1
|
Sun W, Zhao X, Zhao X, Meng L, Tang M, Li J, Chang Y, Xiong Y, Wang H, Chen J, Qing G. Significantly enhanced capture efficiency of cell-imprinted material for circulating tumor cells via a flexible and ultra-strong double-armed phenylboronic acid design. Biomaterials 2025; 322:123397. [PMID: 40373516 DOI: 10.1016/j.biomaterials.2025.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Circulating tumor cells (CTC) have been incontrovertibly regarded as a critically essential detection tool within the realm of cancer combat, being decidedly preferred by oncology clinicians and serving as the preponderant primary targets for single-cell analysis. However, several challenges hinder the effective capture of CTC from blood, including their rarity, heterogeneity across cancer types, the complexity of the blood environment, and potential damage to cell viability. Here we design a flexible double-armed phenylboric acid (DPBA) that targets double-branched sialylated glycans (SGs) on the surface of liver CTC. The binding affinity of DPBA (200 nM) is 33 times greater than that of typical phenylboric acid, as confirmed by glycoproteomics analysis demonstrating a strong prevalence for SGs. By copolymerization of DPBA with polyethylene glycol dimethacrylate (PEGDMA), using SMMC-7721 cells as templates, we developed a cell-imprinted hydrogel featuring compact polymeric networks interconnected by both chemical crosslinking and hydrogen bonding. This hydrogel exhibits an ultra-low swelling capacity of 5 %, effectively preserving the nano- and micro-morphologies of cell imprinting. It also demonstrates low protein adhesion, appropriate elasticity and reversibility, as well as satisfactory blood and cell compatibility. The high affinity for double-branched SGs and clear cell imprinting endow the material with precise capture efficiency for CTC, enabling accurate discrimination between liver cancer patients and healthy individuals, with an excellent area under the curve (AUC) of 0.99 and a high classification accuracy of 96 %. Importantly, the captured CTC could be released alive for genomics analysis. The material costs just 1.98 dollars per sample, which is only 1/200th of the typical medical price. This study highlights the significant potential of flexible double-armed molecular design in the development of CTC capture materials, which will promote downstream single-cell multi-proteomics analysis and facilitate early cancer diagnostics.
Collapse
Affiliation(s)
- Wenjing Sun
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xinmiao Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, PR China
| | - Xinjia Zhao
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, Shanghai Tech University, Shanghai, 201210, PR China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430000, PR China
| | - Jiaqi Li
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yuting Xiong
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hao Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Wang J, Xu J, Liu X, Li X, Xu Z. A microfluidic chip incorporating magnetic sorting and invasive separation for isolation, culture and telomerase analysis of circulating tumor cells. Talanta 2025; 285:127316. [PMID: 39644673 DOI: 10.1016/j.talanta.2024.127316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Circulating tumor cells (CTCs) are a crucial indicator of cancer metastasis, and are vital for early diagnosis, disease monitoring, and treatment response evaluation. However, their extremely low concentration and the complexities of isolation techniques pose a significant challenge in capturing and analyzing CTCs. In this study, we developed a novel microfluidic system that integrates magnetic capture and invasive screening onto a single microfluidic chip. By attaching positively charged magnetic nanoparticles to negatively charged CTCs, the magnetic separation of CTCs within the chip effectively eliminates interference from blood cells. A total of 2 mL blood sample can be processed within 3 min, achieving an impressive tumor capture efficiency of 84 %. Using the chip, we also successfully achieved long-term culture of CTCs, and identified CTCs with high activity and invasive potential in blood samples from 11 patients with colorectal cancer. Finally, we analyzed telomerase activity in cultured CTCs on the microfluidic chip. Significantly higher invasive potential and telomerase activity were observed in CTCs from the malignant tumor group compared to the benign group (P < 0.01), highlighting their increased aggressiveness. This study offers a novel approach for efficient CTCs isolation, culture, and telomerase analysis, clarifying the crucial role of telomerase in tumor metastasis and providing profound insights for future research on telomerase-targeted tumor metastasis.
Collapse
Affiliation(s)
- Jie Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Jiali Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiaopeng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xin Li
- Department of Anesthesiology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, PR China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
3
|
Torky Harchegani P, Mashhadi Keshtiban M, Moghimi Zand M, Azizi Z. Enhanced Particle Trap: Design and Simulation of Pillar-Based Contactless Dielectrophoresis Microfluidic Devices. Electrophoresis 2025; 46:232-239. [PMID: 39965079 DOI: 10.1002/elps.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
Contactless and conventional dielectrophoresis (DEP) microfluidic devices are extensively utilized in lab-on-a-chip applications, particularly for cell isolation and analysis. Nonetheless, these devices typically operate at low throughput and require high applied voltages, posing limitations for microfluidic cell isolation and separation. Addressing these challenges, this study explores the utilization of diverse micro-pillar geometries within the microfluidic device to augment THP-1 cell trapping efficiency numerically using FEM modeling. Furthermore, the simulations examine the influence of pillar gap and quantity on cell trapping efficiency in a contactless DEP device. Notably, elliptical pillars demonstrate superior cell trapping efficiency at elevated flow rates compared to alternative configurations, making the microchip more amenable for high-throughput cell separation, trapping, and isolation applications. Remarkably, employing elliptical pillars in a contactless DEP microfluidic chip yields nearly 100% cell trapping efficiency at higher flow rates. Ellipse configuration showed 122% higher cell trap efficiency at the maximum flowrate compare to the previous study with circular configuration. Additionally, it is observed that reducing the gap between pillars correlates with enhanced cell trapping efficiency. Simulation outcomes indicate that employing two rows of elliptical pillars with a 40-µm gap achieves optimal performance. The findings of this investigation underscore the importance of pillars in contactless DEP devices and provide valuable insights for future designs of such microfluidic devices.
Collapse
Affiliation(s)
- Peyman Torky Harchegani
- Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohsen Mashhadi Keshtiban
- Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Moghimi Zand
- Small Medical Devices, Bio-MEMS & LoC Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wei YJ, Wei X, Zhang X, Wu CX, Cai JY, Chen ML, Wang JH. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells. Talanta 2024; 273:125884. [PMID: 38508128 DOI: 10.1016/j.talanta.2024.125884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
A hydrodynamic-based microfluidic chip consisted of two function units that could not only separate tumor cells (TCs) from whole blood but also remove residual blood cells was designed. The separation of TCs was achieved by a straight contraction-expansion array (CEA) microchannel on the front end of the chip. The addition of contractive structure brought a micro-vortex like Dean vortex that promoted cell focusing in the channel, while when cells entered the dilated region, the wall-induced lift force generated by the channel wall gave cells a push away from the wall. As the wall-induced lift force is proportional to the third power of the cell diameter, TCs with larger diameter will have a larger lateral migration under the wall-induced lift force, realizing the separation of TCs from blood sample. Fluorescent particles with diameters of 19.3 μm and 4.5 μm were used to simulate TCs and red blood cells, respectively, to verify the separation capacity of the proposed CEA microchannel for particles with different diameter. And a separation efficiency 98.7% for 19.3 μm particles and a removal rate 96.2% for 4.5 μm particles was observed at sample flow rate of 10 μL min-1 and sheath flow rate of 190 μL min-1. In addition, a separation efficiency about 96.1% for MCF-7 cells (stained with DiI) and removal rates of 96.2% for red blood cells (RBCs) and 98.7% for white blood cells (WBCs) were also obtained under the same condition. However, on account of the large number of blood cells in the blood, there will be a large number of blood cells remained in the isolated TCs, so a purification unit based on hydrodynamic filtration (HDF) was added after the separation microchannel. The purification channel is a size-dictated cell filter that can remove residual blood cells but retain TCs, thus achieving the purification of TCs. Combined the CEA microchannel and the purifier, the microchip facilitates sorting of MCF-7 cells from whole blood with a separation rate about 95.3% and a removal rate over 99.99% for blood cells at a sample flow rate of 10 μL min-1, sheath flow rate of 190 μL min-1 and washing flow rate of 63 μL min-1.
Collapse
Affiliation(s)
- Yu-Jia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Cheng-Xing Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ji-Ying Cai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang, 110819, China.
| |
Collapse
|
5
|
Shanehband N, Naghib SM. Recent advances in nano/microfluidics-based cell isolation techniques for cancer diagnosis and treatments. Biochimie 2024; 220:122-143. [PMID: 38176605 DOI: 10.1016/j.biochi.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/26/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024]
Abstract
Miniaturization has improved significantly in the recent decade, which has enabled the development of numerous microfluidic systems. Microfluidic technologies have shown great potential for separating desired cells from heterogeneous samples, as they offer benefits such as low sample consumption, easy operation, and high separation accuracy. Microfluidic cell separation approaches can be classified into physical (label-free) and biological (labeled) methods based on their working principles. Each method has remarkable and feasible benefits for the purposes of cancer detection and therapy, as well as the challenges that we have discussed in this article. In this review, we present the recent advances in microfluidic cell sorting techniques that incorporate both physical and biological aspects, with an emphasis on the methods by which the cells are separated. We first introduce and discuss the biological cell sorting techniques, followed by the physical cell sorting techniques. Additionally, we explore the role of microfluidics in drug screening, drug delivery, and lab-on-chip (LOC) therapy. In addition, we discuss the challenges and future prospects of integrated microfluidics for cell sorting.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| |
Collapse
|
6
|
Tivig I, Vallet L, Moisescu MG, Fernandes R, Andre FM, Mir LM, Savopol T. Early differentiation of mesenchymal stem cells is reflected in their dielectrophoretic behavior. Sci Rep 2024; 14:4330. [PMID: 38383752 PMCID: PMC10881469 DOI: 10.1038/s41598-024-54350-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
The therapeutic use of mesenchymal stem cells (MSCs) becomes more and more important due to their potential for cell replacement procedures as well as due to their immunomodulatory properties. However, protocols for MSCs differentiation can be lengthy and may result in incomplete or asynchronous differentiation. To ensure homogeneous populations for therapeutic purposes, it is crucial to develop protocols for separation of the different cell types after differentiation. In this article we show that, when MSCs start to differentiate towards adipogenic or osteogenic progenies, their dielectrophoretic behavior changes. The values of cell electric parameters which can be obtained by dielectrophoretic measurements (membrane permittivity, conductivity, and cytoplasm conductivity) change before the morphological features of differentiation become microscopically visible. We further demonstrate, by simulation, that these electric modifications make possible to separate cells in their early stages of differentiation by using the dielectrophoretic separation technique. A label free method which allows obtaining cultures of homogenously differentiated cells is thus offered.
Collapse
Grants
- PN-III-P2-2.1-PED-2021, grant no. 596PED/2022 Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding
- PN-III-P2-2.1-PED-2021, grant no. 596PED/2022 Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding
- PN-III-P2-2.1-PED-2021, grant no. 596PED/2022 Romanian Executive Agency for Higher Education, Research, Development, and Innovation Funding
- PN-III-P3-3.1-PM-RO-FR-2019, grant no. 11BM/2019 Romania-France cooperation program Hubert Curien-Brancusi
- PN-III-P3-3.1-PM-RO-FR-2019, grant no. 11BM/2019 Romania-France cooperation program Hubert Curien-Brancusi
- PN-III-P3-3.1-PM-RO-FR-2019, grant no. 11BM/2019 Romania-France cooperation program Hubert Curien-Brancusi
- PN-III-P3-3.1-PM-RO-FR-2019, grant no. 11BM/2019 Romania-France cooperation program Hubert Curien-Brancusi
- FET-OPEN H2020, grant no. 964562 Horizon 2020
- FET-OPEN H2020, grant no. 964562 Horizon 2020
- FET-OPEN H2020, grant no. 964562 Horizon 2020
Collapse
Affiliation(s)
- Ioan Tivig
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania
| | - Leslie Vallet
- METSY UMR 9018, Université Paris-Saclay, CNRS and Gustave Roussy, 94805, Villejuif, France
| | - Mihaela G Moisescu
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania.
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania.
| | - Romain Fernandes
- METSY UMR 9018, Université Paris-Saclay, CNRS and Gustave Roussy, 94805, Villejuif, France
| | - Franck M Andre
- METSY UMR 9018, Université Paris-Saclay, CNRS and Gustave Roussy, 94805, Villejuif, France
| | - Lluis M Mir
- METSY UMR 9018, Université Paris-Saclay, CNRS and Gustave Roussy, 94805, Villejuif, France
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474, Bucharest, Romania
- Excellence Center for Research in Biophysics and Cellular Biotechnology, Carol Davila University of Medicine and Pharmacy, 050474, Bucharest, Romania
| |
Collapse
|
7
|
Wang S, Xu Q, Zhang Z, Chen S, Jiang Y, Feng Z, Wang D, Jiang X. Reverse flow enhanced inertia pinched flow fractionation. LAB ON A CHIP 2023; 23:4324-4333. [PMID: 37702391 DOI: 10.1039/d3lc00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Particle separation plays a critical role in many biochemical analyses. In this article, we report a method of reverse flow enhanced inertia pinched flow fractionation (RF-iPFF) for particle separation. RF-iPFF separates particles by size based on the flow-induced inertial lift, and in the abruptly broadened segment, reverse flow is utilized to further enhance the separation distance between particles of different sizes. The separation performance can be significantly improved by reverse flow. Generally, compared with the case without reverse flow, this RF-iPFF technique can increase the particle throughput by about 10 times. To demonstrate the advantages of RF-iPFF, RF-iPFF was compared with traditional iPFF through a control experiment. RF-iPFF consistently outperformed iPFF across various conditions we studied. In addition, we use tumor cells spiked into the human whole blood to evaluate the separation performance of RF-iPFF.
Collapse
Affiliation(s)
- Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Quanchen Xu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Zhihan Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Shengbo Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhuowei Feng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
8
|
Sha L, Wang W, Liu Q, Dong L, Zhao J, Tu M. An integrated and renewable interface for capture, release and analysis of circulating tumor cells. Anal Chim Acta 2023; 1274:341556. [PMID: 37455076 DOI: 10.1016/j.aca.2023.341556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Circulating tumor cells (CTCs) have now emerged as a type of promising circulating biomarkers in liquid biopsy and can predict the occurrence and development of cancers. In this work, an integrated and renewable interface is fabricated for the capture, release and quantitative analysis of CTCs. As designed, folate receptor-positive CTCs are captured by folic acid-modified DNA probes at the interface through the receptor-ligand interaction, and are efficiently released from the interface with the aid of bleomycin-ferrous complex-regulated cleavage. Taking MCF-7 cells as the model, the functional interface demonstrates high efficiency to selectively capture the folate receptor-positive tumor cells, and the bleomycin-ferrous complex-regulated cleavage not only easily releases the captured cells with well-maintained viability and proliferation ability, but also releases silver nanoparticles that are labeled at the cell surface for highly sensitive quantification by adopting electrochemical techniques with a detection limit of 6 cells/mL. At the meanwhile, the interface is proved to be regenerated through a simple cleavage-hybridization event and reused with high stability. Therefore, our work may provide a new idea for the collection and downstream researches of circulating tumor cells in the future.
Collapse
Affiliation(s)
- Lingjun Sha
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Qi Liu
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Langjian Dong
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
9
|
Farahinia A, Zhang W, Badea I. Recent Developments in Inertial and Centrifugal Microfluidic Systems along with the Involved Forces for Cancer Cell Separation: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115300. [PMID: 37300027 DOI: 10.3390/s23115300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The treatment of cancers is a significant challenge in the healthcare context today. Spreading circulating tumor cells (CTCs) throughout the body will eventually lead to cancer metastasis and produce new tumors near the healthy tissues. Therefore, separating these invading cells and extracting cues from them is extremely important for determining the rate of cancer progression inside the body and for the development of individualized treatments, especially at the beginning of the metastasis process. The continuous and fast separation of CTCs has recently been achieved using numerous separation techniques, some of which involve multiple high-level operational protocols. Although a simple blood test can detect the presence of CTCs in the blood circulation system, the detection is still restricted due to the scarcity and heterogeneity of CTCs. The development of more reliable and effective techniques is thus highly desired. The technology of microfluidic devices is promising among many other bio-chemical and bio-physical technologies. This paper reviews recent developments in the two types of microfluidic devices, which are based on the size and/or density of cells, for separating cancer cells. The goal of this review is to identify knowledge or technology gaps and to suggest future works.
Collapse
Affiliation(s)
- Alireza Farahinia
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
10
|
Xiang Y, Zhang H, Lu H, Wei B, Su C, Qin X, Fang M, Li X, Yang F. Bioorthogonal Microbubbles with Antifouling Nanofilm for Instant and Suspended Enrichment of Circulating Tumor Cells. ACS NANO 2023; 17:9633-9646. [PMID: 37144647 DOI: 10.1021/acsnano.3c03194] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Integrating clinical rare cell enrichment, culture, and single-cell phenotypic profiling is currently hampered by the lack of competent technologies, which typically suffer from weak cell-interface collision affinity, strong nonspecific adsorption, and the potential uptake. Here, we report cells-on-a-bubble, a bioinspired, self-powered bioorthogonal microbubble (click bubble) that leverages a clickable antifouling nanointerface and a DNA-assembled sucker-like polyvalent cell surface, to enable instant and suspended isolation of circulating tumor cells (CTCs) within minutes. Using this biomimetic engineering strategy, click bubbles achieve a capture efficiency of up to 98%, improved by 20% at 15 times faster over their monovalent counterparts. Further, the buoyancy-activated bubble facilitates self-separation, 3D suspension culture, and in situ phenotyping of the captured single cancer cells. By using a multiantibody design, this fast, affordable micromotor-like click bubble enables suspended enrichment of CTCs in a cohort (n = 42) across three cancer types and treatment response evaluation, signifying its great potential to enable single-cell analysis and 3D organoid culture.
Collapse
Affiliation(s)
- Yuanhang Xiang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hui Zhang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Hao Lu
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Binqi Wei
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Cuiyun Su
- Department of Respiratory Oncology, Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaojie Qin
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Min Fang
- Department of Respiratory Oncology, Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xinchun Li
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| | - Fan Yang
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, State Key Laboratory of Targeting Oncology, Pharmaceutical College, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
11
|
Bai M, Tian X, Wang Z, Zhang L, Zhang F, Yang Y, Liu L. Versatile Dynamic Bioactive Lubricant-Infused Surface for Effective Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:5307-5315. [PMID: 36930830 DOI: 10.1021/acs.analchem.2c05357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The rarity of circulating tumor cells (CTCs) and the complexity of blood components present major challenges for the efficient isolation of CTCs in blood. The coexisting matters could interfere with the detection of CTCs by adhering to the binding sites on the material surface, leading to the reduced accuracy of biomarker capture in blood. Herein, we developed dynamic bioactive lubricant-infused slippery surfaces by grafting the 1H,1H,2H,2H-heptadecafluorodecyl acrylate polymer and 3-acrylamidophenylboronic acid polymer brushes on quartz plates by UV light-initiated and then grafted cancer cell-binding peptides via reversible catechol-boronate chemistry between phenylboronic acid groups and 3,4-dihydroxy-l-phenylalanine groups of peptides for high-efficient capture of CTCs and nondestructive release of the desired cells in sugar response. Patterned dynamic bioactive lubricant-infused surfaces (PDBLISs) further exhibited the improved capture efficiency of CTCs and more effective antifouling properties for nonspecific cells and blood components. Moreover, the PDBLIS can efficiently capture rare cancer cells from the mimic of cancer patient's blood samples. We anticipate that the strategy we proposed would be used in further clinical diagnosis of complicated biofluids related to a variety of tumors and exhibit good prospects and potential in future liquid biopsies.
Collapse
Affiliation(s)
- Mengqi Bai
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feiyi Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhe Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
12
|
Lv S, Zheng D, Chen Z, Jia B, Zhang P, Yan J, Jiang W, Zhao X, Xu JJ. Near-Infrared Light-Responsive Size-Selective Lateral Flow Chip for Single-Cell Manipulation of Circulating Tumor Cells. Anal Chem 2023; 95:1201-1209. [PMID: 36541430 DOI: 10.1021/acs.analchem.2c03947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately obtaining information on the heterogeneity of CTCs at the single-cell level is a very challenging task that may facilitate cancer pathogenesis research and personalized therapy. However, commonly used multicellular population capture and release assays tend to lose effective information on heterogeneity and cannot accurately assess molecular-level studies and drug resistance assessment of CTCs in different stages of tumor metastasis. Herein, we designed a near-infrared (NIR) light-responsive microfluidic chip for biocompatible single-cell manipulation and study the heterogeneity of CTCs by a combination of the lateral flow microarray (LFM) chip and photothermal response system. First, immunomagnetic labeling and a gradient magnetic field were combined to distribute CTCs in different regions of the chip according to the content of surface markers. Subsequently, the LFM chip achieves high single-cell capture efficiency and purity (even as low as 5 CTCs per milliliter of blood) under the influence of lateral fluid and magnetic fields. Due to the rapid dissolution of the gelatin capture structure at 37 °C and the photothermal properties of gold nanorods, the captured single CTC cell can be recovered in large quantities at physiological temperature or released individually at a specific point by NIR. The multifunctional NIR-responsive LFM chip demonstrates excellent performance in capture and site release of CTCs with high viability, which provides a robust and versatile means for CTCs heterogeneity study at the single-cell level.
Collapse
Affiliation(s)
- Songwei Lv
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Zhaoxian Chen
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Bin Jia
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jiaxuan Yan
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The First People's Hospital of Changzhou (The Third Affiliated Hospital of Soochow University), Changzhou 213003, China
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Dahlan NA, Thiha A, Ibrahim F, Milić L, Muniandy S, Jamaluddin NF, Petrović B, Kojić S, Stojanović GM. Role of Nanomaterials in the Fabrication of bioNEMS/MEMS for Biomedical Applications and towards Pioneering Food Waste Utilisation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224025. [PMID: 36432311 PMCID: PMC9692896 DOI: 10.3390/nano12224025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2023]
Abstract
bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.
Collapse
Affiliation(s)
- Nuraina Anisa Dahlan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Aung Thiha
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fatimah Ibrahim
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Printable Electronics, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lazar Milić
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Shalini Muniandy
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nurul Fauzani Jamaluddin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Bojan Petrović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Sanja Kojić
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Goran M. Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| |
Collapse
|
15
|
Tang H, Niu J, Pan X, Jin H, Lin S, Cui D. Topology Optimization Based Deterministic Lateral Displacement Array Design for Cell Separation. J Chromatogr A 2022; 1679:463384. [DOI: 10.1016/j.chroma.2022.463384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
16
|
Peng J, Liu Y, Su R, Zeng L, Huo Z, Peng R, Yu X, Zhang H, Yang C, Yang L, Zhu Z. DNA-Programmed Orientation-Ordered Multivalent Microfluidic Interface for Liquid Biopsy. Anal Chem 2022; 94:8766-8773. [PMID: 35670775 DOI: 10.1021/acs.analchem.2c01359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aptamer-functionalized microfluidic interfaces hold great potential for liquid biopsies owing to their programmable nature. However, most previous studies have focused on development of multivalent aptamers to improve binding affinity, while ignoring aptamer orientation on microfluidic interfaces, resulting in suboptimal accessibility and affinity. Herein, we report a Cubic DNA Nanostructure (CDN)-programmed strategy to precisely control the orientation and valency of the Aptamer on a microfluidic interface (CDN-Apt-Chip) for enhancing the capture and release of circulating tumor cells (CTCs). We demonstrate that the ordered orientation and multivalent configuration can synergistically increase the binding affinity of aptamers toward CTCs. By using CDN-Apt-Chip, we successfully isolated CTCs from the peripheral blood of T-cell leukemia patients and discriminated T-cell leukemia patients from healthy volunteers. Furthermore, the captured CTCs were nondestructively released via nuclease treatment. We then performed T-cell receptor sequencing on the released cells to demonstrate the compatibility with downstream analysis. Overall, this study provides a new paradigm for interface regulation of functional microfluidic chips and advances the clinical translation of aptamer-based liquid biopsy.
Collapse
Affiliation(s)
- Jiao Peng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361005, China
| | - Liuqing Zeng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zixuan Huo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ruixiao Peng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiyuan Yu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
| | - Liu Yang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, State Key Laboratory of Physical Chemical of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
17
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
18
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
19
|
Zhao K, Liu Y, Wang H, Song Y, Chen X, Huang C, Niu Q, Cao J, Chen X, Wang W, Wu L, Yang C. Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. LAB ON A CHIP 2022; 22:367-376. [PMID: 34918732 DOI: 10.1039/d1lc00886b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rapid, efficient, and selective separation of tumor cells from complex body fluids is urgently needed for clinical application of tumor-cell-based liquid biopsy. Herein, a size-selective affinity filtration system, named selective, user-friendly, highly porous, efficient, and rapid filter (SUPER Filter), was developed for high-performance tumor cell isolation and analysis. SUPER Filter enabled selective interaction of tumor cells with size-optimized and antibody-coated micropore walls during filtration, achieving a high efficiency of 91.0 ± 6.1% in buffer and 83.7 ± 6.4% in whole blood. Meanwhile, its larger micropore size than those of traditional filtration devices greatly reduced the nonspecific capture of background cells (55-126 cells per mL blood) with enrichment factors of 1.1 × 104-1.0 × 105 and a purity of 52.7 ± 4.2%. Moreover, its high porosity enabled ultra-fast (<5 s for 1 mL of blood or 10 mL of buffer samples) and user-friendly gravity-driven filtration. Finally, SUPER Filter demonstrated rapid, efficient, and selective separation of tumor cells from blood and large-volume pleural and ascetic fluid samples from cancer patients for morphological and molecular analysis. We expect that this size-selective affinity filtration strategy facilitates the clinical application of tumor-cell-based liquid biopsy.
Collapse
Affiliation(s)
- Kaifeng Zhao
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Hua Wang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chen Huang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Qi Niu
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jiao Cao
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Xin Chen
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Wei Wang
- Institute of Microelectronics, Peking University, Beijing, 100871, China.
| | - Lingling Wu
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Chaoyong Yang
- Institute of Molecular Medicine, Clinical Laboratory, Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Li T, Huang J, Wang M, Wang H. Microfluidic assembly of small-molecule prodrug cocktail nanoparticles with high reproducibility for synergistic combination of cancer therapy. Int J Pharm 2021; 608:121088. [PMID: 34530101 DOI: 10.1016/j.ijpharm.2021.121088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022]
Abstract
Therapeutic nanoparticles (NPs) self-assembled from small molecular (pro)drug entities, opens up novel avenues for the generation of a wide range of drug delivery systems. Particularly, cocktail NPs created by co-assembly of multiple therapeutics often show profound efficacy beyond their individual agents. However, fabrication of synergistic NPs with high reproducibility and capability to deliver multiple therapeutics in a predefined ratio remains a challenge, which deters NP therapeutics from further clinical translation. In this work, a simple but versatile strategy has been developed to combine drug reconstitution and supramolecular nanoassembly to prodrug cocktail nanoparticle fabrication with microfluidics. Prodrugs reconstructed by PUFAylation were self-assembled into hybrid nanoparticles via microfluidic chip to synergistically deliver two chemotherapeutic drugs, 7-ethyl-10-hydroxy camptothecin (SN38) and paclitaxel (PTX), in a single nanoparticle container. In vitro cell-based assays demonstrate that the combinatorial chemotherapy is superior to each prodrug used alone while reduces the dosage of both drugs at the same time. Furthermore, the double-drug combination suppresses colon tumors by 86% at a total dosage of 16.7 mg/kg through synergy, and histological analysis indicates the safety of the hybrid nanoparticles. In general, this work shows that the nanomedicine synthesized by microfluidics provides considerable advantages including better size control and reproducibility, and great potential in effective combination therapy. It is expected to be applied to the fabrication of more chemical agent combination for other cancer types.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Jiangling Huang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Min Wang
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China.
| | - Hangxiang Wang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| |
Collapse
|
22
|
Yu Z, Jin J, Shui L, Chen H, Zhu Y. Recent advances in microdroplet techniques for single-cell protein analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Smith KJ, Jana JA, Kaehr A, Purcell E, Opdycke T, Paoletti C, Cooling L, Thamm DH, Hayes DF, Nagrath S. Inertial focusing of circulating tumor cells in whole blood at high flow rates using the microfluidic CTCKey™ device for CTC enrichment. LAB ON A CHIP 2021; 21:3559-3572. [PMID: 34320046 DOI: 10.1039/d1lc00546d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells shed from tumors into the blood stream. These cells can provide valuable information about their tumor of origin and direct treatment decisions to improve patient outcomes. Current technologies isolate CTCs from a limited blood volume and often require pre-processing that leads to CTC loss, making it difficult to isolate enough CTCs to perform in-depth tumor analysis. Many inertial microfluidic devices have been developed to isolate CTCs at high flow rates, but they typically require either blood dilution, pre-processing to remove red blood cells, or a sheath buffer rather than being able to isolate cells directly from whole blood. To decrease the need for pre-processing while increasing CTC yield, we developed an inertial device, the CTCKey™, to focus CTCs in whole blood at high throughput yielding a concentrated product stream enriched for CTCs. The CTCKey™ consists of two sections to create CTC enriched blood that can be further processed using any CTC isolation device to selectively isolate the CTCs. A thorough analysis was performed using the MCF7 breast cancer cell line spiked into bovine serum albumin (BSA) solutions of varying concentrations, as well as whole blood to characterize the focusing patterns of the CTCKey™. At the optimal flow rate of 2.4 mL min-1, the CTCKey™ reduces the CTC containing blood volume by 78%; the CTCs from 1 mL of blood are now in 0.22 mL of blood. The CTCKey's™ ability to concentrate CTCs from a large original blood volume to a smaller, highly concentrated volume enables a much greater blood volume to be interrogated by downstream isolation and characterization methods despite their low volume input limitations.
Collapse
Affiliation(s)
- Kaylee Judith Smith
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | | | - Anna Kaehr
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Emma Purcell
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Tyler Opdycke
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
| | - Costanza Paoletti
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Laura Cooling
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas H Thamm
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel F Hayes
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Sunitha Nagrath
- Chemical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, Michigan, USA.
- Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Mahhengam N, Fahem Ghetran Khazaali A, Aravindhan S, Olegovna Zekiy A, Melnikova L, Siahmansouri H. Applications of Microfluidic Devices in the Diagnosis and Treatment of Cancer: A Review Study. Crit Rev Anal Chem 2021; 52:1863-1877. [PMID: 34024197 DOI: 10.1080/10408347.2021.1922870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many cancer-related deaths are reported annually due to a lack of appropriate diagnosis and treatment strategies. Microfluidic technology, as new creativity has a great impact on automation and miniaturization via handling a small volume of materials and samples (in microliter to femtoliter range) to set up the system. Microfluidic devices not only detect various cancer-diagnostic factors from biological fluids but also can produce proper nanoparticles for drug delivery. With the contribution of microfluidics; multiple treatments for cancer such as chemotherapy, radiation therapy, and gene delivery can be implemented and studied. Hence, Microfluidics can be worth for the cancer field because of its high Throughput, high sensitivity, less material use, and low expense. In this review study, we intend to look at positive microfluidics prospects, features, benefits, and clinical applications.
Collapse
Affiliation(s)
- Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | | | - Surendar Aravindhan
- Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Lyubov Melnikova
- Business Analysis Department, Financial University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Hou J, Liu X, Zhou S. Programmable materials for efficient CTCs isolation: From micro/nanotechnology to biomimicry. VIEW 2021. [DOI: 10.1002/viw.20200023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xia Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
27
|
Williams PS, Moore LR, Joshi P, Goodin M, Zborowski M, Fleischman A. Microfluidic chip for graduated magnetic separation of circulating tumor cells by their epithelial cell adhesion molecule expression and magnetic nanoparticle binding. J Chromatogr A 2021; 1637:461823. [PMID: 33385746 PMCID: PMC7827554 DOI: 10.1016/j.chroma.2020.461823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
The enumeration of circulating tumor cells (CTCs) in the peripheral bloodstream of metastatic cancer patients has contributed to improvements in prognosis and therapeutics. There have been numerous approaches to capture and counting of CTCs. However, CTCs have potential information beyond simple enumeration and hold promise as a liquid biopsy for cancer and a pathway for personalized cancer therapy by detecting the subset of CTCs having the highest metastatic potential. There is evidence that epithelial cell adhesion molecule (EpCAM) expression level distinguishes these highly metastatic CTCs. The few previous approaches to selective CTC capture according to EpCAM expression level are reviewed. A new two-stage microfluidic device for separation, enrichment and release of CTCs into subpopulations sorted by EpCAM expression level is presented here. It relies upon immunospecific magnetic nanoparticle labeling of CTCs followed by their field- and flow-based separation in the first stage and capture as discrete subpopulations in the second stage. To fine tune the separation, the magnetic field profile across the first stage microfluidic channel may be modified by bonding small Vanadium Permendur strips to its outer walls. Mathematical modeling of magnetic fields and fluid flows supports the soundness of the design.
Collapse
Affiliation(s)
- P Stephen Williams
- Cambrian Technologies Inc., 1772 Saratoga Avenue, Cleveland, OH 44109, USA.
| | - Lee R Moore
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | - Mark Goodin
- SimuTech Group, 1742 Georgetown Rd., Suite B, Hudson, OH 44236, USA
| | - Maciej Zborowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Chen Y, Mei Y, Zhao X, Jiang X. Reagents-Loaded, Automated Assay that Integrates Recombinase-Aided Amplification and Cas12a Nucleic Acid Detection for a Point-of-Care Test. Anal Chem 2020; 92:14846-14852. [DOI: 10.1021/acs.analchem.0c03883] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yixin Mei
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaohui Zhao
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
29
|
Miccio L, Cimmino F, Kurelac I, Villone MM, Bianco V, Memmolo P, Merola F, Mugnano M, Capasso M, Iolascon A, Maffettone PL, Ferraro P. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. VIEW 2020. [DOI: 10.1002/viw.20200034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa Miccio
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | | | - Ivana Kurelac
- Dipartimento di Scienze Mediche e Chirurgiche Università di Bologna Bologna Italy
- Centro di Ricerca Biomedica Applicata (CRBA) Università di Bologna Bologna Italy
| | - Massimiliano M. Villone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Vittorio Bianco
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pasquale Memmolo
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Francesco Merola
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Martina Mugnano
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate Naples Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche Università degli Studi di Napoli Federico II Naples Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II” Napoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| | - Pietro Ferraro
- CNR‐ISASI Institute of Applied Sciences and Intelligent Systems E. Caianiello Pozzuoli Italy
- NEAPoLIS, Numerical and Experimental Advanced Program on Liquids and Interface Systems Joint Research Center CNR ‐ Università degli Studi di Napoli “Federico II” Napoli Italy
| |
Collapse
|
30
|
Yin J, Deng J, Wang L, Du C, Zhang W, Jiang X. Detection of Circulating Tumor Cells by Fluorescence Microspheres-Mediated Amplification. Anal Chem 2020; 92:6968-6976. [PMID: 32347710 DOI: 10.1021/acs.analchem.9b05844] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we describe a fluorescent microspheres-based separation and analysis that enables the isolation of circulating tumor cells (CTCs) from whole blood of patients with metastatic cancer and the identification of isolated CTCs in situ without immunostaining. This approach uses antibody-functionalized fluorescent polystyrene (PS) microspheres that can selectively bind to CTCs. The binding of CTCs and fluorescent PS microspheres leads to the formation of complexes of CTCs and fluorescent PS microspheres, thereby the CTCs are size-amplified and labeled simultaneously. A pyramidal microcavity array (PMCA) is fabricated using microfabrication technology to create a precise microfilter structure with a high aspect ratio. The PMCA filter device can effectively isolate microspheres-labeled CTCs, while allow hematologic cells to deform and pass through. Using this approach, CTCs are isolated and identified in 15 of 18 patients with metastatic colorectal cancer. This approach will open new possibilities for CTCs isolation and identification and can serve a versatile platform to facilitate CTCs analysis in diverse biomedical applications.
Collapse
Affiliation(s)
- Jiaxiang Yin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Le Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.,Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, Guangzhou 510006, P. R. China
| | - Wei Zhang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District,Shenzhen, Guangdong 518055, PR China.,Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| |
Collapse
|
31
|
Facile synthesis of 3D hierarchical micro-/nanostructures in capillaries for efficient capture of circulating tumor cells. J Colloid Interface Sci 2020; 575:108-118. [PMID: 32361043 DOI: 10.1016/j.jcis.2020.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/06/2020] [Accepted: 04/20/2020] [Indexed: 01/28/2023]
Abstract
The efficient capture of rare circulating tumor cells (CTCs) with high viability is of great importance in cancer diagnosis. The integration of three-dimensional (3D) nanobiointerfaces with capillary flow channel platforms can efficiently improve CTC capture performance by providing abundant binding sites and increasing the likelihood of contact as samples flow through the microchannels. However, due to the complex preparation processes, facile synthesis of nanostructures for use as substrates in flow channels for biomedical applications is still challenging. To reduce the encapsulation steps in the fabricating of nanostructured flow channel devices, we chose the enclosed glass capillaries as flow channels and accomplished all the experiments in the microchannels, including 3D nanostructure synthesis, surface modification and capture/release of CTCs. In this work, we constructed a novel 3D Zn(OH)F/ZnO nanoforest array in capillaries for CTC isolation via a facile microfluidic wet chemistry method. Because of the abundant binding sites of the 3D Zn(OH)F/ZnO nanoforest array, the capture efficiency was remarkably enhanced compared with that of vertical nanowires (90.3% vs 69.1%). In addition, a high release efficiency and cell viability of released cells were achieved by grafting poly(N-isopropylacrylamide) (PNIPPAm). These results may provide evidence for a novel method to fabricate hierarchical 3D substrates with a combination of biomolecule recognition and topographical interaction for biomedical applications.
Collapse
|
32
|
Solanki S, Pandey CM, Gupta RK, Malhotra BD. Emerging Trends in Microfluidics Based Devices. Biotechnol J 2020; 15:e1900279. [PMID: 32045505 DOI: 10.1002/biot.201900279] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/28/2020] [Indexed: 01/03/2023]
Abstract
One of the major challenges for scientists and engineers today is to develop technologies for the improvement of human health in both developed and developing countries. However, the need for cost-effective, high-performance diagnostic techniques is very crucial for providing accessible, affordable, and high-quality healthcare devices. In this context, microfluidic-based devices (MFDs) offer powerful platforms for automation and integration of complex tasks onto a single chip. The distinct advantage of MFDs lies in precise control of the sample quantities and flow rate of samples and reagents that enable quantification and detection of analytes with high resolution and sensitivity. With these excellent properties, microfluidics (MFs) have been used for various applications in healthcare, along with other biological and medical areas. This review focuses on the emerging demands of MFs in different fields such as biomedical diagnostics, environmental analysis, food and agriculture research, etc., in the last three or so years. It also aims to reveal new opportunities in these areas and future prospects of commercial MFDs.
Collapse
Affiliation(s)
- Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.,Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Chandra M Pandey
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Rajinder K Gupta
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Bansi D Malhotra
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
33
|
Li Q, Cui S, Xu Y, Wang Y, Jin F, Si H, Li L, Tang B. Consecutive Sorting and Phenotypic Counting of CTCs by an Optofluidic Flow Cytometer. Anal Chem 2019; 91:14133-14140. [DOI: 10.1021/acs.analchem.9b04035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qingling Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Shuang Cui
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuehan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yiguo Wang
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, P.R. China
| | - Feng Jin
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital Affiliated with Shandong University, Jinan, 250013, P.R. China
| | - Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|