1
|
Huang Z, Chen F, Yang S, Ding Y, Peng G, Chen CC. Surface physicochemical properties and dibutyl phthalate adsorption of microplastics naturally aged in seawater. MARINE POLLUTION BULLETIN 2025; 217:118064. [PMID: 40318259 DOI: 10.1016/j.marpolbul.2025.118064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Microplastics (MPs) are prevalent in marine environments and can adsorb contaminants from surrounding seawater, potentially transferring harmful chemicals through the food chain and raising ecological concerns. While the adsorption of aquatic pollutants by MPs has been intensively studied, research on phthalate esters (PAEs, common plasticizers frequently found in seawater) remains limited, primarily focusing on pristine MPs in artificial media. This study characterized the surface physicochemical properties of polyethylene (PE) and polystyrene (PS) MPs before and after natural aging for one week to three months off the coast, and investigated the adsorption isotherms of dibutyl phthalate (DBP, one of the most abundant PAEs in seawater) on these MPs in both natural seawater and ultrapure water. Surface characterization revealed significant alterations in MP surface characteristics due to natural aging, with morphologies and nanomechanical features varied by MP type and oxidation occurring after one-month aging. The best-performing Langmuir-Freundlich model suggested that DBP adsorption onto MPs involved multilayer processes on heterogeneous surfaces with varying adsorption energies. Further analysis indicated that PS had a higher DBP adsorption capacity than PE, attributed to its porous glassy structure and π-π interactions with DBP. The trivial impact of natural aging could relate to competing effects of increased roughness and the formation of polar oxygen-containing groups on aged MPs. The "salting-out" effect in natural seawater was likely impeded by free ion competition and MP aggregation under higher ionic strength. This study provides valuable insights into the interactions between MPs and their coexisting contaminants in marine environments.
Collapse
Affiliation(s)
- Zehui Huang
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shikun Yang
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen 361102, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Ciara Chun Chen
- College of Chemistry and Chemical Engineering, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Liu B, Li J, Ma X, Liu S, Yu Y. Tracing the influence of seasonal variation on bioaccumulation and trophodynamics of phthalate esters (PAEs) in marine food web: A case study in Bohai Bay, North China. MARINE POLLUTION BULLETIN 2025; 216:118051. [PMID: 40286415 DOI: 10.1016/j.marpolbul.2025.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The ubiquity of phthalate esters (PAEs) leads to public concerns about the safety of seafood consumption. However, their bioaccumulation and trophodynamics in marine food webs remain unclear, especially in different seasons. Herein, we collected 18 species (n = 135) in summer and 17 species (n = 146) in winter from Bohai Bay (BHB). ∑6PAEs in organisms in summer were significantly higher than those in winter. Di-(2-ethylhexyl) phthalate (DEHP) was the predominant PAE with a mean of 1112 ng·g-1 lipid weight (lw) and 375 ng·g-1 lw in summer and winter, respectively. The bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) of DEHP in summer were significantly higher than those in winter. A parabolic relationship was found between log Kow and log BAFlw or BSAFlw of PAEs. Food webs in two seasons were constructed based on the δ15N of each organism. Except for diethyl phthalate (DEP), other PAEs underwent biodilution and the biodilution of these PAEs was more obvious in summer compared to winter. Non-carcinogenic risks of 6 PAEs were negligible, but DEHP could pose incremental lifetime carcinogenic risks in some marine samples, especially in summer. This study provides insights into the seasonal variation of bioaccumulation and trophodynamics of PAEs.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China; Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Junjie Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xinyu Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Sixu Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Vignesh ER, Gireeshkumar TR, Arya KS, Nair MM, Rakesh PS, Jayadev BS, Asma Shirin PP. Phthalic acid esters as an ecological hazard to the coral reef ecosystems: A case study from the coral reef waters of the Lakshadweep Archipelago, Arabian Sea. MARINE POLLUTION BULLETIN 2025; 215:117866. [PMID: 40157213 DOI: 10.1016/j.marpolbul.2025.117866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025]
Abstract
Information regarding the sources, distribution and ecological implications of organic contaminants in the coral reef ecosystems is limited. Phthalic acid esters (PAEs) are toxic contaminants due to their endocrine-disrupting and carcinogenic properties. This study investigated the sources, distribution and ecological risk of PAEs (15 PAE congeners) in dissolved and particulate matter-bound forms present in the coral reefs of the Lakshadweep Archipelago. Samples (water and suspended particulate matter) collected from 24 stations of 4 coral islands (Perumal Par, Bangaram, Agatti and Kavaratti) during January and December 2022 were analysed for 15 PAE congeners. The concentration of PAEs was generally lower in coral reef waters than those reported worldwide. The dissolved PAEs (TDPAEs) ranged from 9.23 to 820.85 ng/L, and the particulate PAEs (TPPAEs) ranged from 642.90 to 28,315.45 ng/g. Principal component analysis (PCA) identified three major clusters: one cluster representing low molecular weight PAEs (cosmetic products), while the other two represented medium to high molecular weight PAEs (plastic products). The study region's risk quotient (RQ) values indicated a moderate to high ecological risk caused by di-isobutyl phthalate (DIBP) and di-n-butyl phthalate (DnBP) to crustaceans and fish and indirectly to human health. Therefore, this study strongly recommends regular, systematic monitoring and pollution assessment to avoid the environmental degradation of these fragile ecosystems. This baseline data on PAEs and their source apportionment can help develop mitigative measures for reducing organic contaminants in the coral reef environment.
Collapse
Affiliation(s)
- E R Vignesh
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - T R Gireeshkumar
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India.
| | - K S Arya
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India; Cochin University of Science and Technology, Kerala, India
| | - Midhun M Nair
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - P S Rakesh
- CSIR - National Institute of Oceanography, Regional Centre, Mumbai 400 053, India
| | - B S Jayadev
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| | - P P Asma Shirin
- CSIR - National Institute of Oceanography, Regional Centre, Kochi 682 018, India
| |
Collapse
|
4
|
Dulsat-Masvidal M, Ciudad C, Colomer-Vidal P, Infante O, Mateo R, Lacorte S. Assessing sediment contamination status in Important Bird and Biodiversity Areas in Spain. ENVIRONMENTAL RESEARCH 2025; 278:121716. [PMID: 40306453 DOI: 10.1016/j.envres.2025.121716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
River sediments constitute the physical habitat of aquatic ecosystems and are an important food resource for species and provide a source of life. Yet, sediments are also sinks of chemicals released from the many anthropogenic activities occurring along the river basin. The objective of this study is to determine the presence and risk of 52 legacy and emerging organic pollutants in sediments of 140 Important Bird and Biodiversity Areas (IBAs) located throughout the Spanish territory. In each IBAs, landscape observations including the existence of wastewater treatment plant (WWTP) discharges, picnic areas, landfills, agriculture, industry, urban areas, and human-generated waste (trash) abandoned in nature were recorded and served to determine the main pressures and impact. Sediments were analysed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). The total sum of contaminants in sediments ranged from 0.07 to 31076 ng/g and the most ubiquitous pollutants were polycyclic aromatic hydrocarbons (PAHs), DDTs, and polychlorinated biphenyls (PCBs), while plasticizers and organophosphate esters (OPEs) were detected at the highest concentration, likely due to their recent use and dumping of plastics associated with garbage. Currently used pesticides were seldom detected. The concentrations detected have been compared to sediment quality standards and Predicted No-Effect Concentrations (PNEC) to evaluate the potential risk for the aquatic ecosystem. Risk compounds and pollution hotspots have been identified and mapped. Threshold concentrations are provided to protect habitats and species that live in IBAs, and we highlight the need for sediment monitoring to preserve biodiversity.
Collapse
Affiliation(s)
- Maria Dulsat-Masvidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Carlos Ciudad
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Pere Colomer-Vidal
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Octavio Infante
- SEO/BirdLife, Melquiades Biencinto, 34, 28053, Madrid, Spain
| | - Rafael Mateo
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
5
|
Salazar-Remigio L, Ponce-Vélez G, Olivares-Rubio HF, Amador-Muñoz O, Márquez-García AZ, Ontiveros-Cuadras JF. Bisphenol and phthalate levels, sources, and hazard estimation in sediments from a reef system: First study in the southern Gulf of Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125888. [PMID: 39986562 DOI: 10.1016/j.envpol.2025.125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Bisphenols (BPs) and phthalate acid esters (PAEs) are emerging pollutants (EPs) associated with plastic pollution, as they are used in manufacturing processes and easily separated from these msaterials, accumulating in the sediments of coastal and marine ecosystems. This is the first report of the concentrations of BPs and PAEs in surface and trap sediments from a Protected Natural Area (PNA) of great biological, tourist, and economic importance in the southern Gulf of Mexico (GoM), the Veracruz Reef System National Park (VRSNP). ΣBPs in surface sediments were between 7.0 × 10-2 and 1.35 ng g-1, for ΣPAEs from 0.18 to 4.59 × 103 ng g-1, while in the trap sediments, the ΣPAEs were between 0.12 and 3.17 × 103 ng g-1. Plasticizer bisphenol A (BPA) showed the highest concentration (0.66 ng g-1), whereas di-butyl phthalate (DBP) for PAEs (2.58 × 103 ng g-1). PAEs were strongly associated with terrigenous sources, while BPs with urban and port activities. The ecotoxicological hazard was estimated from the sediments, where BPs had a low hazard level, and PAEs presented a moderate to high hazard level for the reef benthos, reflecting the enormous anthropogenic pressures on the VRSNP. This study contributes with the first scientifically and technically reliable records of EPs, necessary to influence the definition of effective strategies for coastal management and territorial planning of the basins that directly influence chemical pollution. These efforts are crucial for mitigating risk to biodiversity and ensuring the conservation of this PNA in the southern GoM.
Collapse
Affiliation(s)
- Laura Salazar-Remigio
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ave. Universidad No. 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Guadalupe Ponce-Vélez
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico.
| | - Hugo F Olivares-Rubio
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Cto. Exterior s/n Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Antonio Z Márquez-García
- Laboratorio de Geología, Departamento de Hidrobiología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico
| | - Jorge Feliciano Ontiveros-Cuadras
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| |
Collapse
|
6
|
Leite BA, Rossato B, Dorta DJ, Gravato C, Palma de Oliveira D. Exploring DiPP (diisopentyl phthalate) neurotoxicity and the detoxification process in zebrafish larvae - A Silent contaminant? ENVIRONMENTAL RESEARCH 2025; 269:120825. [PMID: 39800301 DOI: 10.1016/j.envres.2025.120825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/30/2025]
Abstract
Diisopentyl phthalate (DiPP) is present in many consumer goods, but can be absorbed into the human body, and can disrupt the endocrine system affecting reproductive health and fetal development. Studies revealed that biological samples of pregnant women in Brazil contained DiPP, raising even more the concerns about its usage. This study investigated how DiPP concentrations (12.5-1000 μg l-1) affect the different developmental stages (24, 48, 72, 120, and 144 hpf) of embryos and larvae of zebrafish. DiPP induced deleterious alterations in neuromuscular development and morphometry of organs, Low concentrations of DiPP decreased acetylcholinesterase and cellular energy allocation concomitantly with increased glutathione S-transferase. Zebrafish swimming period seemed to be decreased not only due to direct neurotoxicity, but also to less allocation of energy for behavioral purposes. Moreover, high concentrations of DiPP induced spinal deformities and developmental alterations specially of the eye and liver of larvae. These findings emphasize that DiPP exerts complex effects that should be considered when assessing its potential effects on health of humans and the total environment. The biomarkers and behavioral parameters showed to be good complimentary early-warning tools exhibiting a high sensitivity compared to FET.
Collapse
Affiliation(s)
- Bianca Arruda Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Rossato
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040901, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil
| | - Carlos Gravato
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Brazil.
| |
Collapse
|
7
|
Tang H, An L, Gao P, Teng Y, Cao X, Wang P, Wang B. Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125599. [PMID: 39732280 DOI: 10.1016/j.envpol.2024.125599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method. Compared with free CRL, Cys-CRL@GA@MAF-507 not only increased its relative activity to 1.66-fold as well as improved its thermostability to 247% at 30 °C, but also constructed a synergistic system of combined adsorption and biodegradation to remove PAEs. In actual water environment, Cys-CRL@GA@MAF-507 could adsorb 88.56% of dibutyl phthalate (DBP) within 5 min and degrade 94.6% of DBP within 48 h, respectively. Therefore, this research developed an innovative bifunctional enzyme@MOFs biocomposite with synergistic adsorption and biodegradation for the efficient removal of PAEs, which provides a new platform for the elimination of pollutants in environmental remediation and industrial application.
Collapse
Affiliation(s)
- Huiliang Tang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Lihua An
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Peng Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Yimeng Teng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Xiangying Cao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| | - Baojuan Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, 241000, Anhui, China.
| |
Collapse
|
8
|
Ask AV, Jaspers VLB, Zhang J, Asimakopoulos AG, Frøyland SH, Jolkkonen J, Prian WZ, Wilson NM, Sonne C, Hansen M, Öst M, Koivisto S, Eeva T, Vakili FS, Arzel C. Contaminants of emerging concern in an endangered population of common eiders (Somateria mollissima) in the Baltic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125409. [PMID: 39613177 DOI: 10.1016/j.envpol.2024.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments and pose a range of biological effects including endocrine disruption. Yet, knowledge of their occurrence in wildlife including seabirds remains scarce. We investigated the occurrence of selected bisphenols, benzophenones, phthalate metabolites, benzotriazoles, benzothiazoles, parabens, triclosan, and triclocarban in plasma of 18 breeding female common eiders (Somateria mollissima) from an endangered population in the Baltic Sea as most of these CECs have never before been examined in eiders. We sampled blood at the start (T1) and end (T2) of incubation to investigate concentration changes during incubation. As early- and late-breeding eiders tend to differ in how they finance reproduction (local vs stored nutrient reserves), we compared early and late breeders to assess whether CEC concentrations differed by breeding phenology. Of the 58 targeted CECs, 21 were detected in at least one female, with bisphenol A (BPA) and benzophenone-3 (BzP-3) occurring most frequently (T1: 78% and 61%; T2: 61% and 67%, respectively), while mono(2-ethyl-1-hexyl) phthalate (mEHP), BPA, and monoethyl phthalate (mEP) were detected in the highest concentrations (median concentrations 27.1, 12.7, and 11.2 ng/g wet weight, respectively, at T1). No CEC concentrations differed between early and late incubation. Late breeders had significantly higher concentrations of BzP-3, monomethyl phthalate (mMP), and mEP during early incubation (4.55 vs 1.24 ng/g ww, 7.05 vs 3.52, and 11.2 vs < limit of detection (LOD), respectively) and significantly higher concentrations of mMP and mEP during late incubation (6.16 vs
Collapse
Affiliation(s)
- Amalie V Ask
- Department of Biology, University of Turku, FI-20014, Turku, Finland.
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Sunniva H Frøyland
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Juho Jolkkonen
- Department of Biological and Environmental Science, FI-40014, University of Jyväskylä, Finland
| | - Wasique Z Prian
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Nora M Wilson
- Ab Bengtskär Oy, FI-25950, Rosala, Finland; Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), DK-4000, Roskilde, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark
| | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Sanna Koivisto
- Finnish Safety and Chemicals Agency, P.O. Box 66, FI-00521, Helsinki, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Farshad S Vakili
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Céline Arzel
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
9
|
Feng Y, Sun J, Zhang T, Zhang L, Li L, Guan A, Wang L, Huang X, Li W, Lu R. Selective and sensitive detection of dimethyl phthalate in water using ferromagnetic nanomaterial-based molecularly imprinted polymers and SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125064. [PMID: 39213805 DOI: 10.1016/j.saa.2024.125064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
To overcome the complicated pretreatment, low selectivity and low sensitivity detection associated with the detection of dimethyl phthalate (DMP), this study synthesized ferromagnetic nanomaterials that coupled with surface enhanced Raman scattering (SERS) and molecular imprinting polymers (MIPs). The pretreatment process can be simplified by ferromagnetic nanomaterials, then Fe3O4@SiO2@Ag@MIPs selectively adsorbing DMP can be achieved, and SERS can be applied for DMP detection with high sensitivity. As a control, the non-imprinted polymers (NIPs) Fe3O4@SiO2@Ag@NIPs were synthesized. Adsorption experiments results showed that the saturation adsorption amounts of Fe3O4@SiO2@Ag@MIPs is 36.74 mg/g with 40 mg/L DMP and Fe3O4@SiO2@Ag@NIPs is 17.45 mg/g. For DMP, Fe3O4@SiO2@Ag@MIPs have a greater affinity. In addition, after seven adsorption-desorption cycles the Fe3O4@SiO2@Ag@MIPs are reusable with approximately a 9.8 % loss in adsorption capacity. With an 8.7 × 10-9 M detection limit, DMP detection was performed by SERS, which revealed that the Raman intensities of the associated characteristic peak were linearly proportional to the DMP concentrations. As a result, the recovery rate of the testing artificial water varied from 87.9 % to 117 %. These outcomes show that the suggested technique for finding DMP in actual water samples is practical.
Collapse
Affiliation(s)
- Yang Feng
- School of Art and Design, Xijing University, Xi'an 710123, China
| | - Jingyi Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tingting Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lan Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lujie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Anzhe Guan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lingling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhuai Huang
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Weihua Li
- School of Environment and Energy Engineering, Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230022, China
| | - Rui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
10
|
Wang Y, Deng C, Wang X. Characterization of a novel salt- and solvent-tolerant esterase Dhs82 from soil metagenome capable of hydrolyzing estrogenic phthalate esters. Biophys Chem 2025; 316:107348. [PMID: 39531866 DOI: 10.1016/j.bpc.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Esterases that can function under extreme conditions are important for industrial processing and environmental remediation. Here, we report the identification of a salt- and solvent-tolerant esterase, Dhs82, from a soil metagenomic library. Dhs82 prefers short-chain p-nitrophenyl (p-NP) esters and exhibits enzymatic activity up to 1460 ± 61 U/mg towards p-NP butyrate. Meanwhile, Dhs82 can catalyze the hydrolysis of dialkyl phthalate esters, especially the widely-used diethyl phthalate (DEP), dipropyl phthalate (DPP) and di-n-butyl phthalate (DBP). Importantly, as an acidic protein with negative charges dominating its surface, Dhs82 is highly active and extraordinarily stable at high salinity. This property is quite rare among previously reported esterases/hydrolases capable of degrading phthalate esters (PAEs). In addition, Dhs82 activity can be significantly enhanced in the presence of solvents over a concentration range of 10-30 % (v/v). Notably, Dhs82 also showed high stability towards these solvents and solvent concentrations as high as 50-60 % (v/v) are required to inactivate Dhs82. Furthermore, molecular docking revealed the key residues, including the catalytic triad (Ser156, His281, and Asp251) and the surrounding Gly84 and Gly85, involved in the interaction of Dhs82 with DBP, depicting how Dhs82 degrades PAEs as a family IV esterase. Together, these diverse properties make Dhs82 a valuable candidate for both basic research and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyan Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunmei Deng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
11
|
Zhang S, Hou R, Wang Y, Huang Q, Lin L, Li H, Liu S, Jiang Z, Huang X, Xu X. Xenobiotic metabolism activity of gut microbiota from six marine species: Combined taxonomic, metagenomic, and in vitro transformation analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136152. [PMID: 39405686 DOI: 10.1016/j.jhazmat.2024.136152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
The xenobiotic metabolism driven by the gut microbiota significantly regulates the bioavailability and toxic effects of environmental pollutants such as plasticizers on aquatic organisms. However, it is still unknown whether the gut microbiota can exhibit variable metabolic ability across host species and which functional bacteria and genes are involved in xenobiotic transformation. This study investigated the enriched gut microbiota community composition and diversity of in vitro enrichment cultures from 6 marine species, namely, yellowfin seabream (Acanthopagrus latus), thorn fish (Terapon jarbua), shortnose ponyfish (Leiognathus brevirostris), mussel (Perna viridis), prawn (Parapenaeopsis hungerfordi) and crab (Charybdis riversandersoni). Pseudomonadota, Bacteroidota and Bacillota were the dominant phyla and Enterobacter, Raoultella, Klebsiella, Dysgonomanas and Lactococcus were the dominant genera in the enriched flora according to 16S rRNA sequencing. Furthermore, the metagenomic results revealed that all enriched gut microbiota presented metabolic genes for carbohydrates, amino acids, lipids, and xenobiotics. In particular, the gut microbiota of yellowfin seabream had the highest abundance of glycoside hydrolase family genes and CYP450 enzyme genes. Klebsiella was identified as a common potential degrader of xenobiotic metabolism. In addition, the Biolog plate test system confirmed that the gut microbiota can metabolize various carbon sources and drive the xenobiotic transformation. According to AWCD analysis of community level physiological profiling (CLPP), yellowfin seabream > mussel > prawn > shortnose ponyfish > crab > thorn fish. The gut microbiota of yellowfin seabream presented a stronger metabolic profile of phthalates and bisphenol analogs which reflected by their AWCD results and concentration variations. Overall, our results demonstrated the diverse metabolic abilities of the gut microbiota from six marine organisms and their potential for altering of the fate of xenobiotics in the ecosystem on the basis of combined taxonomic, metagenomic, and in vitro transformation analysis.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yuchen Wang
- College of Life Sciences and Engineering, Jinan University, Guangzhou 510632 China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
12
|
Khoshmanesh M, Farjadfard S, Ahmadi M, Ramavandi B, Fatahi M, Sanati AM. Review of toxicity and global distribution of phthalate acid esters in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175966. [PMID: 39245393 DOI: 10.1016/j.scitotenv.2024.175966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Organic additives are incorporated during the manufacturing of plastics, and these additives are gradually released into the environment from plastic debris. Among these, phthalate acid esters (PAEs) are the most prevalent. PAEs can be found in the atmosphere, aquatic ecosystems, terrestrial regions, soil, and within animal and human bodies. They are released from industrial activities and have a significant impact on the natural environment. This study reviews research on PAEs from various regions worldwide, with about 47.8 % of the studies published between 2020 and 2024. The highest concentrations of PAEs were detected in fish samples from rivers in Taiwan, ranging from 13.6 to 70.0 mg/kg dry weight. PAEs tend to accumulate more in benthic organisms and sediments. DEHP was the most prevalent PAE in fish samples, showing the highest levels and detection frequency among the analyzed PAEs. Some studies found a strong correlation (r2 = 0.85) between PAEs concentrations in fish and water. The findings of this study can help in assessing the fate and behavior of PAEs in the environment and provide a basis for developing future management strategies to control phthalate acid esters pollution in aquatic environments.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Mehdi Fatahi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
13
|
Yang H, Tu C, Hao Y, Li Y, Wang J, Yang J, Zhang L, Zhang Y, Yu J. Near-infrared light-driven lab-on-paper cathodic photoelectrochemical aptasensing for di(2-ethylhexyl)phthalate based on AgInS 2/Cu 2O/FeOOH photocathode. Talanta 2024; 276:126193. [PMID: 38735244 DOI: 10.1016/j.talanta.2024.126193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Di(2-ethylhexyl)phthalate (DEHP) is commonly released from plastics in aqueous environment, which can disrupt endocrine system and cause adverse effects on public health. There is a pressing need to highly sensitive detect DEHP. Herein, a near-infrared (NIR) light-driven lab-on-paper cathodic photoelectrochemical aptasensing platform integrated with AgInS2/Cu2O/FeOOH photocathode and "Y"-like ternary conjugated DNA nanostructure-mediated "ON-OFF" catalytic switching of hemin monomer-to-dimer was established for ultrasensitive DEHP detection. Profiting from the collaborative roles of the effective photosensitization of NIR-response AgInS2 and the fast hole extraction of FeOOH, the NIR light-activated AgInS2/Cu2O/FeOOH photocathode generated a markedly enhanced photocathodic signal. The dual hemin-labelled "Y"-like ternary conjugated DNA nanostructures made the hemin monomers separated in space and they maintained highly active to catalyze in situ generation of electron acceptors (O2). The hemin monomers were relocated in close proximity with the help of target-induced allosteric change of DNA nanostructures, which could spontaneously dimerize into catalytically inactive hemin dimers and fail to mediate electron acceptors generation, resulting in a decreased photocathodic signal. Therefore, the ultrasensitive DEHP detection was realized with a linear response range of 1 pM-500 nM and a detection limit of 0.39 pM. This work rendered a promising prototype to construct powerful paper-based photocathodic aptasensing system for sensitive and accurate screening of DEHP in aqueous environment.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, PR China
| | - Chuanyi Tu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuxin Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiajie Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, PR China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
14
|
Ladewig SM, Bartl I, Rindelaub JD, Thrush SF. Rapid effects of plastic pollution on coastal sediment metabolism in nature. Sci Rep 2024; 14:17963. [PMID: 39095589 PMCID: PMC11297177 DOI: 10.1038/s41598-024-68766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
While extensive research has explored the effects of plastic pollution, ecosystem responses remain poorly quantified, especially in field experiments. In this study, we investigated the impact of polyester pollution, a prevalent plastic type, on coastal sediment ecosystem function. Strips of polyester netting were buried into intertidal sediments, and effects on sediment oxygen consumption and polyester additive concentrations were monitored over 72-days. Our results revealed a rapid reduction in the magnitude and variability of sediment oxygen consumption, a crucial ecosystem process, potentially attributed to the loss of the additive di(2-ethylhexyl) phthalate (DEHP) from the polyester material. DEHP concentrations declined by 89% within the first seven days of deployment. However, effects on SOC dissipated after 22 days, indicating a short-term impact and a quick recovery by the ecosystem. Our study provides critical insights into the immediate consequences of plastic pollution on ecosystem metabolism in coastal sediments, contributing to a nuanced understanding of the temporal variation of plastic pollution's multifaceted impacts. Additionally, our research sheds light on the urgent need for comprehensive mitigation strategies to preserve marine ecosystem functionality from plastic pollution impacts.
Collapse
Affiliation(s)
- Samantha M Ladewig
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand.
| | - Ines Bartl
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand.
| | - Joel D Rindelaub
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Simon F Thrush
- Institute of Marine Science, The University of Auckland, Auckland, 1142, New Zealand
| |
Collapse
|
15
|
Alak G, Köktürk M, Atamanalp M. Phthalate migration potential in vacuum-packed fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50942-50951. [PMID: 39107639 DOI: 10.1007/s11356-024-34419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 09/01/2024]
Abstract
Phthalates or phthalate esters (PAEs) have become a serious concern due to their toxicity and risks of migration from contact materials to food matrices and the environment. The aim of this study is to monitor the possible migration potential of PAEs in pelagic fish stored in vacuum packaging depending on the storage time and to determine the polyethylene polymers. In order to achieve this goal, sea bass (Dicentrarchus labrax) and anchovy fish (Engraulis encrasicolus) were randomly packaged in vacuum bags and then stored for 90 days. Phthalate content was determined by GC/MS technique in the muscle tissue of each fish species at certain periods (0, 30, and 90 days) of storage, and on the first day in the packaging material and fish meat. As a result of the analysis performed in µ-Raman spectroscopy, no microplastics were detected in both fish species' meats. FTIR spectroscopy results of the packaging material determined nylon in the chemical content of the packaging material before processing. It has been determined that the chemical composition of the packaging used in the vacuum packaging process is affected by the temperature, depending on the storage period, and different polymer types are formed in the processed package material. It was determined that the dominant PAE homologues were Di-n-pentyl phthalate (DPENP) in both fish meat and Di-(2-ethylhexyl)-phthalate (DEHP) in the package. However, during storage, Dibutylphthalate (DBP) became dominant in anchovies and DPENP became dominant in sea bass, differing according to fish species and storage time.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, TR-25030, Turkey.
| | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, Igdir, TR-76000, Türkiye
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, Erzurum, TR-25030, Turkey
| |
Collapse
|
16
|
Ningthoujam R, Pinyakong O. Exploring di (2-ethylhexyl) phthalate degradation by a synthetic marine bacterial consortium: Genomic insights, pathway and interaction prediction, and application in sediment microcosms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134557. [PMID: 38735188 DOI: 10.1016/j.jhazmat.2024.134557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Di (2-ethylhexyl) phthalate (DEHP), a toxic phthalate ester (PAE) plasticizer, is often detected in marine sediment and biota. Our understanding of DEHP-degrading marine bacteria and the associated genetic mechanisms is limited. This study established a synthetic bacterial consortium (A02) consisting of three marine bacteria (OR05, OR16, and OR21). Consortium A02 outperformed the individual strains in DEHP degradation. Investigations into the degradation of DEHP intermediates revealed that OR05 and OR16 likely contributed to enhanced DEHP degradation by Consortium A02 via the utilization of DEHP intermediates, such as protocatechuic acid and mono (ethylhexyl) phthalate, with OR21 as the key DEHP degrader. A pathway of DEHP degradation by Consortium A02 was predicted based on genome analysis and experimental degradation. Bioaugmentation with Consortium A02 led to 80% DEHP degradation in 26 days in saline sediment (100 mg/kg), surpassing the 53% degradation by indigenous microbes, indicating the potential of A02 for treating DEHP-contaminated sediments. Meanwhile, bioaugmentation notably changed the bacterial community, with the exclusive presence of certain bacterial genera in the A02 bioaugmented microcosms, and was predicted to result in a more dynamic and active sediment bacterial community. This study contributes to the limited literature on DEHP degradation by marine bacteria and their associated genes.
Collapse
Affiliation(s)
- Ritu Ningthoujam
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
17
|
Hou B, Wang Y, Li B, Gong T, Wu J, Li J. Synthesis of novel L-lactic acid-based plasticizers and their effects on the flexibility, crystallinity, and optical transparency of poly(lactic acid). Int J Biol Macromol 2024; 273:132826. [PMID: 38825277 DOI: 10.1016/j.ijbiomac.2024.132826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Using bio-based plasticizers derived from biomass resources to replace traditional phthalates can avoid the biotoxicity and non-biodegradability caused by the migration of plasticizers during the application of plastics. In this study, L-lactic acid and levulinic acid were employed as the major biomass monomer to successfully fabricate L-lactic acid-based plasticizers (LBL-n, n = 1.0, 1.5, 2.0, 2.5) containing a diverse number of lactate groups. The plasticizing mechanism was explained, manifesting that L-lactic acid-based plasticizers containing a substantial number of lactate groups could effectively improve the flexibility of poly (lactic acid) (PLA), and the elongation at break was 590 %-750 %. Compared to LBL-1.5 plasticized-PLA films, the tensile strength and modulus of ketonized-LBL-1.5 (KLBL-1.5) plasticized-PLA films increased to 59 % and 163 %, indicating the ketal functionality of plasticizers enhanced the strength of PLA. Meanwhile, the increment of lactate groups and the introduction of the ketal group in the plasticizer increased the crystallization, migration, and volatilization stability of plasticized-PLA films and also kept their outstanding optical transparency. Besides, the biodegradability of KLBL-1.5 was investigated by active soil and Tenebrio molitor experiments, and its degradation products were characterized. The findings indicated that KLBL-1.5 was fully decomposed. Taken together, this paper offers new promise for developing high-efficiency and biodegradable plasticizers.
Collapse
Affiliation(s)
- Boyou Hou
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yanning Wang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bingjian Li
- Unipower Hydrogen Membrane Materials (Jiangsu) Research Institute Co., Ltd., China
| | - Tianyang Gong
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianming Wu
- Changshu Sanheng Building Material Co. Ltd, Changshu 215500, China
| | - Jinchun Li
- School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China; Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
18
|
Aldegunde-Louzao N, Lolo-Aira M, Herrero-Latorre C. Phthalate esters in clothing: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104457. [PMID: 38677495 DOI: 10.1016/j.etap.2024.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers to enhance the flexibility and durability of different consumer products, including clothing. However, concerns have been raised about the potential adverse health effects associated with the presence of phthalates in textiles, such as endocrine disruption, reproductive toxicity and potential carcinogenicity. Based on examination of more than 120 published articles, this paper presents a comprehensive review of studies concerning the phthalate content in clothing and other textile products, with special emphasis on those conducted in the last decade (2014-2023). The types and role of PAEs as plasticizers, the relevant legislation in different countries (emphasizing the importance of monitoring PAE levels in clothing to protect consumer health) and the analytical methods used for PAE determination are critically evaluated. The review also discusses the models used to evaluate exposure to PAEs and the associated health risks. Finally, the study limitations and challenges related to determining the phthalate contents of textile products are considered.
Collapse
Affiliation(s)
- Natalia Aldegunde-Louzao
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| | - Manuel Lolo-Aira
- Applied Mass Spectrometry Laboratory (AMSlab), Avda. Benigno Rivera, 56, Lugo 27003, Spain.
| | - Carlos Herrero-Latorre
- Research Institute on Chemical and Biological Analysis, Analytical Chemistry Nutrition and Bromatology Department, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, Lugo 27002, Spain.
| |
Collapse
|
19
|
Gambardella C, Miroglio R, Prieto Amador M, Castelli F, Castellano L, Piazza V, Faimali M, Garaventa F. High concentrations of phthalates affect the early development of the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116473. [PMID: 38781890 DOI: 10.1016/j.ecoenv.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.
Collapse
Affiliation(s)
- Chiara Gambardella
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | | | | | - Laura Castellano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, Genoa 16128, Italy
| | | | - Marco Faimali
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
20
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
21
|
Alak G, Köktürk M, Atamanalp M. Evaluation of phthalate migration potential in vacuum-packed. Sci Rep 2024; 14:7944. [PMID: 38575598 PMCID: PMC10995151 DOI: 10.1038/s41598-024-54730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/15/2024] [Indexed: 04/06/2024] Open
Abstract
In recent years, the presence and migration of PAEs in packaging materials and consumer products has become a serious concern. Based on this concern, the aim of our study is to determine the possible migration potential and speed of PAEs in benthic fish stored in vacuum packaging, as well as to monitor the storage time and type as well as polyethylene (PE) polymer detection.As a result of the analysis performed by µ-Raman spectroscopy, 1 microplastic (MP) of 6 µm in size was determined on the 30th day of storage in whiting fish muscle and the polymer type was found to be Polyethylene (PE) (low density polyethylene: LDPE). Depending on the storage time of the packaging used in the vacuum packaging process, it has been determined that its chemical composition is affected by temperature and different types of polymers are formed. 10 types of PAEs were identified in the packaging material and stored flesh fish: DIBP, DBP, DPENP, DHEXP, BBP, DEHP, DCHP, DNOP, DINP and DDP. While the most dominant PAEs in the packaging material were determined as DEHP, the most dominant PAEs in fish meat were recorded as BBP and the lowest as DMP. The findings provide a motivating model for monitoring the presence and migration of PAEs in foods, while filling an important gap in maintaining a safe food chain.
Collapse
Affiliation(s)
- Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey.
| | - Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Science, Igdir University, TR- 76000, Igdir, Turkey
| | - Muhammed Atamanalp
- Department of Aquaculture, Faculty of Fisheries, Ataturk University, TR-25030, Erzurum, Turkey
| |
Collapse
|
22
|
Patsiou D, Digka N, Galli M, Baini M, Fossi MC, Tsangaris C. Assessment of the impact of microplastic ingestion in striped red mullets from an Eastern Mediterranean coastal area (Zakynthos Island, Ionian Sea). MARINE ENVIRONMENTAL RESEARCH 2024; 196:106438. [PMID: 38479294 DOI: 10.1016/j.marenvres.2024.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Monitoring microplastics (MPs) in the marine environment is an ongoing process, and our understanding of their impact on marine organisms is limited. The present study evaluates the effects of ingested MPs on the marine MP pollution bioindicator fish species Mullus surmuletus. The study follows a three-fold approach to assess the impact of MPs on marine organisms by investigating: 1) the ingestion of MPs, 2) the bioaccumulation of phthalate compounds as plastic additives, and 3) the evaluation of toxicological biochemical and cellular biomarkers. Striped red mullets were sampled in the marine protected area (MPA) of the National Marine Park of Zakynthos and coastal sites with high touristic pressure in Zakynthos Island in the Ionian Sea, Greece. Fewer ingested MPs and lower phthalate concentrations were found in fish inside the MPA compared to those sampled outside the marine park. However, no relationship was found between either phthalate concentrations or biomarker levels with the ingested MPs in the red striped mullets. Biomarker levels were influenced by season and site, but no effect could be attributed to the ingested MPs. The lack of association of biomarker responses and plasticizer bioaccumulation to MP ingestion can be explained by the low number of ingested MPs in the fish from Zakynthos coastal area as MP abundance ranged from 0.15 to 0.55 items per individual fish.
Collapse
Affiliation(s)
- Danae Patsiou
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece.
| | - Nikoletta Digka
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece
| | - Matteo Galli
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Matteo Baini
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Catherine Tsangaris
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece
| |
Collapse
|
23
|
Xie Z, Zhang X, Liu F, Xie Y, Sun B, Wu J, Wu Y. First determination of elevated levels of plastic additives in finless porpoises from the South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133389. [PMID: 38185083 DOI: 10.1016/j.jhazmat.2023.133389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024]
Abstract
Plastic additives, such as organophosphate esters (OPEs) and phthalate esters (PAEs), are raising public concerns due to their widespread presence and potential health risks. Nonetheless, the occurrences and potential health risks of these additives in marine mammals remain limited. Here, we first investigated the accumulation patterns and potential risks of OPEs and metabolites of PAEs (mPAEs) in Indo-Pacific finless porpoises inhabiting the northern South China Sea (NSCS) during 2007-2020. The average hepatic concentrations of ∑15OPEs and ∑16mPAEs in the NSCS finless porpoises were 53.9 ± 40.7 and 98.6 ± 54.8 ng/g ww, respectively. The accumulation of mPAEs and OPEs in the finless porpoises is associated with the chemical structures of the compounds. ∑5halogenated-OPEs were the most dominant category (62.6%) of ∑15OPEs, followed by ∑6aryl-OPEs (25.9%) and ∑6nonhalogenated alkyl-OPEs (11.5%). The accumulation of mPAEs displayed a declining trend with increasing alkyl side chain length (C0-C10). Although the hepatic burden of mPAEs in finless porpoises was sex-independent, some OPEs, including TDCIPP, TBOEP, TCIPP, TCrP, TPHP, and TDBPP, exhibited significantly higher concentrations in adult males than in adult females. TDBPP, as a new-generation OPE, exhibited a gradual increase during the study period, suggesting that TDBPP should be prioritized for monitoring in the coastal regions of South China. The estimated hazard quotient indicated that almost all mPAEs and OPEs pose no hazard to finless porpoises, with only DEHP presenting potential health risks to both adult and juvenile finless porpoises.
Collapse
Affiliation(s)
- Zhenhui Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xiyang Zhang
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Fei Liu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yanqing Xie
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Bin Sun
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jiaxue Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Yuping Wu
- School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
24
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
25
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
26
|
Yan K, Liu X, Liu J, He C, Li J, Bai Q. Octadecyl-fibrous mesoporous silica nanospheres coated 96-blade thin-film microextraction for high-throughput analysis of phthalic acid esters in food and migration from food packages. J Chromatogr A 2024; 1716:464636. [PMID: 38219624 DOI: 10.1016/j.chroma.2024.464636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
A high-throughput sample pre-treatment method combined with high-performance liquid chromatography (HPLC) was developed to analyze phthalates (PAEs) in food and food contact package samples. Thin film microextraction (TFME) in 96-blade format was used to pre-treat 96 samples simultaneously. Octadecyl groups functionalized fibrous mesoporous silica nanospheres, namely C18-FMSNs, were synthesized and used as TFME coating material. The coating was fabricated by spraying a slurry of C18-FMSNs and polyacrylontrile (PAN) mixture with a commercial portable spraypen. The prepared C18-FMSNs/PAN coatings exhibited good reproducibility, repeatability and reusability. The optimized TFME conditions for PAEs consisted of extraction at pH 4.0 for 50 min, and desorption by methanol/acetonitrile (25/75, V/V) for 40 min. The pretreatment time for each sample was approximately 1.3 min. This TFME-HPLC method showed good linearity for eight PAEs within the concentration range of 0.5-1000 ng mL-1, with the coefficients higher than 0.9972. The limits of detection and quantification were 0.096-0.26 ng mL-1 and 0.32-0.86 ng mL-1, respectively. The intra-day and inter-day RSD % were below 6.6 % and 8.4 %, respectively, indicating good precision. The PAEs analysis in real samples showed that dibutyl phthalate (DBP) of 2.3 ± 0.3 ng mL-1 and di-(2-ethylhexyl) phthalate (DEHP) of 5.5 ± 0.8 ng mL-1 in boxed milk, dimethyl phthalate (DMP) of 12.6 ± 0.8 ng mL-1, DBP of 3.2 ± 0.4 ng mL-1and DEHP of 14.3 ± 0.7 ng mL-1 in the simulated water migration of plastic box, as well as DMP of 19.0 ± 0.6 ng mL-1, DBP of 25.6 ± 0.9 ng mL-1 and DEHP of 49.5 ± 2.8 ng mL-1 in the simulated ethanol migration of plastic box were determined, respectively. In addition, the detection of PAEs in all the real samples showed good recovery ranging from 85.6 to 110 % and lower RSDs % (<7.2 %).
Collapse
Affiliation(s)
- Kaiqi Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Xiangwei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Jiawei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.
| | - Chong He
- Shaanxi Institute of Product Quality Supervision and Inspection, Xi'an 710048, PR China
| | - Jian Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China
| | - Quan Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Modern Separation Science Key Laboratory of Shaanxi Province, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
27
|
Nomura M, Okamura H, Horie Y, Hadi MP, Nugroho AP, Ramaswamy BR, Harino H, Nakano T. Residues of non-phthalate plasticizers in seawater and sediments from Osaka Bay, Japan. MARINE POLLUTION BULLETIN 2024; 199:115947. [PMID: 38157830 DOI: 10.1016/j.marpolbul.2023.115947] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
NPPs (Non-phthalate plasticizers) are used as alternative plasticizers to phthalate esters, but there is limited knowledge on environmental residues, and they have not been reported in Japan. A method to analyze NPPs in seawater using solid-phase extraction was developed, and the residual burden of Diisobutyl adipate (DIBA), Acetyl tributyl citrate (ATBC), Di-(2-ethylhexyl) adipate (DEHA), Di-(2-ethylhexyl) sebacate (DEHS) and Trioctyl trimellitate (TOTM) in seawater and sediment from the Osaka Bay was measured. Using an Oasis Max column and acetone as the eluting solvent, the recovery of the target substances in seawater is >68 %. In Osaka Bay, no NPPs were detected in seawater. On the other hand, ATBC and TOTM were detected in the sediment at 36-69 ng/g and 47-131 ng/g, respectively, from about half of the 14 sites, while DEHA and DEHS were detected at 83 ng/g and 181 ng/g, respectively, from only one site.
Collapse
Affiliation(s)
- Miho Nomura
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Hideo Okamura
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan.
| | - Yoshifumi Horie
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| | - Mohammad Pramono Hadi
- Faculty of Geography, Universitas Gadjah Mada, Jl. Kaliurang, Sekip Utara, Sinduadi, Mlati, Sleman, Daerah Istimewa, Yogyakarta 55281, Indonesia
| | - Andhika Puspito Nugroho
- Faculty of Biology, Universitas Gadjah Mada, JL. Teknika Selatan, Sekip Utara, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia
| | - Babu Rajendran Ramaswamy
- Research Center for Inland Seas, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan; Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Hiroya Harino
- School of Human Sciences, Kobe College, 4-1 Okadayama, Nishinomiya, Hyogo 662-8505, Japan
| | - Takeshi Nakano
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe 658-0022, Japan
| |
Collapse
|
28
|
Baneshi M, Tonney-Gagne J, Halilu F, Pilavangan K, Sabu Abraham B, Prosser A, Kanchanadevi Marimuthu N, Kaliaperumal R, Britten AJ, Mkandawire M. Unpacking Phthalates from Obscurity in the Environment. Molecules 2023; 29:106. [PMID: 38202689 PMCID: PMC10780137 DOI: 10.3390/molecules29010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Phthalates (PAEs) are a group of synthetic esters of phthalic acid compounds mostly used as plasticizers in plastic materials but are widely applied in most industries and products. As plasticizers in plastic materials, they are not chemically bound to the polymeric matrix and easily leach out. Logically, PAEs should be prevalent in the environment, but their prevalence, transport, fate, and effects have been largely unknown until recently. This has been attributed, inter alia, to a lack of standardized analytical procedures for identifying them in complex matrices. Nevertheless, current advancements in analytical techniques facilitate the understanding of PAEs in the environment. It is now known that they can potentially impact ecological and human health adversely, leading to their categorization as endocrine-disrupting chemicals, carcinogenic, and liver- and kidney-failure-causing agents, which has landed them among contaminants of emerging concern (CECs). Thus, this review article reports and discusses the developments and advancements in PAEs' standard analytical methods, facilitating their emergence from obscurity. It further explores the opportunities, challenges, and limits of their advancements.
Collapse
Affiliation(s)
- Marzieh Baneshi
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Jamey Tonney-Gagne
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Fatima Halilu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Kavya Pilavangan
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Ben Sabu Abraham
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- Engineering Co-op Intern, Dalhousie University, 1334 Barrington Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Ava Prosser
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Nikaran Kanchanadevi Marimuthu
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
- MITACS Globalink Intern, Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 14, Tamil Nadu 641 014, India
| | - Rajendran Kaliaperumal
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Allen J. Britten
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| | - Martin Mkandawire
- Department of Chemistry, School of Science and Technology, Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, Canada (F.H.); (K.P.); (B.S.A.); (A.P.); (N.K.M.); (R.K.); (A.J.B.)
| |
Collapse
|
29
|
Yan Y, Yang B, Ji G, Lu K, Zhao Z, Zhang H, Xia M, Wang F. Tunable zirconium-based metal organic frameworks synthesis for dibutyl phthalate efficient removal: An investigation of adsorption mechanism on macro and micro scale. J Colloid Interface Sci 2023; 650:222-235. [PMID: 37402328 DOI: 10.1016/j.jcis.2023.06.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
The tunable porous structure of metal organic frameworks (MOFs) plays a crucial role in determining their adsorption performance. In this study, we developed and employed a strategy involving monocarboxylic acid assistance to synthesize a series of zirconium-based MOFs (UiO-66-F4) for the removal of aqueous phthalic acid esters (PAEs). The adsorption mechanisms were investigated by combining batch experiments, characterization and theoretical simulation. By adjusting the affecting factors (i.e., initial concentration, pH values, temperature, contact time and interfering substance), the adsorption behavior was confirmed as a spontaneous and exothermic chemisorption process. The Langmuir model provided a good fit, and the maximum expected adsorption capacity of di-n-butyl phthalate (DnBP) on UiO-66-F4(PA) was calculated to be 530.42 mg·g-1. Besides, through carrying out the molecular dynamics (MD) simulation, the multistage adsorption process in the form of DnBP clusters was revealed on a microcosmic scale. The independent gradient model (IGM) method showed the types of weak interactions of inter-fragments or between DnBP and UiO-66-F4. Furthermore, the synthesized UiO-66-F4 displayed excellent removal efficiency (>96 % after 5 cycles), satisfactory chemical stability and reusability in the regeneration process. Hence, the modulated UiO-66-F4 will be regarded as a promising adsorbent for PAEs separation. This work will provide referential significance in tunable MOFs development and actual applications of PAEs removal.
Collapse
Affiliation(s)
- Yanghao Yan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Baogang Yang
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Guangwei Ji
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiren Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongling Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
30
|
Lorre E, Bianchi F, Vybernaite-Lubiene I, Mėžinė J, Zilius M. Phthalate esters delivery to the largest European lagoon: Sources, partitioning and seasonal variations. ENVIRONMENTAL RESEARCH 2023; 235:116667. [PMID: 37453508 DOI: 10.1016/j.envres.2023.116667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Phthalate esters (PAEs) due to their ability to leach from plastics, widely used in our daily life, are intensely accumulating in wastewater water treatment plants (WWTP) and rivers, before being exported to downstream situated estuarine systems. This study aimed to investigate the external sources of eight plasticizers to the largest European lagoon (the Curonian Lagoon, south-east Baltic Sea), focusing on their seasonal variation and transport behaviour through the partitioning between dissolved and particulate phases. The obtained results were later combined with hydrological inputs at the inlet and outlet of the lagoon to estimate system role in regulating the transport of pollutants to the sea. Plasticizers were detected during all sampling events with a total concentration ranging from 0.01 to 6.17 μg L-1. Di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAEs and was mainly found attached to particulate matter, highlighting the importance of this matrix in the transport of such contaminant. Dibutyl phthalate (DnBP) and diisobutyl phthalate (DiBP) were the other two dominant PAEs found in the area, mainly detected in dissolved phase. Meteorological conditions appeared to be an important factor regulating the distribution of PAEs in environment. During the river ice-covered season, PAEs concentration showed the highest value suggesting the importance of ice in the retention of PAEs. While heavy rainfall impacts the amount of water delivered to WWTP, there is an increase of PAEs concentration supporting the hypothesis of their transport via soil leaching and infiltration into wastewater networks. Rainfall could also be a direct source of PAEs to the lagoon resulting in net surplus export of PAEs to the Baltic Sea.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | | | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania; University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
31
|
Métais I, Perrein-Ettajani H, Mouloud M, Roman C, Le Guernic A, Revel M, Tramoy R, Caupos E, Boudahmane L, Lagarde F, Le Bihanic F, Gasperi J, Châtel A. Effect of an environmental microplastic mixture from the Seine River and one of the main associated plasticizers, dibutylphthalate, on the sentinel species Hediste diversicolor. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106159. [PMID: 37683560 DOI: 10.1016/j.marenvres.2023.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The aim of this study was to explore the adverse effects of a microplastic (MP) mixture obtained from litter accumulated in the Seine River (France) compared to those of their major co-plasticizer, dibutylphthalate (DBP), on the sentinel species Hediste diversicolor. A suite of biomarkers has been investigated to study the impacts of MPs (100 mg kg-1 sediment), DBP (38 μg kg-1 sediment) on worms compared to non-exposed individuals after 4 and 21 days. The antioxidant response, immunity, neurotoxicity and energy and respiratory metabolism were investigated using biomarkers. After 21 days, worms exposed to MPs showed an increasing aerobic metabolism, an enhancement of both antioxidant and neuroimmune responses. Energy-related biomarkers demonstrated that the energy reallocated to the defence system may come from proteins. A similar impact was depicted after DBP exposure, except for neurotoxicity. Our results provide a better understanding of the ecotoxicological effects of environmental MPs and their associated-contaminants on H. diversicolor.
Collapse
Affiliation(s)
- Isabelle Métais
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France.
| | | | - Mohammed Mouloud
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Coraline Roman
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Antoine Le Guernic
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| | - Messika Revel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France; UniLaSalle - Ecole des Métiers de L'Environnement, CYCLANN, Campus de Ker Lann, F-35170, Bruz, France
| | - Romain Tramoy
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Emilie Caupos
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | - Lila Boudahmane
- Université Paris Est Créteil, LEESU, F-94010, Créteil, France; Ecole des Ponts, LEESU, F-77455, Champs-sur-Marne, France
| | | | | | - Johnny Gasperi
- Université Gustave Eiffel, GERS-LEE, F-44344, Bouguenais, France
| | - Amélie Châtel
- Université Catholique de L'Ouest, Laboratoire BIOSSE UCO, F-49000, Angers, France
| |
Collapse
|
32
|
Ma Y, Mu X, Gao R, Zhang Y, Geng Y, Chen X, Yin X, Li F, He J. Maternal exposure to dibutyl phthalate regulates MSH6 crotonylation to impair homologous recombination in fetal oocytes. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131540. [PMID: 37167869 DOI: 10.1016/j.jhazmat.2023.131540] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Homologous recombination (HR) during early oogenesis repairs programmed double-strand breaks (DSBs) to ensure female fertility and offspring health. The exposure of fetal ovaries to endocrine disrupting chemicals (EDCs) can cause reproductive disorders in the adulthood. The EDC dibutyl phthalate (DBP) is widely distributed in flexible plastic products, leading to ubiquitous human exposure. Here, we report that maternal exposure to DBP caused gross aberrations in meiotic prophase I of fetal oocytes, including delayed progression, impaired DNA damage response, uncoupled localization of DMC1 and RAD51, and decreased HR. However, programmed DSBs were efficiently repaired. DBP exposure negatively regulated lysine crotonylation (Kcr) of MSH6. Similar meiotic defects were observed in fetal ovaries with targeted disruption of Msh6, and mutation of K544cr of MSH6 impaired its association with Ku70, thereby promoting non-homologous end joining (NHEJ) and inhibiting HR. Unlike mature F1 females, F2 female mice exhibited premature follicular activation, precocious puberty, and anxiety-like behaviors. Therefore, DBP can influence early meiotic events, and Kcr of MSH6 may regulate preferential induction of HR or NHEJ for DNA repair during meiosis.
Collapse
Affiliation(s)
- Yidan Ma
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xinyi Mu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Rufei Gao
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yan Zhang
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuemei Chen
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Xin Yin
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Fangfang Li
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Junlin He
- Department of Health Toxicology, School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
33
|
Neves RAF, Miralha A, Guimarães TB, Sorrentino R, Marques Calderari MRC, Santos LN. Phthalates contamination in the coastal and marine sediments of Rio de Janeiro, Brazil. MARINE POLLUTION BULLETIN 2023; 190:114819. [PMID: 36965266 DOI: 10.1016/j.marpolbul.2023.114819] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Coastal and marine environments have been strongly influenced by anthropogenic activities, which may lead to high concentrations of different pollutants in sediments. Our study aimed to assess sediment contamination by polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs) and bisphenol A (BPA) in nine coastal and marine environments at Rio de Janeiro-Brazil. Physical and chemical water variables, grain-size parameters, moisture, and organic-matter content in sediments were assessed by sampling station. Multivariate analysis evidenced environmental differences between coastal lagoon and oceanic beaches, mostly influenced by marine waters. Differences among bay's beaches were mostly evidenced by sediment characteristics. PAHs and BPA were not detected in samples. For the first time, PAEs were found in sediments at Rio de Janeiro coast (South Atlantic). DEHP was detected in all coastal and marine environments, DBP was found in coastal lagoon and three marine environments. DnOP and DINP were solely found in the coastal lagoon.
Collapse
Affiliation(s)
- Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, UNIRIO, Brazil.
| | - Agatha Miralha
- Graduate Program in Neotropical Biodiversity (PPGBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, UNIRIO, Brazil
| | - Tâmara B Guimarães
- Graduate Program in Neotropical Biodiversity (PPGBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, UNIRIO, Brazil
| | - Rayane Sorrentino
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | | | - Luciano N Santos
- Graduate Program in Neotropical Biodiversity (PPGBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Laboratory of Theoretical and Applied Ichthyology (LICTA), UNIRIO, Brazil
| |
Collapse
|
34
|
Castro Ó, Borrull S, Riu J, Gimeno-Monforte S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ, Pocurull E, Borrull F. Seafood consumption as a source of exposure to high production volume chemicals: A comparison between Catalonia and the Canary Islands. Food Chem Toxicol 2023; 175:113729. [PMID: 36925040 DOI: 10.1016/j.fct.2023.113729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Seafood plays an important role in diet because of its health benefits. However, the fact that chemical compounds such as high production volume chemicals may be present in seafood means that its consumption can be a potential risk for population. To assess the occurrence of HPVs and estimate the exposure and risk associated with their consumption, specimens of the most consumed seafood species in Catalonia and the Canary Islands, Spain, were collected and analysed. Results showed higher levels of HPVs in samples from Catalonia and a prevalence of phthalate esters and benzenesulfonamides over the other target compounds in samples from both locations. Multivariate analysis showed spatial differences between the mean concentration profiles of HPVs for the samples from Catalonia and the Canary Islands. Exposures were higher for the samples from Catalonia, although the intake of HPVs via seafood was not of any real concern in either of the locations.
Collapse
Affiliation(s)
- Óscar Castro
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Sílvia Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Jordi Riu
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Sandra Gimeno-Monforte
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Eva Pocurull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| |
Collapse
|
35
|
Tranganida A, Hall AJ, Armstrong HC, Moss SEW, Bennett KA. Consequences of in vitro benzyl butyl phthalate exposure for blubber gene expression and insulin-induced Akt activation in juvenile grey seals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120688. [PMID: 36402420 DOI: 10.1016/j.envpol.2022.120688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Plastic and plasticiser pollution of marine environments is a growing concern. Although phthalates, one group of plasticisers, are rapidly metabolised by mammals, they are found ubiquitously in humans and have been linked with metabolic disorders and altered adipose function. Phthalates may also present a threat to marine mammals, which need to rapidly accumulate and mobilise their large fat depots. High molecular weight (HMW) phthalates may be most problematic because they can accumulate in adipose. We used blubber explants from juvenile grey seals to examine the effects of overnight exposure to the HMW, adipogenic phthalate, benzyl butyl phthalate (BBzP) on expression of key adipose-specific genes and on phosphorylation of Akt in response to insulin. We found substantial differences in transcript abundance of Pparγ, Insig2, Fasn, Scd, Adipoq and Lep between moult stages, when animals were also experiencing differing mass changes, and between tissue depths, which likely reflect differences in blubber function. Akt abundance was higher in inner compared to outer blubber, consistent with greater metabolic activity in adipose closer to muscle than skin, and its phosphorylation was stimulated by insulin. Transcript abundance of Pparγ and Fasn (and Adipoq in some animals) were increased by short term (30 min) insulin exposure. In addition, overnight in vitro BBzP exposure altered insulin-induced changes in Pparγ (and Adipoq in some animals) transcript abundance, in a tissue depth and moult stage-specific manner. Basal or insulin-induced Akt phosphorylation was not changed. BBzP thus acted rapidly on the transcript abundance of key adipose genes in an Akt-independent manner. Our data suggest phthalate exposure could alter seal blubber development or function, although the whole animal consequences of these changes are not yet understood. Knowledge of typical phthalate exposures and toxicokinetics would help to contextualise these findings in terms of phthalate-induced metabolic disruption risk and consequences for marine mammal health.
Collapse
Affiliation(s)
- Alexandra Tranganida
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK; Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK
| | - Holly C Armstrong
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK; Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK; School of Psychology and Neuroscience, University of St Andrews, KY16 9JP, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, KY16 8LB, UK
| | - Kimberley A Bennett
- Division of Health Science, School of Applied Sciences, Abertay University, Dundee, DD1 1HG, UK.
| |
Collapse
|
36
|
Relationship between shellfish consumption and urinary phthalate metabolites: Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017). Ann Occup Environ Med 2023; 35:e2. [PMID: 36925631 PMCID: PMC10011409 DOI: 10.35371/aoem.2023.35.e2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 02/16/2023] Open
Abstract
Background Phthalates are endocrine disrupting chemicals that are widely used in the production of items of daily life such as in polyvinylchloride plastics, insecticides, and medical devices. This study aimed to determine the association between phthalate exposure and shellfish consumption using data from the Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017), which is a nationally representative survey. Methods In this study, we analyzed the KoNEHS cycle 3 data of 3,333 (1,526 men and 1,807 women) adults aged more than 19 years. Data related to the variables of sociodemographic factors, health-related behaviors, dietary factors, seafood consumption frequency, and urinary phthalate metabolites concentrations were collected. The concentrations of urinary phthalate metabolites of all the participants were divided into quartiles to define high and low concentration groups based on the 75th percentile concentration. A χ2 test was conducted to analyze the distribution of independent variables. To analyze the relationship between shellfish consumption and phthalate exposure, the odds ratios (ORs) were calculated using logistic regression analysis. Results Total adults with shellfish consumption frequency of over once a week showed the following adjusted ORs for high concentrations of the following metabolites compared with the group that consumed shellfish once a week or less: 1.43 (95% confidence interval [CI]: 1.01-2.06) for mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), 1.43 (95% CI: 1.01-2.03) for mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), 1.57 (95% CI: 1.10-2.24) for ∑di-2-ethylhexyl phthalate (∑DEHP), 2.01 (95% CI: 1.46-2.77) for mono-carboxyoctyl phthalate (MCOP), 1.56 (95% CI: 1.11-2.18) for mono-carboxy-isononly phthalate (MCNP), and 2.57 (95% CI: 1.85-3.56) for mono (3-carboxypropyl) phthalate (MCPP). Conclusions The concentrations of urinary phthalate metabolites (MEOHP, MECPP, ∑DEHP, MCOP, MCNP, and MCPP) were higher in adults with a higher frequency of shellfish consumption.
Collapse
|
37
|
Ningthoujam R, Satiraphan M, Sompongchaiyakul P, Bureekul S, Luadnakrob P, Pinyakong O. Bacterial community shifts in a di-(2-ethylhexyl) phthalate-degrading enriched consortium and the isolation and characterization of degraders predicted through network analyses. CHEMOSPHERE 2023; 310:136730. [PMID: 36209845 DOI: 10.1016/j.chemosphere.2022.136730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used and toxic phthalate plasticizer that is widely reported in marine environments. Degradation of DEHP by bacteria from several environments have been studied, but little is known about marine sediment bacteria that can degrade DEHP and other phthalate plasticizers. Therefore, in this study, we enriched a bacterial consortium C10 that can degrade four phthalate plasticizers of varying alkyl chain lengths (DEHP, dibutyl phthalate, diethyl phthalate, and dimethyl phthalate) from marine sediment. The major bacterial genera in C10 during degradation of the phthalate plasticizers were Glutamicibacter, Ochrobactrum, Pseudomonas, Bacillus, Stenotrophomonas, and Methylophaga. Growth of C10 on DEHP intermediates (mono-ethylhexyl phthalate, 2-ethylhexanol, phthalic acid, and protocatechuic acid) was studied and these intermediates enhanced the Brevibacterium, Ochrobactrum, Achromobacter, Bacillus, Sporosarcina, and Microbacterium populations. Using a network-based approach, we predicted that Bacillus, Stenotrophomonas, and Microbacterium interacted cooperatively and were the main degraders of phthalate plasticizers. Through selective isolation techniques, we obtained twenty isolates belonging to Bacillus, Microbacterium, Sporosarcina, Micrococcus, Ochrobactrum, Stenotrophomonas, Alcaligenes, and Cytobacillus. The best DEHP-degraders were Stenotrophomonas acidaminiphila OR13, Microbacterium esteraromaticum OR16, Sporosarcina sp. OR19, and Cytobacillus firmus OR20 (83.68%, 59.1%, 43.4%, and 40.6% degradation of 100 mg/L DEHP in 8 d), which agrees with the prediction of key degraders. This is the first report of DEHP degradation by all four bacteria and, thus, our findings reveal as yet unknown PAE-degradation capabilities of marine sediment bacteria. This study provides insights into how bacterial communities adapt to degrade or resist the toxicities of different PAEs and demonstrates a simple approach for the prediction and isolation of potential pollutant degraders from complex and dynamic bacterial communities.
Collapse
Affiliation(s)
- Ritu Ningthoujam
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Meyawee Satiraphan
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pontipa Luadnakrob
- Southeast Asian Fisheries Development Center/Training Department, Samut Prakan, Thailand
| | - Onruthai Pinyakong
- Center of Excellence in Microbial Technology for Marine Pollution Treatment (MiTMaPT), Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
38
|
Squillante J, Scivicco M, Ariano A, Nolasco A, Esposito F, Cacciola NA, Severino L, Cirillo T. Occurrence of phthalate esters and preliminary data on microplastics in fish from the Tyrrhenian sea (Italy) and impact on human health. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120664. [PMID: 36395911 DOI: 10.1016/j.envpol.2022.120664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 05/25/2023]
Abstract
Phthalic acid esters (PAEs) are chemical pollutants widely distributed in the marine environment. They can accumulate in biota, posing a risk to the marine ecosystem and humans. The aim of this study was to measure the content of PAEs in the gills and muscles of three fish species (Mugil cephalus, Diplodus annularis, and Mullus barbatus) caught along the coast of Campania (Italy), as well as to ascertain the dietary exposure to PAEs through the consumption of fish. Secondly, a preliminary insight into microplastics (MPs) pollution in this area was provided through the analysis of Mugil cephalus organs. Solid-phase extraction (SPE) and gas chromatography-mass spectrometry (GC-MS) were used for the PAEs analysis, while an Fourier-transform infrared (FTIR) microscope was used to detect MPs after a pre-digestion of the samples. Risk assessment was based on estimated daily intake (EDI) and lifetime cancer risk (LTCR). The results showed higher bioaccumulation of PAEs in Mullus barbatus than in the other two species and higher concentration in gills than in muscles. MPs (polyamide, polypropylene, and high-density polyethylene) were detected in half of the gill samples, but no particle was detected in the muscle samples of Mugil cephalus. A low carcinogenic and non-carcinogenic risk from the consumption of fish emerged, although a potential risk for the development of cancer was found in the worst-case, especially in toddlers. In conclusion, this study provides insight into PAEs pollution in the Tyrrhenian Sea (Italy), their distribution in fish with different behaviors, and the potential risk to the consumer. Moreover, the data on pollution by MPs in this area could form the basis for future studies.
Collapse
Affiliation(s)
- Jonathan Squillante
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100 - 80055 Portici, Naples, Italy
| | - Marcello Scivicco
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Andrea Ariano
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Agata Nolasco
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100 - 80055 Portici, Naples, Italy
| | - Francesco Esposito
- Department of Public Health, University of Naples Federico II, via Sergio Pansini, 5 - 80131 Naples, Italy.
| | - Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Lorella Severino
- Department of Veterinary Medicine and Animal Production, Division of Toxicology, University of Naples Federico II, Via Delpino 1, 80137 Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, via Università, 100 - 80055 Portici, Naples, Italy
| |
Collapse
|