1
|
Yadavalli VK. The convergence of nanomanufacturing and artificial intelligence: trends and future directions. NANOTECHNOLOGY 2025; 36:222001. [PMID: 40311640 DOI: 10.1088/1361-6528/add304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 05/01/2025] [Indexed: 05/03/2025]
Abstract
The integration of nanoscale production processes with Artificial intelligence (AI) algorithms has the potential to open new frontiers in nanomanufacturing by accelerating development timelines, optimizing production, reducing costs, enhancing quality control, and improving sustainability. Such changes are already underway with digital and cyber-physical technologies becoming increasingly intertwined with 'smart' manufacturing and industrial processes today. With the nanomanufacturing sector focused on the scalable production of complex (nano)materials, (nano)devices, and biologics, AI and its sub-fields, including machine learning (ML), are positioned to be key enablers of efficiency and innovation. In this topical review, we briefly explore the current state-of-the-art of how AI and ML techniques can be employed within nanomanufacturing. We discuss from a birds-eye perspective, the impact of AI/ML on various stages of the production lifecycle, and examine future opportunities and challenges. Key areas include computational design and discovery, process optimization, predictive maintenance, and quality assurance/defect detection. Further, challenges in implementation, process complexity, and ethical and regulatory considerations are explored in light of the increasing reliance on data-driven approaches for manufacturing.
Collapse
Affiliation(s)
- Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, United States of America
| |
Collapse
|
2
|
Chicea D, Nicolae-Maranciuc A. Metal Nanocomposites as Biosensors for Biological Fluids Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1809. [PMID: 40333451 PMCID: PMC12028469 DOI: 10.3390/ma18081809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Metal nanocomposites are rapidly emerging as a powerful platform for biosensing applications, particularly in the analysis of biological fluids. This review paper examines the recent advancements in the development and application of metal nanocomposites as biosensors for detecting various analytes in complex biological matrices such as blood, serum, urine, and saliva. We discuss the unique physicochemical properties of metal nanocomposites, including their high surface area, enhanced conductivity, and tunable optical and electrochemical characteristics, which contribute to their superior sensing capabilities. The review will cover various fabrication techniques, focusing on their impact on the sensitivity, selectivity, and stability of the resulting biosensors. Furthermore, we will analyze the diverse applications of these biosensors in the detection of disease biomarkers, environmental toxins, and therapeutic drugs within biological fluids. Finally, we will address the current challenges and future perspectives of this field, highlighting the potential for improved diagnostic tools and personalized medicine through the continued development of advanced metal nanocomposite-based biosensors.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
3
|
Wang JP, Huang ZR, Zhang C, Ni YR, Li BT, Wang Y, Wu JF. Methodological advances in liposomal encapsulation efficiency determination: systematic review and analysis. J Drug Target 2025:1-10. [PMID: 40126566 DOI: 10.1080/1061186x.2025.2484773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
Liposomes represent a highly promising drug delivery platform for a wide range of pharmaceutical compounds. Encapsulation efficiency (EE) stands as a critical quality attribute for liposomal formulations. Accurate determination of EE requires quantification of at least two parameters among the three distinct drug populations: total drug content, encapsulated drug fraction, and free drug concentration. However, due to the complex physicochemical characteristics of liposomes, particularly their structural flexibility, surface charge properties, and organic phase composition, direct measurement of encapsulated and free drug fractions presents significant analytical challenges. The ability to precisely quantify both free and total drug concentrations in liposomal formulations enables rapid and reliable evaluation of encapsulation efficiency, which is essential for guiding formulation optimisation and ensuring consistent product quality during scale-up manufacturing processes. This review provides a comprehensive analysis of various analytical techniques for EE determination, including (reverse) dialysis, ultrafiltration centrifugation, differential centrifugation (ultra/low-speed), and size exclusion chromatography, with particular emphasis on their methodological characteristics, applicable ranges, advantages, and limitations. Furthermore, we propose appropriate detection strategies for encapsulation efficiency assessment based on specific laboratory capabilities and the physicochemical properties of the investigational compounds.
Collapse
Affiliation(s)
- Jin-Ping Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Zi-Rui Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Cheng Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Yi-Ran Ni
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Bo-Tao Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Ying Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Medicine and Health Sciences, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
4
|
Swinnen S, de Azambuja F, Parac-Vogt TN. From Nanozymes to Multi-Purpose Nanomaterials: The Potential of Metal-Organic Frameworks for Proteomics Applications. Adv Healthc Mater 2025; 14:e2401547. [PMID: 39246191 DOI: 10.1002/adhm.202401547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols. Additionally, the study discusses evolving MOF materials that are tailored for proteomics, showcasing their structural diversity and functional advantages compared to other types of materials used for similar applications. MOFs can be developed to seamlessly integrate into proteomics workflows due to their tunable features, contributing to protein separation, peptide enrichment, and ionization for mass spectrometry. This review is meant as a guide to help bridge the gap between material scientists, engineers, and MOF chemists and on the other side researchers in biology or bioinformatics working in proteomics.
Collapse
Affiliation(s)
- Siene Swinnen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | | | | |
Collapse
|
5
|
de Moura Campos S, Dos Santos Costa G, Karp SG, Thomaz-Soccol V, Soccol CR. Innovations and challenges in collagen and gelatin production through precision fermentation. World J Microbiol Biotechnol 2025; 41:63. [PMID: 39910024 DOI: 10.1007/s11274-025-04276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Collagen and gelatin are essential biomaterials widely used in industries such as food, cosmetics, healthcare, and pharmaceuticals. Traditionally derived from animal tissues, these proteins are facing growing demand for more sustainable and ethical production methods. Precision fermentation (PF) offers a promising alternative by using genetically engineered microorganisms to produce recombinant collagen and gelatin. This technology not only reduces environmental impact but also ensures consistent quality and higher yields. In this review, we provide a comprehensive overview of collagen and gelatin production through PF destined for the food sector, exploring key advances in recombinant technologies, synthetic biology, and bioprocess optimization. Challenges such as scaling production, cost-efficiency, and market integration are addressed, alongside emerging solutions for enhancing industrial competitiveness. We also highlight leading companies leveraging PF to drive innovation in the food industry. As PF continues to evolve, future developments are expected to improve efficiency, reduce costs, and expand the applications of recombinant collagen and gelatin, particularly in the food and supplement sectors.
Collapse
Affiliation(s)
- Sofia de Moura Campos
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Gabriela Dos Santos Costa
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Susan Grace Karp
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Vanete Thomaz-Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, Curitiba, Brazil.
| |
Collapse
|
6
|
Tang F, Shi S, Wei C, Sun Y, Yang R, Qu L, Li Z. Amidine-functionalized aggregation-induced emission luminogen and a 3D-printed digital sensor platform for ultrafast and visual detection of heparin. Anal Chim Acta 2025; 1337:343564. [PMID: 39800534 DOI: 10.1016/j.aca.2024.343564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/17/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Heparin is a widely used anticoagulant in clinic. However, improper dosing can increase the risk of thromboembolic events, potentially leading to life-threatening complications. Clinic monitoring of heparin is very important for its use safety. Rapid and accurate point-of-care testing can significantly reduce the risk of thrombotic events. The detection of heparin using fluorescent probes has emerged as a significant area of research, driven by the need for rapid, sensitive, and selective methods for monitoring this crucial anticoagulant in clinical settings. However, the absence of convenient and user-friendly heparin testing methods continues to pose a challenge. RESULTS In this work, a tetraphenylethylene derivatives with four amidine active groups (TPE-4+) was prepared. TPE-4+ has obvious aggregation-induced emission (AIE) effect on the heparin with a 127-fold enhancement occurring within just 3 s. The molecular docking simulation showed that TPE-4+ was closely embedded in the heparin by the electrostatic force between four amidine of TPE-4+ and sulfate ester group of heparin, restricted intramolecular motion of TPE-4+, and causing obvious AIE features. The fluorescence intensity of TPE-4+ was line with the concentration of heparin in the range of 0-2.0 U/mL with a lowest detection limit of 0.0038 U/mL. The possible interference in the serum samples had no influence on the determination of heparin. Using 3D printing technology, a compact, portable digital sensor platform for straightforward monitoring of heparin levels was fabricated. SIGNIFICANCE The proposed innovative platform provides a powerful tool to make portable and real-time monitoring of heparin possible, and thereby contributing to achieve point-of-care testing and decrease the risk of thrombotic events. This novel method of combining the probe with the sensing platform simplifies the detection process and enhances patient care by providing more accurate diagnostic capabilities.
Collapse
Affiliation(s)
- Feilong Tang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyu Shi
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Chiyuan Wei
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China.
| | - Ran Yang
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China.
| | - Lingbo Qu
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Henan Insitute of Food and Salt Industry Inspection Technology, Zhengzhou, 450003, China
| | - Zhaohui Li
- College of Chemistry, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
7
|
Pinho V, Neves-Petersen MT, Machado R, Castro Gomes A. Light Assisted Covalent Immobilization of Proteins for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406561. [PMID: 39887935 DOI: 10.1002/smll.202406561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/24/2025] [Indexed: 02/01/2025]
Abstract
The covalent immobilization of proteins attracts considerable interest in the biomedical field due to its potential applications in biosensors, recombinant protein purification, and the development of personalized therapeutic carriers. In response to the demand for more cost-effective, time-efficient, and simpler protocols, photo-immobilization emerges as a technique that circumvents the limitations of conventional methods. This approach offers enhanced precision at the nanoscale level and facilitates device reusability, thereby aligning with current sustainability concerns. Photo-immobilization is versatile, as it can be applied to both 2D and 3D substrates. While some methods involve complex protocols using genetically engineered photosensitive linkers, more straightforward techniques rely on amino acid bonds, such as disulfide bonds, for covalent protein bonding. Photo-immobilization can be achieved with both ultraviolet (UV) and visible light. This systematic review examines literature from Scopus, PubMed, and Web of Science, offering insights into relevant studies and considerations for covalent protein immobilization, and presents photochemical approaches applicable to major protein types.
Collapse
Affiliation(s)
- Vanessa Pinho
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | | | - Raúl Machado
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Andreia Castro Gomes
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
- Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| |
Collapse
|
8
|
Vojoudi H, Soroush M. Isolation of Biomolecules Using MXenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415160. [PMID: 39663732 DOI: 10.1002/adma.202415160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Biomolecule isolation is a crucial process in diverse biomedical and biochemical applications, including diagnostics, therapeutics, research, and manufacturing. Recently, MXenes, a novel class of two-dimensional nanomaterials, have emerged as promising adsorbents for this purpose due to their unique physicochemical properties. These biocompatible and antibacterial nanomaterials feature a high aspect ratio, excellent conductivity, and versatile surface chemistry. This timely review explores the potential of MXenes for isolating a wide range of biomolecules, such as proteins, nucleic acids, and small molecules, while highlighting key future research trends and innovative applications poised to transform the field. This review provides an in-depth discussion of various synthesis methods and functionalization techniques that enhance the specificity and efficiency of MXenes in biomolecule isolation. In addition, the mechanisms by which MXenes interact with biomolecules are elucidated, offering insights into their selective adsorption and customized separation capabilities. This review also addresses recent advancements, identifies existing challenges, and examines emerging trends that may drive the next wave of innovation in this rapidly evolving area.
Collapse
Affiliation(s)
- Hossein Vojoudi
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Masoud Soroush
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, 19104, USA
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
9
|
Wang G, Zhang L, Sugawara A, Hsu YI, Asoh TA, Uyama H. Development of Citric-Acid-Modified Cellulose Monolith for Enriching Glycopeptides. Anal Chem 2025; 97:1125-1134. [PMID: 39772436 DOI: 10.1021/acs.analchem.4c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions. We demonstrated the efficacy of CCM as a hydrophilic interaction liquid chromatography (HILIC) medium for the efficient enrichment of glycopeptides. It exhibited remarkable selectivity in enriching glycopeptides from trypsin-digested immunoglobulin G (IgG), serving as a model protein, even in the presence of a significant amount of non-glycopeptide contaminants from bovine serum albumin (BSA) at a ratio of BSA/IgG of 1000/1. Additionally, CCM showed a low detection limit (0.25 fmol μL-1) and commendable reusability in glycopeptide enrichment, successfully enriching 35 glycopeptides from IgG. Additionally, 641 unique N-glycosylation sites of 698 unique glycopeptides from 393 glycosylated proteins were identified from the triplicate analysis of 900 μg of human hepatocellular carcinoma tissue. Therefore, CCM holds significant promise as an eco-friendly stationary phase for hydrophilic interaction liquid chromatography aimed at glycopeptide enrichment.
Collapse
Affiliation(s)
- Guan Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Luwei Zhang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- School of Chemistry and Chemical Engineering, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, China
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
10
|
Qian J, Xia J, Chiang S, Liu JF, Li K, Li F, Wei F, Aziz M, Kim Y, Go V, Morizio J, Zhong R, He Y, Yang K, Yang OO, Wong DTW, Lee LP, Huang TJ. Rapid and comprehensive detection of viral antibodies and nucleic acids via an acoustofluidic integrated molecular diagnostics chip: AIMDx. SCIENCE ADVANCES 2025; 11:eadt5464. [PMID: 39813350 PMCID: PMC11734728 DOI: 10.1126/sciadv.adt5464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids. AIMDx uses acoustic vortexes and Gor'kov potential wells at a 1/10,000 subwavelength scale for concurrent isolation of viruses and antibodies while excluding cells, bacteria, and large (>200 nanometers) vesicles from saliva samples. The chip facilitates on-chip viral RNA enrichment, lysis in 2 minutes, and detection via transcription loop-mediated isothermal amplification, alongside electrochemical sensing of antibodies, including mucin-masked IgA. AIMDx achieved nearly 100% recovery of viruses and antibodies, a 32-fold RNA detection improvement, and an immunity marker sensitivity of 15.6 picograms per milliliter. This breakthrough provides a transformative tool for multiplex diagnostics, enhancing early infectious disease detection.
Collapse
Affiliation(s)
- Jiao Qian
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Samantha Chiang
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jessica F. Liu
- Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Feng Li
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Fang Wei
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Mohammad Aziz
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yong Kim
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Vinson Go
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - James Morizio
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27710, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| | - Otto O. Yang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David T. W. Wong
- School of Dentistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, NC 27708, USA
| |
Collapse
|
11
|
Khan I, Kaushik G, Verma C, Vashishtha R, Kumar V. Optimization of Binding Buffer Composition (Polyethylene Glycol, Sodium Chloride and pH) for Extraction of DNA from Biological Fluids Using Polyethyleneimine Functionalized Iron Oxide Nanoparticle-Based Method. Nanotechnol Sci Appl 2024; 17:247-258. [PMID: 39703561 PMCID: PMC11656329 DOI: 10.2147/nsa.s494613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Efficient extraction of DNA from biological fluids is crucial for applications in molecular biology, forensic science, and clinical diagnostics. However, traditional DNA extraction methods often require costly reagents and lengthy procedures. This study aims to optimize the binding buffer composition for DNA extraction using polyethyleneimine-coated iron oxide nanoparticles (PEI-IONPs), which offer the dual benefits of magnetic separation and high DNA-binding efficiency. Methods The effects of three key binding buffer components-polyethylene glycol (PEG-6000), sodium chloride (NaCl), and pH-on DNA adsorption efficiency were systematically evaluated. Blood samples were treated with PEI-IONPs under various conditions, and DNA concentration, yield, and purity were quantified. Nanoparticle functionalization was confirmed through characterization, and DNA quality was validated via agarose gel electrophoresis. Results The optimized binding buffer composition consisted of a PEG-6000 concentration of 30%, NaCl concentration of 0M, and pH of 4, which yielded the highest DNA concentration (34 ± 1.2 ng/μL), yield (6.8 ± 0.2 μg), and purity (A260/A280 ratio of 1.81). These conditions significantly improved DNA recovery compared to suboptimal buffer compositions. Conclusion The findings highlighted the critical role of binding buffer composition in maximizing DNA recovery. The use of optimized PEI-IONPs provided a rapid and efficient method for DNA extraction, supporting its potential for applications in scientific and clinical research. Future studies should explore the robustness of these optimized conditions across diverse biological fluids and extraction settings.
Collapse
Affiliation(s)
- Imran Khan
- School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Gaurav Kaushik
- School of Allied Health Sciences, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Chaitenya Verma
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Richa Vashishtha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, Hershey, PA, 17033, USA
| |
Collapse
|
12
|
De Cristofaro M, Lenzi A, Ghimenti S, Biagini D, Bertazzo G, Vivaldi FM, Armenia S, Pugliese NR, Masi S, Di Francesco F, Lomonaco T. Decoding the Challenges: navigating Intact Peptide Mass Spectrometry-Based Analysis for Biological Applications. Crit Rev Anal Chem 2024:1-23. [PMID: 39556023 DOI: 10.1080/10408347.2024.2427140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Quantitative analysis of peptides in biological fluids offers a high diagnostic and prognostic tool to reflect the pathophysiological condition of the patient. Recently, methods based on liquid chromatography coupled with mass spectrometry (LC-MS) for the quantitative determination of intact peptides have been replacing traditionally used ligand-binding assays, which suffer from cross-reactivity issues. The use of "top-down" analysis of peptides is rapidly increasing since it does not undergo incomplete or non-reproducible digestion like "bottom-up" approaches. However, the low abundance of peptides and their peculiar characteristics, as well as the complexity of biological fluids, make their quantification challenging. Herein, the analytical pitfalls that may be encountered during the development of an LC-MS method for the analysis of intact peptides in biological fluids are discussed. Challenges in the pre-analytical phase, stability after sampling and sample processing, significantly impact the accuracy of peptide quantification. Emerging techniques, such as microextractions, are becoming crucial for improved sample cleanup and enrichment of target analytes. A comparison between the roles of high-resolution and low-resolution mass spectrometry in the quantification of intact peptides, as well as the introduction of supercharging reagents to enhance ionization, will be discussed.
Collapse
Affiliation(s)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Giulia Bertazzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
14
|
Roheel A, Khan A, Anwar F, Ullah H, Rehman AU, Ullah N, Akhtar MF, Khan MI, Yaseen N. Evaluation of anti-tumor activity of molybdenum disulfide nanoflowers per se and in combination with berberine against mammary gland cancer in rats. JOURNAL OF NANOPARTICLE RESEARCH 2024; 26:240. [DOI: 10.1007/s11051-024-06153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 01/28/2025]
|
15
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Rodríguez CF, Guzmán-Sastoque P, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA. MICROMACHINES 2024; 15:1057. [PMID: 39203709 PMCID: PMC11356012 DOI: 10.3390/mi15081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024]
Abstract
Superparamagnetic iron oxide micro- and nanoparticles have significant applications in biomedical and chemical engineering. This study presents the development and evaluation of a novel low-cost microfluidic device for the purification and hyperconcentration of these magnetic particles. The device, fabricated using laser ablation of polymethyl methacrylate (PMMA), leverages precise control over fluid dynamics to efficiently separate magnetic particles from non-magnetic ones. We assessed the device's performance through Multiphysics simulations and empirical tests, focusing on the separation of magnetite nanoparticles from blue carbon dots and magnetite microparticles from polystyrene microparticles at various total flow rates (TFRs). For nanoparticle separation, the device achieved a recall of up to 93.3 ± 4% and a precision of 95.9 ± 1.2% at an optimal TFR of 2 mL/h, significantly outperforming previous models, which only achieved a 50% recall. Microparticle separation demonstrated an accuracy of 98.1 ± 1% at a TFR of 2 mL/h in both simulations and experimental conditions. The Lagrangian model effectively captured the dynamics of magnetite microparticle separation from polystyrene microparticles, with close agreement between simulated and experimental results. Our findings underscore the device's robust capability in distinguishing between magnetic and non-magnetic particles at both micro- and nanoscales. This study highlights the potential of low-cost, non-cleanroom manufacturing techniques to produce high-performance microfluidic devices, thereby expanding their accessibility and applicability in various industrial and research settings. The integration of a continuous magnet, as opposed to segmented magnets in previous designs, was identified as a key factor in enhancing magnetic separation efficiency.
Collapse
Affiliation(s)
- Cristian F. Rodríguez
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area, School of Medicine, University of Antioquia, Medellin 050010, Colombia
| | - Paula Guzmán-Sastoque
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| | - Johann F. Osma
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia; (C.F.R.); (P.G.-S.); (C.M.-C.); (J.F.O.)
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Cra. 1E No. 19a-40, Bogotá 111711, Colombia;
| |
Collapse
|
17
|
Ya N, Zhang D, Wang Y, Zheng Y, Yang M, Wu H, Oudeng G. Recent advances of biocompatible optical nanobiosensors in liquid biopsy: towards early non-invasive diagnosis. NANOSCALE 2024; 16:13784-13801. [PMID: 38979555 DOI: 10.1039/d4nr01719f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Liquid biopsy is a non-invasive diagnostic method that can reduce the risk of complications and offers exceptional benefits in the dynamic monitoring and acquisition of heterogeneous cell population information. Optical nanomaterials with excellent light absorption, luminescence, and photoelectrochemical properties have accelerated the development of liquid biopsy technologies. Owing to the unique size effect of optical nanomaterials, their improved optical properties enable them to exhibit good sensitivity and specificity for mitigating signal interference from various molecules in body fluids. Nanomaterials with biocompatible and optical sensing properties play a crucial role in advancing the maturity and diversification of liquid biopsy technologies. This article offers a comprehensive review of recent advanced liquid biopsy technologies that utilize novel biocompatible optical nanomaterials, including fluorescence, colorimetric, photoelectrochemical, and Raman broad-spectrum-based biosensors. We focused on liquid biopsy for the most significant early biomarkers in clinical medicine, and specifically reviewed reports on the effectiveness of optical nanosensing technology in the detection of real patient samples, which may provide basic evidence for the transition of optical nanosensing technology from engineering design to clinical practice. Furthermore, we introduced the integration of optical nanosensing-based liquid biopsy with modern devices, such as smartphones, to demonstrate the potential of the technology in portable clinical diagnosis.
Collapse
Affiliation(s)
- Na Ya
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Dangui Zhang
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
- Research Center of Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Yan Wang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Yi Zheng
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Mo Yang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P.R. China
| | - Hao Wu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, P.R. China
| | - Gerile Oudeng
- Pediatric Research Institute, Shenzhen Children's Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
18
|
Huang L, Chen G, Zhang G, Fang Y, Zhu W, Xin Y. Construction of a highly efficient adsorbent for one-step purification of recombinant proteins: Functionalized cellulose-based monolith fabricated via phase separation method. Carbohydr Polym 2024; 335:122046. [PMID: 38616085 DOI: 10.1016/j.carbpol.2024.122046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Currently, purification step in the recombinant protein manufacture is still a great challenge and its cost far outweighs those of the upstream process. In this study, a functionalized cellulose-based monolith was constructed as an efficient affinity adsorbent for one-step purification of recombinant proteins. Firstly, the fundamental cellulose monolith (CE monolith) was fabricated based on thermally induced phase separation, followed by being modified with nitrilotriacetic acid anhydride through esterification to give NCE monolith. After chelating with Ni2+, the affinity adsorbent NCE-Ni2+ monolith was obtained, which was demonstrated to possess a hierarchically porous morphology with a relatively high surface area, porosity and compressive strength. The adsorption behavior of NCE-Ni2+ monolith towards β2-microglobulin with 6 N-terminus His-tag (His-β2M) was evaluated through batch and fixed-bed column experiments. The results revealed that NCE-Ni2+ monolith exhibited a relatively fast His-β2M adsorption rate with a maximum adsorption capacity of 329.2 mg/g. The fixed-bed column adsorption implied that NCE-Ni2+ monolith showed high efficiency for His-β2M adsorption. Finally, NCE-Ni2+ monolith was demonstrated to have an excellent His-β2M purification ability from E. coli lysate with exceptional reusability. Therefore, the resultant NCE-Ni2+ monolith had large potential to be used as an efficient adsorbent for recombinant protein purification in practical applications.
Collapse
Affiliation(s)
- Lanlan Huang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guronghua Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Guozhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Yue Fang
- Department of Geriatrics, Jiangsu University Affiliated People's Hospital, Zhenjiang, China
| | - Wenjie Zhu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yuanrong Xin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
19
|
Wang M, Jin L, Hang-Mei Leung P, Wang-Ngai Chow F, Zhao X, Chen H, Pan W, Liu H, Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front Bioeng Biotechnol 2024; 12:1393789. [PMID: 38725992 PMCID: PMC11079239 DOI: 10.3389/fbioe.2024.1393789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
The significance of point-of-care testing (POCT) in early clinical diagnosis and personalized patient care is increasingly recognized as a crucial tool in reducing disease outbreaks and improving patient survival rates. Within the realm of POCT, biosensors utilizing magnetic nanoparticles (MNPs) have emerged as a subject of substantial interest. This review aims to provide a comprehensive evaluation of the current landscape of POCT, emphasizing its growing significance within clinical practice. Subsequently, the current status of the combination of MNPs in the Biological detection has been presented. Furthermore, it delves into the specific domain of MNP-based biosensors, assessing their potential impact on POCT. By combining existing research and spotlighting pivotal discoveries, this review enhances our comprehension of the advancements and promising prospects offered by MNP-based biosensors in the context of POCT. It seeks to facilitate informed decision-making among healthcare professionals and researchers while also promoting further exploration in this promising field of study.
Collapse
Affiliation(s)
- Miaomiao Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Lian Jin
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoni Zhao
- Guangzhou Wanfu Biotechnology Company, Guangzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Hongna Liu
- Hengyang Medical School, University of South China, Hengyang, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
- Hengyang Medical School, University of South China, Hengyang, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Healthcare Hospital, Changsha, China
- Key Laboratory of Rare Pediatric Diseases, Ministry of Education, University of South China, Hengyang, China
| |
Collapse
|
20
|
Kertsomboon T, Kreangkaiwal C, Patarakul K, Chirachanchai S. Introducing UCST onto Chitosan for a Simple and Effective Single-Phase Extraction. Biomacromolecules 2024; 25:1887-1896. [PMID: 38372964 DOI: 10.1021/acs.biomac.3c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Upper critical solution temperature (UCST) polymers undergo their own collapsed structures to show thermoresponsive functions favoring controlled release systems, cell adhesion, including separation process, etc. Although the copolymerization of UCST monomers with other vinyl monomers containing a pendant group is a good way to introduce additional functions, uncertain UCST performance as well as extensive bio-related properties are always the points to be considered. To accomplish this, the present work proposes the application of polysaccharides, i.e., chitosan (CS), as the biopolymer backbone to conjugate with functional molecules and UCST polymers. The use of chain transfer agents, e.g., mercaptoacetic acid, in radical polymerization with UCST poly(methacrylamide) (PMAAm) via the CS/NHS (N-hydroxysuccinimide) complex allows the simple water-based modification. The further conjugation of mouse anti-LipL32 IgG monoclonal antibody (anti-LipL32 mAb) onto CS-PMAAm (CS-PMAAm-Ab) enables a selective binding of recombinant LipL32 (rLipL32) antigen (Ag) in the solution. The CS-PMAAm obtained not only shows the cloud point in the range of 10-30 °C but also the extraction of rLipL32 because of CS-PMAAm-Ab-Ag aggregation. The present work demonstrates how CS expresses UCST with additional antibody conjugated is feasible for a simple and effective Ag single-phase extraction.
Collapse
Affiliation(s)
- Thanit Kertsomboon
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chahya Kreangkaiwal
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanitha Patarakul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Sikorski J, Matczuk M, Stępień M, Ogórek K, Ruzik L, Jarosz M. Fe 3O 4SPIONs in cancer theranostics-structure versus interactions with proteins and methods of their investigation. NANOTECHNOLOGY 2024; 35:212001. [PMID: 38387086 DOI: 10.1088/1361-6528/ad2c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
As the second leading cause of death worldwide, neoplastic diseases are one of the biggest challenges for public health care. Contemporary medicine seeks potential tools for fighting cancer within nanomedicine, as various nanomaterials can be used for both diagnostics and therapies. Among those of particular interest are superparamagnetic iron oxide nanoparticles (SPIONs), due to their unique magnetic properties,. However, while the number of new SPIONs, suitably modified and functionalized, designed for medical purposes, has been gradually increasing, it has not yet been translated into the number of approved clinical solutions. The presented review covers various issues related to SPIONs of potential theranostic applications. It refers to structural considerations (the nanoparticle core, most often used modifications and functionalizations) and the ways of characterizing newly designed nanoparticles. The discussion about the phenomenon of protein corona formation leads to the conclusion that the scarcity of proper tools to investigate the interactions between SPIONs and human serum proteins is the reason for difficulties in introducing them into clinical applications. The review emphasizes the importance of understanding the mechanism behind the protein corona formation, as it has a crucial impact on the effectiveness of designed SPIONs in the physiological environment.
Collapse
Affiliation(s)
- Jacek Sikorski
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Marta Stępień
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Karolina Ogórek
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Lena Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Maciej Jarosz
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Yang J, Zhou A, Li M, He Q, Zhou J, Crommen J, Wang W, Jiang Z, Wang Q. Mimotope peptide modified pompon mum-like magnetic microparticles for precise recognition, capture and biotransformation analysis of rituximab in biological fluids. Acta Pharm Sin B 2024; 14:1317-1328. [PMID: 38487009 PMCID: PMC10935506 DOI: 10.1016/j.apsb.2023.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/25/2023] [Accepted: 10/17/2023] [Indexed: 03/17/2024] Open
Abstract
Due to low immobilized ligand density, limited binding capacity, and severe interference from serum proteins, developing ideal peptide-based biomaterials for precise recognition and in vivo analysis of biopharmaceuticals remains a huge challenge. In this study, mimotope peptide modified pompon mum-like biomimetic magnetic microparticles (MMPs, 3.8 μm) that mimic the specific functionalities of CD20 on malignant B cells were developed for the first time. Benefit from the numerous ligand binding sites (Ni2+) on the pompon mum-like MMPs, these novel materials achieved ≥10 times higher peptide ligand densities (>2300 mg/g) and antibody binding capacities (1380 mg/g) compared to previous reported biomaterials. Leveraging the high specificity of the mimotope peptide, rituximab can be precisely recognized and enriched from cell culture media or serum samples. We also established an LC‒MS/MS method using the MMPs for tracking rituximab biotransformation in patient serum. Intriguingly, deamidation of Asn55 and Asn33, as well as oxidation of Met81 and Met34 were observed at the key complementarity determining regions of rituximab, which could potentially influence antibody function and require careful monitoring. Overall, these versatile biomimetic MMPs demonstrate superior recognition and enrichment capabilities for target antibodies, offering interesting possibilities for biotransformation analysis of biopharmaceuticals in patient serum.
Collapse
Affiliation(s)
- Jiawen Yang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Aixuan Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Minyi Li
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Qiaoxian He
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jingwei Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
| | - Jacques Crommen
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | | | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Laboratory for the Analysis of Medicines, Department of Pharmaceutical Sciences, CIRM, University of Liege, Liege B-4000, Belgium
| |
Collapse
|
23
|
Gutierrez FV, Lima IS, De Falco A, Ereias BM, Baffa O, Diego de Abreu Lima C, Morais Sinimbu LI, de la Presa P, Luz-Lima C, Damasceno Felix Araujo JF. The effect of temperature on the synthesis of magnetite nanoparticles by the coprecipitation method. Heliyon 2024; 10:e25781. [PMID: 38390158 PMCID: PMC10881852 DOI: 10.1016/j.heliyon.2024.e25781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Magnetic nanoparticles, such as magnetite (Fe3O4), exhibit superparamagnetic properties below 15 nm at room temperature. They are being explored for medical applications, and the coprecipitation technique is preferred for cost-effective production. This study investigates the impact of synthesis temperature on the nanoparticles' physicochemical characteristics. Two types of magnetic analysis were conducted. Samples T 40, T 50, and T 60 displayed superparamagnetic behavior, as evidenced by the magnetization curves. The experiments verified the development of magnetic nanoparticles with an average diameter of approximately dozens of nanometers, as determined by various measurement methods such as XDR, Raman, and TEM. Raman spectroscopy showed the characteristic bands of the magnetite phase at 319, 364, 499, and 680 cm-1. This was confirmed in the second analysis with the ZFC-FC curves, which showed that the samples' blocking temperatures were below ambient temperature. ZFC-FC curves revealed a similar magnetization of about 30 emu/g when applying a magnetic field of 5 kOe.
Collapse
Affiliation(s)
- Frederico Vieira Gutierrez
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Iara Souza Lima
- Physics Department, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-91, SP, Brazil
| | - Anna De Falco
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Beatriz Marques Ereias
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Oswaldo Baffa
- Physics Department, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-91, SP, Brazil
| | - Caique Diego de Abreu Lima
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Lanna Isabely Morais Sinimbu
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Patricia de la Presa
- Institute of Applied Magnetism, UCM-ADIF-CSIC, A6 22,500km, 28230, Las Rozas, Spain
- Material Physics Department, UCM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Cleanio Luz-Lima
- Physics Department, Federal University of Piauí, 64.049-550, Teresina, PI, Brazil
| | | |
Collapse
|
24
|
Düzel A, Bora B, Özgen GÖ, Evran S. Selection of DNA aptamers for the aptamer-assisted magnetic capture of the purified xylanase from Aspergillus niger. Int J Biol Macromol 2024; 257:128540. [PMID: 38061523 DOI: 10.1016/j.ijbiomac.2023.128540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/12/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low μM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.
Collapse
Affiliation(s)
- Ahmet Düzel
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, 57000 Sinop, Türkiye.
| | - Burhan Bora
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| | - Gaye Öngen Özgen
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, 35100 İzmir, Türkiye
| |
Collapse
|
25
|
Akhtar MF, Afzaal A, Saleem A, Roheel A, Khan MI, Imran M. A comprehensive review on the applications of ferrite nanoparticles in the diagnosis and treatment of breast cancer. Med Oncol 2024; 41:53. [PMID: 38198041 DOI: 10.1007/s12032-023-02277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Various conventional treatments including endocrine therapy, radiotherapy, surgery, and chemotherapy have been used for several decades to treat breast cancer; however, these therapies exhibit various life-threatening and debilitating adverse effects in patients. Additionally, combination therapies are required for prompt action as well as to prevent drug resistance toward standard breast cancer medications. Ferrite nanoparticles (NPs) are increasingly gaining momentum for their application in the diagnosis and treatment of breast cancer. Spinel ferrites are particularly used against breast cancer and have shown in vitro and in vivo better efficacy as compared to conventional cancer therapies. Magnetic resonance imaging contrast agents, magnetic particle imaging tracers, cell separation, and immune assays are some aspects related to the diagnosis of breast cancer against which different ferrite NPs have been successfully evaluated. Moreover, citrate-coated nickel ferrite, Mg/Zn ferrites, poly amidoamine dendrimers, cobalt ferrites, graphene oxide cobalt ferrites, doxorubicin functionalized cobalt ferrites, chitosan-coated zinc ferrites, PEG-coated cobalt ferrite, and copper ferrite NPs have demonstrated antiproliferative action against different breast cancer cells. Oxaliplatin-loaded polydopamine/BSA-copper ferrites, functionalized cobalt and zinc ferrites of curcumin, oxaliplatin-copper ferrite NPs, tamoxifen/diosgenin encapsulated ZnO/Mn ferrites, and fabricated core-shell fibers of doxorubicin have been developed to increase the bioavailability and anti-proliferative effect and decrease the toxicity of anticancer drugs. These ferrite NPs showed an anticancer effect at different doses in the presence or absence of an external magnetic field. The present review covers the in-depth investigations of ferrite NPs for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan.
| | - Aysha Afzaal
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Amna Roheel
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
26
|
Yang X, Ming F, Wang J, Xu L. Amino acids modified nanoscale zero-valent iron: Density functional theory calculations, experimental synthesis and application in the Fenton-like degradation of organic solvents. J Environ Sci (China) 2024; 135:296-309. [PMID: 37778805 DOI: 10.1016/j.jes.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 10/03/2023]
Abstract
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes, amino acids were used to modify nanoscale zero-valent iron (AA@Fe0), which were applied in the Fenton-like degradation of organic solvents (tributyl phosphate and n-dodecane, named TBP and DD). Twelve amino acids, i.e., glycine (Gly), alanine (Ala), leucine (Leu), proline (Pro), phenylalanine (Phe), methionine (Met), cysteine (Cys), asparagine (Asn), serine (Ser), glutamic acid (Glu), lysine (Lys) and arginine (Arg), were selected and calculated by density functional theory (DFT). The optimized structure, charge distribution, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), interaction region indicator (IRI) isosurface map and adsorption energy of AA@Fe0, AA@Fe0-TBP and AA@Fe0-DD were studied, which indicated that Fe is more likely to approach and charge transfer with -COO and -NH3 on the α-carbon of amino acids. There is strong attraction between Fe and -COO, and Van der Waals force between Fe and -NH3, respectively. In the interaction of AA@Fe0 with TBP and DD, Van der Waal force plays an important role. AA@Fe0 was synthesized in laboratory and characterized to investigate physicochemical properties. In Fenton-like degradation of organic solvents, the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated. The results of calculations combined with experiments showed that Ser-modified Fe0 performed the best in these amino acids, with 98% removal of organic solvents. A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents, activating H2O2 to generate hydroxyl radicals for the degradation of organic solvents.
Collapse
Affiliation(s)
- Xingchen Yang
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fucheng Ming
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China
| | - Lejin Xu
- Department of Nuclear Engineering and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
27
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
28
|
He Y, Xu Z, Kasputis T, Zhao X, Ibañez I, Pavan F, Bok M, Malito JP, Parreno V, Yuan L, Wright RC, Chen J. Development of Nanobody-Displayed Whole-Cell Biosensors for the Colorimetric Detection of SARS-CoV-2. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37184-37192. [PMID: 37489943 PMCID: PMC11216949 DOI: 10.1021/acsami.3c05900] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The accurate and effective detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to preventing the spread of infectious diseases and ensuring human health. Herein, a nanobody-displayed whole-cell biosensor was developed for colorimetric detection of SARS-CoV-2 spike proteins. Serving as bioreceptors, yeast surfaces were genetically engineered to display SARS-CoV-2 binding of llama-derived single-domain antibodies (nanobodies) with high capture efficiency, facilitating the concentration and purification of SARS-CoV-2. Gold nanoparticles (AuNPs) employed as signal transductions were functionalized with horseradish peroxidase (HRP) and anti-SARS monoclonal antibodies to enhance the detection sensitivity. In the presence of SARS-CoV-2 spike proteins, the sandwiched binding will be formed by linking engineered yeast, SARS-CoV-2 spike proteins, and reporter AuNPs. The colorimetric signal was generated by the enzymatic reaction of HRP and its corresponding colorimetric substrate/chromogen system. At the optimal conditions, the developed whole-cell biosensor enables the sensitive detection of SARS-CoV-2 spike proteins in a linear range from 0.01 to 1 μg/mL with a limit of detection (LOD) of 0.037 μg/mL (about 4 × 108 virion particles/mL). Furthermore, the whole-cell biosensor was demonstrated to detect the spike protein of different SARS-CoV-2 variants in human serum, providing new possibilities for the detection of future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhiyuan Xu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Itati Ibañez
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Florencia Pavan
- Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Marina Bok
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Juan Pablo Malito
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
| | - Viviana Parreno
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, Buenos Aires 1712, Argentina
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
29
|
Li Y, Chen J, Wei J, Liu X, Yu L, Yu L, Ding D, Yang Y. Metallic nanoplatforms for COVID-19 diagnostics: versatile applications in the pandemic and post-pandemic era. J Nanobiotechnology 2023; 21:255. [PMID: 37542245 PMCID: PMC10403867 DOI: 10.1186/s12951-023-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023] Open
Abstract
The COVID-19 pandemic, which originated in Hubei, China, in December 2019, has had a profound impact on global public health. With the elucidation of the SARS-CoV-2 virus structure, genome type, and routes of infection, a variety of diagnostic methods have been developed for COVID-19 detection and surveillance. Although the pandemic has been declared over, we are still significantly affected by it in our daily lives in the post-pandemic era. Among the various diagnostic methods, nanomaterials, especially metallic nanomaterials, have shown great potential in the field of bioanalysis due to their unique physical and chemical properties. This review highlights the important role of metallic nanosensors in achieving accurate and efficient detection of COVID-19 during the pandemic outbreak and spread. The sensing mechanisms of each diagnostic device capable of analyzing a range of targets, including viral nucleic acids and various proteins, are described. Since SARS-CoV-2 is constantly mutating, strategies for dealing with new variants are also suggested. In addition, we discuss the analytical tools needed to detect SARS-CoV-2 variants in the current post-pandemic era, with a focus on achieving rapid and accurate detection. Finally, we address the challenges and future directions of metallic nanomaterial-based COVID-19 detection, which may inspire researchers to develop advanced biosensors for COVID-19 monitoring and rapid response to other virus-induced pandemics based on our current achievements.
Collapse
Affiliation(s)
- Yuqing Li
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Mate-Rials & Devices, Soochow University, Suzhou, 215123, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xueliang Liu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Yu
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linqi Yu
- Department of Immunization Program, Jing'an District Center for Disease Control and Prevention, Shanghai, 200072, China.
| | - Ding Ding
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
30
|
Asena Özbek M, Özgür E, Bereli N, Denizli A. Molecular imprinted based microcryogels for thrombin purification. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123848. [PMID: 37582320 DOI: 10.1016/j.jchromb.2023.123848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
In addition to understanding and explaining the functions of proteins, the need for low-cost, easy and efficient purification methods has been increasing in the field of protein purification, which is also important for enzyme production. In this context, an alternative approach has been developed for the purification of thrombin, which has a crucial role in the hemostatic process, via thrombin imprinted microcryogels that allow reuse and have high selectivity. The characterization studies of the microcryogels were accomplished with micro-computed tomography (µCT), scanning electron microscopy (SEM), optical microscope, surface area measurements (BET analyses) and swelling test measurements. By scanning various parameters affecting thrombin adsorption, the maximum thrombin adsorption capacity (Qmax) was found to be 55.86 mg/g. Also, the selectivity of microcryogels was investigated with the competitive agents and reusability studies were performed. The purity of thrombin was evaluated by Fast Performance Liquid Chromatography (FPLC) method. Experimental results indicated that adsorption of thrombin by the developed microcryogels fit the Langmuir isotherm model (Qmax: 55.86 mg/g, R2: 0.9505) and pseudo-second order for three different thrombin concentrations (R2: 0.9978, R2: 0.9998, R2: 0.9999).
Collapse
Affiliation(s)
- Merve Asena Özbek
- Department of Chemistry Division, Institute of Science, Hacettepe University, Ankara, Turkey; Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Erdoğan Özgür
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
31
|
Zhao Y, Liu Y, Xu H, Fan Q, Zhu C, Liu J, Zhu M, Wang X, Niu A. Preparation and Application of Magnetic Composites Using Controllable Assembly for Use in Water Treatment: A Review. Molecules 2023; 28:5799. [PMID: 37570769 PMCID: PMC10421488 DOI: 10.3390/molecules28155799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The use of magnetic composites in wastewater treatment has become widespread due to their high flocculating characteristics and ferromagnetism. This review provides an analysis and summary of the preparation and application of magnetic composites through controllable assembly for use in wastewater treatment. The applications of magnetic composites include the treatment of dye wastewater, heavy metal wastewater, microalgae suspensions, and oily wastewater. Additionally, the recycling and regeneration of magnetic composites have been investigated. In the future, further research could be focused on improving the assembly and regeneration stability of magnetic composites, such as utilizing polymers with a multibranched structure. Additionally, it would be beneficial to explore the recycling and regeneration properties of these composites.
Collapse
Affiliation(s)
- Yuan Zhao
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Yinhua Liu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Hang Xu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Qianlong Fan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Chunyou Zhu
- Bureau of Hydrology and Water Resources, Pearl River Water Resources Commission of Ministry of Water Resources, Guangzhou 510611, China
| | - Junhui Liu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Mengcheng Zhu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Anqi Niu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
32
|
Yang Y, Lin M, Sun M, Zhang GQ, Guo J, Li J. Nanotechnology boosts the efficiency of tumor diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1249875. [PMID: 37576984 PMCID: PMC10419217 DOI: 10.3389/fbioe.2023.1249875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
The incidence and mortality of cancer are gradually increasing. The highly invasive and metastasis of tumor cells increase the difficulty of diagnosis and treatment, so people pay more and more attention to the diagnosis and treatment of cancer. Conventional treatment methods, including surgery, radiotherapy and chemotherapy, are difficult to eliminate tumor cells completely. And the emergence of nanotechnology has boosted the efficiency of tumor diagnosis and therapy. Herein, the research progress of nanotechnology used for tumor diagnosis and treatment is reviewed, and the emerging detection technology and the application of nanodrugs in clinic are summarized and prospected. The first part refers to the application of different nanomaterials for imaging in vivo and detection in vitro, which includes magnetic resonance imaging, fluorescence imaging, photoacoustic imaging and biomarker detection. The distinctive physical and chemical advantages of nanomaterials can improve the detection sensitivity and accuracy to achieve tumor detection in early stage. The second part is about the nanodrug used in clinic for tumor treatment. Nanomaterials have been widely used as drug carriers, including the albumin paclitaxel, liposome drugs, mRNA-LNP, protein nanocages, micelles, membrane nanocomplexes, microspheres et al., which could improve the drug accumulate in tumor tissue through enhanced permeability and retention effect to kill tumor cells with high efficiency. But there are still some challenges to revolutionize traditional tumor diagnosis and anti-drug resistance based on nanotechnology.
Collapse
Affiliation(s)
| | | | | | | | - Jianshuang Guo
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| | - Jianheng Li
- Pharmacology and Toxicology Research Laboratory, College of Pharmaceutical Science, Hebei University, Baoding, Hebei, China
| |
Collapse
|
33
|
Nowak-Jary J, Machnicka B. In vivo Biodistribution and Clearance of Magnetic Iron Oxide Nanoparticles for Medical Applications. Int J Nanomedicine 2023; 18:4067-4100. [PMID: 37525695 PMCID: PMC10387276 DOI: 10.2147/ijn.s415063] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/29/2023] [Indexed: 08/02/2023] Open
Abstract
Magnetic iron oxide nanoparticles (magnetite and maghemite) are intensively studied due to their broad potential applications in medical and biological sciences. Their unique properties, such as nanometric size, large specific surface area, and superparamagnetism, allow them to be used in targeted drug delivery and internal radiotherapy by targeting an external magnetic field. In addition, they are successfully used in magnetic resonance imaging (MRI), hyperthermia, and radiolabelling. The appropriate design of nanoparticles allows them to be delivered to the desired tissues and organs. The desired biodistribution of nanoparticles, eg, cancerous tumors, is increased using an external magnetic field. Thus, knowledge of the biodistribution of these nanoparticles is essential for medical applications. It allows for determining whether nanoparticles are captured by the desired organs or accumulated in other tissues, which may lead to potential toxicity. This review article presents the main organs where nanoparticles accumulate. The sites of their first uptake are usually the liver, spleen, and lymph nodes, but with the appropriate design of nanoparticles, they can also be accumulated in organs such as the lungs, heart, or brain. In addition, the review describes the factors affecting the biodistribution of nanoparticles, including their size, shape, surface charge, coating molecules, and route of administration. Modern techniques for determining nanoparticle accumulation sites and concentration in isolated tissues or the body in vivo are also presented.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| | - Beata Machnicka
- University of Zielona Gora, Faculty of Biological Sciences, Department of Biotechnology, Zielona Gora, 65-516, Poland
| |
Collapse
|
34
|
Ganjali F, Gorab MG, Moghim Aliabadi HA, Rahmati S, Cohan RA, Eivazzadeh-Keihan R, Maleki A, Ghafuri H, Mahdavi M. A novel nanocomposite containing zinc ferrite nanoparticles embedded in carboxymethylcellulose hydrogel plus carbon nitride nanosheets with multifunctional bioactivity. RSC Adv 2023; 13:21873-21881. [PMID: 37475756 PMCID: PMC10354627 DOI: 10.1039/d3ra02822d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023] Open
Abstract
A novel and biologically active nanobiocomposite is synthesized based on carbon nitride nanosheet (g-C3N4) based carboxymethylcellulose hydrogels with embedded zinc ferrite nanoparticles. Physical-chemical aspects, morphological properties, and their multifunctional biological properties have been considered in the process of evaluation of the synthesized structure. The hydrogels' compressive strength and compressive modulus are 1.98 ± 0.03 MPa and 3.46 ± 0.05 MPa, respectively. Regarding the biological response, it is shown that the nanobiocomposite is non-toxic and biocompatible, and hemocompatible (with Hu02 cells). In addition, the developed material offers a suitable antibacterial activity for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | | | - Saman Rahmati
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran Tehran Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
35
|
Eivazzadeh-Keihan R, Sadat Z, Mohammadi A, Aghamirza Moghim Aliabadi H, Kashtiaray A, Maleki A, Mahdavi M. Fabrication and biological investigation of a novel star polymer based on magnetic cyclic aromatic polyimide chains. Sci Rep 2023; 13:9598. [PMID: 37311979 DOI: 10.1038/s41598-023-36619-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
Herein, a novel nanostructure based on cyclic aromatic polyimide with statistical star polymer structure was synthesized via the functionalization of the CuFe2O4 MNPs surface. The polymerization process on the functionalized surface of CuFe2O4 MNPs was performed with pyromellitic dianhydride and phenylenediamine derivatives. All analytical methods such as Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, X-ray diffraction (XRD) pattern, energy-dispersive X-ray (EDX), field-emission scanning electron microscope (FE-SEM), vibrating-sample magnetometer (VSM) were performed to characterize the structure of CuFe2O4@SiO2-polymer nanomagnetic. The cytotoxicity of CuFe2O4@SiO2-Polymer was investigated for biomedical application by MTT test. The results proved that this nanocmposite was biocompatible with HEK293T healthy cells. Also, the evaluation antibacterial property of CuFe2O4@SiO2-Polymer showed that its MIC in Gram-negative and Gram-positive bacteria were 500-1000 µg/mL, so it had antibacterial activity.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Zahra Sadat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Hajra A, Chattopadhyay A. Dimension-Dependent Magnetic Behavior of Manganese-Cysteine Inorganic Complex Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37307283 DOI: 10.1021/acs.langmuir.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A cysteine-based complex of Mn2+ led to the formation of nanoparticles in aqueous medium under ambient conditions. The formation and evolution of the nanoparticles in the medium were followed by ultraviolet-visible light (UV-vis) spectroscopy, circular dichroism, and electron spin resonance spectroscopy that also revealed a first-order process. The magnetic properties of the nanoparticles isolated as solid powders exhibited strong crystallite and particle size dependence. At low crystallite size, as well as particle size, the complex nanoparticles showed superparamagnetic behavior similar to other magnetic inorganic nanoparticles. The magnetic nanoparticles were found to undergo a superparamagnetic to ferromagnetic transition, and then to paramagnetic transition with a gradual increase in either their crystallite size or particle size. The discovery of dimension-dependent magnetic property of inorganic complex nanoparticles may usher in a superior option for tuning the magnetic behavior of nanocrystals, depending on the component ligands and metal ions.
Collapse
Affiliation(s)
- Archismita Hajra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
37
|
González-Martínez DA, González Ruíz G, Escalante-Bermúdez C, García Artalejo JA, Gómez Peña T, Gómez JA, González-Martínez E, Cazañas Quintana Y, Fundora Barrios T, Hernández T, Varela Pérez RC, Díaz Goire D, Castro López D, Ruíz Ramirez I, Díaz-Águila CR, Moran-Mirabal JM. Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. NANOSCALE 2023; 15:7854-7869. [PMID: 37060148 DOI: 10.1039/d3nr01109g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.
Collapse
Affiliation(s)
- David A González-Martínez
- Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Gustavo González Ruíz
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Cesar Escalante-Bermúdez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
- Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | | | - Tania Gómez Peña
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - José Alberto Gómez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | | | - Thais Fundora Barrios
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Tays Hernández
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | | | - Dayli Díaz Goire
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Diaselys Castro López
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Ingrid Ruíz Ramirez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Carlos R Díaz-Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M, Canada
- Brockhouse Institute for Materials Research, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
38
|
Wen CY, Liang X, Liu J, Zhao TY, Li X, Zhang Y, Guo G, Zhang Z, Zeng J. An achromatic colorimetric nanosensor for sensitive multiple pathogen detection by coupling plasmonic nanoparticles with magnetic separation. Talanta 2023; 256:124271. [PMID: 36681038 DOI: 10.1016/j.talanta.2023.124271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Rapid screening of multiple pathogens will greatly improve the efficiency of pandemic prevention and control. Colorimetric methods exhibit the advantages of convenience, portability, low cost, time efficiency, and free of sophisticated instruments, yet usually have difficulties in simultaneous detection and suffer from monotonous color changes with low visual resolution and sensitivity. Hence, coupled three kinds of plasmonic nanoparticles (NPs) with magnetic separation, we developed an achromatic colorimetric nanosensor with highly enhanced visual resolution for simultaneous detection of SARS-CoV-2, Staphylococcus aureus, and Salmonella typhimurium. The achromatic nanosensor was composed of SARS-CoV-2-targeting red gold NPs, S. aureus-targeting yellow silver NPs and S. typhimurium-targeting blue silver triangle NPs mixed as black color. In the detection, three corresponding magnetic probes were added into the above mixture. In the presence of a target pathogen, it would be recognized and combined with corresponding colored reporters and magnetic probes to form sandwich complexes, which were removed by magnetic separation, and the sensor changed from black to a chromatic color (the color of the reporters remained in supernatant). Consequently, different target pathogen induced different color. For example, SARS-CoV-2, S. aureus, and S. typhimurium respectively produced green, purple, and orange. While coexistence of S. aureus and S. typhimurium produced red, and coexistence of S. aureus and SARS-CoV-2 produced blue, etc. Therefore, by observing the color change or measuring the absorption spectra, multiple pathogen detection was achieved conveniently. Compared with most colorimetric sensors, this achromatic nanosensor involved rich color change, thus significantly enhancing visual resolution and inspection sensitivity. Therefore, this sensor opened a promising avenue for efficient monitoring and early warning of food safety and quality.
Collapse
Affiliation(s)
- Cong-Ying Wen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xinyi Liang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jianting Liu
- Huangdao Customs of the People's Republic of China, 266580, PR China
| | - Tian-Yu Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Gengchen Guo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Zhuoran Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China
| | - Jingbin Zeng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China.
| |
Collapse
|
39
|
A rational approach for 3D recognition and removal of L-asparagine via molecularly imprinted membranes. J Pharm Biomed Anal 2023; 226:115250. [PMID: 36657352 DOI: 10.1016/j.jpba.2023.115250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
In this study, a L-asparagine (L-Asn) imprinted membranes (L-Asn-MIPs) were synthesized via molecular imprinting for selective and efficient removal of L-Asn. The L-Asn-MIP membrane was prepared by using acrylamide (AAm) and hydroxyethyl methacrylate (HEMA) as a functional monomer and a comonomer, respectively. The membrane was characterized by scanning electron microscopy (SEM) and Fourier Transform infrared spectroscopy (FTIR). The L-Asn adsorption capacity of the membrane was investigated in detail. The maximum L-Asn adsorption capacity was determined as 408.2 mg/g at pH: 7.2, 24 °C. Determination of L-Asn binding behaviors of L-Asn-MIPs also shown with Scatchard analyses. The effect of pH on L-Asn adsorption onto the membrane and also the selectivity and reusability of the L-Asn-MIPs for L-Asn adsorption were determined through L-asparaginase (L-ASNase) enzyme activity measurements. The selectivity of the membrane was investigated by using two different ternary mixtures; L-glycine (L-Gly)/L-histidine (L-His)/L-Asn and L-tyrosin (L-Tyr)/L-cystein(L-Cys)/L-Asn. The obtained results showed that the L-Asn-MIP membranes have a high selectivity towards L-Asn.
Collapse
|
40
|
Eivazzadeh-Keihan R, Pajoum Z, Aliabadi HAM, Mohammadi A, Kashtiaray A, Bani MS, Pishva B, Maleki A, Heravi MM, Mahdavi M, Ziaei Ziabari E. Magnetized chitosan hydrogel and silk fibroin, reinforced with PVA: a novel nanobiocomposite for biomedical and hyperthermia applications. RSC Adv 2023; 13:8540-8550. [PMID: 36926298 PMCID: PMC10012334 DOI: 10.1039/d3ra00612c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
Herein, a multifunctional nanobiocomposite was designed for biological application, amongst which hyperthermia cancer therapy application was specifically investigated. This nanobiocomposite was fabricated based on chitosan hydrogel (CS), silk fibroin (SF), water-soluble polymer polyvinyl alcohol (PVA) and iron oxide magnetic nanoparticles (Fe3O4 MNPs). CS and SF as natural compounds were used to improve the biocompatibility, biodegradability, adhesion and cell growth properties of the nanobiocomposite that can prepare this nanocomposite for the other biological applications such as wound healing and tissue engineering. Since the mechanical properties are very important in biological applications, PVA polymer was used to increase the mechanical properties of the prepared nanobiocomposite. All components of this nanobiocomposite have good dispersion in water due to the presence of hydrophilic groups such as NH2, OH, and COOH, which is one of the effective factors in increasing the efficiency of hyperthermia cancer therapy. The structural analyzes of the hybrid nanobiocomposite were determined by FT-IR, XRD, EDX, FE-SEM, TGA and VSM. Biological studies such as MTT and hemolysis testing proved that it is hemocompatible and non-toxic for healthy cells. Furthermore, it can cause the death of cancer cells to some extent (20.23%). The ability of the nanobiocomposites in hyperthermia cancer therapy was evaluated. Also, the results showed that it can be introduced as an excellent candidate for hyperthermia cancer therapy.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Zeinab Pajoum
- Department of Chemistry, School of Physics and Chemistry, Alzahra University PO Box 1993891176, Vanak Tehran Iran
| | | | - Adibeh Mohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan Isfahan Iran
| | - Banafshe Pishva
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University PO Box 1993891176, Vanak Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elaheh Ziaei Ziabari
- Department of Orthopedic Surgery, Rothman Institute, Thomas Jefferson University 125 South 9th Street, Suite 1000 Philadelphia PA 19107 USA
| |
Collapse
|
41
|
Pan Y, Wang Z, Xu S, Zhang L, Zhang W. Selective profiling of liver-related specific proteins based on sofosbuvir-modified magnetic separation material. ANAL SCI 2023; 39:313-323. [PMID: 36572835 DOI: 10.1007/s44211-022-00238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 12/27/2022]
Abstract
It has great significance in profiling specific proteins throughout for better understanding of complex pathological processes and in-depth pharmacological studies. In this work, an efficient protein profiling strategy was developed based on the specific protein-drug interaction. Sofosbuvir (SOF), as a first-line drug for the treatment of hepatitis C, was modified onto the surface of nanoparticles through stable chemical bonds to fabricate a novel magnetic separation material denoted as Fe3O4@SiO2@PAA@SOF. With sequence coverage as the screening parameter, nine proteins were profiled from fetal bovine serum (FBS) of which eight were liver related. Similarly, the strategy was applied to hepatocellular carcinoma (HCC) patient serum. Eight proteins were profiled and all of them were liver related, demonstrating the superb specificity and selectivity of this strategy for profiling liver-related proteins by virtue of protein-SOF interaction. When serum proteins from HCC patients were compared to those from healthy people, one unique differential protein (D3DQX7) was profiled, which was liver related and was a potential target for ameliorating liver diseases. For further research, this material design concept and protein profiling strategy can be extended to employ other drugs for corresponding studies. Sofosbuvir, as a therapeutic drug for liver diseases, was modified onto the surface of magnetic nanoparticles to fabricate the specific selective separation material (Fe3O4@SiO2@PAA@SOF). Based on protein-SOF interaction, the material was applied to adsorb specific proteins from different serum samples. After MS analysis, specific proteins, most of which were liver related, were successfully profiled from FBS and HCC patient serum, fully demonstrating the superb specificity and selectivity of this protein profiling strategy.
Collapse
Affiliation(s)
- Yini Pan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Sen Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
42
|
Lavorato GC, de Almeida AA, Vericat C, Fonticelli MH. Redox phase transformations in magnetite nanoparticles: impact on their composition, structure and biomedical applications. NANOTECHNOLOGY 2023; 34:192001. [PMID: 36825776 DOI: 10.1088/1361-6528/acb943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Magnetite nanoparticles (NPs) are one of the most investigated nanomaterials so far and modern synthesis methods currently provide an exceptional control of their size, shape, crystallinity and surface functionalization. These advances have enabled their use in different fields ranging from environmental applications to biomedicine. However, several studies have shown that the precise composition and crystal structure of magnetite NPs depend on their redox phase transformations, which have a profound impact on their physicochemical properties and, ultimately, on their technological applications. Although the physical mechanisms behind such chemical transformations in bulk materials have been known for a long time, experiments on NPs with large surface-to-volume ratios have revealed intriguing results. This article is focused on reviewing the current status of the field. Following an introduction on the fundamental properties of magnetite and other related iron oxides (including maghemite and wüstite), some basic concepts on the chemical routes to prepare iron oxide nanomaterials are presented. The key experimental techniques available to study phase transformations in iron oxides, their advantages and drawbacks to the study of nanomaterials are then discussed. The major section of this work is devoted to the topotactic oxidation of magnetite NPs and, in this regard, the cation diffusion model that accounts for the experimental results on the kinetics of the process is critically examined. Since many synthesis routes rely on the formation of monodisperse magnetite NPs via oxidation of wüstite counterparts, the modulation of their physical properties by crystal defects arising from the oxidation process is also described. Finally, the importance of a precise control of the composition and structure of magnetite-based NPs is discussed and its role in their biomedical applications is highlighted.
Collapse
Affiliation(s)
- Gabriel C Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Adriele A de Almeida
- Instituto de Física 'Gleb Wataghin' (IFGW), Universidade Estadual de Campinas-UNICAMP, R. Sérgio Buarque de Holanda, 777-CEP: 13083-859, Campinas - SP, Brazil
| | - Carolina Vericat
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| | - Mariano H Fonticelli
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 16, Suc. 4, 1900 La Plata, Argentina
| |
Collapse
|
43
|
Ye S, You Q, Song S, Wang H, Wang C, Zhu L, Yang Y. Nanostructures and Nanotechnologies for the Detection of Extracellular Vesicle. Adv Biol (Weinh) 2023; 7:e2200201. [PMID: 36394211 DOI: 10.1002/adbi.202200201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Indexed: 11/19/2022]
Abstract
Liquid biopsy has been taken as a minimally invasive examination and a promising surrogate to the clinically applied tissue-based test for the diagnosis and molecular analysis of cancer. Extracellular vesicles (EVs) carry complex molecular information from the tumor, allowing for the multicomponent analysis of cancer and would be beneficial to personalized medicine. In this review, the advanced nanomaterials and nanotechniques for the detection and molecular profiling of EVs, highlight the advantages of nanotechnology in the high-purity isolation and the high-sensitive and high-specific identification of EVs, are summarized. An outlook on the clinical application of nanotechnology-based liquid biopsy in the diagnosis, prognostication, and surveillance of cancer is also provided. It provides information for developing liquid biopsy based on EVs by discussing the advantages and challenges of functionalized nanomaterials and various nanotechnologies.
Collapse
Affiliation(s)
- Siyuan Ye
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Qing You
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shuya Song
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,Translational Medicine Center, Chinese Institute for Brain Research (CIBR), Beijing, 102206, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Ahghari MR, Amiri-Khamakani Z, Maleki A. Synthesis and characterization of Se doped Fe 3O 4 nanoparticles for catalytic and biological properties. Sci Rep 2023; 13:1007. [PMID: 36653396 PMCID: PMC9849448 DOI: 10.1038/s41598-023-28284-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
In this study, Se-doped Fe3O4 with antibacterial properties was synthesized using by a coprecipitation method. The chemistry and morphology of the Se doped Fe3O4 nanocomposite were characterized by energy-dispersive X-ray spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, vibrating sample magnetometry, and Brunauer-Emmett-Teller spectroscopy. The antibacterial activity of the Fe3O4/Se nanocomposite was examined against G+ (Gram-positive) and G- (Gram-negative) bacteria, in the order Staphylococcus aureus, Staphylococcus saprophyticus, Pseudomonas aeruginosa, Klebsiella pneumonia, and Escherichia coli, which are the most harmful and dangerous bacteria. Fe3O4/Se, as a heterogeneous catalyst, was successfully applied to the synthesis of pyrazolopyridine and its derivatives via a one-pot four-component reaction of ethyl acetoacetate, hydrazine hydrate, ammonium acetate, and various aromatic aldehydes. Fe3O4/Se was easily separated from the bacteria-containing solution using a magnet. Its admissible magnetic properties, crystalline structure, antibacterial activity, mild reaction conditions, and green synthesis are specific features that have led to the recommendation of the use of Fe3O4/Se in the water treatment field and medical applications. Direct Se doping of Fe3O4 was successfully realized without additional complicated procedures.
Collapse
Affiliation(s)
- Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Zeinab Amiri-Khamakani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
45
|
Vedarethinam V, Jeevanandam J, Acquah C, Danquah MK. Magnetic Nanoparticles for Protein Separation and Purification. Methods Mol Biol 2023; 2699:125-159. [PMID: 37646997 DOI: 10.1007/978-1-0716-3362-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Proteins are essential for various functions such as brain activity and muscle contraction in humans. Even though food is a source of proteins, the bioavailability of proteins in most foods is usually limited due to matrix interaction with other biomolecules. Thus, it is essential to extract these proteins and provide them as a nutraceutical supplement to maintain protein levels and avoid protein deficiency. Hence, protein purification and extraction from natural sources are highly significant in biomedical applications. Chromatography, crude mechanical disruption, use of extractive chemicals, and electrophoresis are some of the methods applied to isolate specific proteins. Even though these methods possess several advantages, they are unable to extract specific proteins with high purity. A suitable alternative is the use of nanoparticles, which can be beneficial in protein purification and extraction. Notably, magnetic iron and iron-based nanoparticles have been employed in protein extraction processes and can be reused via demagnetization due to their magnetic property, smaller size, morphology, high surface-to-volume ratio, and surface charge-mediated property. This chapter is a summary of various magnetic nanoparticles (MNPs) that can be used for the biomolecular separation of proteins.
Collapse
Affiliation(s)
- Vadanasundari Vedarethinam
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Caleb Acquah
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN, USA.
| |
Collapse
|
46
|
Design and preparation of proline, tryptophan and poly-l-lysine functionalized magnetic nanoparticles and their radiolabeling with 131I and 177Lu for potential theranostic use. Int J Pharm 2022; 628:122288. [DOI: 10.1016/j.ijpharm.2022.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/19/2022]
|
47
|
Amino functionalization of magnetic multiwalled carbon nanotubes with flexible hydrophobic spacer for immobilization of Candida rugosa lipase and application in biocatalytic production of fruit flavour esters ethyl butyrate and butyl butyrate. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Dong L, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty AM. A review on recent advances in the applications of composite Fe 3O 4 magnetic nanoparticles in the food industry. Crit Rev Food Sci Nutr 2022; 64:1110-1138. [PMID: 36004607 DOI: 10.1080/10408398.2022.2113363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.
Collapse
Affiliation(s)
- Lina Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agri-Produc-Product Quality and Safety, Ministry of Agriculture Rural Affairs China, Beijing, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control; Laboratory of Quality and Safety Risk Assessment for Vegetable Products, Ministry of Agriculture and Rural Affairs of China, Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
49
|
Hatami Giklou Jajan L, Hosseini SN, Abolhassani M, Ghorbani M. Progress in affinity ligand-functionalized bacterial magnetosome nanoparticles for bio-immunomagnetic separation of HBsAg protein. PLoS One 2022; 17:e0267206. [PMID: 35877673 PMCID: PMC9312401 DOI: 10.1371/journal.pone.0267206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Efficient Bio-immunomagnetic separation (BIMS) of recombinant hepatitis B surface antigen (rHBsAg) with high binding capacity was studied using affinity ligand immobilized bacterial magnetosome nanoparticles (Magnetospirillum gryphiswaldense strain MSR-1 bacteria) as an immunomagnetic sorbent. Our results showed immunomagnetic adsorption, acted by affinity interactions with the immobilized monoclonal antibody, offered higher antigen adsorption and desorption capacities as compared with the commercially available immunoaffinity sorbents. Four different ligand densities of the Hep-1 monoclonal antibody were examined during covalent immobilization on Pyridyl Disulfide-functionalized magnetosome nanoparticles for HBsAg immunomagnetic separation. The average of adsorption capacity was measured as 3 mg/ml in optimized immunomagnetic sorbent (1.056 mg rHBsAg/ml immunomagneticsorbent/5.5 mg of total purified protein) and 5mg/ml in immunoaffinity sorbent (0.876 mg rHBsAg/ml immunosorbent/5.5 mg total purified protein during 8 runs. Immunomagnetic sorbent demonstrated ligand leakage levels below 3 ng Mab/Ag rHBsAg during 12 consecutive cycles of immunomagnetic separation (IMS). The results suggest that an immunomagnetic sorbent with a lower ligand density (LD = 3 mg Mab/ml matrix) could be the best substitute for the immunosorbent used in affinity purification of r-HBsAg there are significant differences in the ligand density (98.59% (p-value = 0.0182)), adsorption capacity (97.051% (p-value = 0.01834)), desorption capacity (96.06% (p-value = 0.036)) and recovery (98.97% (p-value = 0.0231)). This study indicates that the immunosorbent approach reduces the cost of purification of Hep-1 protein up to 50% as compared with 5 mg Mab/ml immunoaffinity sorbent, which is currently used in large-scale production. As well, these results demonstrate that bacterial magnetosome nanoparticles (BMs) represent a promising alternative product for the economical and efficient immobilization of proteins and the immunomagnetic separation of Biomolecules, promoting innovation in downstream processing.
Collapse
Affiliation(s)
- Leila Hatami Giklou Jajan
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Seyed Nezamedin Hosseini
- Pasteur Institute of Iran, Dept. of Hepatitis B Vaccine Production, Research & Production Complex, Karaj, Iran
| | - Mohsen Abolhassani
- Pasteur Institute of Iran, Dept. of Immunology, Hybridoma Lab, Tehran, Iran
- * E-mail: (MG); (MA)
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Department of Research and Development, Production and Research Complex, Karaj, Iran
- * E-mail: (MG); (MA)
| |
Collapse
|
50
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|