1
|
Cruz MA, Magalhães S, Bakırdöven M, Zélé F. Wolbachia strengthens the match between premating and early postmating isolation in spider mites. Evolution 2025; 79:203-219. [PMID: 39432669 DOI: 10.1093/evolut/qpae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Endosymbiotic reproductive manipulators are widely studied as sources of postzygotic isolation in arthropods, but their effect on prezygotic isolation between genetically differentiated populations has garnered less attention. We tested this using two partially isolated populations of the red and green color forms of Tetranychus urticae, either uninfected or infected with different Wolbachia strains, one inducing cytoplasmic incompatibility and the other not. We first investigated male and female preferences and found that, in absence of infection, females were not choosy, but all males preferred red-form females. Wolbachia effects were more subtle, with only the cytoplasmic incompatibility-inducing strain slightly strengthening color-form-based preferences. We then performed a double-mating experiment to test how incompatible matings affect subsequent mating behavior and offspring production as compared to compatible matings. Females mated with an incompatible male (infected and/or heterotypic) were more attractive and/or receptive to subsequent (compatible) matings, although analyses of offspring production revealed no clear benefit for this remating behavior (i.e., apparently unaltered first male sperm precedence). Finally, by computing the relative contributions of each reproductive barrier to total isolation, we showed that premating isolation matches both host-associated and Wolbachia-induced postmating isolation, suggesting that Wolbachia could contribute to reproductive isolation in this system.
Collapse
Affiliation(s)
- Miguel A Cruz
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE - Global Change and Sustainability Institute, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Murat Bakırdöven
- Institute of Environmental Sciences, Boğaziçi University, Istanbul, Turkey
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
2
|
Stroud JT, Giery ST, Heathcote RJP, Tiatragul S, Yuan ML, Feeley KJ, Losos JB. Observing character displacement from process to pattern in a novel vertebrate community. Nat Commun 2024; 15:9862. [PMID: 39543139 PMCID: PMC11564967 DOI: 10.1038/s41467-024-54302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Ecological character displacement, whereby shifts in resource use in the presence of competing species leads to adaptive evolutionary divergence, is widely considered an important process in community assembly and adaptive radiation. However, most evidence for character displacement has been inferred from macro-scale geographic or phylogenetic patterns; direct tests of the underlying hypothesis of divergent natural selection driving character displacement in the wild are rare. Here, we document character displacement between two ecologically similar lizards (Anolis sagrei and A. cristatellus) experiencing novel contact. We identify directional selection during the incipient stages of sympatry in a new community that corresponds to repeated trait divergence across multiple established sympatric communities. By identifying the role of natural selection as character displacement unfolds, we connect how natural selection operating at short timescales may drive broader patterns of trait distributions at larger spatial and temporal scales.
Collapse
Affiliation(s)
- James T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Sean T Giery
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Sarin Tiatragul
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Michael L Yuan
- Center for Population Biology, University of California, Davis, CA, USA
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Jonathan B Losos
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Lackey ACR, Scordato ESC, Keagy J, Tinghitella RM, Heathcote RJP. The role of mate competition in speciation and divergence: a systematic review. J Evol Biol 2024; 37:1225-1243. [PMID: 39276025 DOI: 10.1093/jeb/voae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
Competition for mates can play a critical role in determining reproductive success, shaping phenotypic variation within populations, and influencing divergence. Yet, studies of the role of sexual selection in divergence and speciation have focused disproportionately on mate choice. Here, we synthesize the literature on how mate competition may contribute to speciation and integrate concepts from work on sexual selection within populations-mating systems, ecology, and mate choice. Using this synthesis, we generate testable predictions for how mate competition may contribute to divergence. Then, we identify the extent of existing support for these predictions in the literature with a systematic review of the consequences of mate competition for population divergence across a range of evolutionary, ecological, and geographic contexts. We broadly evaluate current evidence, identify gaps in available data and hypotheses that need testing, and outline promising directions for future work. A major finding is that mate competition may commonly facilitate further divergence after initial divergence has occurred, e.g., upon secondary contact and between allopatric populations. Importantly, current hypotheses for how mate competition contributes to divergence do not fully explain observed patterns. While results from many studies fit predictions of negative frequency-dependent selection, agonistic character displacement, and ecological selection, results from ~30% of studies did not fit existing conceptual models. This review identifies future research aims for scenarios in which mate competition is likely important but has been understudied, including how ecological context and interactions between mate choice and mate competition can facilitate or hinder divergence and speciation.
Collapse
Affiliation(s)
- Alycia C R Lackey
- Department of Biology, University of Louisville, Louisville, KY, United States
| | | | - Jason Keagy
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, United States
| | - Robin M Tinghitella
- Department of Biological Sciences, University of Denver, Denver, CO, United States
| | - Robert J P Heathcote
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Luepold SB, Carlotti S, Pasinelli G. A test of the mechanistic process behind the convergent agonistic character displacement hypothesis. Behav Ecol 2024; 35:arae072. [PMID: 39380688 PMCID: PMC11457480 DOI: 10.1093/beheco/arae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/31/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
In this era of rapid global change, understanding the mechanisms that enable or prevent species from co-occurring has assumed new urgency. The convergent agonistic character displacement (CACD) hypothesis posits that signal similarity enables the co-occurrence of ecological competitors by promoting aggressive interactions that reduce interspecific territory overlap and hence, exploitative competition. In northwestern Switzerland, ca. 10% of Phylloscopus sibilatrix produce songs containing syllables that are typical of their co-occurring sister species, Phylloscopus bonelli ("mixed singers"). To examine whether the consequences of P. sibilatrix mixed singing are consistent with CACD, we combined a playback experiment and an analysis of interspecific territory overlap. Although P. bonelli reacted more aggressively to playback of mixed P. sibilatrix song than to playback of typical P. sibilatrix song, interspecific territory overlap was not reduced for mixed singers. Thus, the CACD hypothesis was not supported, which stresses the importance of distinguishing between interspecific aggressive interactions and their presumed spatial consequences.
Collapse
Affiliation(s)
- Shannon Buckley Luepold
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandro Carlotti
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
| | - Gilberto Pasinelli
- Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Mittrarath P, Ngamniyom A. Transcriptomic Profiles of Male Thai Ricefish ( Oryzias minutillus) after Encountering Two Related Species of Males ( Oryzias latipes or Oryzias woworae). Pak J Biol Sci 2024; 27:537-546. [PMID: 39551956 DOI: 10.3923/pjbs.2024.537.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
<b>Background and Objective:</b> The Thai ricefish (<i>Oryzias minutillus</i>) is the smallest <i>Oryzias</i> spp. and is important in the trophic structure of freshwater ecological systems. However, interactions with related species via gene expression profiles are unknown in this species. Here, this study reports on the first attempt to investigate the transcriptome profiles of male Thai ricefish induced by the males of two <i>Oryzias</i>. Japanese ricefish (<i>O. latipes</i>) and Daisy's ricefish (<i>O. woworae</i>, a remarkably colourful <i>Oryzias</i>) were used in the experiments. <b>Materials and Methods:</b> <i>Oryzias minutillus</i> was put in the presence of <i>O. latipes</i> (as group 1) or <i>O. woworae</i> (as group 2) for 7 days in aquaria divided by a transparent partition wall. Thai ricefish faced the same species as control group. Fish in each group were measured the distance between fish individuals of <i>O. minutillus</i> to <i>O. latipes</i> or <i>O. woworae</i>. One-way ANOVA with <i>post hoc</i> Tukey's test was used to analyse the significant differences among groups. <i>Oryzias minutillus</i> from groups 1 and 2 on day 7 were subjected to RNA-sequencing analysis via next-generation sequencing. <b>Results:</b> Long-distance encounters of fish appeared in group 2 on day 7, but there were no significant differences between fish distances. Among the differentially expressed genes, the up-and downregulated genes were more highly expressed in group 2 than in group 1. According to gene ontology term enrichment analysis, genes downregulated in the "locomotion" pathway were detected in group 1 but not in group 2. Conversely, downregulation of "pigmentation" and "reproductive process" was detected only in group 2. <b>Conclusion:</b> These results suggested that the different patterns of gene expression in <i>O. minutillus</i> may be affected by the presence of <i>O. latipes</i> and <i>O. woworae</i>.
Collapse
|
6
|
Shteindel N, Gerchman Y, Silberbush A. Mosquito Egg Raft Distribution Is Affected by Semiochemicals: Indication of Interspecific Competition. INSECTS 2024; 15:364. [PMID: 38786920 PMCID: PMC11121923 DOI: 10.3390/insects15050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Numerous species of animals alter their behavior in response to increasing competition. To do so, they must possess the ability to detect the presence and density of interspecific competitors. We studied the role of semiochemicals released by increasing densities of larval Culiseta longiareolata Macquart on female oviposition habitat selection in two field experiments. Similarly to C. longiareolata larvae, subordinate Culex laticinctus Edwards are periphyton grazers who dwell in rain-filled pools in the Mediterranean region. We show that C. laticinctus females oviposited significantly less in mesocosm pools that were treated with crowding signals originating from C. longiareolata larvae. In the second experiment, we placed a similar number of larvae directly inside the 50 L mesocosms. These low-density mesocosms did not affect C. laticinctus oviposition but were attractive to conspecific oviposition. These results increase our understanding of the female ability to detect species-specific signals, indicating increased larval competition.
Collapse
Affiliation(s)
- Nimrod Shteindel
- Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel; (N.S.); (Y.G.)
| | - Yoram Gerchman
- Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel; (N.S.); (Y.G.)
- Oranim College of Education, Tivon 3600600, Israel
| | - Alon Silberbush
- Faculty of Natural Sciences, University of Haifa, Haifa 3103301, Israel; (N.S.); (Y.G.)
- Oranim College of Education, Tivon 3600600, Israel
| |
Collapse
|
7
|
Zarzyczny KM, Rius M, Williams ST, Fenberg PB. The ecological and evolutionary consequences of tropicalisation. Trends Ecol Evol 2024; 39:267-279. [PMID: 38030539 DOI: 10.1016/j.tree.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Tropicalisation is a marine phenomenon arising from contemporary climate change, and is characterised by the range expansion of tropical/subtropical species and the retraction of temperate species. Tropicalisation occurs globally and can be detected in both tropical/temperate transition zones and temperate regions. The ecological consequences of tropicalisation range from single-species impacts (e.g., altered behaviour) to whole ecosystem changes (e.g., phase shifts in intertidal and subtidal habitats). Our understanding of the evolutionary consequences of tropicalisation is limited, but emerging evidence suggests that tropicalisation could induce phenotypic change as well as shifts in the genotypic composition of both expanding and retracting species. Given the rapid rate of contemporary climate change, research on tropicalisation focusing on shifts in ecosystem functioning, biodiversity change, and socioeconomic impacts is urgently needed.
Collapse
Affiliation(s)
- Karolina M Zarzyczny
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Marc Rius
- Centre for Advanced Studies of Blanes (CEAB), Consejo Superior de Investigaciones Científicas (CSIC), Accés a la Cala Sant Francesc 14, Blanes 17300, Spain; Department of Zoology, Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
| | | | - Phillip B Fenberg
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
8
|
McEachin S, Drury JP, Grether GF. Competitive Displacement and Agonistic Character Displacement, or the Ghost of Interference Competition. Am Nat 2024; 203:335-346. [PMID: 38358816 DOI: 10.1086/728671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractInterference competition can drive species apart in habitat use through competitive displacement in ecological time and agonistic character displacement (ACD) over evolutionary time. As predicted by ACD theory, sympatric species of rubyspot damselflies (Hetaerina spp.) that respond more aggressively to each other in staged encounters differ more in microhabitat use. However, the same pattern could arise from competitive displacement if dominant species actively exclude subordinate species from preferred microhabitats. The degree to which habitat partitioning is caused by competitive displacement can be assessed with removal experiments. We carried out removal experiments with three species pairs of rubyspot damselflies. With competitive displacement, removing dominant species should allow subordinate species to shift into the dominant species' microhabitat. Instead, we found that species-specific microhabitat use persisted after the experimental removals. Thus, the previously documented association between heterospecific aggression and microhabitat partitioning in this genus is most likely a product of divergence in habitat preferences caused by interference competition in the evolutionary past.
Collapse
|
9
|
Leighton GM, Drury JP, Small J, Miller ET. Unfamiliarity generates costly aggression in interspecific avian dominance hierarchies. Nat Commun 2024; 15:335. [PMID: 38184603 PMCID: PMC10771497 DOI: 10.1038/s41467-023-44613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Dominance hierarchies often form between species, especially at common feeding locations. Yet, relative to work focused on the factors that maintain stable dominance hierarchies within species, large-scale analyses of interspecific dominance hierarchies have been comparatively rare. Given that interspecific behavioral interference mediates access to resources, these dominance hierarchies likely play an important and understudied role in community assembly and behavioral evolution. To test alternative hypotheses about the formation and maintenance of interspecific dominance hierarchies, we employ an large, participatory science generated dataset of displacements observed at feeders in North America in the non-breeding season. Consistent with the hypothesis that agonistic interference can be an adaptive response to exploitative competition, we find that species with similar niches are more likely to engage in costly aggression over resources. Among interacting species, we find broad support for the hypothesis that familiarity (measured as fine-scale habitat overlap) predicts adherence to the structure of the dominance hierarchy and reduces aggression between species. Our findings suggest that the previously documented agonistic hierarchy in North American birds emerges from species-level adaptations and learned behaviors that result in the avoidance of costly aggression.
Collapse
Affiliation(s)
- Gavin M Leighton
- Department of Biology, SUNY Buffalo State University, Buffalo, NY, 14213, USA.
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Jay Small
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Eliot T Miller
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
10
|
Grether GF, Finneran AE, Drury JP. Niche differentiation, reproductive interference, and range expansion. Ecol Lett 2024; 27:e14350. [PMID: 38062899 PMCID: PMC11497290 DOI: 10.1111/ele.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2024]
Abstract
Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.
Collapse
Affiliation(s)
- Gregory F. Grether
- Department of Ecology & Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Ann E. Finneran
- Department of Ecology & Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | | |
Collapse
|
11
|
Gómez-Llano M, Boys WA, Ping T, Tye SP, Siepielski AM. Interactions between fitness components across the life cycle constrain competitor coexistence. J Anim Ecol 2023; 92:2297-2308. [PMID: 37087690 DOI: 10.1111/1365-2656.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Numerous mechanisms can promote competitor coexistence. Yet, these mechanisms are often considered in isolation from one another. Consequently, whether multiple mechanisms shaping coexistence combine to promote or constrain species coexistence remains an open question. Here, we aim to understand how multiple mechanisms interact within and between life stages to determine frequency-dependent population growth, which has a key role stabilizing local competitor coexistence. We conducted field experiments in three lakes manipulating relative frequencies of two Enallagma damselfly species to evaluate demographic contributions of three mechanisms affecting different fitness components across the life cycle: the effect of resource competition on individual growth rate, predation shaping mortality rates, and mating harassment determining fecundity. We then used a demographic model that incorporates carry-over effects between life stages to decompose the relative effect of each fitness component generating frequency-dependent population growth. This decomposition showed that fitness components combined to increase population growth rates for one species when rare, but they combined to decrease population growth rates for the other species when rare, leading to predicted exclusion in most lakes. Because interactions between fitness components within and between life stages vary among populations, these results show that local coexistence is population specific. Moreover, we show that multiple mechanisms do not necessarily increase competitor coexistence, as they can also combine to yield exclusion. Identifying coexistence mechanisms in other systems will require greater focus on determining contributions of different fitness components across the life cycle shaping competitor coexistence in a way that captures the potential for population-level variation.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, 65188, Sweden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Wade A Boys
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Taylor Ping
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Simon P Tye
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| |
Collapse
|
12
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
13
|
Vangenne YD, Sheppard B, Martin PR. Behavioral dominance interactions between two species of burying beetles ( Nicrophorus orbicollis and Nicrophorus pustulatus). PeerJ 2023; 11:e16090. [PMID: 38025751 PMCID: PMC10676716 DOI: 10.7717/peerj.16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023] Open
Abstract
Closely related species with ecological similarity often aggressively compete for a common, limited resource. This competition is usually asymmetric and results in one species being behaviorally dominant over the other. Trade-offs between traits for behavioral dominance and alternative strategies can result in different methods of resource acquisition between the dominant and subordinate species, with important consequences for resource partitioning and community structure. Body size is a key trait thought to commonly determine behavioral dominance. Priority effects (i.e., which species arrives at the resource first), however, can also determine the outcome of interactions, as can species-specific traits besides size that give an advantage in aggressive contests (e.g., weapons). Here, we test among these three alternative hypotheses of body size, priority effects, and species identity for what determines the outcome of competitive interactions among two species of burying beetles, Nicrophorus orbicollis and N. pustulatus. Both overlap in habitat and seasonality and exhibit aggressive competition over a shared breeding resource of small vertebrate carrion. In trials, we simulated what would happen upon the beetles' discovery of a carcass in nature by placing a carcass and one beetle of each species in a container and observing interactions over 13 h trials (n = 17 trials). We recorded and categorized interactions between beetles and the duration each individual spent in contact with the carcass (the key resource) to determine which hypothesis predicted trial outcomes. Body size was our only significant predictor; the largest species won most aggressive interactions and spent more time in contact with the carcass. Our results offer insight into the ecology and patterns of resource partitioning of N. orbicollis and N. pustulatus, the latter of which is unique among local Nicrophorus for being a canopy specialist. N. pustulatus is also unique among all Nicrophorus in using snake eggs, in addition to other carrion, as a breeding resource. Our results highlight the importance of body size and related trade-offs in ecology and suggest parallels with other coexisting species and communities.
Collapse
Affiliation(s)
| | - Brendan Sheppard
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Paul R. Martin
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Mayfield MM, Lau JA, Tobias JA, Ives AR, Strauss SY. What Can Evolutionary History Tell Us about the Functioning of Ecological Communities? The ASN Presidential Debate. Am Nat 2023; 202:587-603. [PMID: 37963115 DOI: 10.1086/726336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractIn January 2018, Sharon Strauss, then president of the American Society of Naturalists, organized a debate on the following topic: does evolutionary history inform the current functioning of ecological communities? The debaters-Ives, Lau, Mayfield, and Tobias-presented pro and con arguments, caricatured in standard debating format. Numerous examples show that both recent microevolutionary and longer-term macroevolutionary history are important to the ecological functioning of communities. On the other hand, many other examples illustrate that the evolutionary history of communities or community members does not influence ecological function, or at least not very much. This article aims to provide a provocative discussion of the consistent and conflicting patterns that emerge in the study of contemporary and historical evolutionary influences on community function, as well as to identify questions for further study. It is intended as a thought-provoking exercise to explore this complex field, specifically addressing (1) key assumptions and how they can lead us astray and (2) issues that need additional study. The debaters all agree that evolutionary history can inform us about at least some aspects of community function. The underlying question at the root of the debate, however, is how the fields of ecology and evolution can most profitably collaborate to provide a deeper and broader understanding of ecological communities.
Collapse
|
15
|
Rosa G, Salvidio S, Costa A. Disentangling Exploitative and Interference Competition on Forest Dwelling Salamanders. Animals (Basel) 2023; 13:2003. [PMID: 37370513 DOI: 10.3390/ani13122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Exploitative competition and interference competition differ in the way access to resources is modulated by a competitor. Exploitative competition implies resource depletion and usually produces spatial segregation, while interference competition is independent from resource availability and can result in temporal niche partitioning. Our aim is to infer the presence of spatial or temporal niche partitioning on a two-species system of terrestrial salamanders in Northern Italy: Speleomantes strinatii and Salamandrina perspicillata. We conducted 3 repeated surveys on 26 plots in spring 2018, on a sampling site where both species are present. We modelled count data with N-mixture models accounting for directional interactions on both abundance and detection process. In this way we were able to disentangle the effect of competitive interaction on the spatial scale, i.e., local abundance, and from the temporal scale, i.e., surface activity. We found strong evidence supporting the presence of temporal niche partitioning, consistent with interference competition. At the same time, no evidence of spatial segregation has been observed.
Collapse
Affiliation(s)
- Giacomo Rosa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16126 Genova, Italy
| | - Sebastiano Salvidio
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16126 Genova, Italy
| | - Andrea Costa
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16126 Genova, Italy
| |
Collapse
|
16
|
Renaud T, Root-Bernstein M. Flower visitor insects display an interspecific dominance hierarchy on flowers. Ecology 2023; 104:e3958. [PMID: 36520066 DOI: 10.1002/ecy.3958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Renaud
- UMR CESCO-Centre d'Écologie et des Sciences de la Conservation, CNRS, Muséum national d'Histoire naturelle, Paris, France.,Université de Poitiers, Poitiers, France
| | - Meredith Root-Bernstein
- UMR CESCO-Centre d'Écologie et des Sciences de la Conservation, CNRS, Muséum national d'Histoire naturelle, Paris, France.,Instituto de Ecología y Biodiversidad, Santiago, Chile.,Center of Applied Ecology and Sustainability, Santiago, Chile
| |
Collapse
|
17
|
Guevara EA, Bello C, Poveda C, McFadden IR, Schleuning M, Pellissier L, Graham CH. Hummingbird community structure and nectar resources modulate the response of interspecific competition to forest conversion. Oecologia 2023; 201:761-770. [PMID: 36754882 PMCID: PMC10038955 DOI: 10.1007/s00442-023-05330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/26/2023] [Indexed: 02/10/2023]
Abstract
On-going land-use change has profound impacts on biodiversity by filtering species that cannot survive in disturbed landscapes and potentially altering biotic interactions. In particular, how land-use change reshapes biotic interactions remains an open question. Here, we used selectivity experiments with nectar feeders in natural and converted forests to test the direct and indirect effects of land-use change on resource competition in Andean hummingbirds along an elevational gradient. Selectivity was defined as the time hummingbirds spent at high resource feeders when feeders with both low and high resource values were offered in the presence of other hummingbird species. Selectivity approximates the outcome of interspecific competition (i.e., the resource intake across competing species); in the absence of competition, birds should exhibit higher selectivity. We evaluated the indirect effect of forest conversion on selectivity, as mediated by morphological dissimilarity and flower resource abundance, using structural equation models. We found that forest conversion influenced selectivity at low and mid-elevations, but the influence of morphological dissimilarity and resource availability on selectivity varied between these elevations. At mid-elevation, selectivity was more influenced by the presence of morphologically similar competitors than by resource abundance while at low-elevation resource abundance was a more important predictor of selectivity. Our results suggest that selectivity is influenced by forest conversion, but that the drivers of these changes vary across elevation, highlighting the importance of considering context-dependent variation in the composition of resources and competitors when studying competition.
Collapse
Affiliation(s)
- Esteban A Guevara
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland.
- Área de Investigación y Monitoreo de Avifauna, Aves y Conservación, BirdLife in Ecuador, Nuño de Valderrama OE7 y Av, Mariana de Jesús, Quito, Ecuador.
- Landscape Ecology Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zurich, Switzerland.
| | - Carolina Bello
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Cristian Poveda
- Área de Investigación y Monitoreo de Avifauna, Aves y Conservación, BirdLife in Ecuador, Nuño de Valderrama OE7 y Av, Mariana de Jesús, Quito, Ecuador
| | - Ian R McFadden
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Landscape Ecology Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zurich, Switzerland
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Main, 60325, Frankfurt am Main, Germany
| | - Loïc Pellissier
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Landscape Ecology Group, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, 8092, Zurich, Switzerland
| | - Catherine H Graham
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| |
Collapse
|
18
|
Keith SA, Hobbs JP, Boström-Einarsson L, Hartley IR, Sanders NJ. Rapid resource depletion on coral reefs disrupts competitor recognition processes among butterflyfish species. Proc Biol Sci 2023; 290:20222158. [PMID: 36598015 PMCID: PMC9811634 DOI: 10.1098/rspb.2022.2158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Avoiding costly fights can help conserve energy needed to survive rapid environmental change. Competitor recognition processes help resolve contests without escalating to attack, yet we have limited understanding of how they are affected by resource depletion and potential effects on species coexistence. Using a mass coral mortality event as a natural experiment and 3770 field observations of butterflyfish encounters, we test how rapid resource depletion could disrupt recognition processes in butterflyfishes. Following resource loss, heterospecifics approached each other more closely before initiating aggression, fewer contests were resolved by signalling, and the energy invested in attacks was greater. By contrast, behaviour towards conspecifics did not change. As predicted by theory, conspecifics approached one another more closely and were more consistent in attack intensity yet, contrary to expectations, resolution of contests via signalling was more common among heterospecifics. Phylogenetic relatedness or body size did not predict these outcomes. Our results suggest that competitor recognition processes for heterospecifics became less accurate after mass coral mortality, which we hypothesize is due to altered resource overlaps following dietary shifts. Our work implies that competitor recognition is common among heterospecifics, and disruption of this system could lead to suboptimal decision-making, exacerbating sublethal impacts of food scarcity.
Collapse
Affiliation(s)
- S. A. Keith
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - J-P.A. Hobbs
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4069, Australia
| | | | - I. R. Hartley
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - N. J. Sanders
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Decoupled auditory perception from acoustic signal divergence hinders species recognition in territorial poison frogs. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03281-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Xia T, Nishimura T, Nagata N, Kubota K, Sota T, Takami Y. Reproductive isolation via divergent genital morphology due to cascade reinforcement in Ohomopterus ground beetles. J Evol Biol 2023; 36:169-182. [PMID: 36357996 DOI: 10.1111/jeb.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022]
Abstract
Secondary contact between incipient species and selection against maladaptive hybridization can drive reinforcement between populations in contact and result in reproductive character displacement (RCD). Resultant divergence in mating traits within a species may generate downstream reproductive isolation between populations with displaced and non-displaced traits, referred to as the cascade reinforcement hypothesis. We examined this hypothesis using three allopatric populations of the ground beetle Carabus maiyasanus with a genital lock-and-key system. This species shows RCD in male and female genital morphologies in populations in contact with the sister species C. iwawakianus. In a reciprocal mating experiment using three allopatric populations with differences in male and female genital sizes, insemination failure increased as the difference in genital size increased. Based on the reproductive isolation index, insemination failure was the major postmating-prezygotic isolation barrier, at least in one population pair with comparable total isolation to those of other species pairs. By contrast, there was only incomplete premating isolation among populations. These results suggest that RCD in genital morphologies drives incipient allopatric speciation, supporting the cascade reinforcement hypothesis. These findings provide insight into the roles of interspecific interactions and subsequent trait diversification in speciation processes.
Collapse
Affiliation(s)
- Tian Xia
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Taira Nishimura
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| | - Nobuaki Nagata
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan.,National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Kohei Kubota
- Department of Forest Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
21
|
Basham E, Briskie JV, Martin P. Variation in foraging strategies of New Zealand albatross species within a dominance hierarchy. NEW ZEALAND JOURNAL OF ZOOLOGY 2022. [DOI: 10.1080/03014223.2022.2137534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Eryn Basham
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - James V. Briskie
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Paul Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
22
|
Bird Communities in a Changing World: The Role of Interspecific Competition. DIVERSITY 2022. [DOI: 10.3390/d14100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Significant changes in the environment have the potential to affect bird species abundance and distribution, both directly, through a modification of the landscape, habitats, and climate, and indirectly, through a modification of biotic interactions such as competitive interactions. Predicting and mitigating the consequences of global change thus requires not only a sound understanding of the role played by biotic interactions in current ecosystems, but also the recognition and study of the complex and intricate effects that result from the perturbation of these ecosystems. In this review, we emphasize the role of interspecific competition in bird communities by focusing on three main predictions derived from theoretical and empirical considerations. We provide numerous examples of population decline and displacement that appeared to be, at least in part, driven by competition, and were amplified by environmental changes associated with human activities. Beyond a shift in relative species abundance, we show that interspecific competition may have a negative impact on species richness, ecosystem services, and endangered species. Despite these findings, we argue that, in general, the role played by interspecific competition in current communities remains poorly understood due to methodological issues and the complexity of natural communities. Predicting the consequences of global change in these communities is further complicated by uncertainty regarding future environmental conditions and the speed and efficacy of plastic and evolutionary responses to fast-changing environments. Possible directions of future research are highlighted.
Collapse
|
23
|
Hagen EH. The Biological Roots of Music and Dance : Extending the Credible Signaling Hypothesis to Predator Deterrence. HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:261-279. [PMID: 35986877 DOI: 10.1007/s12110-022-09429-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
After they diverged from panins, hominins evolved an increasingly committed terrestrial lifestyle in open habitats that exposed them to increased predation pressure from Africa's formidable predator guild. In the Pleistocene, Homo transitioned to a more carnivorous lifestyle that would have further increased predation pressure. An effective defense against predators would have required a high degree of cooperation by the smaller and slower hominins. It is in the interest of predator and potential prey to avoid encounters that will be costly for both. A wide variety of species, including carnivores and apes and other primates, have therefore evolved visual and auditory signals that deter predators by credibly signaling detection and/or the ability to effectively defend themselves. In some cooperative species, these predator deterrent signals involve highly synchronized visual and auditory displays among group members. Hagen and Bryant (Human Nature, 14(1), 21-51, 2003) proposed that synchronized visual and auditory displays credibly signal coalition quality. Here, this hypothesis is extended to include credible signals to predators that they have been detected and would be met with a highly coordinated defensive response, thereby deterring an attack. Within-group signaling functions are also proposed. The evolved cognitive abilities underlying these behaviors were foundations for the evolution of fully human music and dance.
Collapse
Affiliation(s)
- Edward H Hagen
- Department of Anthropology, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA, 98686, USA.
| |
Collapse
|
24
|
Grether GF, Okamoto KW. Eco‐evolutionary dynamics of interference competition. Ecol Lett 2022; 25:2167-2176. [DOI: 10.1111/ele.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory F. Grether
- Department of Ecology and Evolutionary Biology University of California Los Angeles Los Angeles California USA
| | | |
Collapse
|
25
|
Chen C, Byrd CC, Pfennig KS. Male toads change their aggregation behaviour when hybridization is favoured. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Vega-Sánchez YM, Mendoza-Cuenca L, González-Rodríguez A. Morphological variation and reproductive isolation in the Hetaerina americana species complex. Sci Rep 2022; 12:10888. [PMID: 35764791 PMCID: PMC9240019 DOI: 10.1038/s41598-022-14866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/14/2022] [Indexed: 11/11/2022] Open
Abstract
Incomplete premating barriers in closely related species may result in reproductive interference. This process has different fitness consequences and can lead to three scenarios: niche segregation, sexual exclusion, or reproductive character displacement. In morphologically cryptic species, isolation barriers can be difficult to recognize. Here, we analyzed the morphological, behavioral, and genetic differences between two sympatric cryptic species of the genus Hetaerina to determine the characters that contribute the most to reproductive isolation and the effect of the high rates of behavior interference between the species. We found complete genetic isolation and significant differences in the morphometry of caudal appendages and wing shape, as well as body size variation between species. In contrast, we did not find clear differences in the coloration of the wing spot and observed high rates of interspecific aggression. Our results suggest that divergence in the shape of the caudal appendages is the principal pre-mating barrier that prevents interspecific mating. Moreover, a scenario of character displacement on body size was found. Nevertheless, size could play an important role in both inter- and intrasexual interactions and, therefore, we cannot differentiate if it has resulted from reproductive or aggressive interference.
Collapse
Affiliation(s)
- Yesenia Margarita Vega-Sánchez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, Mexico.
| | - Luis Mendoza-Cuenca
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, Mexico
| |
Collapse
|
27
|
Kenyon HL, Martin PR. Aggressive signaling among competing species of birds. PeerJ 2022; 10:e13431. [PMID: 35722268 PMCID: PMC9202552 DOI: 10.7717/peerj.13431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/21/2022] [Indexed: 01/14/2023] Open
Abstract
Aggressive interactions help individuals to gain access to and defend resources, but they can be costly, leading to increased predation risk, injury, or death. Signals involving sounds and color can allow birds to avoid the costs of intraspecific aggressive encounters, but we know less about agonistic signaling between species, where fights can be frequent and just as costly. Here, we review photographic and video evidence of aggressive interactions among species of birds (N = 337 interactions documenting the aggressive signals of 164 different bird species from 120 genera, 50 families, and 24 orders) to document how individuals signal in aggressive encounters among species, and explore whether these visual signals are similar to those used in aggressive encounters with conspecifics. Despite the diversity of birds examined, most aggressively signaling birds displayed weapons (bills, talons, wings) used in fighting and placed these weapons closest to their heterospecific opponent when signaling. Most species oriented their bodies and heads forward with their bills pointing towards their heterospecific opponent, often highlighting their face, throat, mouth, and bill. Many birds also opened their wings and/or tails, increasing their apparent size in displays, consistent with the importance of body size in determining behavioral dominance among species. Aggressive postures were often similar across species and taxonomic families. Exceptions included Accipitridae and Falconidae, which often highlighted their talons in the air, Columbidae, which often highlighted their underwings from the side, and Trochilidae, which often hovered upright in the air and pointed their fanned tail downward. Most species highlighted bright carotenoid-based colors in their signals, but highlighted colors varied across species and often involved multiple colors in combination (e.g., black, white, and carotenoid-based colors). Finally, birds tended to use the same visual signals in aggressive encounters with heterospecifics that they use in aggressive encounters with conspecifics, suggesting that selection from aggressive interactions may act on the same signaling traits regardless of competitor identity.
Collapse
Affiliation(s)
- Haley L. Kenyon
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| | - Paul R. Martin
- Department of Biology, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Yamaguchi R. Intermediate dispersal hypothesis of species diversity: New insights. Ecol Res 2022. [DOI: 10.1111/1440-1703.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryo Yamaguchi
- Department of Advanced Transdisciplinary Science Hokkaido University Sapporo Japan
| |
Collapse
|
29
|
A review of the impacts of invasive wild pigs on native vertebrates. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Mougi A. Predator interference and complexity-stability in food webs. Sci Rep 2022; 12:2464. [PMID: 35165383 PMCID: PMC8844033 DOI: 10.1038/s41598-022-06524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
It is predicted that ecological communities will become unstable with increasing species numbers and subsequent interspecific interactions; however, this is contrary to how natural ecosystems with diverse species respond to changes in species numbers. This contradiction has steered ecologists toward exploring what underlying processes allow complex communities to stabilize even through varying pressures. In this study, a food web model is used to show an overlooked role of interference among multiple predator species in solving this complexity–stability problem. Predator interference in large communities weakens species interactions due to a reduction in consumption rates by prey-sharing species in the presence of predators in response to territorial and aggressive behavior, thereby playing a key stabilizing role in communities. Especially when interspecific interference is strong and a community has diverse species and dense species interactions, stabilization is likely to work and creates a positive complexity–stability relationship within a community. The clear positive effect of complexity on community stability is not reflected by/intraspecific interference, emphasizing the key role of interspecific interference among multiple predator species in maintaining larger systems.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504, Japan.
| |
Collapse
|
31
|
Chock RY, Shier DM, Grether GF. Niche partitioning in an assemblage of granivorous rodents, and the challenge of community-level conservation. Oecologia 2022; 198:553-565. [PMID: 35034220 PMCID: PMC8858926 DOI: 10.1007/s00442-021-05104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Coexistence of competing species in the same foraging guild has long puzzled ecologists. In particular, how do small subordinate species persist with larger dominant competitors? This question becomes particularly important when conservation interventions, such as reintroduction or translocation, become necessary for the smaller species. Exclusion of dominant competitors might be necessary to establish populations of some endangered species. Ultimately, however, the goal should be to conserve whole communities. Determining how subordinate species escape competitive exclusion in intact communities could inform conservation decisions by clarifying the ecological conditions and processes required for coexistence at local or regional scales. We tested for spatial and temporal partitioning among six species of native, granivorous rodents using null models, and characterized the microhabitat of each species using resource-selection models. We found that the species’ nightly activity patterns are aggregated temporally but segregated spatially. As expected, we found clear evidence that the larger-bodied kangaroo rats drive spatial partitioning, but we also found species-specific microhabitat associations, which suggests that habitat heterogeneity is part of what enables these species to coexist. Restoration of natural disturbance regimes that create habitat heterogeneity, and selection of translocation sites without specific competitors, are among the management recommendations to consider in this case. More generally, this study highlights the need for a community-level approach to conservation and the usefulness of basic ecological data for guiding management decisions.
Collapse
Affiliation(s)
- Rachel Y Chock
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA. .,Recovery Ecology, San Diego Zoo Wildlife Alliance, Escondido, CA, USA.
| | - Debra M Shier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA.,Recovery Ecology, San Diego Zoo Wildlife Alliance, Escondido, CA, USA
| | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Le Roy C, Roux C, Authier E, Parrinello H, Bastide H, Debat V, Llaurens V. Convergent morphology and divergent phenology promote the coexistence of Morpho butterfly species. Nat Commun 2021; 12:7248. [PMID: 34903755 PMCID: PMC8668891 DOI: 10.1038/s41467-021-27549-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/22/2021] [Indexed: 11/08/2022] Open
Abstract
The coexistence of closely-related species in sympatry is puzzling because ecological niche proximity imposes strong competition and reproductive interference. A striking example is the widespread wing pattern convergence of several blue-banded Morpho butterfly species with overlapping ranges of distribution. Here we perform a series of field experiments using flying Morpho dummies placed in a natural habitat. We show that similarity in wing colour pattern indeed leads to interspecific territoriality and courtship among sympatric species. In spite of such behavioural interference, demographic inference from genomic data shows that sympatric closely-related Morpho species are genetically isolated. Mark-recapture experiments in the two most closely-related species unravel a strong temporal segregation in patrolling activity of males. Such divergence in phenology reduces the costs of reproductive interference while simultaneously preserving the benefits of convergence in non-reproductive traits in response to common ecological pressures. Henceforth, the evolution of multiple traits may favour species diversification in sympatry by partitioning niche in different dimensions.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France.
- Sorbonne Paris Cité, Université Paris Descartes, 12 rue de l'École de Médecine, 75006, Paris, France.
- Department of Experimental Zoology, Wageningen University, 6709 PG, Wageningen, The Netherlands.
| | - Camille Roux
- CNRS, UMR 8198 - Evo-Eco-Paleo, Univ. Lille, F-59000, Lille, France
| | | | - Hugues Parrinello
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, F-34094, Montpellier, France
| | - Héloïse Bastide
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP50, 75005, Paris, France
| |
Collapse
|
33
|
Boussens‐Dumon G, Llaurens V. Sex, competition and mimicry: an eco‐evolutionary model reveals unexpected impacts of ecological interactions on the evolution of phenotypes in sympatry. OIKOS 2021. [DOI: 10.1111/oik.08139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grégoire Boussens‐Dumon
- Inst. de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d'Histoire Naturelle – CP50 Paris France
| | - Violaine Llaurens
- Inst. de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d'Histoire Naturelle – CP50 Paris France
| |
Collapse
|
34
|
Kobak J, Rachalewski M, Bącela-Spychalska K. What doesn’t kill you doesn’t make you stronger: Parasites modify interference competition between two invasive amphipods. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.73734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used a freshwater amphipod-microsporidian model (Ponto-Caspian hosts: Dikerogammarus villosus and D. haemobaphes, parasite: Cucumispora dikerogammari) to check whether parasites affect biological invasions by modulating behaviour and intra- and interspecific interactions between the invaders. We tested competition for shelter in conspecific and heterospecific male pairs (one or both individuals infected or non-infected). In general, amphipods of both species increased their shelter occupancy time when accompanied by infected rather than non-infected conspecifics and heterospecifics. Infected amphipods faced lower aggression from non-infected conspecifics. Moreover, D. villosus was more aggressive than D. haemobaphes and more aggressive towards conspecifics vs. heterospecifics. In summary, infection reduced the intra- and interspecific competitivity of amphipods, which became less capable of defending their shelters, despite their unchanged need for shelter occupancy. Dikerogammarus haemobaphes, commonly considered as a weaker competitor, displaced by D. villosus from co-occupied locations, was able to compete efficiently for the shelter with D. villosus when microsporidian infections appeared on the scene. This suggests that parasites may be important mediators of biological invasions, facilitating the existence of large intra- and interspecific assemblages of invasive alien amphipods.
Collapse
|
35
|
McEachin S, Drury JP, Anderson CN, Grether GF. Mechanisms of reduced interspecific interference between territorial species. Behav Ecol 2021. [DOI: 10.1093/beheco/arab115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Interspecific territoriality has complex ecological and evolutionary consequences. Species that interact aggressively often exhibit spatial or temporal shifts in activity that reduce the frequency of costly encounters. We analyzed data collected over a 13-year period on 50 populations of rubyspot damselflies (Hetaerina spp.) to examine how rates of interspecific fighting covary with fine-scale habitat partitioning and to test for agonistic character displacement in microhabitat preferences. In most sympatric species, interspecific fights occur less frequently than expected based on the species’ relative densities. Incorporating measurements of spatial segregation and species discrimination into the calculation of expected frequencies accounted for most of the reduction in interspecific fighting (subtle differences in microhabitat preferences could account for the rest). In 23 of 25 sympatric population pairs, we found multivariate differences between species in territory microhabitat (perch height, stream width, current speed, and canopy cover). As predicted by the agonistic character displacement hypothesis, sympatric species that respond more aggressively to each other in direct encounters differ more in microhabitat use and have higher levels of spatial segregation. Previous work established that species with the lowest levels of interspecific fighting have diverged in territory signals and competitor recognition through agonistic character displacement. In the other species pairs, interspecific aggression appears to be maintained as an adaptive response to reproductive interference, but interspecific fighting is still costly. We now have robust evidence that evolved shifts in microhabitat preferences also reduce the frequency of interspecific fighting.
Collapse
Affiliation(s)
- Shawn McEachin
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| | | | | | - Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles Young Drive South, Los Angeles, CA, USA
| |
Collapse
|
36
|
Hamao S. Effect of sympatry on discrimination of heterospecific song by varied tits. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Mangiacotti M, Baeckens S, Scali S, Martín J, Van Damme R, Sacchi R. Evolutionary and biogeographical support for species-specific proteins in lizard chemical signals. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The species-specific components of animal signals can facilitate species recognition and reduce the risks of mismatching and interbreeding. Nonetheless, empirical evidence for species-specific components in chemical signals is scarce and mostly limited to insect pheromones. Based on the proteinaceous femoral gland secretions of 36 lizard species (Lacertidae), we examine the species-specific component potential of proteins in lizard chemical signals. By quantitative comparison of the one-dimensional electrophoretic patterns of the protein fraction from femoral gland secretions, we first reveal that the protein composition is species specific, accounting for a large part of the observed raw variation and allowing us to discriminate species on this basis. Secondly, we find increased protein pattern divergence in sympatric, closely related species. Thirdly, lizard protein profiles show a low phylogenetic signal, a recent and steep increase in relative disparity and a high rate of evolutionary change compared with non-specifically signal traits (i.e. body size and shape). Together, these findings provide support for the species specificity of proteins in the chemical signals of a vertebrate lineage.
Collapse
Affiliation(s)
- Marco Mangiacotti
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- Museo di Storia Naturale di Milano, Milano, Italy
| | - Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | | | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Roberto Sacchi
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Evidence for vocal diversity during physical interference at the perch in sympatric Carollia species (Chiroptera: Phyllostomidae): a key to social organization and species coexistence? Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Vocal diversity might reflect the social organization and sustain the coexistence of cryptic species in sympatry. To test the extent to which vocal behaviour separates sympatric, cryptic species of a bat radiation, we compared vocalizations of genetically confirmed Carollia castanea, Carollia sowelli and Carollia perspicillata emitted by intraspecific dyads of identified individuals during corresponding physical interference interactions at the perch. Video analysis revealed a similar behaviour and interaction time across species. A sonagram-based visual classification of vocalization syllables of uninterrupted frequency–time contour discriminated 21 syllable classes. Class usage and distribution of the four shared classes differed across species. Carollia sowelli emitted the lowest number of classes in total and per interaction across species and displayed a limited number of syllable compositions in bouts. Discriminant analyses of syllables of a common, shared class provided evidence for species distinctiveness and individual-specific signatures. In general, sex did not account for data variability. The present vocalizations combine syllables reported from aggressive and submissive contexts in C. perspicillata and might express experienced ambivalence during interference at the perch. The diversity of vocal behaviour across congeners is discussed as arising from different ecological pressures during allopatric speciation and as an indicator of differences in species social organization.
Collapse
|
39
|
Sobroza TV, Pequeno PACL, Gordo M, Kinap NM, Barnett APA, Spironello WR. Does co‐occurrence drive vertical niche partitioning in parapatric tamarins (
Saguinus
spp.)? AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tainara Venturini Sobroza
- Grupo de Pesquisa de Mamíferos Amazônicos Instituto Nacional de Pesquisas da Amazônia Av. André Araújo 2936, C.P. 2223, Petrópolis Manaus 69067‐375Brazil
- Projeto Sauim‐de‐Coleira Departamento de Biologia/ICB Universidade Federal do Amazonas (UFAM) ManausBrazil
| | | | - Marcelo Gordo
- Projeto Sauim‐de‐Coleira Departamento de Biologia/ICB Universidade Federal do Amazonas (UFAM) ManausBrazil
- Programa de Pós‐Graduação em Zoologia Universidade Federal do Amazonas (UFAM) Manaus Brazil
| | - Natalia Margarido Kinap
- Grupo de Pesquisa de Mamíferos Amazônicos Instituto Nacional de Pesquisas da Amazônia Av. André Araújo 2936, C.P. 2223, Petrópolis Manaus 69067‐375Brazil
| | - Adrian Paul Ashton Barnett
- Grupo de Pesquisa de Mamíferos Amazônicos Instituto Nacional de Pesquisas da Amazônia Av. André Araújo 2936, C.P. 2223, Petrópolis Manaus 69067‐375Brazil
- Programa de Pós‐Graduação em Zoologia Universidade Federal do Amazonas (UFAM) Manaus Brazil
| | - Wilson Roberto Spironello
- Grupo de Pesquisa de Mamíferos Amazônicos Instituto Nacional de Pesquisas da Amazônia Av. André Araújo 2936, C.P. 2223, Petrópolis Manaus 69067‐375Brazil
| |
Collapse
|
40
|
Jedlikowski J, Polak M, Koperski P, Ręk P. Response to heterospecific calls in non‐passerine species: can two Rallidae species recognise each other based on their vocalisations? Ethology 2021. [DOI: 10.1111/eth.13208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jan Jedlikowski
- Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - Marcin Polak
- Department of Zoology and Nature Protection Institute of Biological Sciences Maria Curie–Skłodowska University Lublin Poland
| | - Paweł Koperski
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - Paweł Ręk
- Department of Behavioural Ecology Institute of Environmental Biology Faculty of Biology Adam Mickiewicz University Poznań Poland
| |
Collapse
|
41
|
Love J, Goller F. Processes underlying complex patterns of song trait evolution in a Setophaga hybrid zone. Ecol Evol 2021; 11:7264-7277. [PMID: 34188811 PMCID: PMC8216987 DOI: 10.1002/ece3.7559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/12/2022] Open
Abstract
During secondary contact between two species when hybrids are less fit than parents, mating signals are expected to diverge, while aggressive signals are expected to converge. If a single signal trait is used in both mating and aggression, then the dynamics between these two forces could influence the evolutionary trajectory of that trait. We studied such a situation in an avian hybrid zone between two Setophaga species, where birdsong is used in both mate attraction and territory defense. We hypothesized that song modules of the two species will show separate and distinct geographic patterns due to the influence of selective pressures for effective territorial aggression and for effective mate attraction. We conducted geographic cline analyses and playback experiments across this hybrid zone. We found an unexpected geographic pattern of asymmetric introgression of song rhythm, which may be explained by results of the playback experiments that suggest that differences in song rhythm serve a greater role in mate attraction than in territory defense. In contrast, differences in syllable morphology show little evidence of importance in mate attraction or territorial defense. Song features converge in the hybrid zone, yet patterns of trait change suggest that the song production modules may vary in their modes of development and inheritance. Syringeal motor gesturing, which gives rise to syllable morphology, shows a nonclinal mosaic pattern, suggesting that this trait may be predominantly learned. In contrast, respiratory patterning, which forms song rhythm, shows a clinal geographic transition, suggesting that this trait could be more innate. The results indicate that opposing forces act independently on song via distinct modules of the song production mechanism, driving complex patterns of song trait evolution.
Collapse
Affiliation(s)
- Jay Love
- University of UtahSalt Lake CityUTUSA
| | - Franz Goller
- University of UtahSalt Lake CityUTUSA
- University of MünsterMünsterGermany
| |
Collapse
|
42
|
|
43
|
Sobroza TV, Gordo M, Barnett AP, Boubli JP, Spironello WR. Parapatric pied and red-handed tamarin responses to congeneric and conspecific calls. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.1016/j.actao.2020.103688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Fujimoto S, Tsurui‐Sato K, Katsube N, Tatsuta H, Tsuji K. Alternative reproductive tactics in male freshwater fish influence the accuracy of species recognition. Ecol Evol 2021; 11:3884-3900. [PMID: 33976782 PMCID: PMC8093699 DOI: 10.1002/ece3.7267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Sexual conflict can result in coercive mating. Because males bear low costs of heterospecific mating, coercive males may engage in misdirected mating attempts toward heterospecific females. In contrast, sexual selection through consensual mate choice can cause mate recognition cues among species to diverge, leading to more accurate species recognition. Some species show both coercive mating and mate choice-associated courtship behaviors as male alternative reproductive tactics. We hypothesized that if the selection pressures on each tactic differ, then the accuracy of species recognition would also change depending on the mating tactic adopted. We tested this hypothesis in the guppy (Poecilia reticulata) and mosquitofish (Gambusia affinis) by a series of choice experiments. Poecilia reticulata and G. affinis males both showed imperfect species recognition and directed all components of mating behavior toward heterospecific females. They tended to direct courtship displays more frequently toward conspecific than heterospecific females. With male P. reticulata, however, accurate species recognition disappeared when they attempted coercive copulation: they directed coercions more frequently toward heterospecific females. We also found that heterospecific sexual interaction had little effect on the fecundity of gravid females, which suggests that prepregnancy interactions likely underpin the exclusion of G. affinis by P. reticulata in our region.
Collapse
Affiliation(s)
- Shingo Fujimoto
- Center for Strategic Research ProjectUniversity of the RyukyusNishiharaJapan
- Present address:
Graduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Kaori Tsurui‐Sato
- Center for Strategic Research ProjectUniversity of the RyukyusNishiharaJapan
| | - Naotaka Katsube
- Faculty of AgricultureUniversity of the RyukyusNishiharaJapan
| | - Haruki Tatsuta
- Faculty of AgricultureUniversity of the RyukyusNishiharaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Kazuki Tsuji
- Faculty of AgricultureUniversity of the RyukyusNishiharaJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| |
Collapse
|
45
|
Gómez-Llano M, Germain RM, Kyogoku D, McPeek MA, Siepielski AM. When Ecology Fails: How Reproductive Interactions Promote Species Coexistence. Trends Ecol Evol 2021; 36:610-622. [PMID: 33785182 DOI: 10.1016/j.tree.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/19/2022]
Abstract
That species must differ ecologically is often viewed as a fundamental condition for their stable coexistence in biological communities. Yet, recent work has shown that ecologically equivalent species can coexist when reproductive interactions and sexual selection regulate population growth. Here, we review theoretical models and highlight empirical studies supporting a role for reproductive interactions in maintaining species diversity. We place reproductive interactions research within a burgeoning conceptual framework of coexistence theory, identify four key mechanisms in intra- and interspecific interactions within and between sexes, speculate on novel mechanisms, and suggest future research. Given the preponderance of sexual reproduction in nature, our review suggests that this is a neglected path towards explaining species diversity when traditional ecological explanations have failed.
Collapse
Affiliation(s)
- Miguel Gómez-Llano
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Rachel M Germain
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daisuke Kyogoku
- The Museum of Nature and Human Activities, Hyogo 669-1546, Japan
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Adam M Siepielski
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
46
|
Keiller ML, Lopez LK, Paijmans KC, Wong MYL. Behavioural plasticity in a native species may be related to foraging resilience in the presence of an aggressive invader. Biol Lett 2021; 17:20200877. [PMID: 33726559 DOI: 10.1098/rsbl.2020.0877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Competition between invasive and native species can result in the exploitation of resources by the invader, reducing foraging rates of natives. However, it is increasingly recognized that multiple factors can enhance the resilience of native species competing for limiting resources with invaders. Although extensively studied in terrestrial species, little research has focused on behavioural plasticity in aquatic ecosystems and how this influences native species resilience. Here, we examined the role of behavioural plasticity in interactions between a native Australian fish, Pseudomugil signifer, and a widespread invasive fish, Gambusia holbrooki. To determine whether P. signifer displays behavioural plasticity that may mitigate competition with G. holbrooki, we first quantified social behaviours (aggression, submission and affiliation) and shoal cohesion for each species in single- and mixed-species groups. Second, we compared the feeding rates of both species in these groups to ascertain if any modulation of social behaviours and cohesion related to foraging success. We found that aggressive and submissive behaviours of G. holbrooki and P. signifer showed plasticity in the presence of heterospecifics, but social affiliation, shoaling and, most importantly, foraging, remained inflexible. This variation in the degree of plasticity highlights the complexity of the behavioural response of a native species and suggests that both behavioural modulation and consistency may be related to sustaining foraging efficiency in the presence of an invader.
Collapse
Affiliation(s)
- Melinda L Keiller
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Laura K Lopez
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kai C Paijmans
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marian Y L Wong
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
47
|
Schrempf SD, Burke KW, Wettlaufer JD, Martin PR. Behavioral dominance interactions between Nicrophorus orbicollis and N. tomentosus burying beetles (Coleoptera: Silphidae). PeerJ 2021; 9:e10797. [PMID: 33665013 PMCID: PMC7912668 DOI: 10.7717/peerj.10797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022] Open
Abstract
Asymmetric interference competition, where one species is behaviorally dominant over another, appears widespread in nature with the potential to structure ecological communities through trade-offs between competitive dominance and environmental tolerance. The details of how species interact and the factors that contribute to behavioral dominance, however, are poorly known for most species, yet such details are important for understanding when and why trade-offs occur. Here, we examine behavioral interactions between two species of burying beetles (Coleoptera: Silphidae) that compete for limited breeding resources (i.e., small vertebrate carcasses) in nature, to identify behaviors involved in interference competition and to test if large body size, species identity, or time of arrival best predict behavioral dominance among species. To test these ideas, we placed same-sex individuals of Nicrophorus orbicollis (early to mid-summer breeder) and N. tomentosus (late summer to fall breeder) into an enclosure together with a 25–30 g mouse carcass (Mus musculus). We then video-recorded all behaviors, including neutral and aggressive interactions, for 13 h per trial (N = 14 trials). For each interaction, we assigned a winner based on which beetle retained its position instead of fleeing or retained possession of the carcass; the overall behavioral dominant was determined as the individual that won the most interactions over the length of the trial. We found that large body size was the best predictor of behavioral dominance. In most interactions, N. orbicollis was larger and dominant over N. tomentosus; however, when N. tomentosus was larger they outcompeted smaller N. orbicollis, illustrating the importance of body size in aggressive contests. The order of arrival to the carcass (priority effects) did not predict behavioral dominance. The larger size and abundance of N. orbicollis in nature suggest a competitive asymmetry between the species, supporting the idea that N. orbicollis constrains the ability of N. tomentosus to breed earlier in the summer.
Collapse
Affiliation(s)
| | - Kevin W Burke
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | - Paul R Martin
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
48
|
Kleyn T, Cruz Kaizer M, Passos LF. Sharing sound: Avian acoustic niches in the Brazilian Atlantic Forest. Biotropica 2021. [DOI: 10.1111/btp.12907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tristan Kleyn
- Department of Natural Sciences & Psychology Liverpool John Moores University Liverpool UK
| | - Mariane Cruz Kaizer
- School of Science, Engineering and Environment University of Salford‐Manchester Salford UK
| | - Luiza F. Passos
- Department of Natural Sciences & Psychology Liverpool John Moores University Liverpool UK
| |
Collapse
|
49
|
Wang D, Nkurunziza V, Barber NA, Zhu H, Wang J. Introduced ecological engineers drive behavioral changes of grasshoppers, consequently linking to its abundance in two grassland plant communities. Oecologia 2021; 195:1007-1018. [PMID: 33625579 DOI: 10.1007/s00442-021-04880-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/12/2021] [Indexed: 11/27/2022]
Abstract
Introduced ecosystem engineers are expected to have extensive ecological impacts on a broad range of resident biota by altering the physical-chemical structure of ecosystems. Livestock that are potentially important introduced ecosystem engineers in grassland systems could create and/or modify habitats for native plant-dwelling insects. Yet, there is little knowledge of how insects respond to engineering effects of introduced livestock. To bridge this gap, we tested how domestic sheep affects the behavior and abundance of a native grasshopper Euchorthippus unicolor at both low (11.8 ± 0.4 plant species per plot) and high (19.8 ± 0.5 plant species per plot) diversity sites. Results found grasshoppers shifted their resting and feeding locations from the upper to the intermediate or low layers of vegetation, and fed on more plants species following livestock engineering effects. In the low plant diversity habitats, grazing caused grasshoppers to increase switching frequency, spend more time searching for host plants, and reduce time spent feeding, but had opposite effects on all the three behaviors in the high-diversity habitats. Moreover, grazing engineering effects on behavioral changes of grasshoppers were potentially related to their abundance. Overall, this study highlights native insect species' behavior and abundance in responses to introduced ecological engineers, and suggests that ecosystem engineers of non-native species have strong and important impacts extending beyond their often most obvious and frequently documented direct ecological effects.
Collapse
Affiliation(s)
- Deli Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Venuste Nkurunziza
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Hui Zhu
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China. .,School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| | - Jingting Wang
- Institute of Grassland Science/School of Environment, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, Jilin, China
| |
Collapse
|
50
|
Zambre AM, Khandekar A, Sanap R, O'Brien C, Snell-Rood EC, Thaker M. Asymmetric interspecific competition drives shifts in signalling traits in fan-throated lizards. Proc Biol Sci 2020; 287:20202141. [PMID: 33290678 DOI: 10.1098/rspb.2020.2141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interspecific competition can occur when species are unable to distinguish between conspecific and heterospecific mates or competitors when they occur in sympatry. Selection in response to interspecific competition can lead to shifts in signalling traits-a process called agonistic character displacement. In two fan-throated lizard species-Sitana laticeps and Sarada darwini-females are morphologically indistinguishable and male agonistic signalling behaviour is similar. Consequently, in areas where these species overlap, males engage in interspecific aggressive interactions. To test whether interspecific male aggression between Si. laticeps and Sa. darwini results in agonistic character displacement, we quantified species recognition and signalling behaviour using staged encounter assays with both conspecifics and heterospecifics across sympatric and allopatric populations of both species. We found an asymmetric pattern, wherein males of Si. laticeps but not Sa. darwini showed differences in competitor recognition and agonistic signalling traits (morphology and behaviour) in sympatry compared with allopatry. This asymmetric shift in traits is probably due to differences in competitive abilities between species and can minimize competitive interactions in zones of sympatry. Overall, our results support agonistic character displacement, and highlight the role of asymmetric interspecific competition in driving shifts in social signals.
Collapse
Affiliation(s)
- Amod M Zambre
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.,Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - Akshay Khandekar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - Rajesh Sanap
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - Clairissa O'Brien
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Emilie C Snell-Rood
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|