1
|
Ling H, Xiao S, Lei Y, Zhou Y, Tan J, Chen X, Ma D, Liang C, Liu Q, Liu W, Zeng T. The advancement of ubiquitination regulation in apoptosis, ferroptosis, autophagy, drug resistance and treatment of cancer. Arch Biochem Biophys 2025; 771:110497. [PMID: 40499632 DOI: 10.1016/j.abb.2025.110497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/12/2025] [Accepted: 06/01/2025] [Indexed: 06/16/2025]
Abstract
Ubiquitination, a crucial post-translational modification, significantly influences cancer initiation and progression. This review emphasizes its roles in programmed cell death (including apoptosis, ferroptosis, and autophagy), drug resistance, and cancer therapy. In cell death pathways, ubiquitination through K48 and K63 linkages regulates proteins such as Bcl-2, ACSL4, and p62, thereby affecting cancer cell survival. The dysregulation of ubiquitin-specific proteases (USPs), such as USP1 and USP22, leads to uncontrolled cell cycle progression and abnormal DNA repair, which promotes tumorigenesis. In the context of drug resistance, ubiquitination modifies ABC transporters and DNA repair enzymes, facilitating chemotherapy resistance. Additionally, the inhibition of ferroptosis and autophagy-related ubiquitination allows cancer cells to evade apoptosis. In immunotherapy, ubiquitination plays a role in the degradation of PD-1 and PD-L1, as well as in antigen presentation, thereby shaping the immune microenvironment. Therapeutic strategies, including proteasome inhibitors, E3 ligase inhibitors, and PROTACs show promise. Targeting USPs or employing stress-responsive PROTACs may help overcome resistance, with combination therapies emerging as a key area of research. Future studies should aim to clarify the dynamics of the ubiquitination network, develop selective inhibitors, and explore precision medicine for clinical applications.
Collapse
Affiliation(s)
- Hui Ling
- Cancer Research Institute, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Shuyao Xiao
- Cancer Research Institute, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yalin Lei
- Cancer Research Institute, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujie Zhou
- 2022 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaying Tan
- 2021 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaojie Chen
- 2021 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Da Ma
- 2021 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Can Liang
- 2021 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qingyi Liu
- 2022 Department of Oral Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Wei Liu
- 2022 Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Tiebing Zeng
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Thakur V, Thakur VS, Wang D, de Freitas JT, Bianchi A, Nivelo LA, Umland O, Welford SM, Bedogni B. Co-inhibition of Notch1 and ChK1 triggers genomic instability and melanoma cell death increasing the lifespan of mice bearing melanoma brain metastasis. J Exp Clin Cancer Res 2025; 44:163. [PMID: 40437523 PMCID: PMC12117938 DOI: 10.1186/s13046-025-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/06/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Melanoma brain metastases (MBM) are a leading cause of death in patients with advanced disease. MBM treatment relay on targeted and immunotherapy and on stereotactic radiosurgery as gold standard. Life expectancy has improved significantly with these therapies however, targeted therapy is short lived and only about half of the patients respond to immunotherapy, while radiation is limited by melanoma cells intrinsic resistance to DNA damage. New therapeutic approaches are therefore needed to treat MBM. Here we investigate a new role of Notch1 in genomic instability and demonstrate that blockade of both Notch1 and the DNA repair factor ChK1 causes extensive DNA damage and tumor cell death increasing survival in MBM bearing mice. METHODS Anti-Notch1 (anti-N1) was previously described. Prexaserib, a ChK1 inhibitor, is currently in clinical trials. K457 and A375 melanoma cells were used. RNA sequencing was performed in K457 cells treated with anti-N1 and Gene Set Enrichment Analysis performed. DNA damage was evaluated by a DNA fiber assay to assess replication fork speed; and γH2AX foci count and neutral comet assay to quantify double strand breaks. Cell survival was evaluated by trypan blue and a colony formation assay. Luciferase expressing A375 cells were orthotopically inoculated in the right cerebral cortex of athymic nude mice, for in vivo evaluation of a therapy with anti-N1 and prexasertib. Survival was assessed by Kaplan-Meyer survival curves and significance assessed by a Log-rank test. RESULTS Notch1 blockade caused genomic instability by reducing histone availability, leading to DNA replication stress and DNA damage. This in turn, resulted in the activation of the DNA Damage Response pathway ATR/ChK1 to counter the damage. Co-inhibition of Notch1, via anti-N1, and ChK1, via prexasertib (prex), exacerbated DNA damage increasing melanoma cell death. Importantly, combination anti-N1/prex significantly improved survival of mice bearing MBMs. CONCLUSIONS A therapy with anti-N1/prexasertib could represent a novel treatment strategy, alone or in combination with current treatment regimens, for melanoma brain metastases.
Collapse
Affiliation(s)
- Varsha Thakur
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Vijay S Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Dazhi Wang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Juliano Tiburcio de Freitas
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Anna Bianchi
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Luis Alberto Nivelo
- Division of Surgical Oncology, Dewitt Daughtry Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Scott M Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA
| | - Barbara Bedogni
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Peng S, Long M, Chen Q, Yin Z, Zeng C, Zhang W, Wen Q, Zhang X, Ke W, Wu Y. Perspectives on cancer therapy-synthetic lethal precision medicine strategies, molecular mechanisms, therapeutic targets and current technical challenges. Cell Death Discov 2025; 11:179. [PMID: 40240755 PMCID: PMC12003663 DOI: 10.1038/s41420-025-02418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, synthetic lethality has become an important theme in the field of targeted cancer therapy. Synthetic lethality refers to simultaneous defects in two or more genes leading to cell death, whereas defects in any single gene do not lead to cell death. Taking advantage of the genetic vulnerability that exists within cancer cells, it theoretically has no negative impact on healthy cells and has fewer side effects than non-specific chemotherapy. Currently, targeted cancer therapies focus on inhibiting key pathways in cancer. However, it has been found that over-activation of oncogenic-related signaling pathways can also induce cancer cell death, which is a major breakthrough in the new field of targeted therapies. In this review, we summarize the conventional gene targets in synthetic lethality (PARP, ATR, ATM, WEE1, PRMT) and provide an in-depth analysis of their latest potential mechanisms. We explore the impact of over-activation of pathways such as PI3K/AKT, MAPK, and WNT on cancer cell survival, and present the technical challenges of current research. Important theoretical foundations and insights are provided for the application of synthetic lethal strategies in cancer therapy, as well as future research directions.
Collapse
Affiliation(s)
- Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Mengle Long
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Qisheng Chen
- Department of Anesthesiology, The First People's Hospital of Chenzhou, The Chenzhou Affiliated Hospital, Hengyang Medical School, University of South China, Chenzhou, Hunan, 423000, China
| | - Zhijian Yin
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Chang Zeng
- Department of Pathology, Yueyang Central Hospital, Yueyang, China
| | - Wanyong Zhang
- Department of Pathology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Qingyang Wen
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Xinwen Zhang
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- Department of Oncology, The First People's Hospital of Xiangtan City, Xiangtan, Hunan, 411101, China
| | - Weiqi Ke
- Department of Anesthesiology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China.
| | - Yongjun Wu
- Department of Pathology, Xiangtan Center Hospital, Xiangtan City, Hunan province, 411100, China.
- Department of Pathology, The Affiliated Hospital of Hunan University, Xiangtan City, Hunan Province, China.
| |
Collapse
|
4
|
Zhou M, Yang Y, He S, Xu Q, Du C, Tian W, Chen H. Ingenane Diterpenoids from Euphorbia peplus as Potential New CHK1 Inhibitors That Sensitize Cancer Cells to Chemotherapy. JOURNAL OF NATURAL PRODUCTS 2025; 88:688-705. [PMID: 40056138 DOI: 10.1021/acs.jnatprod.4c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Phosphorylation of checkpoint kinase 1 at Ser-345 (p-CHK1(S345)) mediates the replication stress response in cancer cells, leading to chemotherapy resistance. Therefore, finding inhibitors of p-CHK1(S345) is currently a promising strategy to prevent acquired drug resistance. In this study, 14 ingenane diterpenoids (1-14), involving two undescribed compounds possessing an unprecedented exocyclic double bond Δ6(20), were identified from Euphorbia peplus. The inhibitory effects of the isolated compounds on p-CHK1(S345) and their structure-activity relationship (SAR) were investigated. Compounds 7 and 8 presented the strongest inhibitory effects, abrogated cell cycle arrest, and caused the accumulation of DNA damage, improving the sensitivity of cancer cells to chemotherapeutic drugs. An in vivo assay confirmed the enhancement of 8 on the anticancer effect of topotecan via blocking of p-CHK1(S345). Mechanistically, 8 increased CHK1 ubiquitination to inhibit p-CHK1(S345) via activation of protein kinase C (PKC). PKC activation was first found to enhance CHK1 ubiquitination to block p-CHK1(S345). Above all, this finding not only indicates that compound 8 could be developed as a novel CHK1 inhibitor but also reveals a previously unrecognized role of PKC in regulating cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mi Zhou
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yanlan Yang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Shoulun He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Qiannan Xu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Chunchun Du
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Wenjing Tian
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Haifeng Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| |
Collapse
|
5
|
Wu M, Chen X, Wang H, Li C, Liu W, Zheng X, Yang J, Ye X, Weng Y, Fan T, Hou H. Discovery of the Clinical Candidate YY2201 as a Highly Potent and Selective ATR Inhibitor. J Med Chem 2025; 68:5292-5311. [PMID: 40029060 DOI: 10.1021/acs.jmedchem.4c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
ATR is one of the key DNA damage response (DDR) regulatory factors to maintain genome stability. ATR inhibition induces DNA damage accumulation and apoptosis in DDR kinase mutation or deficiency cancer cells through synthetic lethality, making it a promising target for treatment of cancers with DDR defects. Herein, we describe the discovery and preclinical evaluation of YY2201, a highly potent and selective novel ATR inhibitor, with favorable ADME, safety pharmacology, and pharmacokinetics profiles. YY2201 efficiently inhibits tumor progression in broad-spectrum cancer types, both in vitro and in vivo. YY2201 shows superior in vivo anticancer efficacy and a better therapeutic index compared to AZD6738 in a lung cancer xenograft model. YY2201 also exhibits potent cancer suppression effects in combination with chemotherapy in vivo. Currently, the investigational new drug application of YY2201 has been approved by the FDA for further clinical investigation.
Collapse
Affiliation(s)
- Meng Wu
- Center for Drug Research and Evaluation, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Xiaofang Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Haoran Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Chang Li
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Wenjin Liu
- Jiangsu YaYao Biotechnology Co., Ltd, Nanjing 210032, P. R. China
| | - Xiao Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jingxin Yang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Xin Ye
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| | - Yali Weng
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, P. R. China
| |
Collapse
|
6
|
Zou Y, Guo T, Fu Z, Guo Z, Bo W, Yan D, Wang Q, Zeng J, Xu D, Wang T, Chen L. A structure-based framework for selective inhibitor design and optimization. Commun Biol 2025; 8:422. [PMID: 40075154 PMCID: PMC11903766 DOI: 10.1038/s42003-025-07840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Structure-based drug design aims to create active compounds with favorable properties by analyzing target structures. Recently, deep generative models have facilitated structure-specific molecular generation. However, many methods are limited by inadequate pharmaceutical data, resulting in suboptimal molecular properties and unstable conformations. Additionally, these approaches often overlook binding pocket interactions and struggle with selective inhibitor design. To address these challenges, we developed a framework called Coarse-grained and Multi-dimensional Data-driven molecular generation (CMD-GEN). CMD-GEN bridges ligand-protein complexes with drug-like molecules by utilizing coarse-grained pharmacophore points sampled from diffusion model, enriching training data. Through a hierarchical architecture, it decomposes three-dimensional molecule generation within the pocket into pharmacophore point sampling, chemical structure generation, and conformation alignment, mitigating instability issues. CMD-GEN outperforms other methods in benchmark tests and controls drug-likeness effectively. Furthermore, CMD-GEN excels in cases across three synthetic lethal targets, and wet-lab validation with PARP1/2 inhibitors confirms its potential in selective inhibitor design.
Collapse
Affiliation(s)
- Yurong Zou
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Guo
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyuan Fu
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongning Guo
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Weichen Bo
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dengjie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qiantao Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jun Zeng
- Western Health, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Carlton, VIC, Australia
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu, China.
| |
Collapse
|
7
|
Wang R, Liu Y, Liu M, Zhang M, Li C, Xu S, Tang S, Ma Y, Wu X, Fei W. Combating tumor PARP inhibitor resistance: Combination treatments, nanotechnology, and other potential strategies. Int J Pharm 2025; 669:125028. [PMID: 39638266 DOI: 10.1016/j.ijpharm.2024.125028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
PARP (poly (ADP-ribose) polymerase) inhibitors (PARPi) have demonstrated significant potential in cancer treatment, particularly in tumors with breast cancer susceptibility gene (BRCA) mutations and other DNA repair deficiencies. However, the development of resistance to PARPi has become a major challenge in their clinical application. The emergence of drug resistance leads to reduced efficacy of the PARPi over time, impacting long-term treatment outcomes and survival rates. PARPi resistance in tumors often arises as cells activate alternative DNA repair pathways or evade the effect of PARPi, diminishing therapeutic effectiveness. Consequently, overcoming resistance is crucial for maintaining treatment efficacy and improving patient prognosis. This paper reviews the strategies to overcome PARPi resistance through combination treatment and nanotechnology therapy. We first review the current combination therapies with PARPi, including anti-angiogenic therapies, radiotherapies, immunotherapies, and chemotherapies, and elucidate their mechanisms for overcoming PARPi resistance. Additionally, this paper focuses on the application of nanotechnology in improving the effectiveness of PARPi and overcoming drug resistance. Subsequently, this paper presents several promising strategies to tackle PARPi resistance, including but not limited to: structural modifications of PARPi, deployment of gene editing systems, implementation of "membrane lipid therapy," and modulation of cellular metabolism in tumors. By integrating these strategies, this research will provide comprehensive approaches to overcome the resistance of PARPi in cancer treatment and offer guidance for future research and clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingqi Liu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Chaoqun Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yidan Ma
- YiPeng Subdistrict Community Healthcare Center, Hangzhou 311225, China
| | - Xiaodong Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Weidong Fei
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
8
|
Guo T, Yuan Y, Zou Y, Guo Z, Yang T, Tang M, Ma Z, Fu Z, Bo W, Wang P, Bai P, Wang T, Jia T, Yang J, Chen L. Design, Synthesis, and Pharmacodynamic Evaluation of Highly Selective PARP1 Inhibitors with Brain Penetrance. J Med Chem 2025; 68:1731-1754. [PMID: 39789975 DOI: 10.1021/acs.jmedchem.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Selective poly(ADP-ribose) polymerase 1 (PARP1) inhibitors not only exhibit antitumor efficacy but also offer the potential to mitigate the toxicities typically associated with broader PARP inhibition. In this study, we designed and synthesized a series of small molecules targeting highly selective PARP1 inhibitors. Among these, T26 demonstrated excellent selectivity to PARP1 along with the capability to effectively cross the blood-brain barrier (BBB). T26 exhibited an IC50 of 0.2 nM against PARP1, with a remarkable 610-fold selectivity over PARP2 and high antiproliferative activity in BRCA mutant MDA-MB-436 cells with an IC50 of 2.6 nM. T26 also displayed excellent oral bioavailability (F = 87.74%) and long half-life (T1/2 = 76.07 h) in mice, supporting once every other day administration. Oral administration of T26 at 0.3 mg/kg and 3 mg/kg resulted in significant tumor growth inhibition in both subcutaneous and intracranial xenograft models of MDA-MB-436, suggesting T26 significant potential for the treatment of breast cancer metastases.
Collapse
Affiliation(s)
- Tao Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongting Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yurong Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongning Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyuan Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weichen Bo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Taijin Wang
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Tao Jia
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Chengdu Zenitar Biomedical Technology Co., Ltd., Chengdu 610041, China
| |
Collapse
|
9
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
10
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Zaib S, Javed H, Rana N, Zaib Z, Iqbal S, Khan I. Therapeutic Chemoresistance in Ovarian Cancer: Emerging Hallmarks, Signaling Mechanisms and Alternative Pathways. Curr Med Chem 2025; 32:923-938. [PMID: 38275065 DOI: 10.2174/0109298673276871231205043417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer is the fifth leading cause of mortality and the most lethal gynecologic malignancy among females. It may arise from atypical borderline tumors (Type I) or serous tubal intraepithelial carcinoma (Type II). The diagnosis of cancer at its early stages is difficult because of non-specific symptoms, most patients are diagnosed at the advanced stage. Several drugs and therapeutic strategies are available to treat ovarian cancer such as surgery, chemotherapy, neoadjuvant therapy, and maintenance therapy. However, the cancer cells have developed resistance to a number of available therapies causing treatment failure. This emerging chemoresistance in ovarian cancer cells is becoming an obstacle due to alterations in multiple cellular processes. These processes involve altered drug target response, drug pumps, detoxification systems, lower sensitivity to apoptosis, and altered proliferation, and are responsible for developing resistance to anticancer medicines. Various research reports have evidenced that these altered processes might play a role in the emergence of resistance. This review addresses the recent advances in understanding the underlying mechanisms of ovarian cancer resistance and covers sophisticated alternative pathways to overcome these resistance mechanisms in patients.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Hira Javed
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Nehal Rana
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Zainab Zaib
- Combined Military Hospital Abbottabad, Abbottabad, 22010, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), H-12, Islamabad, 46000, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
12
|
Yang Y, An D, Wang Y, Zou W, Cui G, Tong J, Feng K, Jing T, Wang L, Shi L, Li C. Wee1 inhibitor optimization through deep-learning-driven decision making. Eur J Med Chem 2024; 280:116912. [PMID: 39369485 DOI: 10.1016/j.ejmech.2024.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Deep learning has gained increasing attention in recent years, yielding promising results in hit screening and molecular optimization. Herein, we employed an efficient strategy based on multiple deep learning techniques to optimize Wee1 inhibitors, which involves activity interpretation, scaffold-based molecular generation, and activity prediction. Starting from our in-house Wee1 inhibitor GLX0198 (IC50 = 157.9 nM), we obtained three optimized compounds (IC50 = 13.5 nM, 33.7 nM, and 47.1 nM) out of five picked molecules. Further minor modifications on these compounds led to the identification of potent Wee1 inhibitors with desirable inhibitory effects on multiple cancer cell lines. Notably, the best compound 13 exhibited superior cancer cell inhibition, with IC50 values below 100 nM in all tested cancer cells. These results suggest that deep learning can greatly facilitate decision-making at the stage of molecular optimization.
Collapse
Affiliation(s)
| | - Duo An
- Galixir, Beijing, 100080, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Watanabe K, Yamamoto T, Fujita T, Hino S, Hino Y, Yamazaki K, Ohashi Y, Sakuraba S, Kono H, Nakao M, Ochiai K, Dan S, Saitoh N. Metabolically inducing defects in DNA repair sensitizes BRCA-wild-type cancer cells to replication stress. Sci Signal 2024; 17:eadl6445. [PMID: 39531517 DOI: 10.1126/scisignal.adl6445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Metabolic reprogramming from oxidative respiration to glycolysis is generally considered to be advantageous for tumor initiation and progression. However, we found that breast cancer cells forced to perform glycolysis acquired a vulnerability to PARP inhibitors. Small-molecule inhibition of mitochondrial respiration-using glyceollin I, metformin, or phenformin-induced overproduction of the oncometabolite lactate, which acidified the extracellular milieu and repressed the expression of homologous recombination (HR)-associated DNA repair genes. These serial events created so-called "BRCAness," in which cells exhibit an HR deficiency phenotype despite lacking germline mutations in HR genes such as BRCA1 and BRCA2, and, thus, sensitized the cancer cells to clinically available poly(ADP-ribose) polymerase inhibitors. The increase in lactate repressed HR-associated gene expression by decreasing histone acetylation. These effects were selective to breast cancer cells; normal epithelial cells retained HR proficiency and cell viability. These mechanistic insights into the BRCAness-prone properties of breast cancer cells support the therapeutic utility and cancer cell-specific potential of mitochondria-targeting drugs.
Collapse
Affiliation(s)
- Kenji Watanabe
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tatsuro Yamamoto
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Tomoko Fujita
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanami Yamazaki
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Shun Sakuraba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 265-8522, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Koji Ochiai
- PhytoMol-Tech Inc., 3-14-3 Minami-Kumamoto, Chuo-ku, Kumamoto City, Kumamoto 860-0812, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| |
Collapse
|
14
|
Guo Y, Li Z, Parsels LA, Wang Z, Parsels JD, Dalvi A, The S, Hu N, Valvo VM, Doherty R, Peterson E, Wang X, Venkataraman S, Agnihotri S, Venneti S, Wahl DR, Green MD, Lawrence TS, Koschmann C, Morgan MA, Zhang Q. H3K27M diffuse midline glioma is homologous recombination defective and sensitized to radiotherapy and NK cell-mediated antitumor immunity by PARP inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609803. [PMID: 39253432 PMCID: PMC11383052 DOI: 10.1101/2024.08.26.609803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Radiotherapy (RT) is the primary treatment for diffuse midline glioma (DMG), a lethal pediatric malignancy defined by histone H3 lysine 27-to-methionine (H3K27M) mutation. Based on the loss of H3K27 trimethylation producing broad epigenomic alterations, we hypothesized that H3K27M causes a functional double-strand break (DSB) repair defect that could be leveraged therapeutically with PARP inhibitor and RT for selective radiosensitization and antitumor immune responses. Methods H3K27M isogenic DMG cells and orthotopic brainstem DMG tumors in immune deficient and syngeneic, immune competent mice were used to evaluate the efficacy and mechanisms of PARP1/2 inhibition by olaparib or PARP1 inhibition by AZD9574 with concurrent RT. Results H3K27M mutation caused an HRR defect characterized by impaired RT-induced K63-linked polyubiquitination of histone H1 and inhibition of HRR protein recruitment. H3K27M DMG cells were selectively radiosensitized by olaparib in comparison to isogenic controls, and this effect translated to efficacy in H3K27M orthotopic brainstem tumors. Olaparib and RT induced an innate immune response and induction of NK cell (NKG2D) activating ligands leading to increased NK cell-mediated lysis of DMG tumor cells. In immunocompetent syngeneic orthotopic DMG tumors, either olaparib or AZD9574 in combination with RT enhanced intratumoral NK cell infiltration and activity in association with NK cell-mediated therapeutic responses and favorable activity of AZD9574. Conclusions The HRR deficiency in H3K27M DMG can be therapeutically leveraged with PARP inhibitors to radiosensitize and induce an NK cell-mediated antitumor immune response selectively in H3K27M DMG, supporting the clinical investigation of best-in-class PARP inhibitors with RT in DMG patients. Key points H3K27M DMG are HRR defective and selectively radiosensitized by PARP inhibitor.PARP inhibitor with RT enhances NKG2D ligand expression and NK cell-mediated lysis.NK cells are required for the therapeutic efficacy of PARP inhibitor and RT. Importance of the Study Radiotherapy is the cornerstone of H3K27M-mutant diffuse midline glioma treatment, but almost all patients succumb to tumor recurrence with poor overall survival, underscoring the need for RT-based precision combination therapy. Here, we reveal HRR deficiency as an H3K27M-mediated vulnerability and identify a novel mechanism linking impaired RT-induced histone H1 polyubiquitination and the subsequent RNF168/BRCA1/RAD51 recruitment in H3K27M DMG. This model is supported by selective radiosensitization of H3K27M DMG by PARP inhibitor. Notably, the combination treatment results in NKG2D ligand expression that confers susceptibility to NK cell killing in H3K27M DMG. We also show that the novel brain penetrant, PARP1-selective inhibitor AZD9574 compares favorably to olaparib when combined with RT, prolonging survival in a syngeneic orthotopic model of H3K27M DMG. This study highlights the ability of PARP1 inhibition to radiosensitize and induce an NK cell-mediated antitumor immunity in H3K27M DMG and supports future clinical investigation.
Collapse
|
15
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
16
|
Wang S, Qi Y, Zhao R, Pan Z, Li B, Qiu W, Zhao S, Guo X, Ni S, Li G, Xue H. Copy number gain of FAM131B-AS2 promotes the progression of glioblastoma by mitigating replication stress. Neuro Oncol 2024; 26:1027-1041. [PMID: 38285005 PMCID: PMC11145449 DOI: 10.1093/neuonc/noae014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is characterized by chromosome 7 copy number gains, notably 7q34, potentially contributing to therapeutic resistance, yet the underlying oncogenes have not been fully characterized. Pertinently, the significance of long noncoding RNAs (lncRNAs) in this context has gained attention, necessitating further exploration. METHODS FAM131B-AS2 was quantified in GBM samples and cells using qPCR. Overexpression and knockdown of FAM131B-AS2 in GBM cells were used to study its functions in vivo and in vitro. The mechanisms of FAM131B-AS2 were studied using RNA-seq, qPCR, Western blotting, RNA pull-down, coimmunoprecipitation assays, and mass spectrometry analysis. The phenotypic changes that resulted from FAM131B-AS2 variation were evaluated through CCK8 assay, EdU assay, comet assay, and immunofluorescence. RESULTS Our analysis of 149 primary GBM patients identified FAM131B-AS2, a lncRNA located in the 7q34 region, whose upregulation predicts poor survival. Mechanistically, FAM131B-AS2 is a crucial regulator of the replication stress response, stabilizing replication protein A1 through recruitment of ubiquitin-specific peptidase 7 and activating the ataxia telangiectasia and rad3-related protein kinase pathway to protect single-stranded DNA from breakage. Furthermore, FAM131B-AS2 overexpression inhibited CD8+ T-cell infiltration, while FAM131B-AS2 inhibition activated the cGAS-STING pathway, increasing lymphocyte infiltration and improving the response to immune checkpoint inhibitors. CONCLUSIONS FAM131B-AS2 emerges as a promising indicator for adjuvant therapy response and could also be a viable candidate for combined immunotherapies against GBMs.
Collapse
Affiliation(s)
- Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
17
|
Staniszewska AD, Pilger D, Gill SJ, Jamal K, Bohin N, Guzzetti S, Gordon J, Hamm G, Mundin G, Illuzzi G, Pike A, McWilliams L, Maglennon G, Rose J, Hawthorne G, Cortes Gonzalez M, Halldin C, Johnström P, Schou M, Critchlow SE, Fawell S, Johannes JW, Leo E, Davies BR, Cosulich S, Sarkaria JN, O'Connor MJ, Hamerlik P. Preclinical Characterization of AZD9574, a Blood-Brain Barrier Penetrant Inhibitor of PARP1. Clin Cancer Res 2024; 30:1338-1351. [PMID: 37967136 DOI: 10.1158/1078-0432.ccr-23-2094] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE We evaluated the properties and activity of AZD9574, a blood-brain barrier (BBB) penetrant selective inhibitor of PARP1, and assessed its efficacy and safety alone and in combination with temozolomide (TMZ) in preclinical models. EXPERIMENTAL DESIGN AZD9574 was interrogated in vitro for selectivity, PARylation inhibition, PARP-DNA trapping, the ability to cross the BBB, and the potential to inhibit cancer cell proliferation. In vivo efficacy was determined using subcutaneous as well as intracranial mouse xenograft models. Mouse, rat, and monkey were used to assess AZD9574 BBB penetration and rat models were used to evaluate potential hematotoxicity for AZD9574 monotherapy and the TMZ combination. RESULTS AZD9574 demonstrated PARP1-selectivity in fluorescence anisotropy, PARylation, and PARP-DNA trapping assays and in vivo experiments demonstrated BBB penetration. AZD9574 showed potent single agent efficacy in preclinical models with homologous recombination repair deficiency in vitro and in vivo. In an O6-methylguanine-DNA methyltransferase (MGMT)-methylated orthotopic glioma model, AZD9574 in combination with TMZ was superior in extending the survival of tumor-bearing mice compared with TMZ alone. CONCLUSIONS The combination of three key features-PARP1 selectivity, PARP1 trapping profile, and high central nervous system penetration in a single molecule-supports the development of AZD9574 as the best-in-class PARP inhibitor for the treatment of primary and secondary brain tumors. As documented by in vitro and in vivo studies, AZD9574 shows robust anticancer efficacy as a single agent as well as in combination with TMZ. AZD9574 is currently in a phase I trial (NCT05417594). See related commentary by Lynce and Lin, p. 1217.
Collapse
Affiliation(s)
| | - Domenic Pilger
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sonja J Gill
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Kunzah Jamal
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Natacha Bohin
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Guzzetti
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jacob Gordon
- Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gill Mundin
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giuditta Illuzzi
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jonathan Rose
- Animal Sciences and Technologies, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Glen Hawthorne
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- PET Science Centre at Karolinska Institutet, Precision Medicine and Biosamples, Oncology R&D, Stockholm, Sweden
| | | | | | | | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Barry R Davies
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sabina Cosulich
- Projects Group, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Mark J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Petra Hamerlik
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
18
|
Ngoi NYL, Pilié PG, McGrail DJ, Zimmermann M, Schlacher K, Yap TA. Targeting ATR in patients with cancer. Nat Rev Clin Oncol 2024; 21:278-293. [PMID: 38378898 DOI: 10.1038/s41571-024-00863-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patrick G Pilié
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katharina Schlacher
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Collet L, Hanvic B, Turinetto M, Treilleux I, Chopin N, Le Saux O, Ray-Coquard I. BRCA1/2 alterations and reversion mutations in the area of PARP inhibitors in high grade ovarian cancer: state of the art and forthcoming challenges. Front Oncol 2024; 14:1354427. [PMID: 38544832 PMCID: PMC10965616 DOI: 10.3389/fonc.2024.1354427] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 11/11/2024] Open
Abstract
BRCA1/2 genes are part of homologous recombination (HR) DNA repair pathways in charge of error-free double-strand break (DSB) repair. Loss-of-function mutations of BRCA1/2 genes have been associated for a long time with breast and ovarian cancer hereditary syndrome. Recently, polyadenosine diphosphate-ribose polymerase inhibitors (PARPi) have revolutionized the therapeutic landscape of BRCA1/2-mutated tumors, especially of BRCA1/2 high-grade serous ovarian cancer (HGSC), taking advantage of HR deficiency through the synthetic lethality concept. However, PARPi efficiency differs among patients, and most of them will develop resistance, particularly in the relapse setting. In the current proposal, we aim to review primary and secondary resistance to PARPi in HGSC owing to BRCA1/2 alterations. Of note, as several mechanisms of primary or secondary resistance to PARPi have been described, BRCA1/2 reversion mutations that restore HR pathways are by far the most reported. First, the type and location of the BRCA1/2 primary mutation have been associated with PARPi and platinum-salt sensitivity and impact the probability of the occurrence and the type of secondary reversion mutation. Furthermore, the presence of multiple reversion mutations and the variation of allelic frequency under treatment underline the role of intratumor heterogeneity (ITH) in treatment resistance. Of note, circulating tumor DNA might help us to detect and characterize reversion mutations and ITH to finally refine the treatment strategy. Importantly, forthcoming therapeutic strategies, including combination with antiangiogenics or with targeted therapies, may help us delay and overcome PARPi resistance secondary to BRCA1/2 reversion mutations. Also, progression despite PARPi therapy does not preclude PARPi rechallenge in selected patients.
Collapse
Affiliation(s)
- Laetitia Collet
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Brunhilde Hanvic
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | | | | | | | - Olivia Le Saux
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Ray-Coquard
- Medical Oncology Department, Centre Léon Bérard, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
20
|
Yang X, Hu X, Yin J, Li W, Fu Y, Yang B, Fan J, Lu F, Qin T, Kang X, Zhuang X, Li F, Xiao R, Shi T, Song K, Li J, Chen G, Sun C. Comprehensive multi-omics analysis reveals WEE1 as a synergistic lethal target with hyperthermia through CDK1 super-activation. Nat Commun 2024; 15:2089. [PMID: 38453961 PMCID: PMC10920785 DOI: 10.1038/s41467-024-46358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Hyperthermic intraperitoneal chemotherapy's role in ovarian cancer remains controversial, hindered by limited understanding of hyperthermia-induced tumor cellular changes. This limits developing potent combinatory strategies anchored in hyperthermic intraperitoneal therapy (HIPET). Here, we perform a comprehensive multi-omics study on ovarian cancer cells under hyperthermia, unveiling a distinct molecular panorama, primarily characterized by rapid protein phosphorylation changes. Based on the phospho-signature, we pinpoint CDK1 kinase is hyperactivated during hyperthermia, influencing the global signaling landscape. We observe dynamic, reversible CDK1 activity, causing replication arrest and early mitotic entry post-hyperthermia. Subsequent drug screening shows WEE1 inhibition synergistically destroys cancer cells with hyperthermia. An in-house developed miniaturized device confirms hyperthermia and WEE1 inhibitor combination significantly reduces tumors in vivo. These findings offer additional insights into HIPET, detailing molecular mechanisms of hyperthermia and identifying precise drug combinations for targeted treatment. This research propels the concept of precise hyperthermic intraperitoneal therapy, highlighting its potential against ovarian cancer.
Collapse
Affiliation(s)
- Xiaohang Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Xingyuan Hu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Jingjing Yin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Wenting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Yu Fu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Bin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Junpeng Fan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Funian Lu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Tianyu Qin
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xiaoyan Kang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Xucui Zhuang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shihezi University Shihezi, Xinjiang, 832000, PR China
| | - Rourou Xiao
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Tingyan Shi
- Ovarian Cancer Program, Department of Gynecologic Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, PR China
| | - Jing Li
- Department of Gynecologic Oncology, Sun Yat-sen Memorial Hospital, 33 Yingfeng Road, Guangzhou, 510000, PR China.
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China.
| |
Collapse
|
21
|
Alfayomy AM, Ashry R, Kansy AG, Sarnow AC, Erdmann F, Schmidt M, Krämer OH, Sippl W. Design, synthesis, and biological characterization of proteolysis targeting chimera (PROTACs) for the ataxia telangiectasia and RAD3-related (ATR) kinase. Eur J Med Chem 2024; 267:116167. [PMID: 38308949 DOI: 10.1016/j.ejmech.2024.116167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
The Ataxia telangiectasia and RAD3-related (ATR) kinase is a key regulator of DNA replication stress responses and DNA-damage checkpoints. Several potent and selective ATR inhibitors are reported and four of them are currently in clinical trials in combination with radio- or chemotherapy. Based on the idea of degrading target proteins rather than inhibiting them, we designed, synthesized and biologically characterized a library of ATR-targeted proteolysis targeting chimera (PROTACs). Among the synthesized compounds, the lenalidomide-based PROTAC 42i was the most promising. In pancreatic and cervix cancer cells cancer cells, it reduced ATR to 40 % of the levels in untreated cells. 42i selectively degraded ATR through the proteasome, dependent on the E3 ubiquitin ligase component cereblon, and without affecting the associated kinases ATM and DNA-PKcs. 42i may be a promising candidate for further optimization and biological characterization in various cancer cells.
Collapse
Affiliation(s)
- Abdallah M Alfayomy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Ramy Ashry
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany; Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Anita G Kansy
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Anne-Christin Sarnow
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Frank Erdmann
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Matthias Schmidt
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
22
|
Zhao X, Singhal A, Park S, Kong J, Bachelder R, Ideker T. Cancer Mutations Converge on a Collection of Protein Assemblies to Predict Resistance to Replication Stress. Cancer Discov 2024; 14:508-523. [PMID: 38236062 PMCID: PMC10905674 DOI: 10.1158/2159-8290.cd-23-0641] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/25/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
Rapid proliferation is a hallmark of cancer associated with sensitivity to therapeutics that cause DNA replication stress (RS). Many tumors exhibit drug resistance, however, via molecular pathways that are incompletely understood. Here, we develop an ensemble of predictive models that elucidate how cancer mutations impact the response to common RS-inducing (RSi) agents. The models implement recent advances in deep learning to facilitate multidrug prediction and mechanistic interpretation. Initial studies in tumor cells identify 41 molecular assemblies that integrate alterations in hundreds of genes for accurate drug response prediction. These cover roles in transcription, repair, cell-cycle checkpoints, and growth signaling, of which 30 are shown by loss-of-function genetic screens to regulate drug sensitivity or replication restart. The model translates to cisplatin-treated cervical cancer patients, highlighting an RTK-JAK-STAT assembly governing resistance. This study defines a compendium of mechanisms by which mutations affect therapeutic responses, with implications for precision medicine. SIGNIFICANCE Zhao and colleagues use recent advances in machine learning to study the effects of tumor mutations on the response to common therapeutics that cause RS. The resulting predictive models integrate numerous genetic alterations distributed across a constellation of molecular assemblies, facilitating a quantitative and interpretable assessment of drug response. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Akshat Singhal
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California
| | - Sungjoon Park
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - JungHo Kong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California
| | - Robin Bachelder
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California
- Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California
- Department of Bioengineering, University of California, San Diego, La Jolla, California
| |
Collapse
|
23
|
Sogari A, Rovera E, Grasso G, Mariella E, Reilly NM, Lamba S, Mauri G, Durinikova E, Vitiello PP, Lorenzato A, Avolio M, Piumatti E, Bonoldi E, Aquilano MC, Arena S, Sartore-Bianchi A, Siena S, Trusolino L, Donalisio M, Russo M, Di Nicolantonio F, Lembo D, Bardelli A. Tolerance to colibactin correlates with homologous recombination proficiency and resistance to irinotecan in colorectal cancer cells. Cell Rep Med 2024; 5:101376. [PMID: 38228147 PMCID: PMC10897517 DOI: 10.1016/j.xcrm.2023.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024]
Abstract
The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.
Collapse
Affiliation(s)
- Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Emanuele Rovera
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Gaia Grasso
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Simona Lamba
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Pietro Paolo Vitiello
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Annalisa Lorenzato
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Eleonora Piumatti
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Emanuela Bonoldi
- Department of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Division of Clinical Research and Innovation, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy; Department of Hematology, Oncology, and Molecular Medicine, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; Department of Oncology, University of Torino, 10060 Candiolo, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy; IFOM ETS - The AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| |
Collapse
|
24
|
Zhao S, Yu N, Wang H, Wan Z, Diao C, Chen Y, Liu T, Yang Y, Gao F, Bai C, Cao K, Cai J. Long non-coding RNA PANDAR promoted radiation and cisplatin-induced DNA damage repair through ATR/CHK1 in NSCLC. J Gene Med 2023; 25:e3565. [PMID: 37460393 DOI: 10.1002/jgm.3565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND DNA-damaging agents, including radiation and platinum-based chemotherapy, are indispensable treatments for non-small cell lung cancer (NSCLC) patients. However, cancer cells tend to be resistant to both radiation and chemotherapy, thus resulting in treatment failure or recurrence. The purpose of this study was to explore the effect and mechanism of long non-coding RNA (lncRNA) PANDAR (promoter of CDKN1A antisense DNA damage-activated RNA) on NSCLC sensitivity to radiation and chemotherapy. METHODS Cell counting kit (CCK-8), colony formation and flow cytometry were respectively performed to determine the cell cycle and apoptosis of NSCLC cells treated with γ-ray radiation and cisplatin. The extent of DNA damage was evaluated using a comet assay and immunofluorescence staining against γH2AX. In addition, we explored the role of PANDAR in DNA damage response pathways through western blot analysis. Finally, a nude mouse subcutaneous xenograft model was established to assess the sensitivity to radiation and chemotherapy in vivo. RESULTS In cell experiments, PANDAR knockdown can increase the sensitivity of NSCLC cells to radiation and cisplatin. The CCK-8 results showed that cell viability was significantly increased in the overexpression group after radiation and cisplatin treatments. The overexpression group also showed more colonies, less apoptosis and DNA damage, and G2/M phase arrest was aggravated to provide the time necessary for DNA repair. Contrary to PANDAR overexpression, the trends were reversed in the PANDAR knockdown group. Furthermore, PANDAR knockdown inhibited radiation and cisplatin-activated phosphorylation levels of ATR and CHK1 in NSCLC cells. Finally, our in vivo model showed that targeting PANDAR significantly sensitized NSCLC to radiation and cisplatin. CONCLUSION Our study showed that PANDAR knockdown promoted sensitivity to radiation and cisplatin in NSCLC by regulating the ATR/CHK1 pathway, thus providing a novel understanding as well as a therapeutic target for NSCLC treatment. In NSCLC cells, lncRNA PANDAR negatively regulates sensitivity to radiation and cisplatin. PANDAR can promote the repair of radiation and cisplatin-induced DNA damage and activation of the G2/M checkpoint through the ATR/CHK1 pathway. PANDAR knockdown results in defects in DNA damage repair accompanied by more cell apoptosis.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Respiratory and Critical Care Medicine, The Second Naval Hospital of Southern Theater Command, Sanya, China
| | - Nanxi Yu
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China
| | - Hang Wang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Zhijie Wan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chaoyue Diao
- Department of Rheumatology and Immunology, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Yuanyuan Chen
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, China
| | - Tingting Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yanyong Yang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kun Cao
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jianming Cai
- School of Public Health and Management, Wenzhou Medical University, University Town, Wenzhou, China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Zhao JL, Yang J, Li K, Chen Y, Tang M, Zhu HL, Nie CL, Yuan Z, Zhao XY. Abrogation of ATR function preferentially augments cisplatin-induced cytotoxicity in PTEN-deficient breast cancer cells. Chem Biol Interact 2023; 385:110740. [PMID: 37802411 DOI: 10.1016/j.cbi.2023.110740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Targeting replication stress response is currently emerging as new therapeutic strategy for cancer treatment, based on monotherapy and combination approaches. As a key sensor in response to DNA damage, ataxia telangiectasia and rad3-related (ATR) kinase has become a potential therapeutic target as tumor cells are to rely heavily on ATR for survival. The tumor suppressor phosphatase and tensin homolog (PTEN) plays a crucial role in maintaining chromosome integrity. Although ATR inhibition was recently confirmed to show a synergistic inhibitory effect in PTEN-deficient triple-negative breast cancer cells, the molecular mechanism needs to be further elucidated. Additionally, whether the PTEN-deficient breast cancer cells are more preferentially sensitized than PTEN-wild type breast cancer cells to cisplatin plus ATR inhibitor remains unanswered. We demonstrate PTEN dysfunction promotes the killing effect of ATR blockade through the use of RNA interference for PTEN and a highly selective ATR inhibitor VE-821, and certify that VE-821 (1.0 μmol/L) aggravates cytotoxicity of cisplatin on breast cancer cells, especially PTEN-null MDA-MB-468 cells which show more chemoresistance than PTEN-expressing MDA-MB-231 cells. The co-treatment with VE-821 and cisplatin significantly reduced cell viability and proliferative capacity compared with cisplatin mono-treatment (P < 0.05). The increased cytotoxic activity is tied to the enhanced poly (ADP-ribose) polymerase (PARP) cleavage and consequently cell death due to the decrease in phosphorylation levels of checkpoint kinases 1 and 2 (CHK1/2), the reduction of radiation sensitive 51 (RAD51) foci and the increase in phosphorylation of the histone variant H2AX (γ-H2AX) foci (P < 0.05) as well. Together, these findings suggest combination therapy of ATR inhibitor and cisplatin may offer a potential therapeutic strategy for breast tumors.
Collapse
Affiliation(s)
- Jian-Lei Zhao
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jun Yang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mei Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Li Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Chun-Lai Nie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhu Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin-Yu Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
27
|
Soung YH, Chung J. Combination Treatment Strategies to Overcome PARP Inhibitor Resistance. Biomolecules 2023; 13:1480. [PMID: 37892162 PMCID: PMC10604269 DOI: 10.3390/biom13101480] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) enzymes have been shown to be essential for DNA repair pathways, including homologous recombination repair (HRR). Cancers with HRR defects (e.g., BRCA1 and BRCA2 mutations) are targets for PARP inhibitors (PARPis) based on the exploitation of "synthetic lethality". As a result, PARPis offer a promising treatment option for advanced ovarian and breast cancers with deficiencies in HRR. However, acquired resistance to PARPis has been reported for most tumors, and not all patients with BRCA1/2 mutations respond to PARPis. Therefore, the formulation of effective treatment strategies to overcome resistance to PARPis is urgently necessary. This review summarizes the molecular mechanism of therapeutic action and resistance to PARPis, in addition to emerging combination treatment options involving PARPis.
Collapse
Affiliation(s)
| | - Jun Chung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
28
|
Bhamidipati D, Haro-Silerio JI, Yap TA, Ngoi N. PARP inhibitors: enhancing efficacy through rational combinations. Br J Cancer 2023; 129:904-916. [PMID: 37430137 PMCID: PMC10491787 DOI: 10.1038/s41416-023-02326-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) have significantly changed the treatment landscape for tumours harbouring defects in genes involved in homologous repair (HR) such as BRCA1 and BRCA2. Despite initial responsiveness to PARPi, tumours eventually develop resistance through a variety of mechanisms. Rational combination strategies involving PARPi have been explored and are in various stages of clinical development. PARPi combinations have the potential to enhance efficacy through synergistic activity, and also potentially sensitise innately PARPi-resistant tumours to PARPi. Initial combinations involving PARPi with chemotherapy were hindered by significant overlapping haematologic toxicity, but newer combinations with fewer toxicities and more targeted approaches are undergoing evaluation. In this review, we discuss the mechanisms of PARPi resistance and review the rationale and clinical evidence for various PARPi combinations including combinations with chemotherapy, immunotherapy, and targeted therapies. We also highlight emerging PARPi combinations with promising preclinical evidence.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Department of Cancer Medicine Fellowship Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Natalie Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
29
|
Liao H, Yang S, Liang Z, Xiao L, Xie S, Lin P, Xia F, Fang C, Chen Q, Ling D, Li F. A Cancer Cell Selective Replication Stress Nano Amplifier Promotes Replication Fork Catastrophe to Overcome Radioresistance. ACS NANO 2023; 17:18548-18561. [PMID: 37706454 DOI: 10.1021/acsnano.3c06774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Replication stress (RS) induced by DNA damage plays a significant role in conferring the anticancer effects of radiotherapy and is tightly associated with radioresistance of cancer cells. Amplification of RS represents an effective approach to improving the efficacy of radiotherapy, although the development of selective RS amplifiers remains an unexplored frontier. We herein present an RS nano amplifier (RSNA) consisting of a catalytic FePt nanoparticle loaded with the chemotherapeutic doxorubicin (DOX), which selectively exacerbates RS in cancer cells by promoting replication fork (RF) catastrophe. RSNA converts the excessive reactive oxygen species (ROS) in cancer cells into oxygen, enhancing the DNA-damaging effects of radiotherapy to create more template lesions that impede RF progression in coalition with DOX. After radiation, ROS scavenging by RSNA accelerates RF progression through damaged template strands, increasing the frequency of RF collapse into double-strand breaks. Moreover, pretreatment with RSNA accumulates cancer cells in the S phase, exposing more RFs to radiation-induced RS. These effects of RSNA convergently maximize RS in cancer cells, effectively overcoming the radioresistance of cancer cells without affecting normal cells. Our study demonstrates the feasibility of selectively amplifying RS to boost radiotherapy.
Collapse
Affiliation(s)
- Hongwei Liao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Liang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Xiao
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shangzhi Xie
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- WLA Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- WLA Laboratories, Shanghai 201203, China
| |
Collapse
|
30
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
31
|
Sturm MJ, Henao-Restrepo JA, Becker S, Proquitté H, Beck JF, Sonnemann J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2023; 149:8605-8617. [PMID: 37097390 PMCID: PMC10374484 DOI: 10.1007/s00432-023-04804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Julián Andrés Henao-Restrepo
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Proquitté
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
32
|
Herken BW, Wong GT, Norman TM, Gilbert LA. Environmental challenge rewires functional connections among human genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552346. [PMID: 37609173 PMCID: PMC10441384 DOI: 10.1101/2023.08.09.552346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A fundamental question in biology is how a limited number of genes combinatorially govern cellular responses to environmental changes. While the prevailing hypothesis is that relationships between genes, processes, and ontologies could be plastic to achieve this adaptability, quantitatively comparing human gene functional connections between specific environmental conditions at scale is very challenging. Therefore, it remains unclear whether and how human genetic interaction networks are rewired in response to changing environmental conditions. Here, we developed a framework for mapping context-specific genetic interactions, enabling us to measure the plasticity of human genetic architecture upon environmental challenge for ~250,000 interactions, using cell cycle interruption, genotoxic perturbation, and nutrient deprivation as archetypes. We discover large-scale rewiring of human gene relationships across conditions, highlighted by dramatic shifts in the functional connections of epigenetic regulators (TIP60), cell cycle regulators (PP2A), and glycolysis metabolism. Our study demonstrates that upon environmental perturbation, intra-complex genetic rewiring is rare while inter-complex rewiring is common, suggesting a modular and flexible evolutionary genetic strategy that allows a limited number of human genes to enable adaptation to a large number of environmental conditions.
Collapse
Affiliation(s)
- Benjamin W. Herken
- Tetrad Graduate Program, University of California, San Francisco; San Francisco 94518, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco 94518, USA
| | - Garrett T. Wong
- Biological and Medical Informatics Graduate Program, University of California, San Francisco; San Francisco 94518, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco 94518, USA
| | | | - Luke A. Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco 94518, USA
- Department of Urology, University of California, San Francisco, San Francisco 94518, USA
- Innovative Genomics Institute, University of California, San Francisco, San Francisco 94518, USA
- Arc Institute, Palo Alto 94305, USA
| |
Collapse
|
33
|
Wethington SL, Shah PD, Martin L, Tanyi JL, Latif N, Morgan M, Torigian DA, Rodriguez D, Smith SA, Dean E, Domchek SM, Drapkin R, Shih IM, Brown EJ, Hwang WT, Armstrong DK, Gaillard S, Giuntoli R, Simpkins F. Combination ATR (ceralasertib) and PARP (olaparib) Inhibitor (CAPRI) Trial in Acquired PARP Inhibitor-Resistant Homologous Recombination-Deficient Ovarian Cancer. Clin Cancer Res 2023; 29:2800-2807. [PMID: 37097611 PMCID: PMC11934101 DOI: 10.1158/1078-0432.ccr-22-2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/25/2022] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Addition of ataxia telangiectasia and Rad3-related kinase inhibitors (ATRi) to PARP inhibitors (PARPi) overcomes PARPi resistance in high-grade serous ovarian cancer (HGSOC) cell and mouse models. We present the results of an investigator-initiated study of combination PARPi (olaparib) and ATRi (ceralasertib) in patients with acquired PARPi-resistant HGSOC. PATIENTS AND METHODS Eligible patients had recurrent, platinum-sensitive BRCA1/2 mutated or homologous recombination (HR)-deficient (HRD) HGSOC and clinically benefited from PARPi (response by imaging/CA-125 or duration of maintenance therapy; > 12 months first-line or > 6 months ≥ second-line) before progression. No intervening chemotherapy was permitted. Patients received olaparib 300 mg twice daily and ceralasertib 160 mg daily on days 1 to 7 of a 28-day cycle. Primary objectives were safety and objective response rate (ORR). RESULTS Thirteen patients enrolled were evaluable for safety and 12 for efficacy; 62% (n = 8) had germline BRCA1/2 mutations, 23% (n = 3) somatic BRCA1/2 mutations, and 15% (n = 2) tumors with positive HRD assay. Prior PARPi indication was treatment for recurrence (54%, n = 7), second-line maintenance (38%, n = 5) and first-line treatment with carboplatin/paclitaxel (8%, n = 1). There were 6 partial responses yielding an ORR of 50% (95% confidence interval, 0.15-0.72). Median treatment duration was 8 cycles (range 4-23+). Grade (G) 3/4 toxicities were 38% (n = 5); 15% (n = 2) G3 anemia, 23% (n = 3) G3 thrombocytopenia, 8% (n = 1) G4 neutropenia. Four patients required dose reductions. No patient discontinued treatment due to toxicity. CONCLUSIONS Combination olaparib and ceralasertib is tolerable and shows activity in HR-deficient platinum-sensitive recurrent HGSOC that benefited and then progressed with PARPi as the penultimate regimen. These data suggest that ceralasertib resensitizes PARPi-resistant HGSOCs to olaparib, warranting further investigation.
Collapse
Affiliation(s)
- Stephanie L. Wethington
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Payal D. Shah
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania
- Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
| | - Lainie Martin
- Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
| | - Janos L. Tanyi
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Nawar Latif
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Mark Morgan
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Drew A. Torigian
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania
| | - Diego Rodriguez
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | | | - Emma Dean
- AstraZeneca, R&D Oncology, Cambridge, UK
| | - Susan M. Domchek
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania
- Division of Medical Oncology, Perelman School of Medicine at the University of Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
| | - Ronny Drapkin
- Basser Center for BRCA, Perelman School of Medicine at the University of Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Ie-Ming Shih
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania
| | - Wei-Ting Hwang
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania
| | - Deborah K. Armstrong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Stephanie Gaillard
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Robert Giuntoli
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| | - Fiona Simpkins
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania
- Division of Gynecology Oncology, Perelman School of Medicine at the University of Pennsylvania
| |
Collapse
|
34
|
Lukashchuk N, Barnicle A, Adelman CA, Armenia J, Kang J, Barrett JC, Harrington EA. Impact of DNA damage repair alterations on prostate cancer progression and metastasis. Front Oncol 2023; 13:1162644. [PMID: 37434977 PMCID: PMC10331135 DOI: 10.3389/fonc.2023.1162644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Prostate cancer is among the most common diseases worldwide. Despite recent progress with treatments, patients with advanced prostate cancer have poor outcomes and there is a high unmet need in this population. Understanding molecular determinants underlying prostate cancer and the aggressive phenotype of disease can help with design of better clinical trials and improve treatments for these patients. One of the pathways often altered in advanced prostate cancer is DNA damage response (DDR), including alterations in BRCA1/2 and other homologous recombination repair (HRR) genes. Alterations in the DDR pathway are particularly prevalent in metastatic prostate cancer. In this review, we summarise the prevalence of DDR alterations in primary and advanced prostate cancer and discuss the impact of alterations in the DDR pathway on aggressive disease phenotype, prognosis and the association of germline pathogenic alterations in DDR genes with risk of developing prostate cancer.
Collapse
Affiliation(s)
- Natalia Lukashchuk
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Alan Barnicle
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Carrie A. Adelman
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Joshua Armenia
- Oncology Data Science, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| | - Jinyu Kang
- Global Medicines Development, Oncology Research and Development (R&D), AstraZeneca, Gaithersburg, MD, United States
| | - J. Carl Barrett
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Waltham, MA, United States
| | - Elizabeth A. Harrington
- Translational Medicine, Oncology Research and Development (R&D), AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
35
|
Moliner L, Zhang B, Lamberti G, Ardizzoni A, Byers LA, Califano R. Novel therapeutic strategies for recurrent SCLC. Crit Rev Oncol Hematol 2023; 186:104017. [PMID: 37150311 DOI: 10.1016/j.critrevonc.2023.104017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023] Open
Abstract
Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting and potential strategies to improve clinical outcomes of these patients are also addressed.
Collapse
Affiliation(s)
- Laura Moliner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Bingnan Zhang
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Giuseppe Lamberti
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, 40138, Italy
| | - Andrea Ardizzoni
- Department of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK; Division of Cancer Sciences, The University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
36
|
Ashour ME, Byrum AK, Meroni A, Xia J, Singh S, Galletto R, Rosenberg SM, Vindigni A, Mosammaparast N. Rapid profiling of DNA replication dynamics using mass spectrometry-based analysis of nascent DNA. J Cell Biol 2023; 222:e202207121. [PMID: 36795402 PMCID: PMC9960042 DOI: 10.1083/jcb.202207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
The primary method for probing DNA replication dynamics is DNA fiber analysis, which utilizes thymidine analog incorporation into nascent DNA, followed by immunofluorescent microscopy of DNA fibers. Besides being time-consuming and prone to experimenter bias, it is not suitable for studying DNA replication dynamics in mitochondria or bacteria, nor is it adaptable for higher-throughput analysis. Here, we present mass spectrometry-based analysis of nascent DNA (MS-BAND) as a rapid, unbiased, quantitative alternative to DNA fiber analysis. In this method, incorporation of thymidine analogs is quantified from DNA using triple quadrupole tandem mass spectrometry. MS-BAND accurately detects DNA replication alterations in both the nucleus and mitochondria of human cells, as well as bacteria. The high-throughput capability of MS-BAND captured replication alterations in an E. coli DNA damage-inducing gene library. Therefore, MS-BAND may serve as an alternative to the DNA fiber technique, with potential for high-throughput analysis of replication dynamics in diverse model systems.
Collapse
Affiliation(s)
- Mohamed E. Ashour
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Andrea K. Byrum
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Jun Xia
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Biomedical Sciences, Creighton University, Omaha, NE, USA
| | - Saurabh Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Susan M. Rosenberg
- Departments of Molecular and Human Genetics, Biochemistry and Molecular Biology, and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
37
|
Fontana B, Gallerani G, Salamon I, Pace I, Roncarati R, Ferracin M. ARID1A in cancer: Friend or foe? Front Oncol 2023; 13:1136248. [PMID: 36890819 PMCID: PMC9987588 DOI: 10.3389/fonc.2023.1136248] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
ARID1A belongs to a class of chromatin regulatory proteins that function by maintaining accessibility at most promoters and enhancers, thereby regulating gene expression. The high frequency of ARID1A alterations in human cancers has highlighted its significance in tumorigenesis. The precise role of ARID1A in cancer is highly variable since ARID1A alterations can have a tumor suppressive or oncogenic role, depending on the tumor type and context. ARID1A is mutated in about 10% of all tumor types including endometrial, bladder, gastric, liver, biliopancreatic cancer, some ovarian cancer subtypes, and the extremely aggressive cancers of unknown primary. Its loss is generally associated with disease progression more often than onset. In some cancers, ARID1A loss is associated with worse prognostic features, thus supporting a major tumor suppressive role. However, some exceptions have been reported. Thus, the association of ARID1A genetic alterations with patient prognosis is controversial. However, ARID1A loss of function is considered conducive for the use of inhibitory drugs which are based on synthetic lethality mechanisms. In this review we summarize the current knowledge on the role of ARID1A as tumor suppressor or oncogene in different tumor types and discuss the strategies for treating ARID1A mutated cancers.
Collapse
Affiliation(s)
- Beatrice Fontana
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Giulia Gallerani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Irene Salamon
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Ilaria Pace
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Roberta Roncarati
- Istituto di Genetica Molecolare ”Luigi Luca Cavalli-Sforza“ – Consiglio Nazionale delle Ricerce (CNR), Bologna, Italy
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
38
|
Sundararajan V, Tan TZ, Lim D, Peng Y, Wengner AM, Ngoi NYL, Jeyasekharan AD, Tan DSP. Nuclear pCHK1 as a potential biomarker of increased sensitivity to ATR inhibition. J Pathol 2023; 259:194-204. [PMID: 36373784 PMCID: PMC10107453 DOI: 10.1002/path.6032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive genomic instability coupled with abnormalities in DNA repair pathways induces high levels of 'replication stress' when cancer cells propagate. Rather than hampering cancer cell proliferation, novel treatment strategies are turning their attention towards targeting cell cycle checkpoint kinases (such as ATR, CHK1, WEE1, and others) along the DNA damage response and replicative stress response pathways, thereby allowing unrepaired DNA damage to be carried forward towards mitotic catastrophe and apoptosis. The selective ATR kinase inhibitor elimusertib (BAY 1895344) has demonstrated preclinical and clinical monotherapy activity; however, reliable predictive biomarkers of treatment benefit are still lacking. In this study, using gene expression profiling of 24 cell lines from different cancer types and in a panel of ovarian cancer cell lines, we found that nuclear-specific enrichment of checkpoint kinase 1 (CHK1) correlated with increased sensitivity to elimusertib. Using an advanced multispectral imaging system in subsequent cell line-derived xenograft specimens, we showed a trend between nuclear phosphorylated CHK1 (pCHK1) staining and increased sensitivity to the ATR inhibitor elimusertib, indicating the potential value of pCHK1 expression as a predictive biomarker of ATR inhibitor sensitivity. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Diana Lim
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Natalie Yan Li Ngoi
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - David Shao Peng Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
39
|
Wang W, Xiong Y, Hu X, Lu F, Qin T, Zhang L, Guo E, Yang B, Fu Y, Hu D, Fan J, Qin X, Liu C, Xiao R, Chen G, Li Z, Sun C. Codelivery of adavosertib and olaparib by tumor-targeting nanoparticles for augmented efficacy and reduced toxicity. Acta Biomater 2023; 157:428-441. [PMID: 36549633 DOI: 10.1016/j.actbio.2022.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Ovarian cancer (OC) ranks first among gynecologic malignancies in terms of mortality. The benefits of poly (ADP-ribose) polymerase (PARP) inhibitors appear to be limited to OC with BRCA mutations. Concurrent administration of WEE1 inhibitors (eg, adavosertib (Ada)) and PARP inhibitors (eg, olaparib (Ola)) effectively suppress ovarian tumor growth regardless of BRCA mutation status, but is poorly tolerated. Henceforth, we aimed to seek a strategy to reduce the toxic effects of this combination by taking advantage of the mesoporous polydopamine (MPDA) nanoparticles with good biocompatibility and high drug loading capacity. In this work, we designed a tumor-targeting peptide TMTP1 modified MPDA-based nano-drug delivery system (TPNPs) for targeted co-delivery of Ada and Ola to treat OC. Ada and Ola could be effectively loaded into MPDA nanoplatform and showed tumor microenvironment triggered release behavior. The nanoparticles induced more apoptosis in OC cells, and significantly enhanced the synergy of combination therapy with Ada plus Ola in murine OC models. Moreover, the precise drug delivery of TPNPs towards tumor cells significantly diminished the toxic side effects caused by concurrent administration of Ada and Ola. Co-delivery of WEE1 inhibitors and PARP inhibitors via TPNPs represents a promising approach for the treatment of OC. STATEMENT OF SIGNIFICANCE: Combination therapy of WEE1 inhibitors (eg, Ada) with PARP inhibitors (eg, Ola) effectively suppress ovarian tumor growth regardless of BRCA mutation status. However, poor tolerability limits its clinical application. To address this issue, we construct a tumor-targeting nano-drug delivery system (TPNP) for co-delivery of Ada and Ola. The nanoparticles specifically target ovarian cancer and effectively enhance the antitumor effect while minimizing undesired toxic side effects. As the first nanomedicine co-loaded with a WEE1 inhibitor and a PARP inhibitor, TPNP-Ada-Ola may provide a promising and generally applicable therapeutic strategy for ovarian cancer patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xingyuan Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Funian Lu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ensong Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bin Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dianxing Hu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - JunPeng Fan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - RouRou Xiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
40
|
Salguero C, Valladolid C, Robinson HMR, Smith GCM, Yap TA. Targeting ATR in Cancer Medicine. Cancer Treat Res 2023; 186:239-283. [PMID: 37978140 DOI: 10.1007/978-3-031-30065-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
As a key component of the DNA Damage Response, the Ataxia telangiectasia and Rad3-related (ATR) protein is a promising druggable target that is currently widely evaluated in phase I-II-III clinical trials as monotherapy and in combinations with other rational antitumor agents, including immunotherapy, DNA repair inhibitors, chemo- and radiotherapy. Ongoing clinical studies for this drug class must address the optimization of the therapeutic window to limit overlapping toxicities and refine the target population that will most likely benefit from ATR inhibition. With advances in the development of personalized treatment strategies for patients with advanced solid tumors, many ongoing ATR inhibitor trials have been recruiting patients based on their germline and somatic molecular alterations, rather than relying solely on specific tumor subtypes. Although a spectrum of molecular alterations have already been identified as potential predictive biomarkers of response that may sensitize to ATR inhibition, these biomarkers must be analytically validated and feasible to measure robustly to allow for successful integration into the clinic. While several ATR inhibitors in development are poised to address a clinically unmet need, no ATR inhibitor has yet received FDA-approval. This chapter details the underlying rationale for targeting ATR and summarizes the current preclinical and clinical landscape of ATR inhibitors currently in evaluation, as their regulatory approval potentially lies close in sight.
Collapse
Affiliation(s)
- Carolina Salguero
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Valladolid
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helen M R Robinson
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Graeme C M Smith
- Artios Pharma, The Glenn Berge Building, Babraham Research Campus, Cambridge, UK
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The Institute for Applied Cancer Science, and Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, TX, 77030, Houston, USA.
| |
Collapse
|
41
|
AKT/GSK3β/NFATc1 and ROS signal axes are involved in AZD1390-mediated inhibitory effects on osteoclast and OVX-induced osteoporosis. Int Immunopharmacol 2022; 113:109370. [DOI: 10.1016/j.intimp.2022.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
42
|
Zhang J, Chan DW, Lin SY. Exploiting DNA Replication Stress as a Therapeutic Strategy for Breast Cancer. Biomedicines 2022; 10:2775. [PMID: 36359297 PMCID: PMC9687274 DOI: 10.3390/biomedicines10112775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2023] Open
Abstract
Proliferating cells rely on DNA replication to ensure accurate genome duplication. Cancer cells, including breast cancer cells, exhibit elevated replication stress (RS) due to the uncontrolled oncogenic activation, loss of key tumor suppressors, and defects in the DNA repair machinery. This intrinsic vulnerability provides a great opportunity for therapeutic exploitation. An increasing number of drug candidates targeting RS in breast cancer are demonstrating promising efficacy in preclinical and early clinical trials. However, unresolved challenges lie in balancing the toxicity of these drugs while maintaining clinical efficacy. Furthermore, biomarkers of RS are urgently required to guide patient selection. In this review, we introduce the concept of targeting RS, detail the current therapies that target RS, and highlight the integration of RS with immunotherapies for breast cancer treatment. Additionally, we discuss the potential biomarkers to optimizing the efficacy of these therapies. Together, the continuous advances in our knowledge of targeting RS would benefit more patients with breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
43
|
Durinikova E, Reilly NM, Buzo K, Mariella E, Chilà R, Lorenzato A, Dias JML, Grasso G, Pisati F, Lamba S, Corti G, Degasperi A, Cancelliere C, Mauri G, Andrei P, Linnebacher M, Marsoni S, Siena S, Sartore-Bianchi A, Nik-Zainal S, Di Nicolantonio F, Bardelli A, Arena S. Targeting the DNA Damage Response Pathways and Replication Stress in Colorectal Cancer. Clin Cancer Res 2022; 28:3874-3889. [PMID: 35881546 PMCID: PMC9433963 DOI: 10.1158/1078-0432.ccr-22-0875] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.
Collapse
Affiliation(s)
| | - Nicole M. Reilly
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Elisa Mariella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Rosaria Chilà
- Department of Oncology, University of Torino, Candiolo, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Annalisa Lorenzato
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - João M. L. Dias
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gaia Grasso
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | | | - Simona Lamba
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Andrea Degasperi
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Pietro Andrei
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| |
Collapse
|
44
|
Ngoi NYL, Westin SN, Yap TA. Targeting the DNA damage response beyond poly(ADP-ribose) polymerase inhibitors: novel agents and rational combinations. Curr Opin Oncol 2022; 34:559-569. [PMID: 35787597 PMCID: PMC9371461 DOI: 10.1097/cco.0000000000000867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed treatment paradigms in multiple cancer types defined by homologous recombination deficiency (HRD) and have become the archetypal example of synthetic lethal targeting within the DNA damage response (DDR). Despite this success, primary and acquired resistance to PARP inhibition inevitability threaten the efficacy and durability of response to these drugs. Beyond PARP inhibitors, recent advances in large-scale functional genomic screens have led to the identification of a steadily growing list of genetic dependencies across the DDR landscape. This has led to a wide array of novel synthetic lethal targets and corresponding inhibitors, which hold promise to widen the application of DDR inhibitors beyond HRD and potentially address PARP inhibitor resistance. RECENT FINDINGS In this review, we describe key synthetic lethal interactions that have been identified across the DDR landscape, summarize the early phase clinical development of the most promising DDR inhibitors, and highlight relevant combinations of DDR inhibitors with chemotherapy and other novel cancer therapies, which are anticipated to make an impact in rationally selected patient populations. SUMMARY The DDR landscape holds multiple opportunities for synthetic lethal targeting with multiple novel DDR inhibitors being evaluated on early phase clinical trials. Key challenges remain in optimizing the therapeutic window of ATR and WEE1 inhibitors as monotherapy and in combination approaches.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine
- The Institute for Applied Cancer Science
- Khalifa Institute for Personalized Cancer Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
45
|
Petrackova A, Savara J, Turcsanyi P, Gajdos P, Papajik T, Kriegova E. Rare germline ATM variants of uncertain significance in chronic lymphocytic leukaemia and other cancers. Br J Haematol 2022; 199:371-381. [PMID: 36029002 DOI: 10.1111/bjh.18419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Germline pathogenic ATM (ataxia-telangiectasia mutated) variants are associated with the risk of multiple cancers; however, genetic testing reveals a large number of ATM variants of uncertain significance (VUS). Here, we studied germline ATM variants occurring in a real-world cohort of 336 patients with chronic lymphocytic leukaemia (CLL) and public cancer whole-exome/genome-sequencing datasets (445 CLL, 75 mantle cell lymphoma, 216 metastatic breast cancer, 140 lung cancer patients). We found that two-thirds of rare germline ATM variants are pathogenic (18%-50%) or VUS-predicted pathogenic (50%-82%), depending on cancer type and reaching a prevalence of up to 8%, and one-third are VUS-predicted benign. Patients with both pathogenic and VUS-predicted pathogenic variants, all heterozygous, mostly missense, are more predisposed to biallelic ATM inactivation by acquiring deletion (del)11q than patients without these variants, similar to patients with somatic ATM variants. A functional assay of ATM activity in primary CLL cells proved that VUS-predicted pathogenic ATM variants partially reduce ATM activity and concurrent del(11q) leads to complete loss of ATM activity. The rare germline variants were associated with reduced progression-free survival in CLL on novel agents, comparable to somatic ATM or TP53 disruptions. Our results highlight the need to determine the pathogenicity of VUS in clinically relevant genes such as ATM.
Collapse
Affiliation(s)
- Anna Petrackova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Jakub Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic.,Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Peter Turcsanyi
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Petr Gajdos
- Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Tomas Papajik
- Department of Hemato-Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|
46
|
Lohmüller M, Roeck BF, Szabo TG, Schapfl MA, Pegka F, Herzog S, Villunger A, Schuler F. The SKP2-p27 axis defines susceptibility to cell death upon CHK1 inhibition. Mol Oncol 2022; 16:2771-2787. [PMID: 35673965 PMCID: PMC9348596 DOI: 10.1002/1878-0261.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Checkpoint kinase 1 (CHK1; encoded by CHEK1) is an essential gene that monitors DNA replication fidelity and prevents mitotic entry in the presence of under-replicated DNA or exogenous DNA damage. Cancer cells deficient in p53 tumor suppressor function reportedly develop a strong dependency on CHK1 for proper cell cycle progression and maintenance of genome integrity, sparking interest in developing kinase inhibitors. Pharmacological inhibition of CHK1 triggers B-Cell CLL/Lymphoma 2 (BCL2)-regulated cell death in malignant cells largely independently of p53, and has been suggested to kill p53-deficient cancer cells even more effectively. Next to p53 status, our knowledge about factors predicting cancer cell responsiveness to CHK1 inhibitors is limited. Here, we conducted a genome-wide CRISPR/Cas9-based loss-of-function screen to identify genes defining sensitivity to chemical CHK1 inhibitors. Next to the proapoptotic BCL2 family member, BCL2 Binding Component 3 (BBC3; also known as PUMA), the F-box protein S-phase Kinase-Associated Protein 2 (SKP2) was validated to tune the cellular response to CHK1 inhibition. SKP2 is best known for degradation of the Cyclin-dependent Kinase Inhibitor 1B (CDKN1B; also known as p27), thereby promoting G1-S transition and cell cycle progression in response to mitogens. Loss of SKP2 resulted in the predicted increase in p27 protein levels, coinciding with reduced DNA damage upon CHK1-inhibitor treatment and reduced cell death in S-phase. Conversely, overexpression of SKP2, which consequently results in reduced p27 protein levels, enhanced cell death susceptibility to CHK1 inhibition. We propose that assessing SKP2 and p27 expression levels in human malignancies will help to predict the responsiveness to CHK1-inhibitor treatment.
Collapse
Affiliation(s)
- Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Bernhard F Roeck
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Tamas G Szabo
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fragka Pegka
- Institute for Medical Biochemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Fabian Schuler
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
47
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Muralimanoharan S, Shamby R, Stansbury N, Schenken R, de la Pena Avalos B, Javanmardi S, Dray E, Sung P, Boyer TG. Aberrant R-loop-induced replication stress in MED12-mutant uterine fibroids. Sci Rep 2022; 12:6169. [PMID: 35418189 PMCID: PMC9008039 DOI: 10.1038/s41598-022-10188-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Uterine fibroid (UF) driver mutations in Mediator complex subunit 12 (MED12) trigger genomic instability and tumor development through unknown mechanisms. Herein, we show that MED12 mutations trigger aberrant R-loop-induced replication stress, suggesting a possible route to genomic instability and a novel therapeutic vulnerability in this dominant UF subclass. Immunohistochemical analyses of patient-matched tissue samples revealed that MED12 mutation-positive UFs, compared to MED12 mutation-negative UFs and myometrium, exhibited significantly higher levels of R-loops and activated markers of Ataxia Telangiectasia and Rad3-related (ATR) kinase-dependent replication stress signaling in situ. Single molecule DNA fiber analysis revealed that primary cells from MED12 mutation-positive UFs, compared to those from patient-matched MED12 mutation-negative UFs and myometrium, exhibited defects in replication fork dynamics, including reduced fork speeds, increased and decreased numbers of stalled and restarted forks, respectively, and increased asymmetrical bidirectional forks. Notably, these phenotypes were recapitulated and functionally linked in cultured uterine smooth muscle cells following chemical inhibition of Mediator-associated CDK8/19 kinase activity that is known to be disrupted by UF driver mutations in MED12. Thus, Mediator kinase inhibition triggered enhanced R-loop formation and replication stress leading to an S-phase cell cycle delay, phenotypes that were rescued by overexpression of the R-loop resolving enzyme RNaseH. Altogether, these findings reveal MED12-mutant UFs to be uniquely characterized by aberrant R-loop induced replication stress, suggesting a possible basis for genomic instability and new avenues for therapeutic intervention that involve the replication stress phenotype in this dominant UF subtype.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Ross Shamby
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | | | - Samin Javanmardi
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA
| | - Eloise Dray
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, STRF, 8210 Floyd Curl Drive, Mail Code 8257, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
49
|
Gupta N, Huang TT, Horibata S, Lee JM. Cell cycle checkpoints and beyond: Exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor-resistant cancer. Pharmacol Res 2022; 178:106162. [PMID: 35259479 PMCID: PMC9026671 DOI: 10.1016/j.phrs.2022.106162] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/15/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) have become a mainstay of therapy in ovarian cancer and other malignancies, including BRCA-mutant breast, prostate, and pancreatic cancers. However, a growing number of patients develop resistance to PARPis, highlighting the need to further understand the mechanisms of PARPi resistance and develop effective treatment strategies. Targeting cell cycle checkpoint protein kinases, e.g., ATR, CHK1, and WEE1, which are upregulated in response to replication stress, represents one such therapeutic approach for PARPi-resistant cancers. Mechanistically, activated cell cycle checkpoints promote cell cycle arrest, replication fork stabilization, and DNA repair, demonstrating the interplay of DNA repair proteins with replication stress in the development of PARPi resistance. Inhibitors of these cell cycle checkpoints are under investigation in PARPi-resistant ovarian and other cancers. In this review, we discuss the cell cycle checkpoints and their roles beyond mere cell cycle regulation as part of the arsenal to overcome PARPi-resistant cancers. We also address the current status and recent advancements as well as limitations of cell cycle checkpoint inhibitors in clinical trials.
Collapse
Affiliation(s)
- Nitasha Gupta
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, USA; Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
50
|
Nieto-Jiménez C, Morafraile EC, Alonso-Moreno C, Ocaña A. Clinical considerations for the design of PROTACs in cancer. Mol Cancer 2022; 21:67. [PMID: 35249548 PMCID: PMC8900451 DOI: 10.1186/s12943-022-01535-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Degradation of targeted proteins using proteolysis targeting chimeras (PROTACs) has gained momentum. A PROTAC is a bifunctional molecule that consists of three parts: a ligand that interacts with the protein to be degraded, another ligand that binds to an E3 ubiquitin ligase and a linker that connects both. Identification of the right proteins as targets to be degraded and a ligase that is highly expressed in tumors compare with normal tissue is mandatory, as can augment efficacy reducing toxicity. In this article we review the current development stage of PROTACs in cancer to categorize the best PROTAC construction. Targets including BCL2, CDK4 and MCL1 were highly expressed in all tumors; MCL1 was significantly increased in breast cancer and lung adenocarcinoma and CDK4 in colon adenocarcinoma. Degradation of CDK9, AURKA or PLK1, followed by BCL2, MCL1, PTPN11, BRD4, PTK2, showed a high dependency. Most ligases evaluated were not highly present in tumors except for MDM2 in breast, lung, prostate and gastric cancer. In non-transformed tissue MDM2 was the most abundant ligase, followed by cIAP and CRBN, and those with low expression included XIAP and VHL. MDM2 ligase coupled with inhibitors of the targets BCL2, BRD4, CDK9, PLK1 and MCL1 in stomach tumor, and MDM2 with PIK3C3 inhibitors in breast cancer, seems to be the best therapeutic strategy. Our results suggest potential options for the design of PROTACS in specific medical indications.
Collapse
|