1
|
Shahrajabian MH, Sun W. Study Rapid, Quantitative, and Simultaneous Detection of Drug Residues and Immunoassay in Chickens. Rev Recent Clin Trials 2025; 20:2-17. [PMID: 39171469 DOI: 10.2174/0115748871305331240724104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 08/23/2024]
Abstract
Different levels of residual drugs can be monitored within a relatively safe range without causing harm to human health if the appropriate dosing methodology is considered and the drug withdrawal period is controlled during poultry and livestock raising. Antimicrobials are factors that can suppress the growth of microorganisms, and antibiotic residues in livestock farming have been considered as a potential cause of antimicrobial resistance in animals and humans. Antimicrobial drug resistance is associated with the capability of a microorganism to survive the inhibitory effects of the antimicrobial components. Antibiotic residue presence in chicken is a human health concern due to its negative effects on consumer health. Neglected aspects related to the application of veterinary drugs may threaten the safety of both humans and animals, as well as their environment. The detection of chemical contaminants is essential to ensure food quality. The most important antibiotic families used in veterinary medicines are β-lactams (penicillins and cephalosporins), tetracyclines, chloramphenicols, macrolides, spectinomycin, lincosamide, sulphonamides, nitrofuranes, nitroimidazoles, trimethoprim, polymyxins, quinolones, and macrocyclics (glycopeptides, ansamycins, and aminoglycosides). Antibiotic residue presence is the main contributor to the development of antibiotic resistance, which is considered a chief concern for both human and animal health worldwide. The incorrect application and misuse of antibiotics carry the risk of the presence of residues in the edible tissues of the chicken, which can cause allergies and toxicity in hypersensitive consumers. The enforcement of the regulation of food safety depends on efficacious monitoring of antimicrobial residues in the foodstuff. In this review, we have explored the rapid detection of drug residues in broilers.
Collapse
Affiliation(s)
- Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| | - Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100086, China
| |
Collapse
|
2
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
3
|
Palakollu VN, Veera Manohara Reddy Y, Shekh MI, Vattikuti SVP, Shim J, Karpoormath R. Electrochemical immunosensing of tumor markers. Clin Chim Acta 2024; 557:117882. [PMID: 38521164 DOI: 10.1016/j.cca.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
The rising incidence and mortality rates of cancer have led to a growing need for precise and prompt early diagnostic approaches to effectively combat this disease. However, traditional methods employed for detecting tumor cells, such as histopathological and immunological techniques, are often associated with complex procedures, high analytical expenses, elevated false positive rates, and a dependence on experienced personnel. Tracking tumor markers is recognized as one of the most effective approaches for early detection and prognosis of cancer. While onco-biomarkers can also be produced in normal circumstances, their concentration is significantly elevated when tumors are present. By monitoring the levels of these markers, healthcare professionals can obtain valuable insights into the presence, progression, and response to treatment of cancer, aiding in timely diagnosis and effective management. This review aims to provide researchers with a comprehensive overview of the recent advancements in tumor markers using electrochemical immunosensors. By highlighting the latest developments in this field, researchers can gain a general understanding of the progress made in the utilization of electrochemical immunosensors for detecting tumor markers. Furthermore, this review also discusses the current limitations associated with electrochemical immunosensors and offers insights into paving the way for further improvements and advancements in this area of research.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru 560064, India; Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Y Veera Manohara Reddy
- Department of Chemistry, Sri Venkateswara College, University of Delhi, New Delhi 110021, India
| | - Mehdihasan I Shekh
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, PR China
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
4
|
Nepfumbada C, Mthombeni NH, Sigwadi R, Ajayi RF, Feleni U, Mamba BB. Functionalities of electrochemical fluoroquinolone sensors and biosensors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3394-3412. [PMID: 38110684 PMCID: PMC10794289 DOI: 10.1007/s11356-023-30223-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/27/2023] [Indexed: 12/20/2023]
Abstract
Fluoroquinolones (FQs) are a class of broad-spectrum antimicrobial agents that are used to treat variety of infectious diseases. This class of antibiotics was being used for patients exhibiting early symptoms of a human respiratory disease known as the COVID-19 virus. As a result, this outbreak causes an increase in drug-resistant strains and environmental pollution, both of which pose serious threats to biota and human health. Thus, to ensure public health and prevent antimicrobial resistance, it is crucial to develop effective detection methods for FQs determination in water bodies even at trace levels. Due to their characteristics like specificity, selectivity, sensitivity, and low detection limits, electrochemical biosensors are promising future platforms for quick and on-site monitoring of FQs residues in a variety of samples when compared to conventional detection techniques. Despite their excellent properties, biosensor stability continues to be a problem even today. However, the integration of nanomaterials (NMs) could improve biocompatibility, stability, sensitivity, and speed of response in biosensors. This review concentrated on recent developments and contemporary methods in FQs biosensors. Furthermore, a variety of modification materials on the electrode surface are discussed. We also pay more attention to the practical applications of electrochemical biosensors for FQs detection. In addition, the existing challenges, outlook, and promising future perspectives in this field have been proposed. We hope that this review can serve as a bedrock for future researchers and provide new ideas for the development of electrochemical biosensors for antibiotics detection in the future.
Collapse
Affiliation(s)
- Collen Nepfumbada
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Nomcebo H Mthombeni
- Department of Chemical Engineering, Faculty of the Built Environment, Durban University of Technology, Steve Biko Campus, Durban, 4001, South Africa
| | - Rudzani Sigwadi
- Department of Chemical Engineering, University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| | - Rachel F Ajayi
- SensorLab (University of the Western Cape Sensor Laboratories), 4th Floor Chemical Sciences Building, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, 7535, South Africa
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology (CSET), University of South Africa (UNISA), Florida Campus, Johannesburg, 1709, South Africa
| |
Collapse
|
5
|
Massaglia G, Spisni G, Pirri CF, Quaglio M. Microbial Fuel Cells as Effective Tools for Energy Recovery and Antibiotic Detection in Water and Food. MICROMACHINES 2023; 14:2137. [PMID: 38138306 PMCID: PMC10745599 DOI: 10.3390/mi14122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
This work demonstrates that microbial fuel cells (MFCs), optimized for energy recovery, can be used as an effective tool to detect antibiotics in water-based environments. In MFCs, electroactive biofilms function as biocatalysts by converting the chemical energy of organic matter, which serves as the fuel, into electrical energy. The efficiency of the conversion process can be significantly affected by the presence of contaminants that act as toxicants to the biofilm. The present work demonstrates that MFCs can successfully detect antibiotic residues in water and water-based electrolytes containing complex carbon sources that may be associated with the food industry. Specifically, honey was selected as a model fuel to test the effectiveness of MFCs in detecting antibiotic contamination, and tetracycline was used as a reference antibiotic within this study. The results show that MFCs not only efficiently detect the presence of tetracycline in both acetate and honey-based electrolytes but also recover the same performance after each exposure cycle, proving to be a very robust and reliable technology for both biosensing and energy recovery.
Collapse
Affiliation(s)
- Giulia Massaglia
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.S.); (C.F.P.)
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia, Environment Park, Building B2 Via Livorno 60, 10144 Torino, Italy
| | - Giacomo Spisni
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.S.); (C.F.P.)
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia, Environment Park, Building B2 Via Livorno 60, 10144 Torino, Italy
| | - Candido F. Pirri
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.S.); (C.F.P.)
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia, Environment Park, Building B2 Via Livorno 60, 10144 Torino, Italy
| | - Marzia Quaglio
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; (G.S.); (C.F.P.)
- Center for Sustainable Future Technologies@Polito, Istituto Italiano di Tecnologia, Environment Park, Building B2 Via Livorno 60, 10144 Torino, Italy
| |
Collapse
|
6
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023; 65:856-883. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
7
|
Pratiwi R, Ramadhanti SP, Amatulloh A, Megantara S, Subra L. Recent Advances in the Determination of Veterinary Drug Residues in Food. Foods 2023; 12:3422. [PMID: 37761131 PMCID: PMC10527676 DOI: 10.3390/foods12183422] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of drug residues in food products has become a growing concern because of the adverse health risks and regulatory implications. Drug residues in food refer to the presence of pharmaceutical compounds or their metabolites in products such as meat, fish, eggs, poultry and ready-to-eat foods, which are intended for human consumption. These residues can come from the use of drugs in the field of veterinary medicine, such as antibiotics, antiparasitic agents, growth promoters and other veterinary drugs given to livestock and aquaculture with the aim of providing them as prophylaxis, therapy and for promoting growth. Various analytical techniques are used for this purpose to control the maximum residue limit. Compliance with the maximum residue limit is very important for food manufacturers according to the Food and Drug Administration (FDA) or European Union (EU) regulations. Effective monitoring and control of drug residues in food requires continuous advances in analytical techniques. Few studies have been reviewed on sample extraction and preparation techniques as well as challenges and future directions for the determination of veterinary drug residues in food. This current review focuses on the overview of regulations, classifications and types of food, as well as the latest analytical methods that have been used in recent years (2020-2023) for the determination of drug residues in food so that appropriate methods and accurate results can be used. The results show that chromatography is still a widely used technique for the determination of drug residue in food. Other approaches have been developed including immunoassay, biosensors, electrophoresis and molecular-based methods. This review provides a new development method that has been used to control veterinary drug residue limit in food.
Collapse
Affiliation(s)
- Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Shinta Permata Ramadhanti
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Asyifa Amatulloh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia; (S.P.R.); (A.A.); (S.M.)
| | - Laila Subra
- Faculty of Bioeconomic, Food and Health Sciences, University of Geomatika Malaysia, Kuala Lumpur 54200, Malaysia;
| |
Collapse
|
8
|
Adampourezare M, Hasanzadeh M, Hoseinpourefeizi MA, Seidi F. Iron/iron oxide-based magneto-electrochemical sensors/biosensors for ensuring food safety: recent progress and challenges in environmental protection. RSC Adv 2023; 13:12760-12780. [PMID: 37153517 PMCID: PMC10157298 DOI: 10.1039/d2ra07415j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023] Open
Abstract
Foodborne diseases have arisen due to the globalization of industry and the increase in urban population, which has led to increased demand for food and has ultimately endangered the quality of food. Foodborne diseases have caused some of the most common public health problems and led to significant social and economic issues worldwide. Food quality and safety are affected by microbial contaminants, growth-promoting feed additives (β-agonists and antibiotics), food allergens, and toxins in different stages from harvesting to storage and marketing of products. Electrochemical biosensors, due to their reduced size and portability, low cost, and low consumption of reagents and samples, can quickly provide valuable quantitative and qualitative information about food contamination. In this regard, using nanomaterials can increase the sensitivity of the assessment. Magnetic nanoparticle (MNP)-based biosensors, especially, are receiving significant attention due to their low-cost production, physicochemical stability, biocompatibility, and eco-friendly catalytic characteristics, along with magnetic, biological, chemical and electronic sensing features. Here, we provide a review on the application of iron-based magnetic nanoparticles in the electrochemical sensing of food contamination. The types of nanomaterials used in order to improve the methods and increase the sensitivity of the methods have been discussed. Then, we stated the advantages and limitations of each method and tried to state the research gaps for each platform/method. Finally, the role of microfluidic and smartphone-based methods in the rapid detection of food contamination is stated. Then, various techniques like label-free and labelled regimes for the sensitive monitoring of food contamination were surveyed. Next, the critical role of antibody, aptamer, peptide, enzyme, DNA, cells and so on for the construction of specific bioreceptors for individual and simultaneous recognition by electrochemical methods for food contamination were discussed. Finally, integration of novel technologies such as microfluidic and smartphones for the identification of food contaminations were investigated. It is important to point out that, in the last part of each sub-section, attained results of different reports for each strategy were compared and advantages/limitations were mentioned.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | | | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
9
|
Li X, Jia M, Yu L, Li Y, He X, Chen L, Zhang Y. An ultrasensitive label-free biosensor based on aptamer functionalized two-dimensional photonic crystal for kanamycin detection in milk. Food Chem 2023; 402:134239. [DOI: 10.1016/j.foodchem.2022.134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
|
10
|
Lang Y, Zhang B, Cai D, Tu W, Zhang J, Shentu X, Ye Z, Yu X. Determination Methods of the Risk Factors in Food Based on Nanozymes: A Review. BIOSENSORS 2022; 13:69. [PMID: 36671904 PMCID: PMC9856088 DOI: 10.3390/bios13010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Food safety issues caused by foodborne pathogens, chemical pollutants, and heavy metals have aroused widespread concern because they are closely related to human health. Nanozyme-based biosensors have excellent characteristics such as high sensitivity, selectivity, and cost-effectiveness and have been used to detect the risk factors in foods. In this work, the common detection methods for pathogenic microorganisms, toxins, heavy metals, pesticide residues, veterinary drugs, and illegal additives are firstly reviewed. Then, the principles and applications of immunosensors based on various nanozymes are reviewed and explained. Applying nanozymes to the detection of pathogenic bacteria holds great potential for real-time evaluation and detection protocols for food risk factors.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, China
| | | | | |
Collapse
|
11
|
Pan J, Deng F, Zeng L, Liu Z, Chen J. Target-mediated competitive hybridization of hairpin probes for kanamycin detection based on exonuclease III cleavage and DNAzyme catalysis. Anal Bioanal Chem 2022; 414:8255-8261. [PMID: 36178489 DOI: 10.1007/s00216-022-04354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Based on aptamer recognition and target-mediated competitive hybridization of hairpin probes, we developed a fluorescence sensor for kanamycin (KAN) detection. The aptamer and KAN binding will open hairpin H1 to release the trigger DNA fragment, which can initiate the competitive hybridization between hairpins H2 and H3. Then, exonuclease III (Exo III) can cleave H2 and H3 to produce numerous DNA3 and DNA4. Through the synergetic hybridization among DNA1, DNA2, DNA3, and DNA4, an active Mg2+-DNAzyme can be formed. The cleavage reaction toward FAM-BHQ-modified DNA2 will produce a high fluorescence signal for KAN assay. Through Exo III-guided cleavage and Mg2+-DNAzyme-based catalysis, the sensor exhibits high sensitivity, with a detection limit of 3.1 fM. This method is robust and has been applied to the detection of KAN in milk and water samples with good accuracy and reliability. Our developed fluorescence sensor exhibits the advantages of simple operation, high sensitivity, and good robustness, which are beneficial for KAN detection in food samples.
Collapse
Affiliation(s)
- Jiafeng Pan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fang Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lingwen Zeng
- Guangdong Langyuan Biotechnology Co., LTD, Foshan, 528313, China
- School of Food Science and Engineering, Foshan University, Foshan, 528231, China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Junhua Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
12
|
Yang Y, Zhang H, Zhou G, Zhang S, Chen J, Deng X, Qu X, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Pork on the Market in the People's Republic of China. J Food Prot 2022; 85:815-827. [PMID: 35166791 DOI: 10.4315/jfp-21-411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/11/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Veterinary drugs, including antibiotics, antiparasitics, and growth promoters, are widely used in animal husbandry. Veterinary drug residues are key issues of food safety because they arouse public concern and can seriously endanger the health of consumers. To assess the risk of veterinary drug residues in pork sold in the People's Republic of China, the potential veterinary drug residue risks in imported and domestic pork were analyzed based on regulatory differences and veterinary drug residue safety incidents. For imported pork, a risk assessment model was established based on the differences in veterinary drug residue limits for the People's Republic of China, Brazil, the United States, Australia, Thailand, and Russia combined with comprehensive evaluation methods. The potential risk of veterinary drug residues in U.S. pork was the highest, and that in Brazilian pork was the lowest. For domestic pork, the distribution and aggregation of veterinary drug residue safety incidents in the People's Republic of China was analyzed from 2015 to 2019 with a geographic information system. This study provides new insights into the safety of pork on the Chinese market and a scientific basis for formulating targeted supervision and early warning strategies. HIGHLIGHTS
Collapse
Affiliation(s)
- Yunfeng Yang
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hui Zhang
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Guangya Zhou
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Shuwen Zhang
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jiahui Chen
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaojun Deng
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai 200032, People's Republic of China
| | - Xiaosheng Qu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China
| | - Qin Chen
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| | - Bing Niu
- College of Life Science, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
13
|
Li J, Luo M, Yang H, Ma C, Cai R, Tan W. Novel Dual-Signal Electrochemiluminescence Aptasensor Involving the Resonance Energy Transform System for Kanamycin Detection. Anal Chem 2022; 94:6410-6416. [PMID: 35420408 DOI: 10.1021/acs.analchem.2c01163] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Jingxian Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mengyu Luo
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- University of Texas at Austin, Austin, Texas 78712, USA
| | - Chao Ma
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial‐assisted electrochemical sensors for food safety analysis. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ying Gu
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yonghui Li
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Dabing Ren
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Liping Sun
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Yongliang Zhuang
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering Kunming University of Science and Technology Kunming China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health School of Medicine Nankai University Tianjin China
| |
Collapse
|
15
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Yin F, Cheng S, Liu S, Ma C, Wang L, Zhao R, Lin JM, Hu Q. A portable digital optical kanamycin sensor developed by surface-anchored liquid crystal droplets. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126601. [PMID: 34265652 DOI: 10.1016/j.jhazmat.2021.126601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
There is an increase in demand to develop simple, convenient, and low-cost approaches for rapid and label-free detection of antibiotics. Herein, we propose a new principle for the detection of kanamycin using the surface-anchored liquid crystal (LC) droplets. The optical images of the LC droplets uniformly change from four-clover, uniformly dark, and dark cross appearance gradually with the increase of surfactant concentration. The detection of kanamycin is fulfilled with the aid of a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a kanamycin aptamer. The LC droplets show uniformly dark appearance and four-clover appearance in the presence of the aqueous solutions of CTAB and CTAB/aptamer complex, respectively. However, the specific binding of kanamycin to its aptamer can release the CTAB, which induces the uniformly dark appearance of the LC droplets. A portable device is built to measure the optical luminance of the LC droplets. This system can detect kanamycin with a concentration below 0.1 ng/mL (~0.17 nM) and also allows the detection of kanamycin in real samples such as milk and honey. Therefore, it is very promising in the development of new types of LC-based sensors by the surface-anchored LC droplets assisted with a portable optical device.
Collapse
Affiliation(s)
- Fangchao Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Supan Cheng
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Shuya Liu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Chunxia Ma
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Rusong Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan 250014, PR China.
| |
Collapse
|
17
|
Ferrari AGM, Crapnell RD, Banks CE. Electroanalytical Overview: Electrochemical Sensing Platforms for Food and Drink Safety. BIOSENSORS 2021; 11:291. [PMID: 34436093 PMCID: PMC8392528 DOI: 10.3390/bios11080291] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.
Collapse
Affiliation(s)
| | | | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; (A.G.-M.F.); (R.D.C.)
| |
Collapse
|
18
|
Huang Z, Li Z, Chen Y, Xu L, Xie Q, Deng H, Chen W, Peng H. Regulating Valence States of Gold Nanocluster as a New Strategy for the Ultrasensitive Electrochemiluminescence Detection of Kanamycin. Anal Chem 2021; 93:4635-4640. [PMID: 33661613 DOI: 10.1021/acs.analchem.1c00063] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monitoring of kanamycin residue has attracted considerable attention owing to the potential harm caused by the abuse of kanamycin. However, the detection of kanamycin has been limited owing to its electrochemical and optical inertness. Herein, we report a facile and highly efficient electrochemiluminescence (ECL) strategy for the detection of kanamycin based on the valence state effect of gold nanocluster (AuNC) probes. It is proven that Au0 in chemically reduced AuNCs (CR-AuNCs) could be oxidized to AuI via the redox reaction between kanamycin and CR-AuNCs in the presence of H2O2, resulting in ECL quenching due to the valence state change of CR-AuNCs. Because the ECL of the AuNC probes is sensitively affected by the valence state, excellent sensitivity for kanamycin was achieved without any signal amplification operation and aptamers. A preferable linear-dependent curve was acquired in the detection range from 1.0 × 10-11 to 3.3 × 10-5 M with an extremely low detection limit of 1.5 × 10-12 M. The proposed kanamycin sensing platform is very simple and shows high selectivity and an extremely broad linear range detection of kanamycin. Furthermore, the proposed sensing platform can detect kanamycin in milk samples with excellent recoveries. Therefore, this sensing strategy provides an effective and facile way to detect kanamycin and can help promote the understanding of the constructed mechanism of the AuNC-based ECL system, thus greatly broadening its potential application in ECL fields.
Collapse
Affiliation(s)
- Zhongnan Huang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhenglian Li
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Yao Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Luyao Xu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qianlong Xie
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Haohua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Huaping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
19
|
Al-Amri I, Kadim IT, AlKindi A, Hamaed A, Al-Magbali R, Khalaf S, Al-Hosni K, Mabood F. Determination of residues of pesticides, anabolic steroids, antibiotics, and antibacterial compounds in meat products in Oman by liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assay. Vet World 2021; 14:709-720. [PMID: 33935417 PMCID: PMC8076474 DOI: 10.14202/vetworld.2021.709-720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND AIM Meat is a rich source of many nutrients and plays a vital role in human life however, meat safety is one of the top priorities of great concern for consumers today. More than 90% of human exposure to harmful materials is due to consumption of contaminated meat products. This study was designed to compare four valid analytical methods for the determination of organochlorine pesticides 2,4 D (2,4-dichlorophenoxyacetic acid), dichlorodiphenyldichloroethylene/dichlorodiphenyltrichloroethane, alachlor, organophosphate, anabolic steroids (progesterone, testosterone, and estrogen), antibiotics (tetracycline, sulfonamides, gentamycin, and cephalexin), antibacterial compounds (Macrolide, ß-Lactam, Chloramphenicol, Sulphur drugs, and Gentamicin) residues in 135 beef, buffalo, and sheep meat samples (fresh, frozen meats, minced, and sausage samples) of local, regional, and international brands available in Omani markets. MATERIALS AND METHODS Triplicate meat samples from each brand within each species were extracted with acetonitrile and purified with acetonitrile-saturated n-hexane to remove all impurities. To dry the sample after heating, the residue was passed across a Sep-Pak C18 cartridge for sample cleaning before gas chromatography (GC) (Brand GCMS-QP2010 Plus) coupled with different detectors, including a mass spectrometer or GC-electron capture detector (GC-ECD). Liquid chromatography/mass spectrometry (LC-MS) was also employed for the quantification of the residues in meat products. Enzyme-linked immunosorbent assay (ELISA) kits were employed to assess veterinary drug residues, anabolic steroids, and pesticides. The CHARM II instrument was employed to detect chloramphenicol, gentamicin, sulfa-drug, ß-lactam, and macrolide residues in meat and meat product samples. RESULTS A thin-layer chromatographic (TLC) method should be considered as another method of choice to determine concentrations of veterinary drugs and anabolic steroids. The TLC results were validated by LC-MS. The three described methods permit the multi-residue analysis of anabolic steroid residue levels of 0.06-1.89 ppb in meat product samples. There were three violative residues of anabolic steroids in red meat products that were above the maximum residue limits (MRLs). Although, the levels of organochlorine pesticides and antibiotic concentrations in meat products were below the MRLs, the long-term consumption is considered a health hazard and will affect the wellbeing of consumers. CONCLUSION The four techniques (GC, high-performance liquid chromatography, ELISA and CHARM II) provided results that were reliable and precise for the detection of chessssmical residues in meat and meat products.
Collapse
Affiliation(s)
- Issa Al-Amri
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Isam T. Kadim
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Abdulaziz AlKindi
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Ahmed Hamaed
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Rabea Al-Magbali
- Department of Animal and Veterinary Sciences, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Samera Khalaf
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Khdija Al-Hosni
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, PC 616, Birkat Al-Mouz, Nizwa, Sultanate of Oman
| | - Fazal Mabood
- Institute of Chemical Sciences, University of Swat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
20
|
Zhang H, Chen Q, Niu B. Risk Assessment of Veterinary Drug Residues in Meat Products. Curr Drug Metab 2020; 21:779-789. [PMID: 32838714 DOI: 10.2174/1389200221999200820164650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 05/13/2020] [Indexed: 01/04/2023]
Abstract
With the improvement of the global food safety regulatory system, there is an increasing importance for food safety risk assessment. Veterinary drugs are widely used in poultry and livestock products. The abuse of veterinary drugs seriously threatens human health. This article explains the necessity of risk assessment for veterinary drug residues in meat products, describes the principles and functions of risk assessment, then summarizes the risk assessment process of veterinary drug residues, and then outlines the qualitative and quantitative risk assessment methods used in this field. We propose the establishment of a new meat product safety supervision model with a view to improve the current meat product safety supervision system.
Collapse
Affiliation(s)
- Hui Zhang
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shangda Road 200444, Shanghai, China
| |
Collapse
|
21
|
Xin J, Wang X, Li N, Liu L, Lian Y, Wang M, Zhao RS. Recent applications of covalent organic frameworks and their multifunctional composites for food contaminant analysis. Food Chem 2020; 330:127255. [DOI: 10.1016/j.foodchem.2020.127255] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
|
22
|
Liu M, Guo L, Yin Y, Chen L, Chen Z, Liu J, Qiu B. Au nanoparticle preconcentration coupled with CE-electrochemiluminescence detection for sensitive analysis of fluoroquinolones in European eel ( Anguilla anguilla). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2693-2702. [PMID: 32930300 DOI: 10.1039/d0ay00264j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a novel method based on gold nanoparticle preconcentration coupled with CE for electrochemiluminescence detection of ciprofloxacin, enrofloxacin, ofloxacin, and norfloxacin in European eels was developed. The addition of gold nanoparticles induced the rapid enrichment of fluoroquinolones, which was simpler than the conventional enrichment approaches such as solid phase extraction and solid-phase microextraction. More than 100 times enrichment was observed after gold nanoparticle aggregation-based preconcentration. The CE-electrochemiluminescence parameters that affected the separation and detection were optimized. Under the optimized conditions, the linear ranges for the four fluoroquinolones were 0.090-8.0 μmol L-1 with the detection limits between 0.020 and 0.050 μmol L-1. The proposed approach showed the advantages of high sensitivity, high selectivity, a wide linear range, and a low detection limit. It was used to analyze fluoroquinolones in European eel, and the results showed that the developed method can satisfy the detection requirements for fluoroquinolone determination in aquatic products set by China and the European Union.
Collapse
Affiliation(s)
- Meihua Liu
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Yuechun Yin
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, PR China.
| | - Zhitao Chen
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - Jingjing Liu
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - Bin Qiu
- Ministry of Education Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
23
|
Mustafa F, Andreescu S. Nanotechnology-based approaches for food sensing and packaging applications. RSC Adv 2020; 10:19309-19336. [PMID: 35515480 PMCID: PMC9054203 DOI: 10.1039/d0ra01084g] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022] Open
Abstract
The rapid advancement of nanotechnology has provided opportunities for the development of new sensing and food packaging solutions, addressing long-standing challenges in the food sector to extend shelf-life, reduce waste, assess safety and improve the quality of food. Nanomaterials can be used to reinforce mechanical strength, enhance gas barrier properties, increase water repellence, and provide antimicrobial and scavenging activity to food packaging. They can be incorporated in chemical and biological sensors enabling the design of rapid and sensitive devices to assess freshness, and detect allergens, toxins or pathogenic contaminants. This review summarizes recent studies on the use of nanomaterials in the development of: (1) (bio)sensing technologies for detection of nutritional and non-nutritional components, antioxidants, adulterants and toxicants, (2) methods to improve the barrier and mechanical properties of food packaging, and (3) active functional packaging. The environmental, health and safety implications of nanomaterials in the food sector, along with an overview of regulation and consumer perception is also provided.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University Potsdam New York 13699-5810 USA
| |
Collapse
|
24
|
Pan M, Liu K, Yang J, Hong L, Xie X, Wang S. Review of Research into the Determination of Acrylamide in Foods. Foods 2020; 9:E524. [PMID: 32331265 PMCID: PMC7230758 DOI: 10.3390/foods9040524] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Acrylamide (AA) is produced by high-temperature processing of high carbohydrate foods, such as frying and baking, and has been proved to be carcinogenic. Because of its potential carcinogenicity, it is very important to detect the content of AA in foods. In this paper, the conventional instrumental analysis methods of AA in food and the new rapid immunoassay and sensor detection are reviewed, and the advantages and disadvantages of various analysis technologies are compared, in order to provide new ideas for the development of more efficient and practical analysis methods and detection equipment.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (K.L.); (J.Y.); (L.H.); (X.X.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
25
|
Nie R, Xu X, Chen Y, Yang L. Optical Fiber-Mediated Immunosensor with a Tunable Detection Range for Multiplexed Analysis of Veterinary Drug Residues. ACS Sens 2019; 4:1864-1872. [PMID: 31184113 DOI: 10.1021/acssensors.9b00653] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We describe herein a newly developed chemiluminescent optical fiber immunosensor (OFIS) with a tunable detection range for multiplexed analysis of veterinary drug residues with vastly different concentrations in milk samples. The optical fiber probe is used as a carrier of biorecognition element as well as a transducer, enabling a low-cost compact design, which makes this system suitable for cost-effective on-site detection of the target analytes. Importantly, the synergy between modulation of the length of the optical fiber sensing region and the number of fibers allows performing multiplexed immunoassays in an easily controllable manner over a tunable detection range from pg/mL to μg/mL analyte concentrations. By combining the optical fiber sensor with a nanocomplex signal amplification system, a highly sensitive chemiluminescent OFIS system is demonstrated for the multiplexed assaying of veterinary drug residues in milk samples with linear ranges of 10-(2 × 104) pg/mL for chloramphenicol, 0.5-500 ng/mL for sulfadiazine, and 0.1-300 μg/mL for neomycin. This controllable strategy, based on modulation of the fiber probe, provides a versatile platform for multiplexed quantitative detection of both low-abundance and high-abundance targets, which shows great potential for on-site testing in food safety.
Collapse
Affiliation(s)
- Rongbin Nie
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Xuexue Xu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, PR China
| |
Collapse
|
26
|
Pan M, Yang J, Li S, Wen W, Wang J, Ding Y, Wang S. A Reproducible Surface Plasmon Resonance Immunochip for the Label-Free Detection of Amantadine in Animal-Derived Foods. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-01424-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Green preparation of chlorine-doped graphene and its application in electrochemical sensor for chloramphenicol detection. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0174-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
28
|
Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, Yi H, Li B, Deng R, Liu S, Zhang Y. Recent advances in sensors for tetracycline antibiotics and their applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.10.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
30
|
Fu L, Zhou J, Wang C, Li X, Zheng L, Wang Y. Ion-Exchange Chromatography Coupled With Dynamic Coating Capillary Electrophoresis for Simultaneous Determination of Tropomyosin and Arginine Kinase in Shellfish. Front Chem 2018; 6:305. [PMID: 30090807 PMCID: PMC6068269 DOI: 10.3389/fchem.2018.00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/05/2018] [Indexed: 11/13/2022] Open
Abstract
Tropomyosin (TM) and arginine kinase (AK) are known as two major allergens in seafood. For the first time, we demonstrate a newly developed ion-exchange chromatography coupled with dynamic coating capillary electrophoresis (IEC-DCCE) method to simultaneously analyze the TM and AK in shellfish. First, we have optimized the procedure of IEC for simple enrichment of TM and AK crude extract. By using 30 mM borate-borax at pH 9.0 with 0.3% (v/v) Tween-20 as a dynamic coating modifier for capillary electrophoresis (CE) separation, the migration time, separation efficiency and electrophoretic resolution greatly improved. The limits of detection (LOD) were 1.2 μg mL-1 for AK and 1.1 μg mL-1 for TM (S/N = 3), and the limits of quantification (LOQ) were 4.0 μg mL-1 for AK and 3.7 μg mL-1 for TM (S/N = 10). The recovery of AK ranged from 91.5 to 106.1%, while that of TM ranged from 94.0 to 109.5%. We also found that only when the concentrations of AK and TM were above LOD reported here, these proteins can stimulate human mast cell (LAD2) degranulation. Finally, the use of IEC-DCCE to analyze fresh shellfish samples highlights the applicability of this method for the simultaneous detection of these allergens in complex food systems.
Collapse
Affiliation(s)
- Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Jinru Zhou
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Xiaohui Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Zhejiang Engineering Institute of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
31
|
A fluorometric clenbuterol immunoassay based on the use of organic/inorganic hybrid nanoflowers modified with gold nanoclusters and artificial antigen. Mikrochim Acta 2018; 185:366. [DOI: 10.1007/s00604-018-2889-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023]
|
32
|
Munteanu FD, Titoiu AM, Marty JL, Vasilescu A. Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. SENSORS 2018; 18:s18030901. [PMID: 29562637 PMCID: PMC5877114 DOI: 10.3390/s18030901] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
This review provides a brief overview of the fabrication and properties of screen-printed electrodes and details the different opportunities to apply them for the detection of antibiotics, detection of bacteria and antibiotic susceptibility. Among the alternative approaches to costly chromatographic or ELISA methods for antibiotics detection and to lengthy culture methods for bacteria detection, electrochemical biosensors based on screen-printed electrodes present some distinctive advantages. Chemical and (bio)sensors for the detection of antibiotics and assays coupling detection with screen-printed electrodes with immunomagnetic separation are described. With regards to detection of bacteria, the emphasis is placed on applications targeting viable bacterial cells. While the electrochemical sensors and biosensors face many challenges before replacing standard analysis methods, the potential of screen-printed electrodes is increasingly exploited and more applications are anticipated to advance towards commercial analytical tools.
Collapse
Affiliation(s)
- Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, "Aurel Vlaicu" University of Arad, Elena Dragoi, No. 2, Arad 310330, Romania.
| | - Ana Maria Titoiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, Bucharest 060101, Romania.
| |
Collapse
|
33
|
Li F, Li Y, Feng J, Gao Z, Lv H, Ren X, Wei Q. Facile synthesis of MoS 2@Cu 2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens Bioelectron 2017; 100:512-518. [PMID: 28982091 DOI: 10.1016/j.bios.2017.09.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 12/17/2022]
Abstract
An ultrasensitive sandwich-type electrochemical immunosensor was proposed for quantitative detection of hepatitis B surface antigen, which is a representative biomarker of the Hepatitis B virus. First, the porous graphene oxide/Au composites with good conductive ability were employed to accelerate the electron transfer on the electrode interface. Furthermore, the amino functionalized molybdenum disulfide @ cuprous oxide hybrid with coral morphology was prepared to combine platinum nanoparticles for achieving signal amplification strategy. The resulting nanocomposites (molybdenum disulfide @ cuprous oxide - platinum) demonstrated uniform coral morphology, which effectively improved the specific surface area available for loading the secondary antibody and the number of catalytically active sites, even also increased the electrical conductivity. Based on these advantages, this composite system yielded a superior electrocatalytic current response toward the reduction of hydrogen peroxide. In addition, porous graphene oxide/Au composites were used to modify the glassy carbon electrode, thereby presenting a large surface area and becoming biocompatible, for improving the loading capacity of the primary antibody. Under optimal conditions, we obtained a linear relationship between current signal and hepatitis B surface antigen concentration in the broad range from 0.5pg/mL to 200ng/mL, with a detection limit of 0.15pg/mL (signal-to-noise ratio of 3). These values are promising towards clinical applications.
Collapse
Affiliation(s)
- Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yueyun Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Jinhui Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zengqiang Gao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Hui Lv
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
34
|
Malekzad H, Jouyban A, Hasanzadeh M, Shadjou N, de la Guardia M. Ensuring food safety using aptamer based assays: Electroanalytical approach. Trends Analyt Chem 2017; 94:77-94. [PMID: 32287541 PMCID: PMC7112916 DOI: 10.1016/j.trac.2017.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Aptamers, are being increasingly employed as favorable receptors for constructing highly sensitive biosensors, for their remarkable affinities towards certain targets including a wide scope of biological or chemical substances, and their superiority over other biologic receptors. The selectivity and affinity of the aptamers have been integrated with the wise design of the assay, applying suitable modifications, such as nanomaterials on the electrode surface, employing oligonucleotide-specific amplification strategies or, their combinations. After successful performance of the electrochemical aptasensors for biomedical applications, the food sector with its direct implication for human health, which demands rapid and sensitive and economic analytical solutions for determination of health threatening contaminants in all stages of production process, is the next field of research for developing efficient electrochemical aptasensors. The aim of this review is to categorize and introduce food hazards and summarize the recent electrochemical aptasensors that have been developed to address these contaminants.
Collapse
Affiliation(s)
- Hedieh Malekzad
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia, Iran
- Department of Nanochemistry, Faculty of Science, Urmia University, Urmia, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
35
|
Majdinasab M, Yaqub M, Rahim A, Catanante G, Hayat A, Marty JL. An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1947. [PMID: 28837093 PMCID: PMC5621119 DOI: 10.3390/s17091947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022]
Abstract
Anti-microbial drugs are widely employed for the treatment and cure of diseases in animals, promotion of animal growth, and feed efficiency. However, the scientific literature has indicated the possible presence of antimicrobial drug residues in animal-derived food, making it one of the key public concerns for food safety. Therefore, it is highly desirable to design fast and accurate methodologies to monitor antimicrobial drug residues in animal-derived food. Legislation is in place in many countries to ensure antimicrobial drug residue quantities are less than the maximum residue limits (MRL) defined on the basis of food safety. In this context, the recent years have witnessed a special interest in the field of electrochemical biosensors for food safety, based on their unique analytical features. This review article is focused on the recent progress in the domain of electrochemical biosensors to monitor antimicrobial drug residues in animal-derived food.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, Shiraz University, Shiraz 71441-65186, Iran.
| | - Mustansara Yaqub
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan CEDEX 66860, France.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, Perpignan CEDEX 66860, France.
| |
Collapse
|
36
|
Li Y, Zhang Y, Li F, Feng J, Li M, Chen L, Dong Y. Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co 3 O 4 @CeO 2 -Au@Pt nanocomposite as enzyme-mimetic labels. Biosens Bioelectron 2017; 92:33-39. [DOI: 10.1016/j.bios.2017.01.065] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
|
37
|
|
38
|
Affiliation(s)
- Wei Wen
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Xu Yan
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Chengzhou Zhu
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States.,Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University , Wuhan, Hubei 430079, P.R. China
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
39
|
Zeng Y, Zhu Z, Du D, Lin Y. Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.030] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|