Department of Forest Ecosystem Protection, the University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Kraków, Poland
| |
Collapse
|
12
|
Mura C, Buttò V, Silvestro R, Deslauriers A, Charrier G, Raymond P, Rossi S. The early bud gets the cold: Diverging spring phenology drives exposure to late frost in a Picea mariana [(Mill.) BSP] common garden. PHYSIOLOGIA PLANTARUM 2022; 174:e13798. [PMID: 36251716 DOI: 10.1111/ppl.13798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Under climate change, the increasing occurrence of late frost combined with advancing spring phenology can increase the risk of frost damage in trees. In this study, we tested the link between intra-specific variability in bud phenology and frost exposure and damages. We analysed the effects of the 2021 late frost event in a black spruce (Picea mariana (Mill.) BSP) common garden in Québec, Canada. We hypothesised that the timing of budbreak drives the exposure of vulnerable tissues and explains differences in frost damage. Budbreak was monitored from 2015 to 2021 in 371 trees from five provenances originating between 48° and 53° N and planted in a common garden at 48° N. Frost damages were assessed on the same trees through the proportion of damaged buds per tree and related to the phenological phases by ordinal regressions. After an unusually warm spring, minimum temperatures fell to -1.9°C on May 28 and 29, 2021. At this moment, trees from the northern provenances were more advanced in their phenology and showed more frost damage. Provenances with earlier budbreak had a higher probability of damage occurrence according to ordinal regression. Our study highlights the importance of intra-specific variability of phenological traits on the risk of frost exposure. We provide evidence that the timings of bud phenology affect sensitivity to frost, leading to damages at temperatures of -1.9°C. Under the same conditions, the earlier growth reactivation observed in the northern provenances increases the risks of late frost damage on the developing buds.
Collapse
Affiliation(s)
- Claudio Mura
- Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - Valentina Buttò
- Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
- Université du Québec en Outaouais, Ripon, Quebec, Canada
- Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec, Canada
| | | | | | | | - Patricia Raymond
- Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Quebec, Canada
| | - Sergio Rossi
- Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| |
Collapse
|
13
|
Aphalo PJ, Sadras VO. Explaining pre-emptive acclimation by linking information to plant phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5213-5234. [PMID: 34915559 PMCID: PMC9440433 DOI: 10.1093/jxb/erab537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
We review mechanisms for pre-emptive acclimation in plants and propose a conceptual model linking developmental and evolutionary ecology with the acquisition of information through sensing of cues and signals. The idea is that plants acquire much of the information in the environment not from individual cues and signals but instead from their joint multivariate properties such as correlations. If molecular signalling has evolved to extract such information, the joint multivariate properties of the environment must be encoded in the genome, epigenome, and phenome. We contend that multivariate complexity explains why extrapolating from experiments done in artificial contexts into natural or agricultural systems almost never works for characters under complex environmental regulation: biased relationships among the state variables in both time and space create a mismatch between the evolutionary history reflected in the genotype and the artificial growing conditions in which the phenotype is expressed. Our model can generate testable hypotheses bridging levels of organization. We describe the model and its theoretical bases, and discuss its implications. We illustrate the hypotheses that can be derived from the model in two cases of pre-emptive acclimation based on correlations in the environment: the shade avoidance response and acclimation to drought.
Collapse
Affiliation(s)
| | - Victor O Sadras
- South Australian Research and Development Institute, and School of Agriculture, Food and Wine, The University of Adelaide, Australia
| |
Collapse
|
14
|
Charrier G. Is winter coming? Minor effect of the onset of chilling accumulation on the prediction of endodormancy release and budbreak. PHYSIOLOGIA PLANTARUM 2022; 174:e13699. [PMID: 35532145 DOI: 10.1111/ppl.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
The buds of perennial plants become dormant in autumn and must integrate the information related to chilling and forcing temperatures to resume their growth in spring. In many studies, the initial date for chilling accumulation (DCA ) is set arbitrarily using various rules resulting in high variability across studies and sites. To test the relevancy of different rules to set DCA , sequential models (taking into account or not the negative effect of warm temperature) were optimized by minimizing the sums of squares between observed and predicted values for 34 endodormancy release and 77 budbreak dates for the walnut Juglans regia L. cv Franquette across France. Optimization of these different models highlighted that many of the DCA rules, incorporating a photoperiod signal on endodormancy induction, were effective (predicted root mean square standard error less than 10 and 8 days for endodormancy onset and bud break, respectively). Furthermore, the use of functions that compute negative chilling accumulation did not improve the performance of the models. Among the different rules, the projections of the best models were explored under different climates (current climate and Representative Concentration Pathways RCP scenarios). The projections revealed a tipping point at a mean annual temperature between 13 and 15°C, beyond which the advance in ontogenic development during ecodormancy does not compensate for the delay in endodormancy release. Although the physiological mechanisms driving the onset of endodormancy may be profoundly altered by global change, they appear to have minimal impact on the way current models predict dormancy and budbreak dates in walnut.
Collapse
|
15
|
Li L, Xia T, Li B, Yang H. Hormone and carbohydrate metabolism associated genes play important roles in rhizome bud full-year germination of Cephalostachyum pingbianense. PHYSIOLOGIA PLANTARUM 2022; 174:e13674. [PMID: 35306669 DOI: 10.1111/ppl.13674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cephalostachyum pingbianense is the only woody bamboo species that can produce bamboo shoots in four seasons under natural conditions. So far, the regulatory mechanism of shoot bud differentiation and development is unknown. In the present study, indole-3-acetic acid (IAA), zeatin riboside (ZR), gibberellin A3 (GA3 ) and abscisic acid (ABA) contents determination, RNA sequencing and differentially expressed gene analysis were performed on dormant rhizome bud (DR), growing rhizome bud (GR), and germinative bud (GB) in each season. The results showed that the contents of IAA and ZR increased while ABA content decreased, and GA3 content was stable during bud transition from dormancy to germination in each season. Moreover, rhizome bud germination was cooperatively regulated by multiple pathways such as carbohydrate metabolism, hormone signal transduction, cell wall biogenesis, temperature response, and water transport. The inferred hub genes among these candidates were identified by protein-protein interaction network analyses, most of which were involved in hormone and carbohydrate metabolism, such as HK and BGLU4 in spring, IDH and GH3 in winter, GPI and talA/talB in summer and autumn. It is speculated that dynamic phytohormone changes and differential expression of these genes promote the release of rhizome bud dormancy and contribute to the phenological characteristics of full-year shooting. Moreover, the rhizome buds of C. pingbianense may not suffer from ecodormancy in winter. These findings would help accumulate knowledge on shooting mechanisms in woody bamboos and provide a physiological insight into germplasm conservation and forest management of C. pingbianense.
Collapse
Affiliation(s)
- Lushuang Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Tize Xia
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Bin Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|
16
|
Ekholm A, Faticov M, Tack AJM, Berger J, Stone GN, Vesterinen E, Roslin T. Community phenology of insects on oak: local differentiation along a climatic gradient. Ecosphere 2021. [DOI: 10.1002/ecs2.3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adam Ekholm
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| | - Maria Faticov
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Josef Berger
- Department of Biology Biodiversity Unit Lund University Sölvegatan 37 Lund 22362 Sweden
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Eero Vesterinen
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
- Department of Biology University of Turku Vesilinnantie 5 Turku FI‐20014 Finland
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| |
Collapse
|
17
|
Beil I, Kreyling J, Meyer C, Lemcke N, Malyshev AV. Late to bed, late to rise-Warmer autumn temperatures delay spring phenology by delaying dormancy. GLOBAL CHANGE BIOLOGY 2021; 27:5806-5817. [PMID: 34431180 DOI: 10.1111/gcb.15858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Spring phenology of temperate forest trees has advanced substantially over the last decades due to climate warming, but this advancement is slowing down despite continuous temperature rise. The decline in spring advancement is often attributed to winter warming, which could reduce chilling and thus delay dormancy release. However, mechanistic evidence of a phenological response to warmer winter temperatures is missing. We aimed to understand the contrasting effects of warming on plants leaf phenology and to disentangle temperature effects during different seasons. With a series of monthly experimental warming by ca. 2.4°C from late summer until spring, we quantified phenological responses of forest tree to warming for each month separately, using seedlings of four common European tree species. To reveal the underlying mechanism, we tracked the development of dormancy depth under ambient conditions as well as directly after each experimental warming. In addition, we quantified the temperature response of leaf senescence. As expected, warmer spring temperatures led to earlier leaf-out. The advancing effect of warming started already in January and increased towards the time of flushing, reaching 2.5 days/°C. Most interestingly, however, warming in October had the opposite effect and delayed spring phenology by 2.4 days/°C on average; despite six months between the warming and the flushing. The switch between the delaying and advancing effect occurred already in December. We conclude that not warmer winters but rather the shortening of winter, i.e., warming in autumn, is a major reason for the decline in spring phenology.
Collapse
Affiliation(s)
- Ilka Beil
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Jürgen Kreyling
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Claudia Meyer
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Nele Lemcke
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| | - Andrey V Malyshev
- Experimental Plant Ecology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Fang J, Lutz JA, Shugart HH, Yan X, Xie W, Liu F. Improving intra‐ and inter‐annual GPP predictions by using individual tree inventories and leaf growth dynamics. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Fang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China
- Center of Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Wuhan China
| | - James A. Lutz
- Department of Wildland Resources Utah State University Logan UT USA
| | - Herman H. Shugart
- Department of Environmental Sciences University of Virginia Charlottesville VA USA
| | - Xiaodong Yan
- State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China
| | - Wenqiang Xie
- State Key Laboratory of Earth Surface Processes and Resource Ecology Faculty of Geographical Science Beijing Normal University Beijing China
| | - Feng Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China
- Center of Plant Ecology Core Botanical Gardens Chinese Academy of Sciences Wuhan China
| |
Collapse
|
19
|
Effect of Climate Change on the Growth of Endangered Scree Forests in Krkonoše National Park (Czech Republic). FORESTS 2021. [DOI: 10.3390/f12081127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Scree forests with large numbers of protected plants and wildlife are seriously threatened by climate change due to more frequent drought episodes, which cause challenges for very stony, shallow soils. The effect of environmental factors on the radial growth of five tree species—European beech (Fagus sylvatica L.), Norway spruce (Picea abies (L.) Karst.), sycamore maple (Acer pseudoplatanus L.), European ash (Fraxinus excelsior L.), and mountain elm (Ulmus glabra Huds.)—was studied in the mixed stands (105–157 years) in the western Krkonoše Mountains (Czech Republic) concerning climate change. These are communities of maple to fir beechwoods (association Aceri-Fagetum sylvaticae and Luzulo-Abietetum albae) on ranker soils at the altitude 590–700 m a.s.l. Production, structure, and biodiversity were evaluated in seven permanent research plots and the relationships of the radial growth (150 cores) to climatic parameters (precipitation, temperature, and extreme conditions) and air pollution (SO2, NOX, ozone exposure). The stand volume reached 557–814 m3 ha−1 with high production potential of spruce and ash. The radial growth of beech and spruce growing in relatively favorable habitat conditions (deeper soil profile and less skeletal soils) has increased by 16.6%–46.1% in the last 20 years. By contrast, for sycamore and ash growing in more extreme soil conditions, the radial growth decreased by 12.5%–14.6%. However, growth variability increased (12.7%–29.5%) for all tree species, as did the occurrence of negative pointer years (extremely low radial growth) in the last two decades. The most sensitive tree species to climate and air pollution were spruce and beech compared to the resilience of sycamore and ash. Spectral analysis recorded the largest cyclical fluctuations (especially the 12-year solar cycle) in spruce, while ash did not show any significant cycle processes. The limiting factors of growth were droughts with high temperatures in the vegetation period for spruce and late frosts for beech. According to the degree of extreme habitat conditions, individual tree species thus respond appropriately to advancing climate change, especially to an increase in the mean temperature (by 2.1 °C), unevenness in precipitation, and occurrence of extreme climate events in the last 60 years.
Collapse
|
20
|
Venisse JS, Õunapuu-Pikas E, Dupont M, Gousset-Dupont A, Saadaoui M, Faize M, Chen S, Chen S, Petel G, Fumanal B, Roeckel-Drevet P, Sellin A, Label P. Genome-Wide Identification, Structure Characterization, and Expression Pattern Profiling of the Aquaporin Gene Family in Betula pendula. Int J Mol Sci 2021; 22:7269. [PMID: 34298887 PMCID: PMC8304918 DOI: 10.3390/ijms22147269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/12/2023] Open
Abstract
Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger's positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.
Collapse
Affiliation(s)
- Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Eele Õunapuu-Pikas
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Maxime Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Aurélie Gousset-Dupont
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
- National Institute of Agronomy of Tunisia (INAT), Crop Improvement Laboratory, INRAT, Tunis CP 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco;
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China; (S.C.); (S.C.)
| | - Gilles Petel
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Boris Fumanal
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, 51005 Tartu, Estonia; (E.Õ.-P.); (A.S.)
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France; (M.D.); (A.G.-D.); (M.S.); (G.P.); (B.F.); (P.R.-D.)
| |
Collapse
|
21
|
Possen BJHM, Rousi M, Keski‐Saari S, Silfver T, Kontunen‐Soppela S, Oksanen E, Mikola J. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 2021. [DOI: 10.1002/ecs2.3520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- B. J. H. M. Possen
- Ecology Section Royal HaskoningDHV Larixplein 1 Eindhoven5616 VBThe Netherlands
| | - M. Rousi
- Vantaa Research Unit Natural Resources Institute Finland P.O. Box 18 Vantaa01301Finland
| | - S. Keski‐Saari
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - T. Silfver
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| | - S. Kontunen‐Soppela
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - E. Oksanen
- Department of Environmental and Biological Sciences University of Eastern Finland P.O. Box 111 Joensuu80101Finland
| | - J. Mikola
- Faculty of Biological and Environmental Sciences Ecosystems and Environment Research Programme University of Helsinki Niemenkatu 73 Lahti15140Finland
| |
Collapse
|
22
|
Baumgarten F, Zohner CM, Gessler A, Vitasse Y. Chilled to be forced: the best dose to wake up buds from winter dormancy. THE NEW PHYTOLOGIST 2021; 230:1366-1377. [PMID: 33577087 DOI: 10.1111/nph.17270] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 05/06/2023]
Abstract
Over the last decades, spring leaf-out of temperate and boreal trees has substantially advanced in response to global warming, affecting terrestrial biogeochemical fluxes and the Earth's climate system. However, it remains unclear whether leaf-out will continue to advance with further warming because species' effective chilling temperatures, as well as the amount of chilling time required to break dormancy, are still largely unknown for most forest tree species. Here, we assessed the progress of winter dormancy and quantified the efficiency of different chilling temperatures in six dominant temperate European tree species by exposing 1170 twig cuttings to a range of temperatures from -2°C to 10°C for 1, 3, 6 or 12 wk. We found that freezing temperatures were most effective for half of the species or as effective as chilling temperatures up to 10°C, that is, leading to minimum thermal time to and maximum success of budburst. Interestingly, chilling duration had a much larger effect on dormancy release than absolute chilling temperature. Our experimental results challenge the common assumption that optimal chilling temperatures range c. 4-6°C, instead revealing strong sensitivity to a large range of temperatures. These findings are valuable for improving phenological models and predicting future spring phenology in a warming world.
Collapse
Affiliation(s)
- Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich (Swiss Federal Institute of Technology), Universitätsstrasse 16, Zurich, 8092, Switzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstr. 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
23
|
Partanen J, Häkkinen R, Sutinen S, Viherä-Aarnio A, Zhang R, Hänninen H. Endodormancy release in Norway spruce grafts representing trees of different ages. TREE PHYSIOLOGY 2021; 41:631-643. [PMID: 32031217 DOI: 10.1093/treephys/tpaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
Studies addressing endodormancy release in adult trees are usually carried out using twigs detached from the trees in the experiments. Potential problems caused by cutting the root-shoot connection when detaching the twigs can be avoided by using grafts as the experimental material. We studied the effects of chilling on the endodormancy release in Norway spruce (Picea abies (L.) Karst.) grafts where twigs of 16-, 32- and 80-year-old trees were used as the scions. The grafts were first exposed to chilling in natural conditions and then samples of them were transferred at intervals to a regrowth test in forcing conditions in a greenhouse. The bud burst percentage, BB%, in the forcing conditions generally increased from zero to near 100% with increasing previous chilling accumulation from mid-October until mid-November, indicating that endodormancy was released in almost all of the grafts by mid-November. The days to bud burst, DBB, decreased in the forcing conditions with successively later transfers until the next spring. Neither BB% nor DBB was dependent on the age of the scion. However, in the early phase of ecodormancy release, the microscopic internal development of the buds was more advanced in the grafts representing the 16-year-old than in those representing the 32- or 80-year-old trees. In conclusion, our findings suggest that no major change in the environmental regulation of endodormancy release in Norway spruce takes place when the trees get older. Taken together with earlier findings with Norway spruce seedlings, our results suggest that regardless of the seedling or tree age, the chilling requirement of endodormancy release is met in late autumn. The implications of our findings for Norway spruce phenology under climatic warming and the limitations of our novel method of using grafts as a proxy of trees of different ages are discussed.
Collapse
Affiliation(s)
- Jouni Partanen
- Natural Resources Institute Finland (Luke), Juntintie 154, FI-77600 Suonenjoki, Finland
| | - Risto Häkkinen
- Natural Resources Institute Finland (Luke), PO Box: 2, FI-00791 Helsinki, Finland
| | - Sirkka Sutinen
- Natural Resources Institute Finland (Luke), Yliopistokatu 6, FI-80100 Joensuu, Finland
| | - Anneli Viherä-Aarnio
- Natural Resources Institute Finland (Luke), PO Box: 2, FI-00791 Helsinki, Finland
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| |
Collapse
|
24
|
Boldizsár Á, Soltész A, Tanino K, Kalapos B, Marozsán-Tóth Z, Monostori I, Dobrev P, Vankova R, Galiba G. Elucidation of molecular and hormonal background of early growth cessation and endodormancy induction in two contrasting Populus hybrid cultivars. BMC PLANT BIOLOGY 2021; 21:111. [PMID: 33627081 PMCID: PMC7905644 DOI: 10.1186/s12870-021-02828-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/06/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND Over the life cycle of perennial trees, the dormant state enables the avoidance of abiotic stress conditions. The growth cycle can be partitioned into induction, maintenance and release and is controlled by complex interactions between many endogenous and environmental factors. While phytohormones have long been linked with dormancy, there is increasing evidence of regulation by DAM and CBF genes. To reveal whether the expression kinetics of CBFs and their target PtDAM1 is related to growth cessation and endodormancy induction in Populus, two hybrid poplar cultivars were studied which had known differential responses to dormancy inducing conditions. RESULTS Growth cessation, dormancy status and expression of six PtCBFs and PtDAM1 were analyzed. The 'Okanese' hybrid cultivar ceased growth rapidly, was able to reach endodormancy, and exhibited a significant increase of several PtCBF transcripts in the buds on the 10th day. The 'Walker' cultivar had delayed growth cessation, was unable to enter endodormancy, and showed much lower CBF expression in buds. Expression of PtDAM1 peaked on the 10th day only in the buds of 'Okanese'. In addition, PtDAM1 was not expressed in the leaves of either cultivar while leaf CBFs expression pattern was several fold higher in 'Walker', peaking at day 1. Leaf phytohormones in both cultivars followed similar profiles during growth cessation but differentiated based on cytokinins which were largely reduced, while the Ox-IAA and iP7G increased in 'Okanese' compared to 'Walker'. Surprisingly, ABA concentration was reduced in leaves of both cultivars. However, the metabolic deactivation product of ABA, phaseic acid, exhibited an early peak on the first day in 'Okanese'. CONCLUSIONS Our results indicate that PtCBFs and PtDAM1 have differential kinetics and spatial localization which may be related to early growth cessation and endodormancy induction under the regime of low night temperature and short photoperiod in poplar. Unlike buds, PtCBFs and PtDAM1 expression levels in leaves were not associated with early growth cessation and dormancy induction under these conditions. Our study provides new evidence that the degradation of auxin and cytokinins in leaves may be an important regulatory point in a CBF-DAM induced endodormancy. Further investigation of other PtDAMs in bud tissue and a study of both growth-inhibiting and the degradation of growth-promoting phytohormones is warranted.
Collapse
Affiliation(s)
- Ákos Boldizsár
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Alexandra Soltész
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Karen Tanino
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Balázs Kalapos
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Zsuzsa Marozsán-Tóth
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - István Monostori
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 165 02 Czech Republic
| | - Gábor Galiba
- Department of Plant Molecular Biology, Agricultural Institute, Centre for Agricultural Research, ELKH, Martonvásár, H-2462 Hungary
- Festetics Doctoral School, Georgikon Campus, Szent István University, Keszthely, H-8360 Hungary
| |
Collapse
|
25
|
Chang CYY, Bräutigam K, Hüner NPA, Ensminger I. Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. THE NEW PHYTOLOGIST 2021; 229:675-691. [PMID: 32869329 DOI: 10.1111/nph.16904] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Evergreen conifers are champions of winter survival, based on their remarkable ability to acclimate to cold and develop cold hardiness. Counterintuitively, autumn cold acclimation is triggered not only by exposure to low temperature, but also by a combination of decreasing temperature, decreasing photoperiod and changes in light quality. These environmental cues control a network of signaling pathways that coordinate cold acclimation and cold hardiness in overwintering conifers, leading to cessation of growth, bud dormancy, freezing tolerance and changes in energy metabolism. Advances in genomic, transcriptomic and metabolomic tools for conifers have improved our understanding of how trees sense and respond to changes in temperature and light during cold acclimation and the development of cold hardiness, but there remain considerable gaps deserving further research in conifers. In the first section of this review, we focus on the physiological mechanisms used by evergreen conifers to adjust metabolism seasonally and to protect overwintering tissues against winter stresses. In the second section, we review how perception of low temperature and photoperiod regulate the induction of cold acclimation. Finally, we explore the evolutionary context of cold acclimation in conifers and evaluate challenges imposed on them by changing climate and discuss emerging areas of research in the field.
Collapse
Affiliation(s)
- Christine Yao-Yun Chang
- Soil and Crop Sciences Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Katharina Bräutigam
- Department of Biology, University of Toronto, Mississauga, ON, L5L1C6, Canada
- Graduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Norman P A Hüner
- Department of Biology and The Biotron Experimental Climate Change Research Centre, Western University, London, ON, N6A5B7, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto, Mississauga, ON, L5L1C6, Canada
- Graduate Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Graduate Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
26
|
Bernhardt JR, O'Connor MI, Sunday JM, Gonzalez A. Life in fluctuating environments. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190454. [PMID: 33131443 PMCID: PMC7662201 DOI: 10.1098/rstb.2019.0454] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Variability in the environment defines the structure and dynamics of all living systems, from organisms to ecosystems. Species have evolved traits and strategies that allow them to detect, exploit and predict the changing environment. These traits allow organisms to maintain steady internal conditions required for physiological functioning through feedback mechanisms that allow internal conditions to remain at or near a set-point despite a fluctuating environment. In addition to feedback, many organisms have evolved feedforward processes, which allow them to adjust in anticipation of an expected future state of the environment. Here we provide a framework describing how feedback and feedforward mechanisms operating within organisms can generate effects across scales of organization, and how they allow living systems to persist in fluctuating environments. Daily, seasonal and multi-year cycles provide cues that organisms use to anticipate changes in physiologically relevant environmental conditions. Using feedforward mechanisms, organisms can exploit correlations in environmental variables to prepare for anticipated future changes. Strategies to obtain, store and act on information about the conditional nature of future events are advantageous and are evidenced in widespread phenotypes such as circadian clocks, social behaviour, diapause and migrations. Humans are altering the ways in which the environment fluctuates, causing correlations between environmental variables to become decoupled, decreasing the reliability of cues. Human-induced environmental change is also altering sensory environments and the ability of organisms to detect cues. Recognizing that living systems combine feedback and feedforward processes is essential to understanding their responses to current and future regimes of environmental fluctuations. This article is part of the theme issue ‘Integrative research perspectives on marine conservation’.
Collapse
Affiliation(s)
- Joey R Bernhardt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.,Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, 6270 University Boulevard, Vancouver, Canada V6T 1Z4
| | - Jennifer M Sunday
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada H3A 1B1
| |
Collapse
|
27
|
Kobayashi MJ, Ng KKS, Lee SL, Muhammad N, Tani N. Temperature is a regulator of leaf production in the family Dipterocarpaceae of equatorial Southeast Asia. AMERICAN JOURNAL OF BOTANY 2020; 107:1491-1503. [PMID: 33190268 PMCID: PMC7756354 DOI: 10.1002/ajb2.1557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Leaf phenology is an essential developmental process in trees and an important component in understanding climate change. However, little is known about the regulation of leaf phenology in tropical trees. METHODS To understand the regulation by temperature of leaf phenology in tropical trees, we performed daily observations of leaf production under rainfall-independent conditions using saplings of Shorea leprosula and Neobalanocarpus heimii, both species of Dipterocarpaceae, a dominant tree family of Southeast Asia. We analyzed the time-series data obtained using empirical dynamic modeling (EDM) and conducted growth chamber experiments. RESULTS Leaf production by dipterocarps fluctuated in the absence of fluctuation in rainfall, and the peaks of leaf production were more frequent than those of day length, suggesting that leaf production cannot be fully explained by these environmental factors, although they have been proposed as regulators of leaf phenology in dipterocarps. Instead, EDM suggested a causal relationship between temperature and leaf production in dipterocarps. Leaf production by N. heimii saplings in chambers significantly increased when temperature was increased after long-term low-temperature treatment. This increase in leaf production was observed even when only nighttime temperature was elevated, suggesting that the effect of temperature on development is not mediated by photosynthesis. CONCLUSIONS Because seasonal variation in temperature in the tropics is small, effects on leaf phenology have been overlooked. However, our results suggest that temperature is a regulator of leaf phenology in dipterocarps. This information will contribute to better understanding of the effects of climate change in the tropics.
Collapse
Affiliation(s)
- Masaki J. Kobayashi
- Forestry DivisionJapan International Research Centre for Agricultural SciencesOhwashi, TsukubaIbaraki305‐8686Japan
| | - Kevin Kit Siong Ng
- Forestry Biotechnology DivisionForest Research Institute MalaysiaKepongSelangor Darul EhsanMalaysia
| | - Soon Leong Lee
- Forestry Biotechnology DivisionForest Research Institute MalaysiaKepongSelangor Darul EhsanMalaysia
| | - Norwati Muhammad
- Forestry Biotechnology DivisionForest Research Institute MalaysiaKepongSelangor Darul EhsanMalaysia
| | - Naoki Tani
- Forestry DivisionJapan International Research Centre for Agricultural SciencesOhwashi, TsukubaIbaraki305‐8686Japan
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTennodai, TsukubaIbaraki305‐8577Japan
| |
Collapse
|
28
|
Thibault E, Soolanayakanahally R, Keller SR. Latitudinal clines in bud flush phenology reflect genetic variation in chilling requirements in balsam poplar, Populus balsamifera. AMERICAN JOURNAL OF BOTANY 2020; 107:1597-1605. [PMID: 33225462 DOI: 10.1002/ajb2.1564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Boreal and northern temperate forest trees possess finely tuned mechanisms of dormancy, which match bud phenology with local seasonality. After winter dormancy, the accumulation of chilling degree days (CDD) required for rest completion before the accumulation of growing degree days (GDD) during quiescence is an important step in the transition to spring bud flush. While bud flush timing is known to be genetically variable within species, few studies have investigated variation among genotypes from different climates in response to variable chilling duration. METHODS We performed a controlled environment study using dormant cuttings from 10 genotypes of Populus balsamifera, representing a broad latitudinal gradient (43-58°N). We exposed cuttings to varying amounts of chilling (0-10 weeks) and monitored subsequent GDD to bud flush at a constant forcing temperature. RESULTS Chilling duration strongly accelerated bud flush timing, with increasing CDD resulting in fewer GDD to flush. Genotypic variation for bud flush was significant and stratified by latitude, with southern genotypes requiring more GDD to flush than northern genotypes. The latitudinal cline was pronounced under minimal chilling, whereas genotypic variation in GDD to bud flush converged as CDD increased. CONCLUSIONS We demonstrate that increased chilling lessens GDD to bud flush in a genotype-specific manner. Our results emphasize that latitudinal clines in bud flush reflect a critical genotype-by-environment interaction, whereby differences in bud flush between southern vs. northern genotypes depend on chilling. Our results suggest selection has shaped chilling requirements and depth of rest as an adaptive strategy to avoid precocious flush in climates with midwinter warming.
Collapse
Affiliation(s)
- Ethan Thibault
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Raju Soolanayakanahally
- Indian Head Research Farm, Agriculture and Agri-Food Canada, Indian Head, SK, S0G 2K0, Canada
| | - Stephen R Keller
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
29
|
Fréchette E, Chang CYY, Ensminger I. Variation in the phenology of photosynthesis among eastern white pine provenances in response to warming. GLOBAL CHANGE BIOLOGY 2020; 26:5217-5234. [PMID: 32396692 DOI: 10.1111/gcb.15150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
In higher-latitude trees, temperature and photoperiod control the beginning and end of the photosynthetically active season. Elevated temperature (ET) has advanced spring warming and delayed autumn cooling while photoperiod remains unchanged. We assessed the effects of warming on the length of the photosynthetically active season of three provenances of Pinus strobus L. seedlings from different latitudes, and evaluated the accuracy of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI) for tracking the predicted variation in spring and autumn phenology of photosynthesis among provenances. Seedlings from northern, local and southern P. strobus provenances were planted in a temperature-free-air-controlled enhancement (T-FACE) experiment and exposed to ET (+1.5/3°C; day/night). Over 18 months, we assessed photosynthetic phenology by measuring chlorophyll fluorescence, gas exchange, leaf spectral reflectance and pigment content. During autumn, all seedlings regardless of provenance followed the same sequence of phenological events with the initial downregulation of photosynthesis, followed by the modulation of non-photochemical quenching and associated adjustments of zeaxanthin pool sizes. However, the timing of autumn downregulation differed between provenances, with delayed onset in the southern provenance (SP) and earlier onset in the northern relative to the local provenance, indicating that photoperiod at the provenance origin is a dominant factor controlling autumn phenology. Experimental warming further delayed the downregulation of photosynthesis during autumn in the SP. A provenance effect during spring was also observed but was generally not significant. The vegetation indices PRI and CCI were both effective at tracking the seasonal variations of energy partitioning in needles and the differences of carotenoid pigments indicative of the stress status of needles. These results demonstrate that PRI and CCI can be useful tools for monitoring conifer phenology and for the remote monitoring of the length of the photosynthetically active season of conifers in a changing climate.
Collapse
Affiliation(s)
- Emmanuelle Fréchette
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christine Yao-Yun Chang
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ingo Ensminger
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Estimation of Chilling and Heat Accumulation Periods Based on the Timing of Olive Pollination. FORESTS 2020. [DOI: 10.3390/f11080835] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This paper compares the thermal requirements in three different olive-growing areas in the Mediterranean region (Toledo, central Spain; Lecce, southeastern Italy; Chaal, central Tunisia). A statistical method using a partial least square regression for daily temperatures has been applied to study the chilling and heat requirements over a continuous period. Background and Objectives: The olive is one of the main causes of pollen allergy for the population of Mediterranean cities. The physiological processes of the reproductive cycle that governs pollen emission are associated with temperature, and thermal requirements strongly regulate the different phases of the plant’s life cycle. However, the point when several specific processes occur—Such as the phases within the dormancy period—Is unclear, and the transition between endodormancy and ecodormancy is not easily distinguishable from an empirical point of view. This work focuses on defining the thermal accumulation periods related to the temperature balance needed to meet the chilling and heat requirements for the metabolic activation and budbreak in olive trees. Results and Conclusions: Thermal accumulation patterns in olive trees are strongly associated with the bioclimatic conditions of olive-growing areas, and the olive flowering start dates showed significant differences between the three studied stations. Our results show that the chilling requirements were fulfilled between late autumn and early winter, although the chilling accumulation period was more evident in the coldest and most continental bioclimatic areas (central Spain). The heat accumulation period (forcing period) was clearly defined and showed a close relationship with the timing of olive flowering. Heat requirements were therefore used to generate accurate forecasting models to predict the beginning of the olive bloom and subsequent olive pollen emission. A forecasting model considering both the chilling and heat requirements was generated in Toledo, where the estimated days displayed an error of 2.0 ± 1.8 days from the observed dates. For Lecce, the error was 2.7 ± 2.5 days and for Chaal, 4.2 ± 2.4 days.
Collapse
|
31
|
How Do Mediterranean Pine Trees Respond to Drought and Precipitation Events along an Elevation Gradient? FORESTS 2020. [DOI: 10.3390/f11070758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drought is a major factor limiting tree growth and plant vitality. In the Mediterranean region, the length and intensity of drought stress strongly varies with altitude and site conditions. We used electronic dendrometers to analyze the response of two native pine species to drought and precipitation events. The five study sites were located along an elevation gradient on the Mediterranean island of Corsica (France). Positive stem increment in the raw dendrometer measurements was separated into radial stem growth and stem swelling/shrinkage in order to determine which part of the trees’ response to climate signals can be attributed to growth. Precipitation events of at least 5 mm and dry periods of at least seven consecutive days without precipitation were determined over a period of two years. Seasonal dynamics of stem circumference changes were highly variable among the five study sites. At higher elevations, seasonal tree growth showed patterns characteristic for cold environments, while low-elevation sites showed bimodal growth patterns characteristic of drought prone areas. The response to precipitation events was uniform and occurred within the first six hours after the beginning of a precipitation event. The majority of stem circumference increases were caused by radial growth, not by stem swelling due to water uptake. Growth-induced stem circumference increase occurred at three of the five sites even during dry periods, which could be attributed to stored water reserves within the trees or the soils. Trees at sites with soils of low water-holding capacity were most vulnerable to dry periods.
Collapse
|
32
|
Liu Q, Piao S, Campioli M, Gao M, Fu YH, Wang K, He Y, Li X, Janssens IA. Modeling leaf senescence of deciduous tree species in Europe. GLOBAL CHANGE BIOLOGY 2020; 26:4104-4118. [PMID: 32329935 DOI: 10.1111/gcb.15132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Autumnal leaf senescence signals the end of photosynthetic activities in temperate deciduous trees and consequently exerts a strong control on various ecological processes. Predicting leaf senescence dates (LSD) with high accuracy is thus a prerequisite for better understanding the climate-ecosystem interactions. However, modeling LSD at large spatial and temporal scales is challenging. In this study, first, we used 19972 site-year records (848 sites and four deciduous tree species) from the PAN European Phenology network to calibrate and evaluate six leaf senescence models during the period 1980-2013. Second, we extended the spatial analysis by repeating the procedure across Europe using satellite-derived end of growing season and a forest map. Overall, we found that models that considered photoperiod and temperature interactions outperformed models using simple temperature or photoperiod thresholds for Betula pendula, Fagus sylvatica and Quercus robur. On the contrary, no model displayed reasonable predictions for Aesculus hippocastanum. This inter-model comparison indicates that, contrary to expectation, photoperiod does not significantly modulate the accumulation of cooling degree days (CDD). On the other hand, considering the carryover effect of leaf unfolding date could promote the models' predictability. The CDD models generally matched the observed LSD at species level and its interannual variation, but were limited in explaining the inter-site variations, indicating that other environmental cues need to be considered in future model development. The discrepancies remaining between model simulations and observations highlight the need of manipulation studies to elucidate the mechanisms behind the leaf senescence process and to make current models more realistic.
Collapse
Affiliation(s)
- Qiang Liu
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
- Key Laboratory of Alpine Ecology, Center for Excellence in Tibetan Earth Science, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Matteo Campioli
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Mengdi Gao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing, China
| | - Kai Wang
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yue He
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Xiangyi Li
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
33
|
Abstract
The perennial life strategy of temperate trees relies on establishing a dormant stage during winter to survive unfavorable conditions. To overcome this dormant stage, trees require cool (i.e., chilling) temperatures as an environmental cue. Numerous approaches have tried to decipher the physiology of dormancy, but these efforts have usually remained relatively narrowly focused on particular regulatory or metabolic processes, recently integrated and linked by transcriptomic studies. This work aimed to synthesize existing knowledge on dormancy into a general conceptual framework to enhance dormancy comprehension. The proposed conceptual framework covers four physiological processes involved in dormancy progression: (i) transport at both whole-plant and cellular level, (ii) phytohormone dynamics, (iii) genetic and epigenetic regulation, and (iv) dynamics of nonstructural carbohydrates. We merged the regulatory levels into a seasonal framework integrating the environmental signals (i.e., temperature and photoperiod) that trigger each dormancy phase.
Collapse
|
34
|
Ahres M, Gierczik K, Boldizsár Á, Vítámvás P, Galiba G. Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. PLANTS 2020; 9:plants9010083. [PMID: 31936533 PMCID: PMC7020399 DOI: 10.3390/plants9010083] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/10/2023]
Abstract
It is established that, besides the cold, incident light also has a crucial role in the cold acclimation process. To elucidate the interaction between these two external hardening factors, barley plantlets were grown under different light conditions with low, normal, and high light intensities at 5 and 15 °C. The expression of the HvCBF14 gene and two well-characterized members of the C-repeat binding factor (CBF)-regulon HvCOR14b and HvDHN5 were studied. In general, the expression level of the studied genes was several fold higher at 5 °C than that at 15 °C independently of the applied light intensity or the spectra. The complementary far-red (FR) illumination induced the expression of HvCBF14 and also its target gene HvCOR14b at both temperatures. However, this supplementation did not affect significantly the expression of HvDHN5. To test the physiological effects of these changes in environmental conditions, freezing tests were also performed. In all the cases, we found that the reduced R:FR ratio increased the frost tolerance of barley at every incident light intensity. These results show that the combined effects of cold, light intensity, and the modification of the R:FR light ratio can greatly influence the gene expression pattern of the plants, which can result in increased plant frost tolerance.
Collapse
Affiliation(s)
- Mohamed Ahres
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Krisztián Gierczik
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Ákos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
| | - Pavel Vítámvás
- Department of Genetics and Plant Breeding, Crop Research Institute, 161 06 Prague 6, Czech Republic;
| | - Gábor Galiba
- Festetics Doctoral School, Georgikon Faculty, University of Pannonia, 8360 Keszthely, Hungary;
- Agricultural Institute, Centre for Agricultural Research, 2462 Martonvásár, Hungary; (K.G.); (Á.B.)
- Correspondence: ; Tel.:+36-22-460-523
| |
Collapse
|
35
|
Quesada-Traver C, Guerrero BI, Badenes ML, Rodrigo J, Ríos G, Lloret A. Structure and Expression of Bud Dormancy-Associated MADS-Box Genes ( DAM) in European Plum. FRONTIERS IN PLANT SCIENCE 2020; 11:1288. [PMID: 32973847 PMCID: PMC7466548 DOI: 10.3389/fpls.2020.01288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/07/2020] [Indexed: 05/22/2023]
Abstract
Bud dormancy in temperate perennials ensures the survival of growing meristems under the harsh environmental conditions of autumn and winter, and facilitates an optimal growth and development resumption in the spring. Although the molecular pathways controlling the dormancy process are still unclear, DORMANCY-ASSOCIATED MADS-BOX genes (DAM) have emerged as key regulators of the dormancy cycle in different species. In the present study, we have characterized the orthologs of DAM genes in European plum (Prunus domestica L.). Their expression patterns together with sequence similarities are consistent with a role of PdoDAMs in dormancy maintenance mechanisms in European plum. Furthermore, other genes related to dormancy, flowering, and stress response have been identified in order to obtain a molecular framework of these three different processes taking place within the dormant flower bud in this species. This research provides a set of candidate genes to be genetically modified in future research, in order to better understand dormancy regulation in perennial species.
Collapse
Affiliation(s)
- Carles Quesada-Traver
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Brenda Ivette Guerrero
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
| | - María Luisa Badenes
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Javier Rodrigo
- Unidad de Hortofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Gabino Ríos
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Alba Lloret
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
- *Correspondence: Alba Lloret,
| |
Collapse
|
36
|
Lundell R, Hänninen H, Saarinen T, Åström H, Zhang R. Beyond rest and quiescence (endodormancy and ecodormancy): A novel model for quantifying plant-environment interaction in bud dormancy release. PLANT, CELL & ENVIRONMENT 2020; 43:40-54. [PMID: 31472073 DOI: 10.1111/pce.13650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 05/21/2023]
Abstract
Bud dormancy of plants has traditionally been explained either by physiological growth arresting conditions in the bud or by unfavourable environmental conditions, such as non-growth-promoting low air temperatures. This conceptual dichotomy has provided the framework also for developing process-based plant phenology models. Here, we propose a novel model that in addition to covering the classical dichotomy as a special case also allows the quantification of an interaction of physiological and environmental factors. According to this plant-environment interaction suggested conceptually decades ago, rather than being unambiguous, the concept of "non-growth-promoting low air temperature" depends on the dormancy status of the plant. We parameterized the model with experimental results of growth onset for seven boreal plant species and found that based on the strength of the interaction, the species can be classified into three dormancy types, only one of which represents the traditional dichotomy. We also tested the model with four species in an independent experiment. Our study suggests that interaction of environmental and physiological factors may be involved in many such phenomena that have until now been considered simply as plant traits without any considerations of effects of the environmental factors.
Collapse
Affiliation(s)
- Robin Lundell
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Heikki Hänninen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, PR China
| | - Timo Saarinen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Helena Åström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, PR China
| |
Collapse
|
37
|
Ingvarsson PK, Bernhardsson C. Genome-wide signatures of environmental adaptation in European aspen ( Populus tremula) under current and future climate conditions. Evol Appl 2020; 13:132-142. [PMID: 31892948 PMCID: PMC6935590 DOI: 10.1111/eva.12792] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
Future climate change has been predicted to disrupt local adaptation in many perennial plants, such as forest trees, but the magnitude and location of these effects are thus far poorly understood. Here, we assess local adaptation to current climate in European aspen (Populus tremula) by using environmental association analyses to identify genetic variants associated with two representative climate variables describing current day variation in temperature and precipitation. We also analysed patterns of genetic differentiation between southern and northern populations and observe that regions of high genetic differentiation are enriched for SNPs that are significantly associated with climate. Using variants associated with climate, we examined patterns of isolation by distance and environment and used spatial modelling to predict the geographic distribution of genomic variation in response to two scenarios of future climate change. We show that climate conditions at a northern reference site will correspond to climate conditions experienced by current day populations located 4-8 latitude degrees further south. By assessing the relationship between phenotypic traits and vegetative fitness, we also demonstrate that southern populations harbour genetic variation that likely would be adaptive further north under both climate change scenarios. Current day populations at the lagging edge of the distribution in Sweden can therefore serve as sources for introducing adaptive alleles onto northern populations, but the likelihood of this largely depends on naturally occurring levels of gene flow.
Collapse
Affiliation(s)
- Pär K. Ingvarsson
- Department of Plant Biology, Linnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
| | - Carolina Bernhardsson
- Department of Plant Biology, Linnean Centre for Plant BiologySwedish University of Agricultural SciencesUppsalaSweden
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| |
Collapse
|
38
|
Kviklys D, Samuolienė G. Relationships Among the Rootstock, Crop Load, and Sugar Hormone Signaling of Apple Tree, and Their Effects on Biennial Bearing. FRONTIERS IN PLANT SCIENCE 2020; 11:1213. [PMID: 32849752 PMCID: PMC7427310 DOI: 10.3389/fpls.2020.01213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 05/09/2023]
Abstract
Adjustable crop load primarily involves bud manipulation, and usually switches from vegetative to reproductive buds. While this switch is not fully understood, it is still controlled by the ratio of hormones, which promote or inhibit bud formation. To determine the reasons for biennial bearing, the effect of apple rootstock, scion cultivar, crop load, as well as metabolic changes of endogenous phytohormones [zeatin, jasmonic acid, indole-3 acetic acid (IAA), abscisic acid (ABA), and gibberellins 1, 3, and 7 (GAs)], and soluble sugars (glucose, fructose, and sorbitol) were evaluated, and their connections with return bloom and yield of apple tree buds were analyzed. Cultivars "Ligol" and "Auksis" were tested on five rootstocks contrasting in induced vigor: semi-dwarfing M.26; dwarfing M.9, B.396, and P 67; and super-dwarfing P 22. Crop load levels were adjusted before flowering, leaving 75, 113, and 150 fruits per tree. Principal component analysis (PCA) scatter plot of the metabolic response of phytohormones and sugars indicated that the effect of the semi-dwarfing M.26 rootstock was significantly different from that of the dwarfing M.9 and P 67, as well as the super-dwarfing P 22 rootstocks in both varieties. The most intensive crop load (150 fruits per tree) produced a significantly different response compared to less intensive crop loads (113 and 75) in both varieties. In contrast to soluble sugar accumulation, increased crop load resulted in an increased accumulation of phytohormones, except for ABA. Dwarfing rootstocks M.9, B.396, and P 67, as well as super-dwarf P 22 produced an altered accumulation of promoter phytohormones, while the more vigorous semi-dwarfing M.26 rootstock induced a higher content of glucose and inhibitory phytohormones, by increasing content of IAA, ABA, and GAs. The most significant decrease in return bloom resulted from the highest crop load in "Auksis" grafted on M.9 and P 22 rootstocks. Average difference in flower number between crop loads of 75 and 150 fruits per tree in "Ligol" was 68%, while this difference reached ~ 90% for P 22, and ~ 75% for M.9 and M.26 rootstocks. Return bloom was dependent on the previous year's crop load, cultivar, and rootstock.
Collapse
Affiliation(s)
- Darius Kviklys
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
- Department of Horticulture, Norwegian Institute of Bioeconomy Research—NIBIO Ullensvang, Lofthus, Norway
- *Correspondence: Darius Kviklys,
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| |
Collapse
|
39
|
Keenan TF, Richardson AD, Hufkens K. On quantifying the apparent temperature sensitivity of plant phenology. THE NEW PHYTOLOGIST 2020; 225:1033-1040. [PMID: 31407344 DOI: 10.1111/nph.16114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Many plant phenological events are sensitive to temperature, leading to changes in the seasonal cycle of ecosystem function as the climate warms. To evaluate the current and future implications of temperature changes for plant phenology, researchers commonly use a metric of temperature sensitivity, which quantifies the change in phenology per degree change in temperature. Here, we examine the temperature sensitivity of phenology, and highlight conditions under which the widely used days-per-degree sensitivity approach is subject to methodological issues that can generate misleading results. We identify several factors, in particular the length of the period over which temperature is integrated, and changes in the statistical characteristics of the integrated temperature, that can affect the estimated apparent sensitivity to temperature. We show how the resulting artifacts can lead to spurious differences in apparent temperature sensitivity and artificial spatial gradients. Such issues are rarely considered in analyses of the temperature sensitivity of phenology. Given the issues identified, we advocate for process-oriented modelling approaches, informed by observations and with fully characterised uncertainties, as a more robust alternative to the simple days-per-degree temperature sensitivity metric. We also suggest approaches to minimise and assess spurious influences in the days-per-degree metric.
Collapse
Affiliation(s)
- Trevor F Keenan
- Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, 94720, USA
- Earth and Environmental Science Area, Lawrence Berkeley National Lab., Berkeley, CA, 94720, USA
| | - Andrew D Richardson
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86004, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86004, USA
| | - Koen Hufkens
- Department of Applied Ecology and Environmental Biology, Ghent University, Ghent, Belgium
- INRA Aquitaine, UMR ISPA, Villenave d'Ornon, France
| |
Collapse
|
40
|
Peaucelle M, Janssens IA, Stocker BD, Descals Ferrando A, Fu YH, Molowny-Horas R, Ciais P, Peñuelas J. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat Commun 2019; 10:5388. [PMID: 31772185 PMCID: PMC6879605 DOI: 10.1038/s41467-019-13365-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022] Open
Abstract
Leaf unfolding in temperate forests is driven by spring temperature, but little is known about the spatial variance of that temperature dependency. Here we use in situ leaf unfolding observations for eight deciduous tree species to show that the two factors that control chilling (number of cold days) and heat requirement (growing degree days at leaf unfolding, GDDreq) only explain 30% of the spatial variance of leaf unfolding. Radiation and aridity differences among sites together explain 10% of the spatial variance of leaf unfolding date, and 40% of the variation in GDDreq. Radiation intensity is positively correlated with GDDreq and aridity is negatively correlated with GDDreq spatial variance. These results suggest that leaf unfolding of temperate deciduous trees is adapted to local mean climate, including water and light availability, through altered sensitivity to spring temperature. Such adaptation of heat requirement to background climate would imply that models using constant temperature response are inherently inaccurate at local scale.
Collapse
Affiliation(s)
- Marc Peaucelle
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain.
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain.
- Computational and Applied Vegetation Ecology - CAVElab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| | - Ivan A Janssens
- Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Benjamin D Stocker
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
- Institute of Agricultural Sciences, Department for Environmental Systems Science, ETH Zürich, Universitätsstrasse 2, 8006, Zürich, Switzerland
| | - Adrià Descals Ferrando
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University Beijing, Beijing, China
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, UMR 1572 CEA-CNRS UVSQ, 91191, Gif sur Yvette, France
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, CA, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, CA, Spain
| |
Collapse
|
41
|
Tessier JT. Early spring warming may hasten leaf emergence in Erythronium americanum. AMERICAN JOURNAL OF BOTANY 2019; 106:1392-1396. [PMID: 31553817 DOI: 10.1002/ajb2.1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Climate change is making spring arrive earlier than in the past, causing some species to alter the timing of their spring activities. This study addressed whether Erythronium americanum Ker Gawl. (trout lily), a common spring ephemeral, can emerge earlier if exposed to early spring warming. METHODS I collected corms of Erythronium americanum in the fall, overwintered them in soil, and exposed them to warming in either mid (early treatment) or late (late treatment) February. The timing of leaf emergence was monitored and compared between treatments. RESULTS Leaves exposed to early warming emerged earlier than those in the late treatment. Bud break happened closer to date of exposure to warming in the late treatment than in the early treatment. CONCLUSIONS Spring ephemerals may be able to produce leaves early in response to early spring warming induced by climate change. Risk of late frost and eventual shading by the canopy may limit the duration of a potentially extended growing season.
Collapse
Affiliation(s)
- Jack T Tessier
- State University of New York at Delhi, 454 Delhi Dr., Delhi, New York, 13753, USA
| |
Collapse
|
42
|
Saravesi K, Markkola A, Taulavuori E, Syvänperä I, Suominen O, Suokas M, Saikkonen K, Taulavuori K. Impacts of experimental warming and northern light climate on growth and root fungal communities of Scots pine populations. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Chamberlain CJ, Cook BI, García de Cortázar-Atauri I, Wolkovich EM. Rethinking false spring risk. GLOBAL CHANGE BIOLOGY 2019; 25:2209-2220. [PMID: 30953573 PMCID: PMC8844870 DOI: 10.1111/gcb.14642] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 05/10/2023]
Abstract
Temperate plants are at risk of being exposed to late spring freezes. These freeze events-often called false springs-are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here, we review current metrics of false spring, and how, when, and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology and offer more robust predictions as climate change progresses, which are essential for mitigating the adverse ecological and economic effects of false springs.
Collapse
Affiliation(s)
- Catherine J Chamberlain
- Arnold Arboretum of Harvard University, Boston, Massachusetts
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Benjamin I Cook
- NASA Goddard Institute for Space Studies, New York, New York
| | | | - Elizabeth M Wolkovich
- Arnold Arboretum of Harvard University, Boston, Massachusetts
- Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, British Columbia
| |
Collapse
|
44
|
Diggle PK, Mulder CPH. Diverse Developmental Responses to Warming Temperatures Underlie Changes in Flowering Phenologies. Integr Comp Biol 2019; 59:559-570. [DOI: 10.1093/icb/icz076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Climate change has resulted in increased temperature means across the globe. Many angiosperms flower earlier in response to rising temperature and the phenologies of these species are reasonably well predicted by models that account for spring (early growing season) and winter temperatures. Surprisingly, however, exceptions to the general pattern of precocious flowering are common. Many species either do not appear to respond or even delay flowering in, or following, warm growing seasons. Existing phenological models have not fully addressed such exceptions to the common association of advancing phenologies with warming temperatures. The phenological events that are typically recorded (e.g., onset of flowering) are but one phase in a complex developmental process that often begins one or more years previously, and flowering time may be strongly influenced by temperature over the entire multi-year course of flower development. We propose a series of models that explore effects of growing-season temperature increase on the multiple processes of flower development and how changes in development may impact the timing of anthesis. We focus on temperate forest trees, which are characterized by preformation, the initiation of flower primordia one or more years prior to anthesis. We then synthesize the literature on flower development to evaluate the models. Although fragmentary, the existing data suggest the potential for temperature to affect all aspects of flower development in woody perennials. But, even for relatively well studied taxa, the critical developmental responses that underlie phenological patterns are difficult to identify. Our proposed models explain the seemingly counter-intuitive observations that warmer growing-season temperatures delay flowering in many species. Future research might concentrate on taxa that do not appear to respond to temperature, or delay flowering in response to warm temperatures, to understand what processes contribute to this pattern.
Collapse
Affiliation(s)
- Pamela K Diggle
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Christa P H Mulder
- Department of Biology and Wildlife & Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
45
|
Iacona C, Pistelli L, Cirilli M, Gatti L, Mancinelli R, Ripa MN, Muleo R. Day-Length Is Involved in Flooding Tolerance Response in Wild Type and Variant Genotypes of Rootstock Prunus cerasifera L. FRONTIERS IN PLANT SCIENCE 2019; 10:546. [PMID: 31130972 PMCID: PMC6509233 DOI: 10.3389/fpls.2019.00546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Current and predicted climate changes scenarios require crops with an improved adaptability to mutable environmental features, such as, hypoxia for the root system. In order to overcome the reduction of oxygen, plants activate coping mechanisms and strategies. Prunus spp. are hypoxia-sensitive woody species and although many information has been gathered over the last decades, many physiological mechanisms remain unclear. To verify whether anoxic plant responses are also regulated by photoperiod, plants of Mr.S.2/5-WT plum, and its variant genotypes S.4 tolerant (plus) and S.1 sensitive (minus) to flooding, were grown in a greenhouse and were submitted to natural photoperiod (NP) and to constant photoperiod (CP) from mid-July until the first 10 days of October. From mid-September plants from each genotype, grown under the two photoperiods, were divided into two groups, and one of them underwent long-term flooding. Gas exchange parameters, energetic and biochemical activities, leaf chlorophyll contents, and stress symptoms were measured at different times, whereas soluble sugars were quantified in leaves and roots 14 days after flooding, when stress symptoms in WT and S.1 became prominent. Seasonal changes in the photoperiod played a role in the adaptability to anoxia, although flooding stress response differed among the three genotypes. Anoxia affected leaf gas exchange and S.4 flooded-leaves retained higher ACO2 under conditions of NP and CP. Leaf soluble sugar concentration differed among genotypes. Regardless the photoperiod, S.4 anoxic-leaf sugar concentration was the lowest, except for sorbitol. S.4 anoxic-roots under CP accumulated the highest levels of sucrose and sorbitol. Influences of the photoperiod were observed in WT and S.1 anoxic-leaves, whereas S.1 anoxic roots accumulated the lowest concentration of sugars, regardless of photoperiod. Leaf and root respiratory activity in flooded-plants was highest in S.4, and ADH activity increased in all flooded plants under CP but the highest activity was observed only in S.1 under NP during flooding. Results are consistent with the hypothesis that the S.4 genotype has a plastic adaptability to flooding stress, escaping from the photoperiod regulatory cross-talk system, and can better cope with the new scenarios generated by climate changes.
Collapse
Affiliation(s)
- Calogero Iacona
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Department of Agricultural and Environmental Sciences, University of Milan, Milan, Italy
| | - Lorenzo Gatti
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Roberto Mancinelli
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Nicolina Ripa
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology of Woody Plant, Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
- Tree and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Italy
| |
Collapse
|
46
|
Chen L, Rossi S, Deslauriers A, Liu J. Contrasting strategies of xylem formation between black spruce and balsam fir in Quebec, Canada. TREE PHYSIOLOGY 2019; 39:747-754. [PMID: 30715531 DOI: 10.1093/treephys/tpy151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 05/29/2023]
Abstract
Present-day global warming is occurring faster at higher elevations. Although there is much information regarding the divergent responses of tree growth to climate change, the altitudinal patterns of species-specific xylogenesis remains poorly understood. We investigated the xylogenesis of balsam fir (Abies balsamea Mill.) and black spruce (Picea mariana Mill. B.S.P.) at two elevations in Quebec (Canada). The number of enlarging and mature cells of the developing tree ring were counted on microcores collected weekly between 2011 and 2014. At the lower site, the growth pattern and duration of xylogenesis were similar between species. No difference in responses to temperature and solar radiation between species was observed. At the higher site, however, cell production was higher and lasted longer in balsam fir than black spruce. Furthermore, the xylem growth of balsam fir had a stronger response to temperature and solar radiation than black spruce. These findings demonstrate the contrasting strategies of wood formation of the two species, with black spruce being more conservative than balsam fir. Our study provides evidence that sympatric species can have species-specific growth dynamics and site-specific responses to the local environment. Predictions of tree growth under a changing environment require the incorporation of species-specific growth strategies.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi (QC), Canada
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Hänninen H, Kramer K, Tanino K, Zhang R, Wu J, Fu YH. Experiments Are Necessary in Process-Based Tree Phenology Modelling. TRENDS IN PLANT SCIENCE 2019; 24:199-209. [PMID: 30528415 DOI: 10.1016/j.tplants.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 05/05/2023]
Abstract
In boreal and temperate trees, air temperature is a major environmental factor regulating the timing of spring phenological events, such as vegetative bud burst, through underlying physiological processes. This has been established by experimental research, and mathematical process-based tree phenology models have been developed based on the results. The models have often been applied when assessing the effects of climate change. Currently, there is an increasing trend to develop process-based tree phenology models using only observational phenological records from natural conditions. We point out that this method runs a high risk of producing models that do not simulate the real physiological processes in the trees and discuss experimental designs facilitating the development of biologically realistic process-based models for tree spring phenology.
Collapse
Affiliation(s)
- Heikki Hänninen
- Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Hangzhou, China; These authors contributed equally to this work.
| | - Koen Kramer
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands; These authors contributed equally to this work
| | - Karen Tanino
- University of Saskatchewan, Department of Plant Sciences, Saskatoon, Canada
| | - Rui Zhang
- Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Hangzhou, China
| | - Jiasheng Wu
- Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Hangzhou, China
| | - Yongshuo H Fu
- Beijing Normal University, College of Water Sciences, Beijing 100875, China
| |
Collapse
|
48
|
Liu G, Chen X, Fu Y, Delpierre N. Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2018.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Ongoing seasonally uneven climate warming leads to earlier autumn growth cessation in deciduous trees. Oecologia 2019; 189:549-561. [DOI: 10.1007/s00442-019-04339-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
|
50
|
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. The proof is in the bulb: glycerol influences key stages of lily development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:321-340. [PMID: 30288818 DOI: 10.1111/tpj.14122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 05/24/2023]
Abstract
A bulb is a whole plant condensed into an underground organ. A geophyte's bulb comprises both food reserves and important developmental history that may affect its whole growth. In Easter lily (Lilium longiflorum), bulb size is associated with the plant's flowering pathway - vernalization or photoperiod - and also affects sprouting, flower quality and abortion rate. The aim of this study was to investigate the reasons for the major physiological differences between large and small bulbs. Lily bulbs start their development from secondary meristems along the stem, with large bulbs being heavier and bear more scales than small ones. Peeling the outer scales of a large bulb converts its physiological responses into those of a small bulb, implying that the physiological discrepancies in plants developing from large or small bulbs are mediated by factors inherent to the bulb. We therefore performed broad analyses of the metabolite composition in the scales of bulbs subjected to temperature regimes affecting further plant development. We found a striking association between the level of glycerol, a primary metabolite mostly synthesized in the outer scales, and a delay in sprouting and flowering time, and reduction in abortion rate. Exogenous glycerol application to the bulbs before planting corroborated these results. Moreover, transcriptome analyses showed that flowering-promoting gene expression was downregulated in the bulb after glycerol treatment, while potential flowering inhibitor as well as a dormancy-related gene expressions were upregulated. Based on these studies, we postulate that glycerol is a major factor influencing both vegetative and reproductive development in lily.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Daniel Bechar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|