1
|
Wang Y, Su Y, Peng H, Han M, Lin S, Cheng X, Dong C, Zhang S, Yang T, Chen Z, Bao S, Zhang Z. The Histone Methyltransferase PRMT5 Mediates the Epigenetic Modification to Modulate High Temperatures and Tea Quality in Tea Plants (Camellia sinensis). PLANT, CELL & ENVIRONMENT 2025. [PMID: 40269587 DOI: 10.1111/pce.15567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
High temperatures significantly affect tea yield and quality. Arginine methylation is crucial for plant growth and environmental adaptation. However, its role in regulating plant responses to high temperatures remains unclear. In this study, we identified an important Type II arginine methyltransferase, PRMT5, in tea plants and confirmed its methyltransferase activity both in vivo and in vitro. Our findings revealed that CsPRMT5-mediated symmetric dimethylation of histone H4R3 (H4R3sme2) was markedly reduced under high-temperature conditions in tea plants. Both the inhibitor and gene-silencing approaches led to decreased levels of H4R3sme2 modification, resulting in alterations in theanine and catechins. We employed a genome-wide approach to analyze the RNA sequencing (RNA-seq) of tea plants subjected to ambient high temperatures, PRMT5 inhibitors, and PRMT5 silencing, along with H4R3sme2 and CsPRMT5 chromatin immunoprecipitation sequencing (ChIP-seq). Comparative analysis of these datasets indicated that genes regulated by H4R3sme2 were predominantly enriched within the reactive oxygen species (ROS), calcium ion, and hormone signalling pathways under elevated temperature conditions. Furthermore, we validated CsCDPK9 as a target gene regulated by H4R3sme2 and found that silencing CsCDPK9 resulted in increased theanine content and decreased catechin content at high temperatures. Our findings suggest that CsPRMT5-mediated H4R3sme2 plays a pivotal role in the growth of tea plants, as well as in their adaptability to fluctuations in ambient temperatures. This study provides new insights into breeding strategies aimed at developing crops that are better equipped to withstand environmental changes induced by climate change.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China
| | - Yanlei Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Huanyun Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Li P, An Z, Xu N, Li J, Li Q, He C. Phenotypic Plasticity and Stability in Plants: Genetic Mechanisms, Environmental Adaptation, Evolutionary Implications, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40248975 DOI: 10.1111/pce.15566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
The phenotypic display, survival, and reproduction of organisms depend on genotype-environment interactions that drive development, evolution, and diversity. Biological systems exhibit two basic but paradoxical features that contribute to developmental robustness: plasticity and stability. However, the understanding of these concepts remains ambiguous. The morphology and structure of plant reproductive organs-flowers and fruits-exhibit substantial stability but display a certain level of plasticity under environmental changes, thus representing promising systems for the study of how stability and plasticity jointly govern plant development and evolution. Beyond the genes underlying organ formation, certain genes may maintain stability and induce plasticity. Variations in relevant genes can induce developmental repatterning, thereby altering stability or plasticity under light and temperature fluctuations, which often affects fitness. The regulation of developmental robustness in plant vegetative organs involves transcriptional and post-transcriptional regulation, epigenetics, and phase separation; however, these mechanisms in the reproductive organs of flowering plants remain poorly investigated. Moreover, genes that specifically determine phenotypic plasticity have rarely been cloned. This review clarifies the concepts and attributes of phenotypic plasticity and stability and further proposes potential avenues and a paradigm to investigate the underlying genes and elucidate how plants adapt and thrive in diverse environments, which is crucial for the design of genetically modified crops.
Collapse
Affiliation(s)
- Peigang Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenghong An
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Xu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jigang Li
- Life Science College, Northwest Normal University, Anning, Gansu, China
| | - Qiaoxia Li
- Life Science College, Northwest Normal University, Anning, Gansu, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Tingting L, Guangyan L, Jiaying M, Haozhe H, Weimeng F, Tingting C, Wenting W, Yuxiang Z, Mojun C, Guanfu F, Baohua F. ATP utilization efficiency plays a key role in determining rice quality under high-temperature conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109582. [PMID: 39923415 DOI: 10.1016/j.plaphy.2025.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025]
Abstract
High-temperature stress significantly adversely affects both rice yield and quality by disrupting energy metabolism, specifically ATP levels and ATP utilization efficiency. However, the exact mechanisms involved remain unclear. This study investigated two rice cultivars with distinct heat tolerance: ZZY1, which produces a higher yield but lower quality, and ZZY8, which has a lower yield but higher quality. Both cultivars were subjected to heat stress during the flowering stage. As temperatures increased, both cultivars experienced considerable declines in grain yield, seed-setting rate, and kernel weight, with ZZY8 showing more severe impacts. Furthermore, ZZY1 demonstrated a significant rise in chalkiness and a reduction in the head rice rate. To uncover the underlying mechanisms, the study analyzed antioxidant enzyme activity, levels of H2O2 and MDA, and various factors related to energy metabolism, including ATP content, ATPase levels, energy charge, AOX content, and the activity of complexes I and V, alongside NAD(H) and NADP(H) content, as well as transcriptome analysis. The complex V content was increased in ZZY1 while decreased in ZZY8, as well as the ATPase decreased more in ZZY1 than ZZY8, which illustrated the ZZY8 had a higher ATP utilization efficiency. The findings showed that ZZY1 had a notably higher ATP content than ZZY8, while ZZY8 exhibited elevated ATPase levels. Transcriptome analysis supported these observations, suggesting that ATP utilization efficiency may be crucial in determining rice quality under high-temperature stress during flowering stage.
Collapse
Affiliation(s)
- Lu Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Li Guangyan
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Rice Industrial Engineering Technology, Agricultural College, Yangzhou University, Yangzhou, 225009, China
| | - Ma Jiaying
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Huang Haozhe
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Fu Weimeng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chen Tingting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Wang Wenting
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zeng Yuxiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Chen Mojun
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Fu Guanfu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Feng Baohua
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
5
|
Liu J, Li X, Wang K, Wang T, Meng Y, Peng Z, Huang J, Huo J, Zhu X, Yang J, Fan Y, Xu F, Zhang Q, Wang Z, Wang Y, Chen H, Xu W. The splicing auxiliary factor OsU2AF35a enhances thermotolerance via protein separation and promoting proper splicing of OsHSA32 pre-mRNA in rice. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1308-1328. [PMID: 39844526 PMCID: PMC11933845 DOI: 10.1111/pbi.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65). However, the functions of U2AF35 in plants are poorly understood. In this study, we discovered that the OsU2AF35a gene was vigorously induced by heat stress and could positively regulate rice thermotolerance during both the seedling and reproductive growth stages. OsU2AF35a interacts with OsU2AF65a within the nucleus, and both of them can form condensates through liquid-liquid phase separation (LLPS) following heat stress. The intrinsically disordered regions (IDR) are accountable for their LLPS. OsU2AF35a condensation is indispensable for thermotolerance. RNA-seq analysis disclosed that, subsequent to heat treatment, the expression levels of several genes associated with water deficiency and oxidative stress in osu2af35a-1 were markedly lower than those in ZH11. In accordance with this, OsU2AF35a is capable of positively regulating the oxidative stress resistance of rice. The pre-mRNAs of a considerable number of genes in the osu2af35a-1 mutant exhibited defective splicing, among which was the OsHSA32 gene. Knocking out OsHSA32 significantly reduced the thermotolerance of rice, while overexpressing OsHSA32 could partially rescue the heat sensitivity of osu2af35a-1. Together, our findings uncovered the essential role of OsU2AF35a in rice heat stress response through protein separation and regulating alternative pre-mRNA splicing.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xin Li
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Wang
- Institute of Resources, Environment and Soil FertilizerFujian Academy of Agricultural SciencesFuzhouChina
| | - Tao Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yang Meng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi Peng
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinli Huang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaohan Huo
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoqi Zhu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jinyong Yang
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yongxi Fan
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Feiyun Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qian Zhang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhengrui Wang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Wang
- Cereal Crops Research InstituteHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hao Chen
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Weifeng Xu
- Center for Plant Water‐use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in CropFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
6
|
Gao Y, Mo Y, Chen S, Ren L, Wei L, Chen B, Ling Y. Identification of pine SF3B1 protein and cross-species comparison highlight its conservation and biological significance in pre-mRNA splicing regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109827. [PMID: 40147324 DOI: 10.1016/j.plaphy.2025.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
As a key component of the largest subunit of the splicing machinery, SF3B1 plays essential roles in eukaryotic growth and development. However, only a few studies have focused on the evolutionary features and functions of this protein in plants. In this study, with the assistance of a bioinformatic analysis, we determined the complete coding sequence of the gene encoding the pine SF3B1 protein using RT-PCR and DNA sequencing. The evolutionary features of SF3B1 proteins were further examined based on a phylogenetic tree of SF3B1 homologous proteins from different eukaryotes, along with comprehensive comparisons of their functional domains, conserved motifs, and cis-regulatory elements and the structures of the corresponding genes. Furthermore, the effects of the splicing modulator GEX1a on several plant species were analysed, confirming that the re-identified SF3B1, with a full-length HEAT repeat domain, is expressed and functions in pre-mRNA splicing regulation in pines. In summary, we conducted a systematic cross-species comparison of SF3B1 homologous proteins, with an emphasis on complete sequence determination and the functional confirmation of pine SF3B1, illustrating the conservation of homologous proteins in plants. This study provides a valuable reference for understanding functional and regulatory mechanisms, as well as the potential applications of SF3B1.
Collapse
Affiliation(s)
- Yanhu Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Long Wei
- Guangdong Coastal Shelter-belt Ecosystem National Observation and Research Station, Guangdong Coast Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Beibei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
| |
Collapse
|
7
|
Cheng J, Wu T, Zhou Y, Al-Saud NBS, Cheng B, Admas T, Zhang W, Pan R. The alternative splicing of HvLHCA4.2 enhances drought tolerance in barley by regulating ROS scavenging and stomatal closure. Int J Biol Macromol 2025; 307:142384. [PMID: 40120886 DOI: 10.1016/j.ijbiomac.2025.142384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Alternative splicing (AS) provides flexible strategies for plants to cope with abiotic stress, but how AS regulates drought response in barley (Hordeum vulgare) remains poorly understood. This study investigates the genome-wide AS patterns in drought-sensitive (Baudin) and tolerant barley genotypes (Tadmor, EC_S1) during drought and recovery stages. Baudin showed maximal AS events during drought, while tolerant genotypes activated AS predominantly during recovery. Drought-tolerant EC_S1 exhibited differential AS events enriched in metabolic pathways, amino acid biosynthesis, and chromatin remodeling. WGCNA analysis identified eight modules linked to stomatal dynamics, biomass, and ROS scavenging, with the 'MEmidnightblue' module (related to stoma and ROS regulation) being drought-responsive. A drought-inducible splice variant, LHCA4.2b, was exclusively identified in tolerant genotypes. Silencing HvLHCA4.2a (lhca4.2a) and dual-silencing HvLHCA4.2a + b (lhca4.2a + b) drastically impaired drought tolerance, manifesting as wilting, accelerated water loss, reduced biomass, and elevated electrolyte leakage, coupled with chlorophyll degradation, ROS overaccumulation, and malondialdehyde overproduction. Enhanced stress sensitivity in lhca4.2a + b versus lhca4.2a underscores HvLHCA4.2b's critical role. Additionally, lhca4.2a + b displayed ABA-insensitive stomata with unaltered stomatal conductance under drought or exogenous ABA, implicating LHCA4.2b in ABA signaling. Mechanistically, AS-generated LHCA4.2b isoform enhances PSI-LHCI super-complex stability through strengthened interaction interfaces with LHCA1, thereby improving energy transfer efficiency and reducing ROS generation. This isoform simultaneously coordinates ABA signaling by elevating ABF1/ABF3 transcription factors while suppressing ABI3/ABI4/ABI5 repressors, collectively modulating stomatal closure and ROS homeostasis. Our findings elucidate AS-mediated drought adaptation mechanisms in barley and highlight HvLHCA4.2b as a potential target for breeding drought-tolerant cultivars.
Collapse
Affiliation(s)
- Jingqiu Cheng
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Tiantian Wu
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Yi Zhou
- Jingmen Agricultural Technology Extension Center, Jingmen 448000, China
| | - Najla B S Al-Saud
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21577, Saudi Arabia
| | - Bingyun Cheng
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Tayachew Admas
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Wenying Zhang
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China
| | - Rui Pan
- Research Center of Crop Stresses Resistance Technologies/MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
8
|
Distéfano AM, Bauer V, Cascallares M, López GA, Fiol DF, Zabaleta E, Pagnussat GC. Heat stress in plants: sensing, signalling, and ferroptosis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1357-1369. [PMID: 38989813 DOI: 10.1093/jxb/erae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical, and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Victoria Bauer
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
9
|
Naaz S, Pande A, Laxmi A. Nitric oxide-mediated thermomemory: a new perspective on plant heat stress resilience. FRONTIERS IN PLANT SCIENCE 2025; 16:1525336. [PMID: 40093607 PMCID: PMC11906724 DOI: 10.3389/fpls.2025.1525336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
In the intricate world of plant responses to environmental stress, the concept of thermomemory has emerged as a fascinating and complex phenomenon. Plants, as sessile organisms, continually face the challenge of adapting to fluctuating climates, and the ability to "remember" prior heat stress encounters, a phenomenon known as thermomemory is a testament to their remarkable adaptability. Nitric oxide (NO), a versatile signaling molecule in plant physiology, has been implicated in a myriad of cellular processes crucial for stress adaptation. From its involvement in stomatal regulation to its influence on gene expression and antioxidant defense mechanisms, NO emerges as a central orchestrator in the plant's response to elevated temperatures. Exploration of NO-mediated pathways provides insights into how plants not only cope with immediate heat stress but also retain a memory of these encounters. Unraveling the molecular intricacies of NO's involvement in thermomemory enhances our understanding of the sophisticated strategies employed by plants to navigate a changing climate, offering potential avenues for innovative approaches to enhancing crop resilience and sustainable agriculture.
Collapse
Affiliation(s)
- Sheeba Naaz
- National Institute of Plant Genome Research, New Delhi, India
| | - Anjali Pande
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
10
|
Dannfald A, Carpentier MC, Merret R, Favory JJ, Deragon JM. Plant response to intermittent heat stress involves modulation of mRNA translation efficiency. PLANT PHYSIOLOGY 2025; 197:kiae648. [PMID: 39688875 PMCID: PMC11979764 DOI: 10.1093/plphys/kiae648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
Acquired thermotolerance (also known as priming) is the ability of cells or organisms to survive acute heat stress if preceded by a milder one. In plants, acquired thermotolerance has been studied mainly at the transcriptional level, including recent descriptions of sophisticated regulatory circuits that are essential for this learning capacity. Here, we tested the involvement of polysome-related processes [translation and cotranslational mRNA decay (CTRD)] in Arabidopsis (Arabidopsis thaliana) thermotolerance using two heat stress regimes with and without a priming event. We found that priming is essential to restore the general translational potential of plants shortly after acute heat stress. We observed that mRNAs not involved in heat stress suffered from reduced translation efficiency at high temperatures, whereas heat stress-related mRNAs were translated more efficiently under the same condition. We also showed that the induction of the unfolded protein response (UPR) pathway in acute heat stress is favored by a previous priming event and that, in the absence of priming, ER-translated mRNAs become preferential targets of CTRD. Finally, we present evidence that CTRD can specifically regulate more than a thousand genes during heat stress and should be considered as an independent gene regulatory mechanism.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Rémy Merret
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, 66860 Perpignan, France
- Université de Perpignan Via Domitia, LGDP-UMR5096, 66860 Perpignan, France
| |
Collapse
|
11
|
Chen W, Liu Y, Pu J, Gui S, Wang D, Zhong X, Tao W, Chen X, Chen X, Chen Y, Zhao L, Wu Q, Chen X, Zhang Y, Xie A, Xie P. Comparative transcriptional analyses of the striatum in the chronic social defeat stress model in C57BL/6J male mice and the gut microbiota-dysbiosis model in Kumming mice. Neuroscience 2024; 562:217-226. [PMID: 39489477 DOI: 10.1016/j.neuroscience.2024.10.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Depression is a complex disorder with multiple contributing factors, and chronic stress has previously been recognized as a major causative factor, while gut microbes have also been found to be involved in depression recently. However, gene expression in depression models with different etiologies is unclear. Here, we compared the transcriptomes of the striatum in chronic social defeat stress (CSDS) model of C57BL/6J male mice and fecal microbiota transplant (FMT) model of Kumming male mice. We found that the proportion of shared differentially expressed genes (DEGs) between the two models was only 24 %. The specific DEGs of FMT model were enriched in immune and inflammatory, and are associated with changes in vascular and ciliated ependymal cells. The specific DEGs of CSDS model were enriched in neuron and synapse. The results of network analysis suggested the expression patterns and biological function of depressive-like behaviors-related modules in the two models are different. Further, the alternative splicing events of CSDS are more than FMT. Our results suggested models of depression induced by different etiologies differ significantly in gene expression and biological function. Our study also suggested us to pay attention to the characteristics of models of depression of different etiologies and provided a more comprehensive understanding of the heterogeneity of depression.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Siwen Gui
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Wei Tao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiaopeng Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University 402160 Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shan-dong, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; The Jin Feng Laboratory, Chongqing 401329, China.
| |
Collapse
|
12
|
Lakhneko O, Fialová I, Fiala R, Kopáčová M, Kováč A, Danchenko M. Silicon might mitigate nickel toxicity in maize roots via chelation, detoxification, and membrane transport. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117334. [PMID: 39549574 DOI: 10.1016/j.ecoenv.2024.117334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Nickel is an essential micronutrient for plant growth and development. However, in excessive amounts caused by accidental pollution of soils, this heavy metal is toxic to plants. Although silicon is a non-essential nutrient, it accumulates in most monocots, particularly the vital crop maize (corn, Zea mays). In fact, this metalloid mineral can alleviate the toxicity of heavy metals, though the mechanism is not entirely clear yet. Herein, we measured proteome, gene expression, enzyme activities, and selected sugars to investigate such effect thoroughly. Deep proteomic analysis revealed a minor impact of 100 µM Ni, 2.5 mM Si, or their combination on roots in 12-day-old hydroponically grown maize seedlings upon 9 days of exposure. Nonetheless, we suggested plausible mechanisms of Si mitigation of excessive Ni: Chelation by metallothioneins and phytochelatins, detoxification by glycine betaine pathway, and restructuring of plasma membrane transporters. Higher activity of glutathione S-transferase confirmed its plausible involvement in reducing Ni toxicity in combined treatment. Accumulation of sucrose synthase and corresponding soluble sugars in Ni and combined treatment implied high energy requirements both during heavy metal stress and its mitigation. Expression analysis of genes coding a few differentially accumulated proteins failed to reveal concordant changes, indicating posttranscriptional regulation. Proposed mitigation mechanisms should be functionally validated in follow-up studies.
Collapse
Affiliation(s)
- Olha Lakhneko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Ivana Fialová
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Roderik Fiala
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia
| | - Mária Kopáčová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava 84538, Slovakia
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava 84510, Slovakia
| | - Maksym Danchenko
- Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava 84523, Slovakia.
| |
Collapse
|
13
|
Ma G, Liu Z, Song S, Gao J, Liao S, Cao S, Xie Y, Cao L, Hu L, Jing H, Chen L. The LpHsfA2-molecular module confers thermotolerance via fine tuning of its transcription in perennial ryegrass (Lolium perenne L.). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2346-2361. [PMID: 39422287 PMCID: PMC11583844 DOI: 10.1111/jipb.13789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Temperature sensitivity and tolerance play a key role in plant survival and production. Perennial ryegrass (Lolium perenne L.), widely cultivated in cool-season for forage supply and turfgrass, is extremely susceptible to high temperatures, therefore serving as an excellent grass for dissecting the genomic and genetic basis of high-temperature adaptation. In this study, expression analysis revealed that LpHsfA2, an important gene associated with high-temperature tolerance in perennial ryegrass, is rapidly and substantially induced under heat stress. Additionally, heat-tolerant varieties consistently display elevated expression levels of LpHsfA2 compared with heat-sensitive ones. Comparative haplotype analysis of the LpHsfA2 promoter indicated an uneven distribution of two haplotypes (HsfA2Hap1 and HsfA2Hap2) across varieties with differing heat tolerance. Specifically, the HsfA2Hap1 allele is predominantly present in heat-tolerant varieties, while the HsfA2Hap2 allele exhibits the opposite pattern. Overexpression of LpHsfA2 confers enhanced thermotolerance, whereas silencing of LpHsfA2 compromises heat tolerance. Furthermore, LpHsfA2 orchestrates its protective effects by directly binding to the promoters of LpHSP18.2 and LpAPX1 to activate their expression, preventing the non-specific misfolding of intracellular protein and the accumulation of reactive oxygen species in cells. Additionally, LpHsfA4 and LpHsfA5 were shown to engage directly with the promoter of LpHsfA2, upregulating its expression as well as the expression of LpHSP18.2 and LpAPX1, thus contributing to enhanced heat tolerance. Markedly, LpHsfA2 possesses autoregulatory ability by directly binding to its own promoter to modulate the self-transcription. Based on these findings, we propose a model for modulating the thermotolerance of perennial ryegrass by precisely regulating the expression of LpHsfA2. Collectively, these findings provide a scientific basis for the development of thermotolerant perennial ryegrass cultivars.
Collapse
Affiliation(s)
- Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhihao Liu
- Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, 435002, China
| | - Shurui Song
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shilong Cao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Liwen Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Haichun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Academician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| |
Collapse
|
14
|
Rosenkranz RE, Vraggalas S, Keller M, Sankaranarayanan S, McNicoll F, Löchli K, Bublak D, Benhamed M, Crespi M, Berberich T, Bazakos C, Feldbrügge M, Schleiff E, Müller-McNicoll M, Zarnack K, Fragkostefanakis S. A plant-specific clade of serine/arginine-rich proteins regulates RNA splicing homeostasis and thermotolerance in tomato. Nucleic Acids Res 2024; 52:11466-11480. [PMID: 39180404 PMCID: PMC11514476 DOI: 10.1093/nar/gkae730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Global warming poses a threat for crops, therefore, the identification of thermotolerance mechanisms is a priority. In plants, the core factors that regulate transcription under heat stress (HS) are well described and include several HS transcription factors (HSFs). Despite the relevance of alternative splicing in HS response and thermotolerance, the core regulators of HS-sensitive alternative splicing have not been identified. In tomato, alternative splicing of HSFA2 is important for acclimation to HS. Here, we show that several members of the serine/arginine-rich family of splicing factors (SRSFs) suppress HSFA2 intron splicing. Individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) combined with RNA-Seq revealed that RS2Z35 and RS2Z36, which make up a plant-specific clade of SR proteins, not only regulate HSFA2 but approximately 50% of RNAs that undergo HS-sensitive alternative splicing, with preferential binding to purine-rich RNA motifs. Single and double CRISPR rs2z mutant lines show a dysregulation of splicing and exhibit lower basal and acquired thermotolerance compared to wild type plants. Our results suggest that RS2Z35 and RS2Z36 have a central role in mitigation of the negative effects of HS on RNA splicing homeostasis, and their emergence might have contributed to the increased capacity of plants to acclimate to high temperatures.
Collapse
Affiliation(s)
- Remus R E Rosenkranz
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Stavros Vraggalas
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Mario Keller
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | | | - François McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
| | - Karin Löchli
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniela Bublak
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay-CNRS, Orsay, France
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Frankfurt, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Köln, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO DEMETER, Thessaloniki, Greece
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Enrico Schleiff
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Institute of Molecular Biosciences, RNA Regulation in Higher Eukaryotes, Goethe University Frankfurt, Frankfurt, Germany
- Max-Planck Institute for Biophysics, Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute of Molecular Life Sciences & Institute of Molecular Biosciences, Computational RNA Biology, Goethe University Frankfurt, Frankfurt, Germany
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Molecular and Cell Biology of Plants, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
15
|
Guo B, Wei X, Liu S, Cui W, Zhou C. Deep learning modeling of RNA ac4C deposition reveals the importance of plant alternative splicing. PLANT MOLECULAR BIOLOGY 2024; 114:118. [PMID: 39467957 DOI: 10.1007/s11103-024-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
The N4-acetylcytidine (ac4C) modification has recently been characterized as a noncanonical RNA marker in plants. While the precise installation of ac4C sites in individual plant transcripts continues to present challenges, the biological roles of ac4C in specific plant species are gradually being deciphered. Herein, we utilized a deep learning technique called iac4C (intelligent ac4C) to predict ac4C sites in mRNA. ac4C deposition was effectively forecasted by the iac4C model (AUROC = 0.948), revealing a reliable distribution pattern primarily situated in the transcribing area as opposed to regions that are not translated. The iac4C deep learning approach using a combination of BiGRU and self-attention mechanisms both validates previous studies showing a positive correlation between ac4C and RNA splicing in plant species and reveals new examples of other splicing events associated with ac4C. Our advanced deep learning algorithm for analyzing ac4C enables swift identification of important biological phenomena that would otherwise be challenging to uncover through traditional experimental approaches. These findings provide insight into the essential regulatory function of site-specific ac4C deposition in alternative splicing processes. The source code and datasets for iac4C are available at https://github.com/xlwei507/iac4C .
Collapse
Affiliation(s)
- Bintao Guo
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Xinlin Wei
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Shuangcheng Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China
| | - Wenchao Cui
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
16
|
Guo Y, Shang X, Ma L, Cao Y. RNA-Binding Protein-Mediated Alternative Splicing Regulates Abiotic Stress Responses in Plants. Int J Mol Sci 2024; 25:10548. [PMID: 39408875 PMCID: PMC11477454 DOI: 10.3390/ijms251910548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The alternative splicing of pre-mRNA generates distinct mRNA variants from a pre-mRNA, thereby modulating a gene's function. The splicing of pre-mRNA depends on splice sites and regulatory elements in pre-mRNA, as well as the snRNA and proteins that recognize these sequences. Among these, RNA-binding proteins (RBPs) are the primary regulators of pre-mRNA splicing and play a critical role in the regulation of alternative splicing by recognizing the elements in pre-mRNA. However, little is known about the function of RBPs in stress response in plants. Here, we summarized the RBPs involved in the alternative splicing of pre-mRNA and their recognizing elements in pre-mRNA, and the recent advance in the role of RBP-mediated alternative splicing in response to abiotic stresses in plants. This review proposes that the regulation of pre-mRNA alternative splicing by RBPs is an important way for plants to adapt to abiotic stresses, and the regulation of alternative splicing by RBPs is a promising direction for crop breeding.
Collapse
Affiliation(s)
| | | | | | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing 100048, China; (Y.G.); (X.S.); (L.M.)
| |
Collapse
|
17
|
Yuan S, Yin T, He H, Liu X, Long X, Dong P, Zhu Z. Phenotypic, Metabolic and Genetic Adaptations of the Ficus Species to Abiotic Stress Response: A Comprehensive Review. Int J Mol Sci 2024; 25:9520. [PMID: 39273466 PMCID: PMC11394708 DOI: 10.3390/ijms25179520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The Ficus genus, having radiated from the tropics and subtropics to the temperate zone worldwide, is the largest genus among woody plants, comprising over 800 species. Evolution of the Ficus species results in genetic diversity, global radiation and geographical differentiations, suggesting adaption to diverse environments and coping with stresses. Apart from familiar physiological changes, such as stomatal closure and alteration in plant hormone levels, the Ficus species exhibit a unique mechanism in response to abiotic stress, such as regulation of leaf temperature and retention of drought memory. The stress-resistance genes harbored by Ficus result in effective responses to abiotic stress. Understanding the stress-resistance mechanisms in Ficus provides insights into the genetic breeding toward stress-tolerant crop cultivars. Following upon these issues, we comprehensively reviewed recent progress concerning the Ficus genes and relevant mechanisms that play important roles in the abiotic stress responses. These highlight prospectively important application potentials of the stress-resistance genes in Ficus.
Collapse
Affiliation(s)
- Shengyun Yuan
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hourong He
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xinyi Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xueyan Long
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
18
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
19
|
Sun Q, Sun Y, Liu X, Li M, Li Q, Xiao J, Xu P, Zhang S, Ding X. Regulation of plant resistance to salt stress by the SnRK1-dependent splicing factor SRRM1L. THE NEW PHYTOLOGIST 2024; 242:2093-2114. [PMID: 38511255 DOI: 10.1111/nph.19699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Most splicing factors are extensively phosphorylated but their physiological functions in plant salt resistance are still elusive. We found that phosphorylation by SnRK1 kinase is essential for SRRM1L nuclear speckle formation and its splicing factor activity in plant cells. In Arabidopsis, loss-of-function of SRRM1L leads to the occurrence of alternative pre-mRNA splicing events and compromises plant resistance to salt stress. In Arabidopsis srrm1l mutant line, we identified an intron-retention Nuclear factor Y subunit A 10 (NFYA10) mRNA variant by RNA-Seq and found phosphorylation-dependent RNA-binding of SRRM1L is indispensable for its alternative splicing activity. In the wild-type Arabidopsis, salt stress can activate SnRK1 to phosphorylate SRRM1L, triggering enrichment of functional NFYA10.1 variant to enhance plant salt resistance. By contrast, the Arabidopsis srrm1l mutant accumulates nonfunctional NFYA10.3 variant, sensitizing plants to salt stress. In summary, this work deciphered the molecular mechanisms and physiological functions of SnRK1-SRRM1L-NFYA10 module, shedding light on a regulatory pathway to fine-tune plant adaptation to abiotic stress at the post-transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Yixin Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xin Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Minglong Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
20
|
Kwak JS, Song JT, Seo HS. E3 SUMO ligase SIZ1 splicing variants localize and function according to external conditions. PLANT PHYSIOLOGY 2024; 195:1601-1623. [PMID: 38497423 PMCID: PMC11142376 DOI: 10.1093/plphys/kiae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
SIZ1 (SAP and MIZ1) is a member of the Siz/PIAS-type RING family of E3 SUMO (small ubiquitin-related modifier) ligases that play key roles in growth, development, and stress responses in plant and animal systems. Nevertheless, splicing variants of SIZ1 have not yet been characterized. Here, we identified four splicing variants of Arabidopsis (Arabidopsis thaliana) SIZ1, which encode three different protein isoforms. The SIZ1 gene encodes an 873-amino acid (aa) protein. Among the four SIZ1 splicing variants (SSVs), SSV1 and SSV4 encode identical 885 aa proteins; SSV2 encodes an 832 aa protein; and SSV3 encodes an 884 aa protein. SSV2 mainly localized to the plasma membrane, whereas SIZ1, SSV1/SSV4, and SSV3 localized to the nucleus. Interestingly, SIZ1 and all SSVs exhibited similar E3 SUMO ligase activities and preferred SUMO1 and SUMO2 for their E3 ligase activity. Transcript levels of SSV2 were substantially increased by heat treatment, while those of SSV1, SSV3, and SSV4 transcripts were unaffected by various abiotic stresses. SSV2 directly interacted with and sumoylated cyclic nucleotide-gated ion channel 6 (CNGC6), a positive thermotolerance regulator, enhancing the stability of CNGC6. Notably, transgenic siz1-2 mutants expressing SSV2 exhibited greater heat stress tolerance than wild-type plants, whereas those expressing SIZ1 were sensitive to heat stress. Furthermore, transgenic cngc6 plants overaccumulating a mutated mCNGC6 protein (K347R, a mutation at the sumoylation site) were sensitive to heat stress, similar to the cngc6 mutants, while transgenic cngc6 plants overaccumulating CNGC6 exhibited restored heat tolerance. Together, we propose that alternative splicing is an important mechanism that regulates the function of SSVs during development or under adverse conditions, including heat stress.
Collapse
Affiliation(s)
- Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
21
|
Zhong Y, Luo Y, Sun J, Qin X, Gan P, Zhou Z, Qian Y, Zhao R, Zhao Z, Cai W, Luo J, Chen LL, Song JM. Pan-transcriptomic analysis reveals alternative splicing control of cold tolerance in rice. THE PLANT CELL 2024; 36:2117-2139. [PMID: 38345423 PMCID: PMC11132889 DOI: 10.1093/plcell/koae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinliang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuemei Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ping Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zuwen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yongqing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Rupeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhiyuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Wenguo Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jijing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
22
|
Wang W, Wei Y, Xu Z, Shen C, Li A, Guan D, Zhang X, Liu B. Evidence Supporting a Role of Alternative Splicing Participates in Melon ( Cucumis melo L.) Fruit Ripening. Int J Mol Sci 2024; 25:5886. [PMID: 38892093 PMCID: PMC11172951 DOI: 10.3390/ijms25115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.
Collapse
Affiliation(s)
- Wenjiao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
| | - Yuping Wei
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zhaoying Xu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Chengcheng Shen
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Ang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Dailu Guan
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA;
| | - Xuejun Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| |
Collapse
|
23
|
Zhang Y, Chen Z, Tian H, Wu Y, Kong Y, Wang X, Sui N. Alternative Splicing Plays a Crucial Role in the Salt Tolerance of Foxtail Millet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10814-10827. [PMID: 38710027 DOI: 10.1021/acs.jafc.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Foxtail millet is an important cereal crop that is relatively sensitive to salt stress, with its yield significantly affected by such stress. Alternative splicing (AS) widely affects plant growth, development, and adaptability to stressful environments. Through RNA-seq analysis of foxtail millet under different salt treatment periods, 2078 AS events were identified, and analyses were conducted on differential gene (DEG), differential alternative splicing gene (DASG), and overlapping gene. To investigate the regulatory mechanism of AS in response to salt stress in foxtail millet, the foxtail millet AS genes SiCYP19, with two AS variants (SiCYP19-a and SiCYP19-b), were identified and cloned. Yeast overexpression experiments indicated that SiCYP19 may be linked to the response to salt stress. Subsequently, we conducted overexpression experiments of both alternative splicing variants in foxtail millet roots to validate them experimentally. The results showed that, under salt stress, both SiCYP19-a and SiCYP19-b jointly regulated the salt tolerance of foxtail millet. Specifically, overexpression of SiCYP19-b significantly increased the proline content and reduced the accumulation of reactive oxygen species (ROS) in foxtail millet, compared to that in SiCYP19-a. This shows that SiCYP19-b plays an important role in increasing the content of proline and promoting the clearance of ROS, thus improving the salt tolerance of foxtail millet.
Collapse
Affiliation(s)
- Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No.2 Kangyang Road, Dongying 257000, China
| | - Haowei Tian
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanmei Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ying Kong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
24
|
Chen S, Zhang Y, Liu L, Mo Y, Li J, Chen B, Zhou Y, Lin J, Jiang X, Wei L, Ling Y. Transcription and splicing variations of SR genes accompany with genome-wide accumulation of long-introns in pine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112056. [PMID: 38438082 DOI: 10.1016/j.plantsci.2024.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/04/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.
Collapse
Affiliation(s)
- Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Junyi Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beibei Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yi Zhou
- Guangdong Academy of Forestry/Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Coastal Shelter-belt Forest Ecosystem National Observation and Research Station Guangzhou, Guangdong 510520, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Long Wei
- Guangdong Academy of Forestry/Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Coastal Shelter-belt Forest Ecosystem National Observation and Research Station Guangzhou, Guangdong 510520, China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China.
| |
Collapse
|
25
|
Li J, Song Y. Plant thermosensors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112025. [PMID: 38354752 DOI: 10.1016/j.plantsci.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.
Collapse
Affiliation(s)
- Jihong Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
26
|
Xu WB, Cao F, Liu P, Yan K, Guo QH. The multifaceted role of RNA-based regulation in plant stress memory. FRONTIERS IN PLANT SCIENCE 2024; 15:1387575. [PMID: 38736453 PMCID: PMC11082352 DOI: 10.3389/fpls.2024.1387575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.
Collapse
Affiliation(s)
- Wei-Bo Xu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Fan Cao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Peng Liu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Qian-Huan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
27
|
Zhang Y, Mo Y, Li J, Liu L, Gao Y, Zhang Y, Huang Y, Ren L, Zhu H, Jiang X, Ling Y. Divergence in regulatory mechanisms of GR-RBP genes in different plants under abiotic stress. Sci Rep 2024; 14:8743. [PMID: 38627506 PMCID: PMC11021534 DOI: 10.1038/s41598-024-59341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
The IVa subfamily of glycine-rich proteins (GRPs) comprises a group of glycine-rich RNA binding proteins referred to as GR-RBPa here. Previous studies have demonstrated functions of GR-RBPa proteins in regulating stress response in plants. However, the mechanisms responsible for the differential regulatory functions of GR-RBPa proteins in different plant species have not been fully elucidated. In this study, we identified and comprehensively studied a total of 34 GR-RBPa proteins from five plant species. Our analysis revealed that GR-RBPa proteins were further classified into two branches, with proteins in branch I being relatively more conserved than those in branch II. When subjected to identical stresses, these genes exhibited intensive and differential expression regulation in different plant species, corresponding to the enrichment of cis-acting regulatory elements involving in environmental and internal signaling in these genes. Unexpectedly, all GR-RBPa genes in branch I underwent intensive alternative splicing (AS) regulation, while almost all genes in branch II were only constitutively spliced, despite having more introns. This study highlights the complex and divergent regulations of a group of conserved RNA binding proteins in different plants when exposed to identical stress conditions. These species-specific regulations may have implications for stress responses and adaptations in different plant species.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Junyi Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Li Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yanhu Gao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
28
|
Jiao N, Xu J, Wang Y, Li D, Chen F, Chen Y, Chen J. Genome-wide characterization of post-transcriptional processes related to wood formation in Dalbergia odorifera. BMC Genomics 2024; 25:372. [PMID: 38627613 PMCID: PMC11022335 DOI: 10.1186/s12864-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.
Collapse
Affiliation(s)
- Nanbo Jiao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Jieru Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Yue Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Dunxi Li
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Feifei Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Yu Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Jinhui Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China.
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China.
| |
Collapse
|
29
|
Haber Z, Sharma D, Selvaraj KSV, Sade N. Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112021. [PMID: 38311249 DOI: 10.1016/j.plantsci.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have been implemented in recent years in the genome editing of eukaryotes, including plants. The original system of knocking out a single gene by causing a double-strand break (DSB), followed by non-homologous end joining (NHEJ) or Homology-directed repair (HDR) has undergone many adaptations. These adaptations include employing CRISPR/Cas9 to upregulate gene expression or to cause specific small changes to the DNA sequence of the gene-of-interest. In plants, multiplexing, i.e., inducing multiple changes by CRISPR/Cas9, is extremely relevant due to the redundancy of many plant genes, and the time- and labor-consuming generation of stable transgenic plant lines via crossing. Here we discuss relevant examples of various traits, such as yield, biofortification, gluten content, abiotic stress tolerance, and biotic stress resistance, which have been successfully manipulated using CRISPR/Cas9 in plants. While existing studies have primarily focused on proving the impact of CRISPR/Cas9 on a single trait, there is a growing interest among researchers in creating a multi-stress tolerant wheat cultivar 'super wheat', to commercially and sustainably enhance wheat yields under climate change. Due to the complexity of the technical difficulties in generating multi-target CRISPR/Cas9 lines and of the interactions between stress responses, we propose enhancing already commercial local landraces with higher yield traits along with stress tolerances specific to the respective localities, instead of generating a general 'super wheat'. We hope this will serve as the sustainable solution to commercially enhancing crop yields under both stable and challenging environmental conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - K S Vijai Selvaraj
- Vegetable Research Station, Tamil Nadu Agricultural University, Palur 607102, Tamil Nadu, India
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
30
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
31
|
Alhabsi A, Butt H, Kirschner GK, Blilou I, Mahfouz MM. SCR106 splicing factor modulates abiotic stress responses by maintaining RNA splicing in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:802-818. [PMID: 37924151 PMCID: PMC10837019 DOI: 10.1093/jxb/erad433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.
Collapse
Affiliation(s)
- Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gwendolyn K Kirschner
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
32
|
Yang C, Luo A, Lu HP, Davis SJ, Liu JX. Diurnal regulation of alternative splicing associated with thermotolerance in rice by two glycine-rich RNA-binding proteins. Sci Bull (Beijing) 2024; 69:59-71. [PMID: 38044192 DOI: 10.1016/j.scib.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
Rice (Oryza sativa L.) production is threatened by global warming associated with extreme high temperatures, and rice heat sensitivity is differed when stress occurs between daytime and nighttime. However, the underlying molecular mechanism are largely unknown. We show here that two glycine-rich RNA binding proteins, OsGRP3 and OsGRP162, are required for thermotolerance in rice, especially at nighttime. The rhythmic expression of OsGRP3/OsGRP162 peaks at midnight, and at these coincident times, is increased by heat stress. This is largely dependent on the evening complex component OsELF3-2. We next found that the double mutant of OsGRP3/OsGRP162 is strikingly more sensitive to heat stress in terms of survival rate and seed setting rate when comparing to the wild-type plants. Interestingly, the defect in thermotolerance is more evident when heat stress occurred in nighttime than that in daytime. Upon heat stress, the double mutant of OsGRP3/OsGRP162 displays globally reduced expression of heat-stress responsive genes, and increases of mRNA alternative splicing dominated by exon-skipping. This study thus reveals the important role of OsGRP3/OsGRP162 in thermotolerance in rice, and unravels the mechanism on how OsGRP3/OsGRP162 regulate thermotolerance in a diurnal manner.
Collapse
Affiliation(s)
- Chuang Yang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Anni Luo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Seth Jon Davis
- Department of Biology, University of York, York YO105DD, UK
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
33
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
34
|
Ling Y, Mo Y, Chen S, Mahfouz MM. A Method to Quantitatively Examine Heat Stress-Induced Alternative Splicing in Plants by RNA-Seq and RT-PCR. Methods Mol Biol 2024; 2832:81-98. [PMID: 38869789 DOI: 10.1007/978-1-0716-3973-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Alternative splicing (AS) of pre-mRNAs is a type of post-transcriptional regulation in eukaryotes that expands the number of mRNA isoforms. Intron retention is the primary form of AS in plants and occurs more frequently when plants are exposed to environmental stresses. Several wet-lab and bioinformatics techniques are used to detect AS events, but these techniques are technically challenging or unsuitable for studying AS in plants. Here, we report a method that combines RNA-sequencing and reverse transcription PCR for visualizing and validating heat stress-induced AS events in plants, using Arabidopsis thaliana and HEAT SHOCK PROTEIN21 (HSP21) as examples.
Collapse
Affiliation(s)
- Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People's Republic of China
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
35
|
Gao R, Lu Y, Wu N, Liu H, Jin X. Comprehensive study of serine/arginine-rich (SR) gene family in rice: characterization, evolution and expression analysis. PeerJ 2023; 11:e16193. [PMID: 37849832 PMCID: PMC10578304 DOI: 10.7717/peerj.16193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023] Open
Abstract
As important regulators of alternative splicing (AS) events, serine/arginine (SR)-rich proteins play indispensable roles in the growth and development of organisms. Until now, the study of SR genes has been lacking in plants. In the current study, we performed genome-wide analysis on the SR gene family in rice. A total of 24 OsSR genes were phylogenetically classified into seven groups, corresponding to seven subfamilies. The OsSR genes' structures, distribution of conserved domains, and protein tertiary structure of OsSR were conserved within each subfamily. The synteny analysis revealed that segmental duplication events were critical for the expansion of OsSR gene family. Moreover, interspecific synteny revealed the distribution of orthologous SR gene pairs between rice and Arabidopsis, sorghum, wheat, and maize. Among all OsSR genes, 14 genes exhibited NAGNAG acceptors, and only four OsSR genes had AS events on the NAGNAG acceptors. Furthermore, the distinct tissue-specific expression patterns of OsSR genes showed that these genes may function in different developmental stages in rice. The AS patterns on the same OsSR gene were variable among the root, stem, leaf, and grains at different filling stages, and some isoforms could only be detected in one or a few of tested tissues. Meanwhile, our results showed that the expression of some OsSR genes changed dramatically under ABA, GA, salt, drought, cold or heat treatment, which were related to the wide distribution of corresponding cis-elements in their promoter regions, suggesting their specific roles in stress and hormone response. This research facilitates our understanding of SR gene family in rice and provides clues for further exploration of the function of OsSR genes.
Collapse
Affiliation(s)
- Rui Gao
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yingying Lu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Nan Wu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiaoli Jin
- Department of Agronomy, The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Huang X, Li H, Zhan A. Interplays between cis- and trans-Acting Factors for Alternative Splicing in Response to Environmental Changes during Biological Invasions of Ascidians. Int J Mol Sci 2023; 24:14921. [PMID: 37834365 PMCID: PMC10573349 DOI: 10.3390/ijms241914921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Alternative splicing (AS), a pivotal biological process contributing to phenotypic plasticity, creates a bridge linking genotypes with phenotypes. Despite its importance, the AS mechanisms underlying environmental response and adaptation have not been well studied, and more importantly, the cis- and trans-acting factors influencing AS variation remain unclear. Using the model invasive congeneric ascidians, Ciona robusta, and Ciona savignyi, we compared their AS responses to environmental changes and explored the potential determinants. Our findings unveiled swift and dynamic AS changes in response to environmental challenges, and differentially alternative spliced genes (DASGs) were functionally enriched in transmembrane transport processes. Interestingly, both the prevalence and level of AS in C. robusta were lower than those observed in C. savignyi. Furthermore, these two indices were higher under temperature stresses compared to salinity stresses in C. savignyi. All the observed patterns underscore the species-specific and environmental context-dependent AS responses to environmental challenges. The dissimilarities in genomic structure and exon/intron size distributions between these two species likely contributed to the observed AS variation. Moreover, we identified a total of 11 and 9 serine/arginine-rich splicing factors (SRSFs) with conserved domains and gene structures in the genomes of C. robusta and C. savignyi, respectively. Intriguingly, our analysis revealed that all detected SRSFs did not exhibit prevalent AS regulations. Instead, we observed AS control over a set of genes related to splicing factors and spliceosome components. Altogether, our results elucidate species-specific and environmental challenge-dependent AS response patterns in closely related invasive ascidians. The identified splicing factors and spliceosome components under AS control offer promising candidates for further investigations into AS-mediated rapid responses to environmental challenges complementary to SRSFs.
Collapse
Affiliation(s)
- Xuena Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
| | - Hanxi Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (X.H.); (H.L.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
37
|
Rodriguez Gallo MC, Uhrig RG. Phosphorylation mediated regulation of RNA splicing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1249057. [PMID: 37780493 PMCID: PMC10539000 DOI: 10.3389/fpls.2023.1249057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
For the past two decades, the study of alternative splicing (AS) and its involvement in plant development and stress response has grown in popularity. Only recently however, has the focus shifted to the study of how AS regulation (or lack-thereof) affects downstream mRNA and protein landscapes and how these AS regulatory events impact plant development and stress tolerance. In humans, protein phosphorylation represents one of the predominant mechanisms by which AS is regulated and thus the protein kinases governing these phosphorylation events are of interest for further study. Large-scale phosphoproteomic studies in plants have consistently found that RNA splicing-related proteins are extensively phosphorylated, however, the signaling pathways involved in AS regulation have not been resolved. In this mini-review, we summarize our current knowledge of the three major splicing-related protein kinase families in plants that are suggested to mediate AS phospho-regulation and draw comparisons to their metazoan orthologs. We also summarize and contextualize the phosphorylation events identified as occurring on splicing-related protein families to illustrate the high degree to which splicing-related proteins are modified, placing a new focus on elucidating the impacts of AS at the protein and PTM-level.
Collapse
Affiliation(s)
| | - R. Glen Uhrig
- University of Alberta, Department of Biological Sciences, Edmonton, AB, Canada
- University of Alberta, Department of Biochemistry, Edmonton, AB, Canada
| |
Collapse
|
38
|
Barratt LJ, He Z, Fellgett A, Wang L, Mason SM, Bancroft I, Harper AL. Co-expression network analysis of diverse wheat landraces reveals markers of early thermotolerance and a candidate master regulator of thermotolerance genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:614-626. [PMID: 37077043 PMCID: PMC10953029 DOI: 10.1111/tpj.16248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.
Collapse
Affiliation(s)
- Liam J. Barratt
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Zhesi He
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Alison Fellgett
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Lihong Wang
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Simon McQueen Mason
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Ian Bancroft
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| | - Andrea L. Harper
- Department of Biology, Centre for Novel Agricultural Products (CNAP)University of YorkWentworth WayYO10 5DDUK
| |
Collapse
|
39
|
Zou H, Wang C, Yu J, Huang D, Yang R, Wang R. Solar spectrum management and radiative cooling film for sustainable greenhouse production in hot climates. Sci Bull (Beijing) 2023; 68:1493-1496. [PMID: 37380514 DOI: 10.1016/j.scib.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Hao Zou
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenxi Wang
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaqi Yu
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ronggui Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Engineering Research Center of Solar Energy (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
40
|
Albaqami M. The Splicing Factor SR45 Negatively Regulates Anthocyanin Accumulation under High-Light Stress in Arabidopsis thaliana. Life (Basel) 2023; 13:1386. [PMID: 37374167 DOI: 10.3390/life13061386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
High-intensity light (HL) greatly induces the accumulation of anthocyanin, a fundamental compound in photoprotection and antioxidation. Many mechanisms regulating anthocyanin biosynthesis are well-characterized across developmental and environmental conditions; however, post-transcriptional regulation of its biosynthesis remains unclear. RNA splicing is one mechanism of post-transcriptional control and reprogramming in response to different developmental cues and stress conditions. The Arabidopsis splicing modulator SR45 regulates a number of developmental and environmental stress responses. Here, we investigated the role of SR45 and its isoforms in HL-induced anthocyanin accumulation. We found that the SR45 promoter contains light-responsive cis-elements, and that light stress significantly increases SR45 expression. Furthermore, we found that mutant plants lacking SR45 function (sr45) accumulate significantly more anthocyanin under HL. SR45 is alternatively spliced to produce two proteins, SR45.1 and SR45.2, which differ by seven amino acids. Intriguingly, these isoforms exhibited distinct functions, with only SR45.1 reversing anthocyanin accumulation in the sr45 plants. We also identified possible SR45 target genes that are involved in anthocyanin synthesis. Consistent with the antioxidant role of anthocyanin, we found that sr45 mutants and SR45.2 overexpression lines accumulate anthocyanin and better tolerate paraquat which induces oxidative stress. Collectively, our results reveal that the Arabidopsis splicing regulator SR45 inhibits anthocyanin accumulation under HL, which may negatively affect oxidative stress tolerance. This study illuminates splicing-level regulation of anthocyanin production in response to light stress and offers a possible target for genetic modification to increase plant stress tolerance.
Collapse
Affiliation(s)
- Mohammed Albaqami
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Mo Y, Li G, Liu L, Zhang Y, Li J, Yang M, Chen S, Lin Q, Fu G, Zheng D, Ling Y. OsGRF4AA compromises heat tolerance of developing pollen grains in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1121852. [PMID: 36909437 PMCID: PMC9992635 DOI: 10.3389/fpls.2023.1121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Extreme high temperature at the meiosis stage causes a severe decrease in spikelet fertility and grain yield in rice. The rice variety grain size on chromosome 2 (GS2) contains sequence variations of OsGRF4 (Oryza sativa growth-regulating factor 4; OsGRF4AA ), escaping the microRNA miR396-mediated degradation of this gene at the mRNA level. Accumulation of OsGRF4 enhances nitrogen usage and metabolism, and increases grain size and grain yield. In this study, we found that pollen viability and seed-setting rate under heat stress (HS) decreased more seriously in GS2 than in its comparator, Zhonghua 11 (ZH11). Transcriptomic analysis revealed that, following HS, genes related to carbohydrate metabolic processes were expressed and regulated differentially in the anthers of GS2 and ZH11. Moreover, the expression of genes involved in chloroplast development and photosynthesis, lipid metabolism, and key transcription factors, including eight male sterile genes, were inhibited by HS to a greater extent in GS2 than in ZH11. Interestingly, pre-mRNAs of OsGRF4, and a group of essential genes involved in development and fertilization, were differentially spliced in the anthers of GS2 and ZH11. Taken together, our results suggest that variation in OsGRF4 affects proper transcriptional and splicing regulation of genes under HS, and that this can be mediated by, and also feed back to, carbohydrate and nitrogen metabolism, resulting in a reduction in the heat tolerance of rice anthers.
Collapse
Affiliation(s)
- Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Guangyan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Li Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yingjie Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Junyi Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Meizhen Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shanlan Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Qiaoling Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, China
| |
Collapse
|
44
|
Alternative Splicing in the Regulatory Circuit of Plant Temperature Response. Int J Mol Sci 2023; 24:ijms24043878. [PMID: 36835290 PMCID: PMC9962249 DOI: 10.3390/ijms24043878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
As sessile organisms, plants have evolved complex mechanisms to rapidly respond to ever-changing ambient temperatures. Temperature response in plants is modulated by a multilayer regulatory network, including transcriptional and post-transcriptional regulations. Alternative splicing (AS) is an essential post-transcriptional regulatory mechanism. Extensive studies have confirmed its key role in plant temperature response, from adjustment to diurnal and seasonal temperature changes to response to extreme temperatures, which has been well documented by previous reviews. As a key node in the temperature response regulatory network, AS can be modulated by various upstream regulations, such as chromatin modification, transcription rate, RNA binding proteins, RNA structure and RNA modifications. Meanwhile, a number of downstream mechanisms are affected by AS, such as nonsense-mediated mRNA decay (NMD) pathway, translation efficiency and production of different protein variants. In this review, we focus on the links between splicing regulation and other mechanisms in plant temperature response. Recent advances regarding how AS is regulated and the following consequences in gene functional modulation in plant temperature response will be discussed. Substantial evidence suggests that a multilayer regulatory network integrating AS in plant temperature response has been unveiled.
Collapse
|
45
|
He L, Wu Q, Jin Y, Fan Y, Shi H, Wang Y, Yang W. NTR1 is involved in heat stress tolerance through mediating expression regulation and alternative splicing of heat stress genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1082511. [PMID: 36704159 PMCID: PMC9871932 DOI: 10.3389/fpls.2022.1082511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
As a common adverse environmental factor, heat stress (HS) not only drastically changes the plant transcriptome at the transcription level but also increases alternative splicing (AS), especially intron retention (IR) events. However, the exact mechanisms are not yet well understood. Here, we reported that NTC-related protein 1 (NTR1), which acts as an accessory component for spliceosome disassembly, is necessary for this process. The mutants of NTR1, both the T-DNA insertion and the point mutation identified through ethyl methanesulfonate (EMS) mutagenesis screening, are vulnerable to HS, indicating that NTR1 is essential for plant HS tolerance. At the molecular level, genes of response to heat and response to temperature stimulus are highly enriched among those of heat-induced but less-expressed ntr1 mutants. Moreover, a large portion of HS response (HSR) genes such as heat shock transcription factors (HSFs) and heat shock proteins (HSPs) are less induced by heat treatment, and more AS events, especially IR events, were found in heat-treated ntr1 mutants. Furthermore, HS suppressed the expression of NTR1 and NTR1-associated complex components. Thus, it is very likely that upon HS, the plant reduces the expression of the NTR1-associated complex to fulfill the fast demands for transcription of HSR genes such as HSFs and HSPs, which in turn results in the accumulation of improperly spliced especially IR products and eventually causes harm to plants.
Collapse
Affiliation(s)
- Lei He
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Qi Wu
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Ye Fan
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
46
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
47
|
Chen T, Ma J, Xu C, Jiang N, Li G, Fu W, Feng B, Wang D, Wu Z, Tao L, Fu G. Increased ATPase activity promotes heat-resistance, high-yield, and high-quality traits in rice by improving energy status. FRONTIERS IN PLANT SCIENCE 2022; 13:1035027. [PMID: 36600923 PMCID: PMC9806274 DOI: 10.3389/fpls.2022.1035027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Heat stress during the reproductive stage results in major losses in yield and quality, which might be mainly caused by an energy imbalance. However, how energy status affected heat response, yield and quality remains unclear. No relationships were observed among the heat resistance, yield, and quality of the forty-nine early rice cultivars under normal temperature conditions. However, two cultivars, Zhuliangyou30 (ZLY30) and Luliangyou35 (LLY35), differing in heat resistance, yield, and quality were detected. The yield was higher and the chalkiness degree was lower in ZLY30 than in LLY35. Decreases in yields and increases in the chalkiness degree with temperatures were more pronounced in LLY35 than in ZLY30. The accumulation and allocation (ratio of the panicle to the whole plant) of dry matter weight and non-structural carbohydrates were higher in ZLY30 than in LLY35 across all sowing times and temperatures. The accumulation and allocation of dry matter weight and non-structural carbohydrates in panicles were higher in ZLY30 than in LLY35. Similar patterns were observed in the relative expression levels of sucrose unloading related genes SUT1 and SUT2 in grains. The ATP content was higher in the grains of LLY35 than in ZLY30, whereas the ATPase activity, which determined the energy status, was significantly lower in the former than in the latter. Thus, increased ATPase activity, which improved the energy status of rice, was the factor mediating the balance among heat-resistance, high-yield, and high-quality traits in rice.
Collapse
Affiliation(s)
- Tingting Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Jiaying Ma
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Chunmei Xu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ning Jiang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guangyan Li
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College, Yangzhou University, Yangzhou, China
| | - Weimeng Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Danying Wang
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Longxing Tao
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
48
|
Jian G, Mo Y, Hu Y, Huang Y, Ren L, Zhang Y, Hu H, Zhou S, Liu G, Guo J, Ling Y. Variety-Specific Transcriptional and Alternative Splicing Regulations Modulate Salt Tolerance in Rice from Early Stage of Stress. RICE (NEW YORK, N.Y.) 2022; 15:56. [PMID: 36326968 PMCID: PMC9633917 DOI: 10.1186/s12284-022-00599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Salt stress poses physiological drought, ionic toxicity and oxidative stress to plants, which causes premature senescence and death of the leaves if the stress sustained. Salt tolerance varied between different rice varieties, but how different rice varieties respond at the early stage of salt stress has been seldom studied comprehensively. By employing third generation sequencing technology, we compared gene expressional changes in leaves of three rice varieties that varied in their level of tolerance after salt stress treatment for 6 h. Commonly up-regulated genes in all rice varieties were related to water shortage response and carbon and amino acids metabolism at the early stage of salt stress, while reactive oxygen species cleavage genes were induced more in salt-tolerant rice. Unexpectedly, genes involved in chloroplast development and photosynthesis were more significantly down-regulated in the two salt tolerant rice varieties 'C34' and 'Nona Bokra'. At the same time, genes coding ribosomal protein were suppressed to a more severe extent in the salt-sensitive rice variety 'IR29'. Interestingly, not only variety-specific gene transcriptional regulation, but also variety-specific mRNA alternative splicing, on both coding and long-noncoding genes, were found at the early stage of salt stress. In summary, differential regulation in gene expression at both transcriptional and post-transcriptional levels, determine and fine-tune the observed response in level of damage in leaves of specific rice genotypes at early stage of salt stress.
Collapse
Affiliation(s)
- Guihua Jian
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yujian Mo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yan Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China
| | - Shuangxi Zhou
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2019, Australia
| | - Gang Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, People's Republic of China
| | - Jianfu Guo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| | - Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
- South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
49
|
Rodriguez Gallo MC, Li Q, Mehta D, Uhrig RG. Genome-scale analysis of Arabidopsis splicing-related protein kinase families reveals roles in abiotic stress adaptation. BMC PLANT BIOLOGY 2022; 22:496. [PMID: 36273172 PMCID: PMC9587599 DOI: 10.1186/s12870-022-03870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
Nearly 60 - 80 % of intron-containing plant genes undergo alternative splicing in response to either stress or plant developmental cues. RNA splicing is performed by a large ribonucleoprotein complex called the spliceosome in conjunction with associated subunits such as serine arginine (SR) proteins, all of which undergo extensive phosphorylation. In plants, there are three main protein kinase families suggested to phosphorylate core spliceosome subunits and related splicing factors based on orthology to human splicing-related kinases: the SERINE/ARGININE PROTEIN KINASES (SRPK), ARABIDOPSIS FUS3 COMPLEMENT (AFC), and Pre-mRNA PROCESSING FACTOR 4 (PRP4K) protein kinases. To better define the conservation and role(s) of these kinases in plants, we performed a genome-scale analysis of the three families across photosynthetic eukaryotes, followed by extensive transcriptomic and bioinformatic analysis of all Arabidopsis thaliana SRPK, AFC, and PRP4K protein kinases to elucidate their biological functions. Unexpectedly, this revealed the existence of SRPK and AFC phylogenetic groups with distinct promoter elements and patterns of transcriptional response to abiotic stress, while PRP4Ks possess no phylogenetic sub-divisions, suggestive of functional redundancy. We also reveal splicing-related kinase families are both diel and photoperiod regulated, implicating different orthologs as discrete time-of-day RNA splicing regulators. This foundational work establishes a number of new hypotheses regarding how reversible spliceosome phosphorylation contributes to both diel plant cell regulation and abiotic stress adaptation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
50
|
de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. Life Sci Alliance 2022; 6:6/1/e202201507. [PMID: 36265897 PMCID: PMC9585968 DOI: 10.26508/lsa.202201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.
Collapse
Affiliation(s)
| | - Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Eduardo Tranque
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Jana Chumova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Binarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|