1
|
Toma L, Piergiovanni M, Gentili S, Mattarozzi M, Careri M, Moyano E. An expanded framework for Swab Touch Spray-Mass Spectrometry towards the detection of allergenic protein residues on food preparation surfaces. Anal Chim Acta 2025; 1349:343818. [PMID: 40074453 DOI: 10.1016/j.aca.2025.343818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored. RESULTS In the present study, the application framework of Swab TS-MS was expanded towards the detection of proteins, focusing on residues of allergenic ingredients as contaminants of food preparation surfaces. Lysozyme from chicken egg white was selected as case study of allergenic protein. Since none of the experimental conditions explored allowed the detection of intact lysozyme, a bottom-up procedure based on tryptic digestion for lysozyme detection by Swab TS-MS, operating in MS/high resolution (HR)MS tandem mode, was investigated. In parallel, liquid chromatography-tandem mass spectrometry was used to develop and characterize an in-situ digestion/swabbing strategy, allowing to reach a LOD value of 0.003 μg/cm2 of egg white powder consistent with that of lateral flow immunoassay technique. Finally, the developed in-situ digestion/swabbing procedure was coupled to the Swab TS-MS/HRMS method, permitting the direct analysis of egg white powder residues on stainless steel surfaces, reaching a LOD of 68 μg/cm2 egg white powder, corresponding to 2.4 μg/cm2 of lysozyme. SIGNIFICANCE This study should be intended as a first step for the application of Swab TS-MS technique in protein analysis: the developed in-situ digestion and sampling strategy suitable for Swab TS-MS direct analysis of food allergen has a valuable impact towards the availability of MS-based multiplexed detection tool useful for the development of efficient surface cleaning procedures.
Collapse
Affiliation(s)
- Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Piergiovanni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Silvia Gentili
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Interdepartmental Center on Safety, Technologies and Agri-Food Innovation (SITEIA.PARMA), University of Parma, Parco Area Delle Scienze 181/A, 43124, Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Interdepartmental Center on Safety, Technologies and Agri-Food Innovation (SITEIA.PARMA), University of Parma, Parco Area Delle Scienze 181/A, 43124, Parma, Italy
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, Barcelona, E-08028, Spain
| |
Collapse
|
2
|
Xiao J, Sheng L, Li M, Liu J, Liu D, Lu Y, Gao X. Simultaneous detection of multiple food allergens using high signal-to-background SERS probes. Food Chem 2025; 465:142098. [PMID: 39571445 DOI: 10.1016/j.foodchem.2024.142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Avoiding exposure to food allergens remains the most reliable way to protect allergic individuals. Therefore, it is essential to develop selective, sensitive, and rapid methods for detecting food allergens. Herein, we introduce a novel SERS-based sandwich immunoassay that utilizes three distinct types of SERS detection probes: Ag@CA NPs, AgAu@PB NPs, and Ag@MB NPs, along with magnetic capture probes, to simultaneously detect almond, lactoglobulin, and gliadin allergens. These SERS probes generate unique Raman peaks at 1987 cm-1, 2151 cm-1, and 2223 cm-1 in the Raman-silent region (1800-2800 cm-1), effectively avoiding interference from the Raman-fingerprint region (400-1800 cm-1) of potential food matrix substrates. This design ensures high signal-to-background ratios and detection accuracy, achieving limits of detection (LODs) of 7.4 pg/mL for almonds, 66 pg/mL for lactoglobulin, and 0.36 pg/mL for gliadin, with corresponding recoveries ranging from 83.7 % to 118.8 %, 98.9 % to 112.2 %, and 91.9 % to 109.5 %, respectively, demonstrating satisfactory analytical performance.
Collapse
Affiliation(s)
- Jinru Xiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingjie Sheng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingmin Li
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Lu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Lim XS, Lin Q, Chin R, Bay LJ, Tan WB, Yong XE, Lim TK, Lin Q. Efficient protein extraction for assessing food allergy risk in complex alternative protein matrices. Food Chem 2025; 463:141221. [PMID: 39276555 DOI: 10.1016/j.foodchem.2024.141221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Allergy to novel food proteins, due to diverse ingredients and innovative food processing technologies employed to achieve desired functional properties, is a major safety concern. Current allergy testing methods (ELISA and mass spectrometry) depend on high-quality protein extracts, meaning existing methods are often tailored to specific matrices. Therefore, a more efficient and general protein extraction method is desirable for comprehensive allergy risk assessment. Here, we developed a highly efficient and reproducible protein extraction method which achieved at least 80 % efficiency across several food matrices. Proteomics analysis of a plant-based meat using our optimized extraction method showed that higher extraction efficiency improved reproducibility of identified proteins. Moreover, higher protein extraction efficiency resulted in increased abundances of individual allergenic proteins. This underscores the relevance of our method for more accurate measurements of allergenic protein concentrations in allergy risk assessments.
Collapse
Affiliation(s)
- Xin Shan Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Qifeng Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Renee Chin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Lian Jie Bay
- National Centre for Food Science, Singapore Food Agency, 7 International Business Park, Singapore 609919, Singapore
| | - Wei Bin Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xin Ee Yong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.
| |
Collapse
|
4
|
Mahato DK, Kamle M, Pandhi S, Pandey S, Gupta A, Paul V, Kalsi R, Agrawal S, Islam D, Khare S, Singh A, Kumar P, Rab SO, Saeed M. Foodomics: A sustainable approach for the specific nutrition and diets for human health. Food Chem X 2024; 24:101872. [PMID: 39483356 PMCID: PMC11525469 DOI: 10.1016/j.fochx.2024.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Foodomics is an interdisciplinary field that integrates various omics technologies to explore the complex relationship between food and human health in depth. This approach offers valuable insights into the biochemical, molecular, and cellular composition of food by employing advanced omics techniques. Its applications span the food industry and human health, including efforts to combat malnutrition, provide dietary recommendations, and ensure food safety. This paper critically examines the successful applications of foodomics across areas such as food safety, quality, traceability, processing, and bioactivity. It highlights the crucial role of metabolomics, proteomics, and transcriptomics in achieving a comprehensive understanding of food components, their functions, and their interactions with human biology.
Collapse
Affiliation(s)
- Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Lab., Department of Forestry, North-Eastern Regional Institute of Science and Technology, Nirjuli 791109, Arunachal Pradesh, India
| | - Shikha Pandhi
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Surabhi Pandey
- Department of Food Technology, Harcourt Butler Technical University, Kanpur, 208002, India
| | - Akansha Gupta
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Veena Paul
- Division of Food Processing Technology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Rhythm Kalsi
- School of Agriculture, Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Swati Agrawal
- Department of Bioresource Engineering, Faculty of Agricultural & Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| | - Dawrul Islam
- World Food Programme, Trust for India, New Delhi 110029, India
| | - Shubhra Khare
- Department of Applied Sciences & Humanities, Invertis University, Bareilly, India
| | - Ajey Singh
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Pradeep Kumar
- Applied Microbiology Lab., Department of Botany, University of Lucknow, Lucknow, 226007, India
- College of Life Science & Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
5
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
6
|
Yang S, Chen J, Abdallah MF, Lin H, Yang P, Li J, Zhang R, Li Q, Lu P, Liu S, Li Y. An integrated calibration strategy for the development and validation of an LC-MS/MS method for accurate quantification of egg allergens (Gal d 1-6) in foods. Food Chem 2024; 438:137922. [PMID: 37979263 DOI: 10.1016/j.foodchem.2023.137922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Accurate determination of egg allergens in food is vital for allergen management and labeling. However, quantifying egg allergens with mass spectrometry poses challenges and lacks validation methods. Here, we developed and validated an LC-MS/MS method for quantifying egg allergens (Gal d 1-6) in foods. Sample extraction, enzymatic digestion, purification, proteins/peptides selection, and calibration curves were optimized. VMVLC[+57]NR (Gal d 1) and GTDVQAWIR (Gal d 5) exhibited outstanding sensitivity and stability, serving as quantitation markers for egg white and yolk. Using a matrix-matched calibration curve with allergen ingredients as calibrants and labeled peptides as standards, we achieved highly accurate quantitation. Validation involved spiking egg protein into egg-free foods, showing excellent sensitivity (LOQ: 1-5 mg/kg), accuracy (62.4 %-88.5 %), and reproducibility (intra-/inter-day precision: 3.5 %-14.2 %/8.2 %-14.6 %). Additionally, we successfully applied this method to commercial food analysis. These findings demonstrate optimal allergen selection, peptides, and calibration strategy are crucial parameters for food allergen quantification via MS-based methods.
Collapse
Affiliation(s)
- Shupeng Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Jingjing Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Mohamed F Abdallah
- Depaerment of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt
| | - Haopeng Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peijie Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Rong Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Qianqian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Peng Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Shuyan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| |
Collapse
|
7
|
Kedar O, Golberg A, Obolski U, Confino-Cohen R. Allergic to bureaucracy? Regulatory allergenicity assessments of novel food: Motivations, challenges, compromises, and possibilities. Compr Rev Food Sci Food Saf 2024; 23:e13300. [PMID: 38477215 DOI: 10.1111/1541-4337.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/14/2024]
Abstract
New sources of proteins are essential to meet the demands of the growing world population and evolving food trends. Assessing the allergenicity of proteins in novel food (NF) poses a significant food safety regulatory challenge. The Codex Alimentarius Commission presented an allergenicity assessment protocol for genetically modified (GM) foods, which can also be adapted for NF. Since no single laboratory test can adequately predict the allergenic potential of NF, the protocol follows a weight-of-evidence approach, evaluated by experts, as part of a risk management process. Regulatory bodies worldwide have adopted this safety protocol, which, among other things, promotes global harmonization. This review unravels the reliability and various motivations, terms, concepts, and approaches of allergenicity assessments, aiming to enhance understanding among manufacturers and the public. Health Canada, Food Safety Commission JAPAN, and Food Standards Australia New Zealand were surveyed, focusing on the European Food Safety Authority and the US Food Safety Administration for examples of scientific opinions regarding allergenicity assessments for novel and GM foods, from 2019 to 2023. According to our findings, current regulatory allergenicity assessments for NF approval primarily rely on literature reviews. Only a few of the NF assessments proactively presented additional tests. We recommend conducting bioinformatic analyses on NF when a panel of experts deems that there is insufficient prior scientific research.
Collapse
Affiliation(s)
- Odeya Kedar
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Obolski
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Quintieri L, Fanelli F, Monaci L, Fusco V. Milk and Its Derivatives as Sources of Components and Microorganisms with Health-Promoting Properties: Probiotics and Bioactive Peptides. Foods 2024; 13:601. [PMID: 38397577 PMCID: PMC10888271 DOI: 10.3390/foods13040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Milk is a source of many valuable nutrients, including minerals, vitamins and proteins, with an important role in adult health. Milk and dairy products naturally containing or with added probiotics have healthy functional food properties. Indeed, probiotic microorganisms, which beneficially affect the host by improving the intestinal microbial balance, are recognized to affect the immune response and other important biological functions. In addition to macronutrients and micronutrients, biologically active peptides (BPAs) have been identified within the amino acid sequences of native milk proteins; hydrolytic reactions, such as those catalyzed by digestive enzymes, result in their release. BPAs directly influence numerous biological pathways evoking behavioral, gastrointestinal, hormonal, immunological, neurological, and nutritional responses. The addition of BPAs to food products or application in drug development could improve consumer health and provide therapeutic strategies for the treatment or prevention of diseases. Herein, we review the scientific literature on probiotics, BPAs in milk and dairy products, with special attention to milk from minor species (buffalo, sheep, camel, yak, donkey, etc.); safety assessment will be also taken into consideration. Finally, recent advances in foodomics to unveil the probiotic role in human health and discover novel active peptide sequences will also be provided.
Collapse
Affiliation(s)
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), 70126 Bari, Italy; (L.Q.); (L.M.); (V.F.)
| | | | | |
Collapse
|
9
|
Pilolli R, Lamonaca A, Nitride C, De Angelis E, van Poucke C, Gillard N, Huet AC, De Loose M, Henrottin J, Mills ECN, Monaci L. In-house validation of an LC-MS method for the multiplexed quantitative determination of total allergenic food in chocolate. Anal Bioanal Chem 2024; 416:809-825. [PMID: 37615691 PMCID: PMC10766722 DOI: 10.1007/s00216-023-04894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Mass spectrometry has been widely accepted as a confirmatory tool for the sensitive detection of undeclared presence of allergenic ingredients. Multiple methods have been developed so far, achieving different levels of sensitivity and robustness, still lacking harmonization of the analytical validation and impairing comparability of results. In this investigation, a quantitative method has been validated in-house for the determination of six allergenic ingredients (cow's milk, hen's egg, peanut, soybean, hazelnut, and almond) in a chocolate-based matrix. The latter has been produced in a food pilot plant to provide a real and well-characterized matrix for proper assessment of method performance characteristics according to official guidelines. In particular, recent considerations issued by the European Committee for Standardization have been followed to guide a rigorous single-laboratory validation and to feature the main method performance, such as selectivity, linearity, and sensitivity. Synthetic surrogates of the peptide markers have been used both in native and labelled forms in matrix-matched calibration curves as external calibrants and internal standards, respectively. A two-order of magnitude range was investigated, focusing on the low concentration range for proper assessment of the detection and quantification limits (LOD and LOQ) by rigorous calibration approach. Conversion factors for all six allergenic ingredients have been determined for the first time to report the final quantitative information as fraction of total allergenic food protein (TAFP) per mass of food (µgTAFP/gfood), since such a reporting unit is exploitable in allergenic risk assessment plans. The method achieved good sensitivity with LOD values ranging between 0.08 and 0.2 µgTAFP/gfood, for all ingredients besides egg and soybean, whose quantitative markers reported a slightly higher limit (1.1 and 1.2 µgTAFP/gfood, respectively). Different samples of chocolate bar incurred at four defined concentration levels close to the currently available threshold doses have been analyzed to test the quantitative performance of the analytical method, with a proper estimate of the measurement uncertainty from different sources of variability. The sensitivity achieved resulted in compliance with the various threshold doses issued or recommended worldwide.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy.
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
- University of Bari Department of Soil Plant and Food Science, Via Giovanni Amendola 165/A, 70126, Bari, Italy
| | - Chiara Nitride
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
| | - Christof van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, 9090, Melle, Belgium
| | | | | | - Marc De Loose
- Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Jean Henrottin
- CER Groupe, Rue du Point du Jour, 8, 6900, Marloie, Belgium
| | - E C N Mills
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (ISPA-CNR), Via Giovanni Amendola 122/O, 70126, Bari, Italy
| |
Collapse
|
10
|
Pilolli R, De Angelis E, Lamonaca A, Monaci L. Standardization of a Mass Spectrometry-Based Workflow for Food Allergen Quantification. Methods Mol Biol 2024; 2717:251-267. [PMID: 37737990 DOI: 10.1007/978-1-0716-3453-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In this chapter, the analytical workflow typically used for the development and validation of an analytical method tailored to food allergen detection and quantification is presented. The main steps defining the workflow are herein described and commented with specific notes about the critical issues that can be faced and common solutions to be adopted. References to guidelines and/or recommendation available from official bodies, as well as main papers from international consortia operating on the specific research field, are also reported, whenever possible. As such, this chapter may represent a practical guide to drive method development in the standardization of analytical methods for food allergen detection.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), Bari, Italy.
| |
Collapse
|
11
|
Calcinai L, Prandi B, Faccini A, Puxeddu I, Tedeschi T. Molecular characterization and allergenicity assessment of different samples of Mung Bean. Food Chem X 2023; 20:100980. [PMID: 38144835 PMCID: PMC10740012 DOI: 10.1016/j.fochx.2023.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 12/26/2023] Open
Abstract
Legumes represent a promising nutritional alternative source of proteins to meat and dairy products. Additionally, Novel Foods (Regulation EU 2015/2283) can help meet the rising protein demand. However, despite their benefits, emerging allergenicity risks must be considered. The aim of this work is the molecular characterization of the Novel Food Mung bean protein isolate for allergenicity prediction with High Resolution Mass Spectrometry analysis. The assessment of the allergenicity was evaluated in silico by comparing protein sequences of the Novel Food with other known legume allergens, using bioinformatic databases. The results highlighted similarity higher than 60 % of the protein structure of Mung bean with two known allergens of soybean and pea. Furthermore, enzymatic hydrolysis effects on allergenic potential was evaluated by immunoblotting analysis using sera of patients allergic to legumes. The protein hydrolysates obtained showed a high nutritional quality and a reduced allergenic potential, making them suitable for hypoallergenic food formulations.
Collapse
Affiliation(s)
- Luisa Calcinai
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Barbara Prandi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Andrea Faccini
- Centro Interdipartimentale di Misure, University of Parma, Parco Area delle Scienze, 25/A, Parma, Italy
| | - Ilaria Puxeddu
- Immuno-allergology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Tullia Tedeschi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
12
|
Kim K, Kim Y, Lee H, Lee C, Kim S, Oh S, Park ZY. Discovery, verification, and validation of walnut protein marker peptides using LC-MS approaches. Food Chem 2023; 429:136889. [PMID: 37467671 DOI: 10.1016/j.foodchem.2023.136889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
A key requirement of liquid chromatography-mass spectrometry (LC-MS)-based allergenic food protein analysis methods is to use protein marker peptides with good analytical performances in LC-MS analysis of commercial processed foods. In this study, we developed a multi-stage walnut protein marker peptide selection strategy involving marker peptide discovery and verification and LC-MS validation of chemically equivalent stable isotope-labeled peptides. This strategy proposed three walnut protein marker peptides, including two new marker peptides. Our LC-MS-based walnut protein analysis method using the three stable isotope-labeled peptides showed acceptable linearity (R2 >0.99), matrix effects (coefficient of variation <±15%), sensitivity (limit of detection >0.3 pg/μL, limit of quantification >0.8 pg/μL), recovery (85.1-103.4%), accuracy, and precision (coefficient of variation <10%). In conclusion, our multi-stage marker peptide selection strategy effectively selects specific protein marker peptides for sensitive detection and absolute quantification of walnut proteins in LC-MS analysis of commercial processed foods.
Collapse
Affiliation(s)
- Kyungdo Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagiro123, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Yourim Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagiro123, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Hana Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagiro123, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Chaeyoon Lee
- Department of Food Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea.
| | - Sooyeon Kim
- Department of Food Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea.
| | - Sangsuk Oh
- Department of Food Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Cheomdangwagiro123, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
13
|
Lu Y, Ji H, Chen Y, Li Z, Timira V. A systematic review on the recent advances of wheat allergen detection by mass spectrometry: future prospects. Crit Rev Food Sci Nutr 2023; 63:12324-12340. [PMID: 35852160 DOI: 10.1080/10408398.2022.2101091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wheat is one of the three major staple foods in the world. Although wheat is highly nutritional, it has a variety of allergenic components that are potentially fatal to humans and pose a significant hazard to the growth and consumption of wheat. Wheat allergy is a serious health problem, which is becoming more and more prevalent all over the world. To address and prevent related health risks, it is crucial to establish precise and sensitive detection and analytical methods as well as an understanding of the structure and sensitization mechanism of wheat allergens. Among various analytical tools, mass spectrometry (MS) is known to have high specificity and sensitivity. It is a promising non immune method to evaluate and quantify wheat allergens. In this article, the current research on the detection of wheat allergens based on mass spectrometry is reviewed. This review provides guidance for the further research on wheat allergen detection using mass spectrometry, and speeds up the development of wheat allergen research in China.
Collapse
Affiliation(s)
- Yingjun Lu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Hua Ji
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, P.R. China
| | - Yan Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Sciences Research Unit (No. 2019RU014), Beijing, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| | - Vaileth Timira
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P.R. China
| |
Collapse
|
14
|
Birse N, Burns DT, Walker MJ, Quaglia M, Elliott CT. Food allergen analysis: A review of current gaps and the potential to fill them by matrix-assisted laser desorption/ionization. Compr Rev Food Sci Food Saf 2023; 22:3984-4003. [PMID: 37530543 DOI: 10.1111/1541-4337.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/01/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Food allergy remains a public health, business, and regulatory challenge. Risk analysis (RA) and risk management (RM) of food allergens are of great importance and analysis for food allergens is necessary for both. The current workhorse techniques for allergen analysis (enzyme linked immunosorbent assay [ELISA] and real-time polymerase chain reaction) exhibit recognized challenges including variable and antibody specific responses and detection of species DNA rather than allergen protein, respectively. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) enables protein identification, with potential for multiplex analysis and traceability to the System of International units (SI), aiding global measurement standardization. In this review, recent literature has been systematically reviewed to assess progress in LC-MS/MS and define the potential and benefits of matrix-assisted laser desorption/ionization-time-of-flight MS (MALDI-ToF-MS) technology for allergen analysis. MALDI-ToF-MS of initially intact protein is already applied to verify in silico-derived peptide sequences for LC-MS/MS analysis. We describe the origins of MALDI and its future perspectives, including affinity bead-assisted assays coupled to MALDI. Based on the proliferation of reliable and reproducible MALDI-based clinical applications, the technique should emulate the detection capability (sensitivity) of established allergen detection techniques, whilst reducing technical support and having equivalent multiplexing potential to competing techniques, for example, LC-MS/MS and ELISA. Although unlikely to offer inherent SI traceability, MALDI-based allergen analysis will complement existing MS approaches for allergens. Affinity bead-MALDI appears capable of higher throughput at lower cost per sample than almost any existing technique, enabling repeated sub-sampling as a way to reduce representative sampling issues.
Collapse
Affiliation(s)
- Nicholas Birse
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Duncan Thorburn Burns
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Michael J Walker
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
15
|
López-Pedrouso M, Lorenzo JM, Alché JDD, Moreira R, Franco D. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. BIOLOGY 2023; 12:biology12050714. [PMID: 37237526 DOI: 10.3390/biology12050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
In recent years, novel food is becoming an emerging trend increasingly more demanding in developed countries. Food proteins from vegetables (pulses, legumes, cereals), fungi, bacteria and insects are being researched to introduce them in meat alternatives, beverages, baked products and others. One of the most complex challenges for introducing novel foods on the market is to ensure food safety. New alimentary scenarios drive the detection of novel allergens that need to be identified and quantified with the aim of appropriate labelling. Allergenic reactions are mostly caused by proteins of great abundance in foods, most frequently of small molecular mass, glycosylated, water-soluble and with high stability to proteolysis. The most relevant plant and animal food allergens, such as lipid transfer proteins, profilins, seed storage proteins, lactoglobulins, caseins, tropomyosins and parvalbumins from fruits, vegetables, nuts, milk, eggs, shellfish and fish, have been investigated. New methods for massive screening in search of potential allergens must be developed, particularly concerning protein databases and other online tools. Moreover, several bioinformatic tools based on sequence alignment, motif identification or 3-D structure predictions should be implemented as well. Finally, targeted proteomics will become a powerful technology for the quantification of these hazardous proteins. The ultimate objective is to build an effective and resilient surveillance network with this cutting-edge technology.
Collapse
Affiliation(s)
- María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, 15872 A Coruña, Spain
| | - José M Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology and Advanced Microscopy Laboratory, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Ramón Moreira
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Daniel Franco
- Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Wang Y, Li H, Zhou J, Wang F, Qian Y, Fu L. An antifouling polydopamine-based fluorescent aptasensor for determination of arginine kinase. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Simultaneous quantification of six major allergens in commercial foods for children using a multiplex array on a digital versatile disc. Food Chem 2023; 404:134570. [DOI: 10.1016/j.foodchem.2022.134570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
18
|
Luparelli A, Losito I, De Angelis E, Pilolli R, Monaci L. Multi-Target Detection of Nuts and Peanuts as Hidden Allergens in Bakery Products through Bottom-Up Proteomics and High-Resolution Mass Spectrometry. Foods 2023; 12:726. [PMID: 36832800 PMCID: PMC9955278 DOI: 10.3390/foods12040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Due to the growing global incidence of allergy to nuts and peanuts, the need for better protection of consumers sensitive to those products is constantly increasing. The best strategy to defend them against adverse immunological reactions still remains the total removal of those products from their diet. However, nuts and peanuts traces can also be hidden in other food products, especially processed ones, such as bakery products, because of cross-contamination occurring during production. Precautionary labelling is often adopted by producers to warn allergic consumers, usually without any evaluation of the actual risk, which would require a careful quantification of nuts/peanuts traces. In this paper, the development of a multi-target method based on liquid chromatography-tandem high resolution mass spectrometry (LC-MS, MS/MS), able to detect traces of five nuts species (almonds, hazelnuts, walnuts, cashews and pistachios) and of peanuts in an in-house incurred bakery product (cookie) through a single analysis is described. Specifically, allergenic proteins of the six ingredients were used as the analytical targets, and the LC-MS responses of selected peptides resulting from their tryptic digestion, after extraction from the bakery product matrix, were exploited for quantification, following a bottom-up approach typical of proteomics. As a result, nuts/peanuts could be detected/quantified down to mg·kg-1 levels in the model cookie, thus opening interesting perspectives for the quantification of hidden nuts/peanuts in bakery products and, consequently, for a more rational use of precautionary labelling.
Collapse
Affiliation(s)
- Anna Luparelli
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
- Department of Chemistry, University of Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy
- SMART Inter-Department Research Center, University of Bari “Aldo Moro”, Via E. Orabona 4, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council (ISPA-CNR), Via G. Amendola, 122/O, 70126 Bari, Italy
| |
Collapse
|
19
|
Nguyen N, Jennen D, Kleinjans J. Omics technologies to understand drug toxicity mechanisms. Drug Discov Today 2022; 27:103348. [PMID: 36089240 DOI: 10.1016/j.drudis.2022.103348] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/18/2022] [Accepted: 09/04/2022] [Indexed: 11/26/2022]
Abstract
Drug side effects are an important study subject in pharmacology. Recent omics technologies provide a range of omics data and help to understand the biological mechanisms involved in drug effects. These modern technologies provide significant support to all biological disciplines, including drug toxicology. In this review, we provide an overview the use of omics applications to understand drug side effects at the molecular level. We discuss by available omics technologies, their possible uses, as well as their advantages and limitations.
Collapse
Affiliation(s)
- Nhan Nguyen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht 6229ER, the Netherlands
| | - Danyel Jennen
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht 6229ER, the Netherlands.
| | - Jos Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Reproduction, Maastricht University, Maastricht 6229ER, the Netherlands
| |
Collapse
|
20
|
Henrottin J, Pilolli R, Huet AC, van Poucke C, Nitride C, De Loose M, Tranquet O, Larré C, Adel-Patient K, Bernard H, Mills EC, Gillard N, Monaci L. Optimization of a sample preparation workflow based on UHPLC-MS/MS method for multi-allergen detection in chocolate: An outcome of the ThRAll project. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
21
|
Simultaneous Mass Spectrometric Detection of Proteins of Ten Oilseed Species in Meat Products. Foods 2022; 11:foods11142155. [PMID: 35885397 PMCID: PMC9323756 DOI: 10.3390/foods11142155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/06/2023] Open
Abstract
Food fraud is a common issue in the modern food industry. The undeclared use of foreign proteins in meat products is a major concern in this context. Oilseeds are ideal for this purpose due to their high protein content and since huge amounts of oil meal are obtained as a by-product of oil production. Therefore, a UHPLC-MS/MS method was developed for the simultaneous detection of chia, coconut, flaxseed, hemp, peanut, pumpkin, rapeseed, sesame, soy, and sunflower proteins in meat products. Potential tryptic peptide markers were identified by high-resolution mass spectrometry. The final twenty peptide markers selected, which are specific for one of the ten species targeted, were each measured by multiple reaction monitoring. To the best of our knowledge, twelve new heat-stable marker peptides for chia, coconut, flaxseed, pumpkin, rapeseed, sesame and sunflower have not been reported previously. Emulsion-type sausages with 0.01, 0.25, 0.50, 0.75 and 1.00% protein addition by each oilseed species were produced for matrix calibration. No false-positive results were recorded. In the quantification of the ten oilseed species, 466 of 480 measuring data points of the recovery rate in unknown sausages (0.15 and 0.85% protein addition by each oilseed species) were in the accepted range of 80–120%.
Collapse
|
22
|
Xi J, Yao L, Fan Y, Wang Y, Fu Y, Duan Y. Establishment of DAS-ELISA for the detection of antigenic changes in glycinin after heat processing. Int J Biol Macromol 2022; 208:1090-1095. [PMID: 35381285 DOI: 10.1016/j.ijbiomac.2022.03.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
In this study, a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) method was established to detect the antigenic changes of thermally processed products containing glycinin. The proposed DAS-ELISA method used heat-treated antigen-absorbing antiserum as the coating antibody, and horseradish peroxidase (HRP)-labeled rabbit anti-glycinin polyclonal antibody as the detection antibody. The specificity test results which were obtained using the proposed method indicated that good specificity had been achieved. The cut-off value was 0.388, and the LOD was determined to be 19.53 ng/mL. The coefficient of variation was less than 5.25% (intra-day) and 9.50% (inter-day). In this study's milk powder addition test, the recovery rate of the glycinin ranged between 83.65% and 90.13%. The established DAS-ELISA method was also used to detect soybean thermal processing products, such as soy sauce, steamed fish and soy sauce, soybean paste, beef sauce, soy milk powder, and tofu. The results showed that the OD450 values of the aforementioned products were lower than the OD450 values of the glycinin in defatted soybean flour. Therefore, it was indicated that the above products has undergone different degrees of thermal processing. In other words, the majority of the epitopes of glycinin in the products had been destroyed by the thermal processing and could not be combined with heat-treated antigen-absorbing antiserum.
Collapse
Affiliation(s)
- Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Lili Yao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuhan Fan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yang Fu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
23
|
A spotlight on analytical prospects in food allergens: From emerging allergens and novel foods to bioplastics and plant-based sustainable food contact materials. Food Chem 2022; 388:132951. [PMID: 35447585 DOI: 10.1016/j.foodchem.2022.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
The present review throws a spotlight on new and emerging food safety concerns in view of a well-established food allergen risk arising from global socio-economic changes, international trade, circular economy, environmental sustainability, and upcycling. Food culture globalization needs harmonization of regulations, technical specifications, and reference materials towards mutually recognised results. In parallel, routine laboratories require high-throughput reliable analytical strategies, even in-situ testing devices, to test both food products and food contact surfaces for residual allergens. Finally, the currently neglected safety issues associated to possible allergen exposure due to the newly proposed bio- and plant-based sustainable food contact materials require an in-depth investigation.
Collapse
|
24
|
Bianco M, Ventura G, Calvano CD, Losito I, Cataldi TRI. A new paradigm to search for allergenic proteins in novel foods by integrating proteomics analysis and in silico sequence homology prediction: Focus on spirulina and chlorella microalgae. Talanta 2022; 240:123188. [PMID: 34990986 DOI: 10.1016/j.talanta.2021.123188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Since novel nutrient sources with high protein content, such as yeast, fungi, bacteria, algae, and insects, are increasingly introduced in the consumer market, safety evaluation studies on their potentially allergenic proteins are required. A pipeline for in silico establishing the sequence-based homology between proteins of spirulina (Arthrospira platensis) and chlorella (Chlorella vulgaris) micro-algae and those included in the AllergenOnline (AO) database (AllergenOnline.org) is described. The extracted proteins were first identified through tryptic peptides analysis by reversed-phase liquid chromatography and high resolution/accuracy Fourier-transform tandem mass spectrometry (RPLC-ESI-FTMS/MS), followed by a quest on the UniProt database. The AO database was subsequently interrogated to assess sequence similarity between identified microalgal proteins and known allergens, based on criteria established by the World Health Organization (WHO) and Food and Agriculture Organization (FAO). A direct search for microalgal proteins already included in allergen databases was also performed using the Allergome database. Six proteins exhibiting a significant homology with food allergens were identified in spirulina extracts. Five of them, i.e., two thioredoxins (D4ZSU6, K1VP15), a superoxide dismutase (C3V3P3), a glyceraldehyde-3-phosphate dehydrogenase (K1W168), and a triosephosphate isomerase (D5A635), resulted from the search on AO. The sixth protein, C-phycocyanin beta subunit (P72508), was directly obtained after examining the Allergome database. Two proteins exhibiting significant sequence homology with food allergens were retrieved in chlorella extracts, viz. calmodulin (A0A2P6TFR8), which is related to troponin c (D7F1Q2), and fructose-bisphosphate aldolase (A0A2P6TDD0). Specific serum screenings based on immunochemical tests should be undertaken to confirm or rule out the allergenicity of the identified proteins.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| | - Cosima Damiana Calvano
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy.
| |
Collapse
|
25
|
Abstract
This review provides a global overview on Rosaceae allergy and details the particularities of each fruit allergy induced by ten Rosaceae species: almond/peach/cherry/apricot/plum (Amygdaleae), apple/pear (Maleae), and raspberry/blackberry/strawberry (Rosoideae). Data on clinical symptoms, prevalence, diagnosis, and immunotherapies for the treatment of Rosaceae allergy are herein stated. Allergen molecular characterization, cross-reactivity/co-sensitization phenomena, the impact of food processing and digestibility, and the methods currently available for the Rosaceae detection/quantification in foods are also described. Rosaceae allergy has a major impact in context to pollen-food allergy syndrome (PFAS) and lipid transfer protein (LTP) allergies, being greatly influenced by geography, environment, and presence of cofactors. Peach, apple, and almond allergies are probably the ones most affecting the quality of life of the allergic-patients, although allergies to other Rosaceae fruits cannot be overlooked. From patients' perspective, self-allergy management and an efficient avoidance of multiple fruits are often difficult to achieve, which might raise the risk for cross-reactivity and co-sensitization phenomena and increase the severity of the induced allergic responses with time. At this point, the absence of effective allergy diagnosis (lack of specific molecular markers) and studies advancing potential immunotherapies are some gaps that certainly will prompt the progress on novel strategies to manage Rosaceae food allergies.
Collapse
Affiliation(s)
- Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
26
|
Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products. Foods 2022; 11:foods11050728. [PMID: 35267361 PMCID: PMC8909911 DOI: 10.3390/foods11050728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/15/2022] [Accepted: 02/25/2022] [Indexed: 12/18/2022] Open
Abstract
Consumption of tree nuts and peanuts has considerably increased over the last decades due to their nutritional composition and the content of beneficial compounds. On the other hand, such widespread consumption worldwide has also generated a growing incidence of allergy in the sensitive population. Allergy to nuts and peanuts represents a global relevant problem, especially due to the risk of the ingestion of hidden allergens as a result of cross-contamination between production lines at industrial level occurring during food manufacturing. The present review provides insights on peanuts, almonds, and four nut allergens—namely hazelnuts, walnuts, cashew, and pistachios—that are likely to cross-contaminate different food commodities. The paper aims at covering both the biochemical aspect linked to the identified allergenic proteins for each allergen category and the different methodological approaches developed for allergens detection and identification. Attention has been also paid to mass spectrometry methods and to current efforts of the scientific community to identify a harmonized approach for allergens quantification through the detection of allergen markers.
Collapse
|
27
|
Ahamad N, Gupta S, Parashar D. Using Omics to Study Leprosy, Tuberculosis, and Other Mycobacterial Diseases. Front Cell Infect Microbiol 2022; 12:792617. [PMID: 35281437 PMCID: PMC8908319 DOI: 10.3389/fcimb.2022.792617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Mycobacteria are members of the Actinomycetales order, and they are classified into one family, Mycobacteriaceae. More than 20 mycobacterial species cause disease in humans. The Mycobacterium group, called the Mycobacterium tuberculosis complex (MTBC), has nine closely related species that cause tuberculosis in animals and humans. TB can be detected worldwide and one-fourth of the world's population is contaminated with tuberculosis. According to the WHO, about two million dies from it, and more than nine million people are newly infected with TB each year. Mycobacterium tuberculosis (M. tuberculosis) is the most potential causative agent of tuberculosis and prompts enormous mortality and morbidity worldwide due to the incompletely understood pathogenesis of human tuberculosis. Moreover, modern diagnostic approaches for human tuberculosis are inefficient and have many lacks, while MTBC species can modulate host immune response and escape host immune attacks to sustain in the human body. "Multi-omics" strategies such as genomics, transcriptomics, proteomics, metabolomics, and deep sequencing technologies could be a comprehensive strategy to investigate the pathogenesis of mycobacterial species in humans and offer significant discovery to find out biomarkers at the early stage of disease in the host. Thus, in this review, we attempt to understand an overview of the mission of "omics" approaches in mycobacterial pathogenesis, including tuberculosis, leprosy, and other mycobacterial diseases.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Oral and Maxillofacial Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
28
|
Sheng K, Jiang H, Fang Y, Wang L, Jiang D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Bianco M, Calvano CD, Ventura G, Losito I, Cataldi TR. Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Tarhan Ö, Kaya A. Investigation of the compositional and structural changes in the proteins of cow milk when processed to cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
An Updated Overview of Almond Allergens. Nutrients 2021; 13:nu13082578. [PMID: 34444737 PMCID: PMC8399460 DOI: 10.3390/nu13082578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/19/2022] Open
Abstract
Tree nuts are considered an important food in healthy diets. However, for part of the world’s population, they are one of the most common sources of food allergens causing acute allergic reactions that can become life-threatening. They are part of the Big Eight food groups which are responsible for more than 90% of food allergy cases in the United States, and within this group, almond allergies are persistent and normally severe and life-threatening. Almond is generally consumed raw, toasted or as an integral part of other foods. Its dietary consumption is generally associated with a reduced risk of cardiovascular diseases. Several almond proteins have been recognized as allergens. Six of them, namely Pru du 3, Pru du 4, Pru du 5, Pru du 6, Pru du 8 and Pru du 10, have been included in the WHO-IUIS list of allergens. Nevertheless, further studies are needed in relation to the accurate characterization of the already known almond allergens or putative ones and in relation to the IgE-binding properties of these allergens to avoid misidentifications. In this context, this work aims to critically review the almond allergy problematic and, specifically, to perform an extensive overview regarding known and novel putative almond allergens.
Collapse
|
32
|
Yang Y, Yang Y, Zhang J, Yao K, Liu J, Shao B. Combination of polyvinylpolypyrrolidone extraction and standard addition strategy for the accurate determination of multiple allergen residues in red wine by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122849. [PMID: 34246171 DOI: 10.1016/j.jchromb.2021.122849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/28/2021] [Accepted: 06/26/2021] [Indexed: 01/17/2023]
Abstract
During the winemaking process, fining materials derived from milk and egg products are traditionally used to remove undesirable substances to reduce bitterness and astringency. The possible residues of allergens in treated wine may pose a potential risk for allergy patients. In this study, we developed a method for the simultaneous quantification of eight allergens (αS1-casein, αS2-casein, β-casein, κ-casein, β-lactoglobulin, lysozyme, ovalbumin and ovotransferrin) in red wine by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). The sample was extracted with polyvinylpolypyrrolidone (PVPP) solution, following trypsin digestion and peptide-level purification by solid-phase extraction (SPE). A strategy based on standard addition was used for the accurate quantification of the target allergens in wine products. The limits of detection (LODs) were shown to be 0.003-0.015 μg/mL for milk allergens and 0.1 μg/mL for egg allergens. This economical and reliable method would be appropriate for routine analysis and further allergen label management for red wine.
Collapse
Affiliation(s)
- Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Kai Yao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China
| | - Jinyuan Liu
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; Beijing Research Center for Preventive Medicine, Beijing 100013, China; School of Public Health, Capital Medical University, Beijing 100069, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Yang Y, Liu H, Zeng W, Yang Y, Zhang J, Yin J, Wu J, Lai K. Characterization and epitope prediction of phosphopyruvate hydratase from Penaeus monodon (black tiger shrimp). J Food Sci 2021; 86:3457-3466. [PMID: 34190352 DOI: 10.1111/1750-3841.15819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/12/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022]
Abstract
Shellfish allergies constitute an important cause of food-induced anaphylactic reactions, which pose challenges to food safety and human health worldwide. In the present study, the specific IgE (sIgE) binding characteristics of different shrimp proteins of black tiger shrimp (Penaeus monodon) to the sera of eight shrimp-allergic patients from China were studied by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and nanoliquid chromatography time-of-flight mass spectrometry. According to the PLGS scores (>2000) and the sequence coverage (>40%), eight proteins with sIgE binding activity were identified, including myosin heavy chain type 1 (K4Q4N8), hemocyanin (G1AP69 and Q95V28), phosphopyruvate hydratase (O96656), arginine kinase (C7E3T4), tropomyosin (A1KYZ2), sarcoplasmic calcium binding protein (H7CHW2) and glyceraldehyde-3-phosphate dehydrogenase (A0A097BQP2). Among these eight proteins, phosphopyruvate hydratase was a prevalent IgE-binding protein among these Chinese patients with binding observed in 100% of sera. Moreover, 13 peptides were predicted as epitopes of phosphopyruvate hydratase. These new details help us to understand the crustacean IgE-binding proteins especially Penaeus monodon IgE-binding proteins, that would cause allergic reaction to Chinese patients. And our findings may provide essential information to improve allergy prevention and clinical treatment to shrimp allergy in China. PRACTICAL APPLICATION: This research may have diagnostic and therapeutic value for shrimp allergies in China.
Collapse
Affiliation(s)
- Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China.,School of Public Health and Family Medicine, Capital Medical University, Beijing, China.,Beijing Research Center for Preventive Medicine, Beijing, China
| | - Huiying Liu
- Qingdao Integrated Traditional Chinese and Western Medicine Hospital, Qingdao, China
| | - Wen Zeng
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Yunjia Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jie Yin
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Control and Prevention, Beijing, China
| | - Jieling Wu
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Kefeng Lai
- Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
34
|
Agregán R, Echegaray N, López-Pedrouso M, Kharabsheh R, Franco D, Lorenzo JM. Proteomic Advances in Milk and Dairy Products. Molecules 2021; 26:3832. [PMID: 34201770 PMCID: PMC8270265 DOI: 10.3390/molecules26133832] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023] Open
Abstract
Proteomics is a new area of study that in recent decades has provided great advances in the field of medicine. However, its enormous potential for the study of proteomes makes it also applicable to other areas of science. Milk is a highly heterogeneous and complex fluid, where there are numerous genetic variants and isoforms with post-translational modifications (PTMs). Due to the vast number of proteins and peptides existing in its matrix, proteomics is presented as a powerful tool for the characterization of milk samples and their products. The technology developed to date for the separation and characterization of the milk proteome, such as two-dimensional gel electrophoresis (2DE) technology and especially mass spectrometry (MS) have allowed an exhaustive characterization of the proteins and peptides present in milk and dairy products with enormous applications in the industry for the control of fundamental parameters, such as microbiological safety, the guarantee of authenticity, or the control of the transformations carried out, aimed to increase the quality of the final product.
Collapse
Affiliation(s)
- Rubén Agregán
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (D.F.)
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (D.F.)
| | - María López-Pedrouso
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - Radwan Kharabsheh
- Business Administration, Faculty of Economics and Administrative Sciences, Applied Science University—Bahrain, Al Hidd 5055, Bahrain;
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (D.F.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.A.); (N.E.); (D.F.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
35
|
Balkir P, Kemahlioglu K, Yucel U. Foodomics: A new approach in food quality and safety. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Calvano CD, Bianco M, Losito I, Cataldi TRI. Proteomic Analysisof Food Allergens by MALDI TOF/TOF Mass Spectrometry. Methods Mol Biol 2021; 2178:357-376. [PMID: 33128761 DOI: 10.1007/978-1-0716-0775-6_24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is largely recognized as an important tool in the analysis of many biomolecules such as proteins and peptides. The MS analysis of digested peptides to identify a protein or some of its modifications is a key step in proteomics. MALDI-MS is well suited for the peptide mass fingerprinting (PMF) technique, as well as selected fragmentation of various precursors using collisional-induced dissociation (CID) or post-source decay (PSD).In the last few years, MALDI-MS has played a significant role in food chemistry, especially in the detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications induced by various industrial processes that could be an issue in terms of food quality and safety.Here, we present simple extraction protocols of allergenic proteins in food commodities such as milk, egg, hazelnut , and lupin seeds. Classic bottom-up approaches based on Sodium Dodecyl Sulphate (SDS) gel electrophoresis separation followed by in-gel digestion or direct in-solution digestion of whole samples are described. MALDI-MS and MS /MS analyses are discussed along with a comparison of data obtained by using the most widespread matrices for proteomic studies, namely, α-cyano-4-hydroxy-cinnamic acid (CHCA) and α-cyano-4-chloro-cinnamic acid (CClCA). The choice of the most suitable MALDI matrix is fundamental for high-throughput screening of putative food allergens.
Collapse
Affiliation(s)
- Cosima D Calvano
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy. .,Dipartimento di Farmacia- Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Ilario Losito
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Tommaso R I Cataldi
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari "Aldo Moro", Bari, Italy.,Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
37
|
Stachniuk A, Sumara A, Montowska M, Fornal E. LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY BOTTOM-UP PROTEOMIC METHODS IN ANIMAL SPECIES ANALYSIS OF PROCESSED MEAT FOR FOOD AUTHENTICATION AND THE DETECTION OF ADULTERATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:3-30. [PMID: 31498909 DOI: 10.1002/mas.21605] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review offers an overview of the current status and the most recent advances in liquid chromatography-mass spectrometry (LC-MS) techniques with both high-resolution and low-resolution tandem mass analyzers applied to the identification and detection of heat-stable species-specific peptide markers of meat in highly processed food products. We present sets of myofibrillar and sarcoplasmic proteins, which turned out to be the source of 105 heat-stable peptides, detectable in processed meat using LC-MS/MS. A list of heat-stable species-specific peptides was compiled for eleven types of white and red meat including chicken, duck, goose, turkey, pork, beef, lamb, rabbit, buffalo, deer, and horse meat, which can be used as markers for meat authentication. Among the 105 peptides, 57 were verified by multiple reaction monitoring, enabling identification of each species with high specificity and selectivity. The most described and monitored species by LC-MS/MS so far are chicken and pork with 26 confirmed heat-stable peptide markers for each meat. In thermally processed samples, myosin, myoglobin, hemoglobin, l-lactase dehydrogenase A and β-enolase are the main protein sources of heat-stable markers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Anna Stachniuk
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Agata Sumara
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, ul. Wojska Polskiego 31, 60-624, Poznan, Poland
| | - Emilia Fornal
- Department of Pathophysiology, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090, Lublin, Poland
| |
Collapse
|
38
|
Dal Bello F, Lamberti C, Giribaldi M, Garino C, Locatelli M, Gastaldi D, Medana C, Cavallarin L, Arlorio M, Giuffrida MG. Multi-target detection of egg-white and pig gelatin fining agents in Nebbiolo-based aged red wine by means of nanoHPLC-HRMS. Food Chem 2020; 345:128822. [PMID: 33352406 DOI: 10.1016/j.foodchem.2020.128822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
The presence of residues from fining agents in wines may represent a risk for allergic consumers and a source of discomfort for others, such as vegans. Even though ELISA is the official detection method for such residues, this technique may be hindered by cross-reactivity issues, or by matrix-molecule interference due to a high polyphenol content, especially in red wines. An HRMS-based method has been developed to detect pig gelatin and egg white in experimental five-year aged Nebbiolo-based red wine. Biomarker peptides were selected, after tryptic digestion, and quantified by multitarget nanoHPLC-HRMS analysis. The method resulted in an LLOQs of 5 µg/mL in the experimental wine, and between 1 and 2 µg/mL in the buffer. This method allowed both gelatin and egg white proteins to be detected and quantified in aged red wine, while whereas the commercial ELISA kit was instead unable to detect egg white in the same samples.
Collapse
Affiliation(s)
- Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125 Torino, Italy.
| | - Cristina Lamberti
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Marzia Giribaldi
- CREA Research Centre for Engineering and Agro-Food Processing, Strada delle Cacce 73, 10135 Torino, Italy.
| | - Cristiano Garino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Monica Locatelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125 Torino, Italy.
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125 Torino, Italy.
| | - Laura Cavallarin
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Marco Arlorio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Maria Gabriella Giuffrida
- Institute of Sciences of Food Production, National Research Council, Largo Braccini 2, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
39
|
Pilolli R, Van Poucke C, De Angelis E, Nitride C, de Loose M, Gillard N, Huet AC, Tranquet O, Larré C, Adel-Patient K, Bernard H, Mills ENC, Monaci L. Discovery based high resolution MS/MS analysis for selection of allergen markers in chocolate and broth powder matrices. Food Chem 2020; 343:128533. [PMID: 33183874 DOI: 10.1016/j.foodchem.2020.128533] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Peptide marker identification is an important step in development of a mass spectrometry method for multiple allergen detection, since specificity, robustness and sensitivity of the overall analytical method will depend on the reliability of the proteotypic peptides. As part of the development of a multi-analyte reference method, discovery analysis of two incurred food matrices has been undertaken to select the most reliable peptide markers. Six allergenic ingredients (milk, egg, peanut, soybean, hazelnut, and almond) were incurred into either chocolate or broth powder matrix. Different conditions of protein extraction and purification were tested and the tryptic peptide pools were analysed by untargeted high resolution tandem mass spectrometry and the resulting fragmentation spectra were processed via a commercial software for sequence identification. The analysis performed on incurred foods provides both a prototype effective and straightforward sample preparation protocol and delivers reliable peptides to be included in a standardized selected reaction monitoring method.
Collapse
Affiliation(s)
- Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | - Chiara Nitride
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Marc de Loose
- Flanders Research Institute for Agriculture, Fisheries and Food, Melle, Belgium
| | | | | | | | | | - Karine Adel-Patient
- INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - Hervé Bernard
- INRA-CEA, Service de Pharmacologie et d'Immunoanalyse, Laboratoire d'Immuno-Allergie Alimentaire, Gif-sur-Yvette, France
| | - E N Clare Mills
- School of Biological Sciences, Division of Infection, Immunity and Respiratory Medicine, Manchester Academic Health Science Centre, Manchester Institute of Biotechnology, The University of Manchester, UK
| | - Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy.
| |
Collapse
|
40
|
Sena-Torralba A, Pallás-Tamarit Y, Morais S, Maquieira Á. Recent advances and challenges in food-borne allergen detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116050] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Monaci L, De Angelis E, Guagnano R, Ganci AP, Garaguso I, Fiocchi A, Pilolli R. Validation of a MS Based Proteomics Method for Milk and Egg Quantification in Cookies at the Lowest VITAL Levels: An Alternative to the Use of Precautionary Labeling. Foods 2020; 9:foods9101489. [PMID: 33086516 PMCID: PMC7603226 DOI: 10.3390/foods9101489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 01/05/2023] Open
Abstract
The prevalence of food allergy has increased over the last decades and consequently the food labeling policies have improved over the time in different countries to regulate allergen presence in foods. In particular, Reg 1169 in EU mandates the labelling of 14 allergens whenever intentionally added to foods, but the inadvertent contamination by allergens still remains an uncovered topic. In order to warn consumers on the risk of cross-contamination occurring in certain categories of foods, a precautionary allergen labelling system has been put in place by food industries on a voluntary basis. In order to reduce the overuse of precautionary allergen labelling (PAL), reference doses and action limits have been proposed by the Voluntary Incidental Trace Allergen Labelling VITAL project representing a guide in this jeopardizing scenario. Development of sensitive and reliable mass spectrometry methods are therefore of paramount importance in this regard to check the contamination levels in foods. In this paper we describe the development of a time-managed multiple reaction monitoring (MRM) method based on a triple quadrupole platform for milk and egg quantification in processed food. The method was in house validated and allowed to achieve levels of proteins lower than 0.2 mg of total milk and egg proteins, respectively, in cookies, challenging the doses recommended by VITAL. The method was finally applied to cookies labeled as milk and egg-free. This method could represent, in perspective, a promising tool to be implemented along the food chain to detect even tiny amounts of allergens contaminating food commodities.
Collapse
Affiliation(s)
- Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (E.D.A.); (R.G.); (R.P.)
- Correspondence:
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (E.D.A.); (R.G.); (R.P.)
| | - Rocco Guagnano
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (E.D.A.); (R.G.); (R.P.)
| | - Aristide P. Ganci
- PerkinElmer Italia S.p.A., Viale dell’Innovazione 3, 20126 Milano, Italy;
| | - Ignazio Garaguso
- PerkinElmer LAS Germany GmbH, Ferdinand-Porsche-Ring 17, 63110 Rodgau, Germany;
| | - Alessandro Fiocchi
- Allergy Division, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico, 00165 Rome, Italy;
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, 70126 Bari, Italy; (E.D.A.); (R.G.); (R.P.)
| |
Collapse
|
42
|
Current Trends in Proteomic Advances for Food Allergen Analysis. BIOLOGY 2020; 9:biology9090247. [PMID: 32854310 PMCID: PMC7563520 DOI: 10.3390/biology9090247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Food allergies are a global food challenge. For correct food labelling, the detection and quantification of allergens are necessary. However, novel product formulations and industrial processes produce new scenarios, which require much more technological developments. For this purpose, OMICS technologies, especially proteomics, seemed to be relevant in this context. This review summarises the current knowledge and studies that used proteomics to study food allergens. In the case of the allergenic proteins, a wide variety of isoforms, post-translational modifications and other structural changes during food processing can increase or decrease the allergenicity. Most of the plant-based food allergens are proteins with biological functions involved in storage, structure, and plant defence. The allergenicity of these proteins could be increased by the presence of heavy metals, air pollution, and pesticides. Targeted proteomics like selected/multiple reaction monitoring (SRM/MRM) have been very useful, especially in the case of gluten from wheat, rye and barley, and allergens from lentil, soy, and fruit. Conventional 1D and 2-DE immunoblotting have been further widely used. For animal-based food allergens, the widely used technologies are 1D and 2-DE immunoblotting followed by MALDI-TOF/TOF, and more recently LC-MS/MS, which is becoming useful to assess egg, fish, or milk allergens. The detection and quantification of allergenic proteins using mass spectrometry-based proteomics are promising and would contribute to greater accuracy, therefore improving consumer information.
Collapse
|
43
|
Tuzimski T, Petruczynik A. Review of New Trends in the Analysis of Allergenic Residues in Foods and Cosmetic Products. J AOAC Int 2020; 103:997-1028. [PMID: 33241349 PMCID: PMC8370415 DOI: 10.1093/jaoacint/qsaa015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Allergies represent an important health problem in industrialized countries. Allergen sensitization is an important risk factor for the development of allergic diseases; thus, the identification of an individual's allergen sensitization is essential for the diagnosis and treatment of diseases. OBJECTIVE This review compares different modern methods applied for the analysis of allergens in various matrices (from 2015 to the end of September 2019). CONCLUSIONS Immunological methods are still most frequently used for detection of allergens. These methods are sensitive, but the lack of specificity and cross-reaction of some antibodies can still be a relevant source of errors. DNA-based methods are fast and reliable for determination of protein allergens, but the epitopes of protein allergens with posttranslational modifications and their changes, originated during various processing, cannot be identified through the use of this method. Methods based on application of biosensors are very rapid and easy to use, and can be readily implemented as screening methods to monitor allergens. Recent developments of new high-resolution MS instruments are encouraging and enable development in the analysis of allergens. Fast, very sensitive, reliable, and accurate detection and quantification of allergens in complex samples can be used in the near future. Mass spectrometry coupled with LC, GC, or electrophoretic methods bring additional advances in allergen analysis. The use of LC-MS or LC-MS/MS for the quantitative detection of allergens in various matrices is at present gaining acceptance as a protein-based confirmatory technique over the routinely performed enzyme-linked immunosorbent assays.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Medical University of Lublin, Department of Physical Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| | - Anna Petruczynik
- Medical University of Lublin, Department of Inorganic Chemistry, 4A Chodzki Street, Lublin, Poland, 20-093
| |
Collapse
|
44
|
Ramachandran B, Yang CT, Downs ML. Parallel Reaction Monitoring Mass Spectrometry Method for Detection of Both Casein and Whey Milk Allergens from a Baked Food Matrix. J Proteome Res 2020; 19:2964-2976. [PMID: 32483969 DOI: 10.1021/acs.jproteome.9b00844] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk allergy is among the most common food allergies present in early childhood, which in some cases may persist into adulthood as well. Proteins belonging to both casein and whey fractions of milk can trigger an allergic response in susceptible individuals. Milk is present as an ingredient in many foods, and it can also be present as casein- or whey-enriched milk-derived ingredients. As whey proteins are more susceptible to thermal processing than caseins, conventional methods often posed a challenge in accurate detection of whey allergens, particularly from a processed complex food matrix. In this study, a targeted mass spectrometry method has been developed to detect the presence of both casein and whey allergens from thermally processed foods. A pool of 19 candidate peptides representing four casein proteins and two whey proteins was identified using a discovery-driven target selection approach from various milk-derived ingredients. These target peptides were evaluated by parallel reaction monitoring of baked cookie samples containing known amounts of nonfat dry milk (NFDM). The presence of milk could be detected from baked cookies incurred with NFDM at levels as low as 1 ppm using seven peptides representing α-, β-, and κ-casein proteins and three peptides representing a whey protein, β-lactoglobulin, by this consensus PRM method.
Collapse
Affiliation(s)
- Bini Ramachandran
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Charles T Yang
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Melanie L Downs
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
45
|
DeCastelli L, Arioli F, Bianchi DM, Barbaro A, Nobile M, Panseri S, Chiesa LM. An Italian survey of undeclared allergens in food over the years 2014-2018. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2020; 13:115-120. [PMID: 32207375 DOI: 10.1080/19393210.2020.1738561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Large population studies estimated that the frequency of food allergies is increasing worldwide. In the last two decades, a 'second wave' of the allergy epidemic has emerged as a growing public health problem. EU regulation strengthened information to consumers about allergens in pre-packed food, since December 2014 it has been extended to non-prepacked foods by the Regulation (EU) No 1169/2011 of the European Commission. The present work aims to present a five-year survey on the presence of nine types of allergen in several foods, including food of animal origin and baby food. The concentration found for each irregular allergen is generally low, but some samples with no gluten indication contained a concentration above 10 mg kg-1 with the highest value of 138.5 mg kg-1 in a dietetic food, during the screening in 2017. These data underline the importance and the necessity of a complete food labelling to protect the majority of allergic individuals.
Collapse
Affiliation(s)
- Lucia DeCastelli
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d'Aosta, S. C. Controllo Alimenti e Igiene delle Produzioni, Centro di Referenza Nazionale per la rilevazione negli alimenti di sostanze e prodotti che provocano allergie o intolleranza , Turin, Italy
| | - Francesco Arioli
- Department of Health, Animal Science and Food Safety, University of Milan , Milan, Italy
| | - Daniela Manila Bianchi
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d'Aosta, S. C. Controllo Alimenti e Igiene delle Produzioni, Centro di Referenza Nazionale per la rilevazione negli alimenti di sostanze e prodotti che provocano allergie o intolleranza , Turin, Italy
| | - Antonio Barbaro
- Istituto Zooprofilattico Sperimentale Piemonte, Liguria e Valle d'Aosta, S.S. Osservatorio epidemiologico , Turin, Italy
| | - Maria Nobile
- Department of Health, Animal Science and Food Safety, University of Milan , Milan, Italy
| | - Sara Panseri
- Department of Health, Animal Science and Food Safety, University of Milan , Milan, Italy
| | - Luca Maria Chiesa
- Department of Health, Animal Science and Food Safety, University of Milan , Milan, Italy
| |
Collapse
|
46
|
Monaci L, Pilolli R, De Angelis E, Crespo JF, Novak N, Cabanillas B. Food allergens: Classification, molecular properties, characterization, and detection in food sources. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:113-146. [PMID: 32711861 DOI: 10.1016/bs.afnr.2020.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food allergy is a large and growing public health problem in many areas of the world. The prevalence of food allergy has increased in the last decades in a very significant way in many world regions, particularly in developed countries. In that respect, the research field of food allergy has experienced an extensive growth and very relevant progress has been made in recent years regarding the characterization of food allergens, the study of their immunological properties, and their detection in food sources. Furthermore, food labeling policies have also been improved decidedly in recent years. For that immense progress made, it is about time to review the latest progress in the field of food allergy. In this review, we intend to carry out an extensive and profound overview regarding the latest scientific advances and knowledge in the field of food allergen detection, characterization, and in the study of the effects of food processing on the physico-chemical properties of food allergens. The advances in food labeling policies, and methodologies for the characterization of food allergens are also thoroughly reviewed in the present overview.
Collapse
Affiliation(s)
- Linda Monaci
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | - Rosa Pilolli
- Institute of Sciences of Food Production, CNR-ISPA, Bari, Italy
| | | | - Jesus F Crespo
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain
| | - Natalija Novak
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Beatriz Cabanillas
- Department of Allergy, Research Institute Hospital 12 de Octubre de Madrid, Madrid, Spain.
| |
Collapse
|
47
|
Borgmann-Winter KE, Wang K, Bandyopadhyay S, Torshizi AD, Blair IA, Hahn CG. The proteome and its dynamics: A missing piece for integrative multi-omics in schizophrenia. Schizophr Res 2020; 217:148-161. [PMID: 31416743 PMCID: PMC7500806 DOI: 10.1016/j.schres.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023]
Abstract
The complex and heterogeneous pathophysiology of schizophrenia can be deconstructed by integration of large-scale datasets encompassing genes through behavioral phenotypes. Genome-wide datasets are now available for genetic, epigenetic and transcriptomic variations in schizophrenia, which are then analyzed by newly devised systems biology algorithms. A missing piece, however, is the inclusion of information on the proteome and its dynamics in schizophrenia. Proteomics has lagged behind omics of the genome, transcriptome and epigenome since analytic platforms were relatively less robust for proteins. There has been remarkable progress, however, in the instrumentation of liquid chromatography (LC) and mass spectrometry (MS) (LCMS), experimental paradigms and bioinformatics of the proteome. Here, we present a summary of methodological innovations of recent years in MS based proteomics and the power of new generation proteomics, review proteomics studies that have been conducted in schizophrenia to date, and propose how such data can be analyzed and integrated with other omics results. The function of a protein is determined by multiple molecular properties, i.e., subcellular localization, posttranslational modification (PTMs) and protein-protein interactions (PPIs). Incorporation of these properties poses additional challenges in proteomics and their integration with other omics; yet is a critical next step to close the loop of multi-omics integration. In sum, the recent advent of high-throughput proteome characterization technologies and novel mathematical approaches enable us to incorporate functional properties of the proteome to offer a comprehensive multi-omics based understanding of schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Karin E Borgmann-Winter
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America; Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Kai Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America; Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Sabyasachi Bandyopadhyay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America
| | - Abolfazl Doostparast Torshizi
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States of America
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | - Chang-Gyu Hahn
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, United States of America.
| |
Collapse
|
48
|
Kalčáková L, Tremlová B, Pospiech M, Hostovský M, Dordević D, Javůrková Z, Běhalová H, Bartlová M. Use of IHF-QD Microscopic Analysis for the Detection of Food Allergenic Components: Peanuts and Wheat Protein. Foods 2020; 9:foods9020239. [PMID: 32102221 PMCID: PMC7074483 DOI: 10.3390/foods9020239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of the study was to analytically evaluate quantum dots in immunohistofluorescence (IHF-QD) microscopic imaging as detectors of food allergens—peanut and wheat. The experiment was designed as two in silico experiments or simulations: (a) models of pastry samples were prepared with the addition of allergenic components (peanut and wheat protein components) and without the addition of allergenic components, and (b) positive and negative commercial samples underwent food allergen detection. The samples from both simulations were tested by the ELISA and IHF-QD microscopic methods. The primary antibodies (secondary antibodies to a rabbit Fc fragment with labeled CdSe/ZnS QD) were labelled at 525, 585, and 655 nm emissions. The use of quantum dots (QDs) has expanded to many science areas and they are also finding use in food allergen detection, as shown in the study. The study indicated that differences between the ELISA and IHF-QD microscopic methods were not observable among experimentally produced pastry samples with and without allergenic components, although differences were observed among commercial samples. The important value of the study is certainly the differences found in the application of different QD conjugates (525, 585, and 655). The highest contrast was found in the application of 585 QD conjugates that can serve for the possible quantification of present food allergens—peanuts and wheat. The study clearly emphasized that QD can be used for the qualitative detection of food allergens and can represent a reliable analytical method for food allergen detection in different food matrixes.
Collapse
Affiliation(s)
- Ludmila Kalčáková
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
| | - Bohuslava Tremlová
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
- Correspondence:
| | - Matej Pospiech
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
| | - Martin Hostovský
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic;
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
- Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, 454080 Chelyabinsk, Russia
| | - Zdeňka Javůrková
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
| | - Hana Běhalová
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
| | - Marie Bartlová
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; (L.K.); (M.P.); (D.D.); (Z.J.); (H.B.); (M.B.)
| |
Collapse
|
49
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
50
|
Ma X, Li H, Zhang J, Huang W, Han J, Ge Y, Sun J, Chen Y. Comprehensive quantification of sesame allergens in processed food using liquid chromatography-tandem mass spectrometry. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106744] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|