1
|
Othman AM, Ashour Ibrahim I, Saleh SM, Abo-Elmatty DM, Mesbah NM, Abdel-Hamed AR. The Safety and Efficacy of Combining Saxagliptin and Pioglitazone Therapy in Streptozocin-Induced Diabetic Rats. Biomedicines 2023; 11:3300. [PMID: 38137521 PMCID: PMC10741989 DOI: 10.3390/biomedicines11123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a chronic progressive disease due to insulin resistance. Oxidative stress complicates the etiology of T2DM. Saxagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor, while Pioglitazone is a thiazolidinedione insulin sensitizer. This study aimed to assess the effect of Saxagliptin and Pioglitazone monotherapy and combination therapy on the biochemical and biological parameters in streptozotocin (STZ)-induced diabetic rats. METHODS The study included thirty-five male albino rats. Diabetes mellitus was induced by intraperitoneal STZ injection (35 mg/kg). For a 1-month duration, rats were divided into five groups. Glucose homeostasis traits, lipid profiles, kidney functions, liver enzymes, and oxidative stress markers were measured. Gene expression of miRNA-29a, phosphoenolpyruvate carboxykinase (PEPCK), phosphoinositide-3-kinase (PI3K), and interleukin 1 beta (IL-1β) was assessed using qRT-PCR. RESULTS At a 1-month treatment duration, combination therapy improves oxidative stress markers more than either drug alone. The combination therapy had significantly higher levels of SOD, catalase, and GSH and lower levels of MDA compared to the monotherapy. Additionally, the diabetic group showed a significant increase in the expression levels of miRNA-29a, PEPCK, and IL-1β and a significant decrease in PI3K compared to the normal control group. However, combination therapy of Saxagliptin and Pioglitazone was more effective than either Saxagliptin or Pioglitazone alone in reversing these results, especially for PEPCK and IL-1β. CONCLUSIONS Our findings revealed that combining Saxagliptin and Pioglitazone improves glycemic control and genetic and epigenetic expression profiles, which play an essential regulatory role in normal metabolism.
Collapse
Affiliation(s)
- Ahmed Mohamed Othman
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Ibrahim Ashour Ibrahim
- Department of Biochemistry, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Samy M. Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Noha M. Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt (N.M.M.)
| |
Collapse
|
2
|
Zhao Y, Liu Y, Zhao G, Lu H, Liu Y, Xue C, Chang Z, Liu H, Deng Y, Liang W, Wang H, Rom O, Garcia-Barrio MT, Zhu T, Guo Y, Chang L, Lin J, Chen YE, Zhang J. Myeloid BAF60a deficiency alters metabolic homeostasis and exacerbates atherosclerosis. Cell Rep 2023; 42:113171. [PMID: 37768825 PMCID: PMC10842557 DOI: 10.1016/j.celrep.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yuhao Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Haocheng Lu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaozhong Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Chao Xue
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Ziyi Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Wenying Liang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Huilun Wang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Oren Rom
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pathology and Translational Pathobiology, Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, LA 71103, USA
| | - Minerva T Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Tianqing Zhu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Yanhong Guo
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jiandie Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Y Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Aggarwal R, Qi SS, So SW, Swingen C, Reyes CP, Rose R, Wright C, Hocum Stone LL, Nixon JP, McFalls EO, Butterick TA, Kelly RF. Persistent diastolic dysfunction in chronically ischemic hearts following coronary artery bypass graft. J Thorac Cardiovasc Surg 2023; 165:e269-e279. [PMID: 36154976 PMCID: PMC10100582 DOI: 10.1016/j.jtcvs.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE A porcine model was used to study diastolic dysfunction in hibernating myocardium (HM) and recovery with coronary artery bypass surgery (CABG). METHODS HM was induced in Yorkshire-Landrace juvenile swine (n = 30) by placing a c-constrictor on left anterior descending artery causing chronic myocardial ischemia without infarction. At 12 weeks, animals developed the HM phenotype and were either killed humanely (HIB group; n = 11) or revascularized with CABG and allowed 4 weeks of recovery (HIB+CABG group; n = 19). Control pigs were matched for weight, age, and sex to the HIB group. Before the animals were killed humanely, cardiac magnetic resonance imaging (MRI) was done at rest and during a low-dose dobutamine infusion. Tissue was obtained for histologic and proinflammatory biomarker analyses. RESULTS Diastolic peak filling rate was lower in HIB compared with control (5.4 ± 0.7 vs 6.7 ± 1.4 respectively, P = .002), with near recovery with CABG (6.3 ± 0.8, P = .06). Cardiac MRI confirmed preserved global systolic function in all groups. Histology confirmed there was no transmural infarction but showed interstitial fibrosis in the endomysium in both the HIB and HIB+CABG groups compared with normal myocardium. Alpha-smooth muscle actin stain identified increased myofibroblasts in HM that were less apparent post-CABG. Cytokine and proteomic studies in HM showed decreased peroxisome proliferator-activator receptor gamma coactivator 1-alpha (PGC1-α) expression but increased expression of granulocyte-macrophage colony-stimulating factor and nuclear factor kappa-light-chain enhancer of activated B cells (NFκB). Following CABG, PGC1-α and NFκB expression returned to control whereas granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, and interferon gamma remained increased. CONCLUSIONS In porcine model of HM, increased NFκB expression, enhanced myofibroblasts, and collagen deposition along with decreased PGC1-α expression were observed, all of which tended toward normal with CABG. Estimates of impaired relaxation with MRI within HM during increased workload persisted despite CABG, suggesting a need for adjuvant therapies during revascularization.
Collapse
Affiliation(s)
- Rishav Aggarwal
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Steven S Qi
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Simon W So
- Research Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn; Department of Neuroscience, University of Minnesota, Minneapolis, Minn; Center for Veterans Research and Education, Division of Cardiology and Cardiothoracic Surgery, Minneapolis, Minn
| | - Cory Swingen
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Christina P Reyes
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Rebecca Rose
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Christin Wright
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Laura L Hocum Stone
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn
| | - Joshua P Nixon
- Research Service, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minn
| | - Edward O McFalls
- Division of Cardiology, Richmond VA Medical Center, Richmond, Va
| | - Tammy A Butterick
- Department of Neuroscience, University of Minnesota, Minneapolis, Minn; Center for Veterans Research and Education, Division of Cardiology and Cardiothoracic Surgery, Minneapolis, Minn
| | - Rosemary F Kelly
- Division of Cardiothoracic Surgery, Department of Surgery, University of Minnesota Medical School, Minneapolis, Minn.
| |
Collapse
|
4
|
Kutsche HS, Schreckenberg R, Schlüter KD. Uncoupling Proteins in Striated Muscle Tissue: Known Facts and Open Questions. Antioxid Redox Signal 2022; 37:324-335. [PMID: 35044239 DOI: 10.1089/ars.2021.0258] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Collapse
Affiliation(s)
| | - Rolf Schreckenberg
- Institute of Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
5
|
Zhang Z, Zhang X, Meng L, Gong M, Li J, Shi W, Qiu J, Yang Y, Zhao J, Suo Y, Liang X, Wang X, Tse G, Jiang N, Li G, Zhao Y, Liu T. Pioglitazone Inhibits Diabetes-Induced Atrial Mitochondrial Oxidative Stress and Improves Mitochondrial Biogenesis, Dynamics, and Function Through the PPAR-γ/PGC-1α Signaling Pathway. Front Pharmacol 2021; 12:658362. [PMID: 34194324 PMCID: PMC8237088 DOI: 10.3389/fphar.2021.658362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/06/2022] Open
Abstract
Background: Oxidative stress contributes to adverse atrial remodeling in diabetes mellitus. This remodeling can be prevented by the PPAR-γ agonist pioglitazone via its antioxidant and anti-inflammatory effects. In this study, we examined the molecular mechanisms underlying the protective effects of pioglitazone on atrial remodeling in a rabbit model of diabetes. Methods: Rabbits were randomly divided into control, diabetic, and pioglitazone-treated diabetic groups. Echocardiographic, hemodynamic, and electrophysiological parameters were measured. Serum PPAR-γ levels, serum and tissue oxidative stress and inflammatory markers, mitochondrial morphology, reactive oxygen species (ROS) production rate, respiratory function, and mitochondrial membrane potential (MMP) levels were measured. Protein expression of the pro-fibrotic marker TGF-β1, the PPAR-γ coactivator-1α (PGC-1α), and the mitochondrial proteins (biogenesis-, fusion-, and fission-related proteins) was measured. HL-1 cells were transfected with PGC-1α small interfering RNA (siRNA) to determine the underlying mechanisms of pioglitazone improvement of mitochondrial function under oxidative stress. Results: The diabetic group demonstrated a larger left atrial diameter and fibrosis area than the controls, which were associated with a higher incidence of inducible atrial fibrillation (AF). The lower serum PPAR-γ level was associated with lower PGC-1α and higher NF-κB and TGF-β1 expression. Lower mitochondrial biogenesis (PGC-1α, NRF1, and TFAM)-, fusion (Opa1 and Mfn1)-, and fission (Drp1)-related proteins were detected. Mitochondrial swelling, higher mitochondrial ROS, lower respiratory control rate, and lower MMP were observed. The pioglitazone group showed a reversal of structural remodeling and a lower incidence of inducible AF, which were associated with higher PPAR-γ and PGC-1α. The pioglitazone group had lower NF-κB and TGF-β1 expression levels, whereas biogenesis-, fusion-, and fission-related protein expression was higher. Further, mitochondrial structure and function were improved. In HL-1 cells, PGC-1α siRNA transfection blunted the effect of pioglitazone on Mn-SOD protein expression and MMP collapse in H2O2-treated cells. Conclusion: Diabetes mellitus induces adverse atrial structural, electrophysiological remodeling, and mitochondrial damage and dysfunction. Pioglitazone prevented these abnormalities through the PPAR-γ/PGC-1α pathway.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaowei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wen Shi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiao Tong University, Shanxi, China
| | - Jiuchun Qiu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yajuan Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianping Zhao
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Ya Suo
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinghua Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yungang Zhao
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Qing J, Zhang Z, Novák P, Zhao G, Yin K. Mitochondrial metabolism in regulating macrophage polarization: an emerging regulator of metabolic inflammatory diseases. Acta Biochim Biophys Sin (Shanghai) 2020; 52:917-926. [PMID: 32785581 DOI: 10.1093/abbs/gmaa081] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/24/2022] Open
Abstract
As a major type of immune cells with heterogeneity and plasticity, macrophages are classically divided into inflammatory (M1) and alternative/anti-inflammatory (M2) types and play a crucial role in the progress of the inflammatory diseases. Recent studies have shown that metabolism is an important determinant of macrophage phenotype. Mitochondria, one of the most important compartments involving cell metabolism, are closely associated with the regulation of cell functions. In most types of cell, mitochondrial oxidative phosphorylation (OXPHOS) is the primary mode of cellular energy production. However, mitochondrial OXPHOS is inhibited in activated M1 macrophages, rendering them unable to be converted into M2 phenotype. Thus, mitochondrial metabolism is a crucial regulator in macrophage functions. This review summarizes the roles of mitochondria in macrophage polarization and analyzes the molecular mechanisms underlying mitochondrial metabolism and function, which may provide new approaches for the treatment of metabolic inflammatory diseases.
Collapse
Affiliation(s)
- Jina Qing
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
- Research Lab of translational medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zizhen Zhang
- School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang 421001, China
| | - Petr Novák
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan 511518, China
| | - Kai Yin
- The Second Affiliated Hospital of Guilin Medical University, Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541100, China
- Research Lab of translational medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
7
|
Farag M, Ashour E, El-Hadidy W. Amelioration of High Fructose Diet-Induced Insulin Resistance, Hyperuricemia, and Liver Oxidative Stress by Combined Use of Selective Agonists of PPAR-α and PPAR-γ in Rats. DUBAI MEDICAL JOURNAL 2020. [DOI: 10.1159/000506899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: The use of high-fructose (Fr) corn sweeteners and sucrose in manufactured food has markedly increased recently. This excessive Fr intake has been proposed in the etiology of the metabolic syndrome, which shows an increasing prevalence throughout the world. Objective: In this study, we questioned whether fenofibrate (FF), a peroxisome proliferator-activated receptor (PPAR)-α agonist, and pioglitazone (PG), a PPAR-γ agonist, might be effective in ameliorating the metabolic syndrome in a rat model. Materials and Methods: The metabolic syndrome was induced by feeding rats a high-Fr (60%) diet for 10 weeks. The rats were divided into 5 groups: control group, fed a normal rat chow; Fr + vehicle group; Fr + FF group; Fr + PG group; and Fr + (FF + PG) group (treated with both drugs). Drug or vehicle treatment was given daily for 6 weeks (from weeks 5 to 10). Thereafter, blood and liver samples were obtained for biochemical studies. Results: Rats fed a high-Fr diet developed hyperglycemia, hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypercholesterolemia, and had increased serum alanine aminotransferase, hepatic tumor necrosis factor-α, and malondialdehyde levels but decreases in both glutathione content and superoxide dismutase activity. Rat treatment with FF and/or PG attenuated these alterations. The improvement was greater with the combined treatment than with either drug alone, and normalization of insulin sensitivity was observed only in rats treated with the combination therapy. Conclusion: Acting on the 2 main PPAR subfamilies, the combination of FF and PG provides a more efficacious therapy for modulating the changes in serum insulin, uric acid, and lipids, as well as the accompanying hepatic inflammation and oxidative stress that characterize the Fr-induced metabolic syndrome.
Collapse
|
8
|
Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A, Consolini AE, Portiansky E, Mosca S, Kranias EG, Wehrens XHT, Mattiazzi A. Ablation of phospholamban rescues reperfusion arrhythmias but exacerbates myocardium infarction in hearts with Ca2+/calmodulin kinase II constitutive phosphorylation of ryanodine receptors. Cardiovasc Res 2020; 115:556-569. [PMID: 30169578 DOI: 10.1093/cvr/cvy213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Gabriela Mazzocchi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Nehuen Salas
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - María Ines Ragone
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (in Cardiology), Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| |
Collapse
|
9
|
Hocum Stone LL, Swingen C, Wright C, Qi SS, Rassette M, McFalls EO, Kelly RF. Recovery of hibernating myocardium using stem cell patch with coronary bypass surgery. J Thorac Cardiovasc Surg 2020; 162:e3-e16. [PMID: 32059928 DOI: 10.1016/j.jtcvs.2019.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This study aims to investigate the utility of mesenchymal stem cells (MSCs) applied as an epicardial patch during coronary artery bypass graft (CABG) to target hibernating myocardium; that is, tissue with persistently decreased myocardial function, in a large animal model. METHODS Hibernating myocardium was induced in juvenile swine (n = 12) using a surgically placed constrictor on the left anterior descending artery, causing stenosis without infarction. After 12 weeks, single-vessel CABG was performed using left internal thoracic artery to left anterior descending artery graft. During CABG, an epicardial patch was applied to the hibernating myocardium region consisting either of MSCs grown onto a polyglactin mesh (n = 6), or sham polyglactin mesh without MSCs (n = 6). Four weeks after CABG and patch placement, cardiac magnetic resonance imaging was performed and cardiac tissue was examined by gross inspection, including coronary dilators for vessel stenosis and patency, electron microscopy, protein assays, and proteomic analysis. RESULTS CABG + MSC myocardium showed improvement in contractile function (78.24% ± 19.6%) compared with sham patch (39.17% ± 5.57%) during inotropic stimulation (P < .05). Compared with sham patch control, electron microscopy of CABG + MSC myocardium showed improvement in mitochondrial size, number, and morphology; protein analysis similarly showed increases in expression of the mitochondrial biogenesis marker peroxisome proliferator-activated receptor gamma coactivator 1-alpha (0.0022 ± 0.0009 vs 0.023 ± 0.009) (P < .01) along with key components of the electron transport chain, including succinate dehydrogenase (complex II) (0.06 ± 0.02 vs 0.14 ± 0.03) (P < .05) and adenosine triphosphate synthase (complex V) (2.7 ± 0.4 vs 4.2 ± 0.26) (P < .05). CONCLUSIONS In hibernating myocardium, placement of a stem cell patch during CABG shows promise in improving myocardial function by improving mitochondrial morphology and function.
Collapse
Affiliation(s)
- Laura L Hocum Stone
- Minneapolis VA Health Care System, Minneapolis, Minn; Department of Surgery, University of Minnesota, Minneapolis, Minn.
| | - Cory Swingen
- Department of Surgery, University of Minnesota, Minneapolis, Minn
| | - Christin Wright
- Minneapolis VA Health Care System, Minneapolis, Minn; Department of Surgery, University of Minnesota, Minneapolis, Minn
| | - Steven S Qi
- Department of Surgery, University of Minnesota, Minneapolis, Minn
| | - Matt Rassette
- Minneapolis VA Health Care System, Minneapolis, Minn
| | - Edward O McFalls
- Minneapolis VA Health Care System, Minneapolis, Minn; Department of Medicine, University of Minnesota, Minneapolis, Minn
| | - Rosemary F Kelly
- Department of Surgery, University of Minnesota, Minneapolis, Minn
| |
Collapse
|
10
|
Hocum Stone L, Chappuis E, Wright C, Kelly RF, McFalls EO. CoQ 10 enhances PGC1α and increases expression of mitochondrial antioxidant proteins in chronically ischemic swine myocardium. Nutr Metab (Lond) 2019; 16:92. [PMID: 31892934 PMCID: PMC6937679 DOI: 10.1186/s12986-019-0418-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background Expression of mitochondrial proteins is reduced within hibernating myocardium (HM). It is unclear whether dietary supplementation with CoQ10 can increase expression of mitochondrial electron transport chain (ETC) and antioxidant proteins within this tissue. In a swine model of HM, we tested whether dietary administration of CoQ10 for four weeks enhances the expression of ETC and antioxidant proteins within the mitochondria via increased PGC1α signaling. Methods 12 swine were instrumented with a fixed constrictor around the LAD artery to induce gradual stenosis. At three months, transthoracic ECHO was performed to confirm the presence of a wall motion abnormality in the anterior wall. Animals were then randomly assigned to receive daily dietary supplements of either CoQ10 (10 mg/kg/day) or placebo for four weeks. At this time, animals underwent a final ECHO and terminal procedure. Expression of nuclear-bound PGC1α (Western blots) and mitochondrial proteins (Tandem Mass Tag) were determined. Results Mitochondrial and nuclear membranes were isolated from the LAD region. Nuclear-bound PGC1α levels were > 200-fold higher with administration of four weeks of CoQ10 treatment (p = 0.016). Expression of ETC proteins was increased in those animals that received CoQ10. Compared with mitochondria in the LAD region from placebo-treated pigs, CoQ10-treated pigs had higher levels of Complex I (p = 0.03), Complex IV (p = 0.04) and Complex V (p = 0.028) peptides. Conclusions Four weeks of dietary CoQ10 in HM pigs enhances active, nuclear-bound PGC1α and increases the expression of ETC proteins within mitochondria of HM tissue.
Collapse
Affiliation(s)
- Laura Hocum Stone
- 1Department of Surgery, University of Minnesota Twin Cities, Minneapolis, USA.,2Research Service, Minneapolis VA Medical Center, Minneapolis, USA
| | - Erin Chappuis
- 1Department of Surgery, University of Minnesota Twin Cities, Minneapolis, USA
| | - Christin Wright
- 1Department of Surgery, University of Minnesota Twin Cities, Minneapolis, USA.,2Research Service, Minneapolis VA Medical Center, Minneapolis, USA
| | - Rosemary F Kelly
- 1Department of Surgery, University of Minnesota Twin Cities, Minneapolis, USA.,2Research Service, Minneapolis VA Medical Center, Minneapolis, USA
| | - Edward O McFalls
- 3Department of Medicine, University of Minnesota Twin Cities, Minneapolis, USA.,4Cardiology (111C), Minneapolis VA Medical Center, 1 Veterans Drive, Minneapolis, MN 55417 USA
| |
Collapse
|
11
|
Kakarla M, Puppala VK, Tyagi S, Anger A, Repp K, Wang J, Ying R, Widlansky ME. Circulating levels of mitochondrial uncoupling protein 2, but not prohibitin, are lower in humans with type 2 diabetes and correlate with brachial artery flow-mediated dilation. Cardiovasc Diabetol 2019; 18:148. [PMID: 31706320 PMCID: PMC6842161 DOI: 10.1186/s12933-019-0956-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/28/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Excessive reactive oxygen species from endothelial mitochondria in type 2 diabetes individuals (T2DM) may occur through multiple related mechanisms, including production of mitochondrial reactive oxygen species (mtROS), inner mitochondrial membrane (Δψm) hyperpolarization, changes in mitochondrial mass and membrane composition, and fission of the mitochondrial networks. Inner mitochondrial membrane proteins uncoupling protein-2 (UCP2) and prohibitin (PHB) can favorably impact mtROS and mitochondrial membrane potential (Δψm). Circulating levels of UCP2 and PHB could potentially serve as biomarker surrogates for vascular health in patients with and without T2DM. METHODS Plasma samples and data from a total of 107 individuals with (N = 52) and without T2DM (N = 55) were included in this study. Brachial artery flow mediated dilation (FMD) was measured by ultrasound. ELISA was performed to measure serum concentrations of PHB1 and UCP2. Mitochondrial membrane potential was measured from isolated leukocytes using JC-1 dye. RESULTS Serum UCP2 levels were significantly lower in T2DM subjects compared to control subjects (3.01 ± 0.34 vs. 4.11 ± 0.41 ng/mL, P = 0.04). There were no significant differences in levels of serum PHB. UCP2 levels significantly and positively correlated with FMDmm (r = 0.30, P = 0.03) in T2DM subjects only and remained significant after multivariable adjustment. Within T2DM subjects, serum PHB levels were significantly and negatively correlated with UCP2 levels (ρ = - 0.35, P = 0.03). CONCLUSION Circulating UCP2 levels are lower in T2DM patients and correlate with endothelium-dependent vasodilation in conduit vessels. UCP2 could be biomarker surrogate for overall vascular health in patients with T2DM and merits additional investigation.
Collapse
Affiliation(s)
- Mamatha Kakarla
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Venkata K Puppala
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Sudhi Tyagi
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Amberly Anger
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Kathryn Repp
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jingli Wang
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Rong Ying
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Pharmacology, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Paciello F, Fetoni AR, Rolesi R, Wright MB, Grassi C, Troiani D, Paludetti G. Pioglitazone Represents an Effective Therapeutic Target in Preventing Oxidative/Inflammatory Cochlear Damage Induced by Noise Exposure. Front Pharmacol 2018; 9:1103. [PMID: 30349478 PMCID: PMC6187064 DOI: 10.3389/fphar.2018.01103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Recent progress in hearing loss research has provided strong evidence for the imbalance of cellular redox status and inflammation as common predominant mechanisms of damage affecting the organ of Corti including noise induced hearing loss. The discovery of a protective molecule acting on both mechanisms is challenging. The thiazolidinediones, a class of antidiabetic drugs including pioglitazone and rosiglitazone, have demonstrated diverse pleiotrophic effects in many tissues where they exhibit anti-inflammatory, anti-proliferative, tissue protective effects and regulators of redox balance acting as agonist of peroxisome proliferator-activated receptors (PPARs). They are members of the family of ligand regulated nuclear hormone receptors that are also expressed in several cochlear cell types, including the outer hair cells. In this study, we investigated the protective capacity of pioglitazone in a model of noise-induced hearing loss in Wistar rats and the molecular mechanisms underlying this protective effects. Specifically, we employed a formulation of pioglitazone in a biocompatible thermogel providing rapid, uniform and sustained inner ear drug delivery via transtympanic injection. Following noise exposure (120 dB, 10 kHz, 1 h), different time schedules of treatment were employed: we explored the efficacy of pioglitazone given immediately (1 h) or at delayed time points (24 and 48 h) after noise exposure and the time course and extent of hearing recovery were assessed. We found that pioglitazone was able to protect auditory function at the mid-high frequencies and to limit cell death in the cochlear basal/middle turn, damaged by noise exposure. Immunofluorescence and western blot analysis provided evidence that pioglitazone mediates both anti-inflammatory and anti-oxidant effects by decreasing NF-κB and IL-1β expression in the cochlea and opposing the oxidative damage induced by noise insult. These results suggest that intratympanic pioglitazone can be considered a valid therapeutic strategy for attenuating noise-induced hearing loss and cochlear damage, reducing inflammatory signaling and restoring cochlear redox balance.
Collapse
Affiliation(s)
- Fabiola Paciello
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy.,Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.,Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Uncoupling proteins as a therapeutic target to protect the diabetic heart. Pharmacol Res 2018; 137:11-24. [PMID: 30223086 DOI: 10.1016/j.phrs.2018.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/13/2018] [Indexed: 12/16/2022]
Abstract
Myocardial remodeling and dysfunction caused by accelerated oxidative damage is a widely reported phenomenon within a diabetic state. Altered myocardial substrate preference appears to be the major cause of enhanced oxidative stress-mediated cell injury within a diabetic heart. During this process, exacerbated free fatty acid flux causes an abnormal increase in mitochondrial membrane potential leading to the overproduction of free radical species and subsequent cell damage. Uncoupling proteins (UCPs) are expressed within the myocardium and can protect against free radical damage by modulating mitochondrial respiration, leading to reduced production of reactive oxygen species. Moreover, transgenic animals lacking UCPs have been shown to be more susceptible to oxidative damage and display reduced cardiac function when compared to wild type animals. This suggests that tight regulation of UCPs is necessary for normal cardiac function and in the prevention of diabetes-induced oxidative damage. This review aims to enhance our understanding of the pathophysiological mechanisms relating to the role of UCPs in a diabetic heart, and further discuss known pharmacological compounds and hormones that can protect a diabetic heart through the modulation of UCPs.
Collapse
|
14
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|
15
|
Hilse KE, Rupprecht A, Egerbacher M, Bardakji S, Zimmermann L, Wulczyn AEMS, Pohl EE. The Expression of Uncoupling Protein 3 Coincides With the Fatty Acid Oxidation Type of Metabolism in Adult Murine Heart. Front Physiol 2018; 9:747. [PMID: 29988383 PMCID: PMC6024016 DOI: 10.3389/fphys.2018.00747] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
The involvement of mitochondrial uncoupling proteins 2 and 3 in the pathogenesis of cardiovascular diseases is widely acknowledged. However, contradictory reports show that the functions of UCP2/UCP3 are still disputed. We have previously described that UCP2 is highly abundant in cells that rely on glycolysis, such as stem, cancer and activated immune cells. In contrast, high amounts of UCP3 are present in brown adipose tissue, followed by heart and skeletal muscles - all known to metabolize fatty acids (FA) to a high extent. Using two different models - mouse embryonic stem cell (mESC) differentiation to cardiomyocytes (CM) and murine heart at different developmental stages - we now tested the concept that the expression ratio between UCP2 and UCP3 indicates the metabolism type in CM. Our results revealed the tight correlation between UCP3 abundance, expression of mitochondrial fatty acid oxidation (FAO) markers and presence of multiple connections between mitochondria and lipid droplets. We further demonstrated that the time course of UCP3 expression neither coincided with the onset of the electrical activity in CM, derived from mESC, nor with the expression of respiratory chain proteins, the observation which rendered protein participation in ROS regulation unlikely. The present data imply that UCP3 may facilitate FAO by transporting FAs into mitochondria. In contrast, UCP2 was highly abundant at early stages of heart development and in mESC. Understanding, that the expression patterns of UCP3 and UCP2 in heart during development reflect the type of the cell metabolism is key to the uncovering their different functions. Their expression ratio may be an important diagnostic criterion for the degree of CM differentiation and/or severity of a heart failure.
Collapse
Affiliation(s)
- Karolina E Hilse
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anne Rupprecht
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Monika Egerbacher
- Histology and Embryology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Bardakji
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lars Zimmermann
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea E M Seiler Wulczyn
- German Centre for the Protection of Laboratory Animals (Bf3R), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Elena E Pohl
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
16
|
Al Sharif M, Alov P, Diukendjieva A, Vitcheva V, Simeonova R, Krasteva I, Shkondrov A, Tsakovska I, Pajeva I. Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food Chem Toxicol 2017; 112:47-59. [PMID: 29247773 DOI: 10.1016/j.fct.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/29/2022]
Abstract
The metabolic syndrome, which includes hypertension, type 2 diabetes (T2D) and obesity, has reached an epidemic-like scale. Saponins and sapogenins are considered as valuable natural products for ameliorating this pathology, possibly through the nuclear receptor PPARγ activation. The aims of this study were: to look for in vivo antidiabetic effects of a purified saponins' mixture (PSM) from Astragalus corniculatus Bieb; to reveal by in silico methods the molecular determinants of PPARγ partial agonism, and to investigate the potential PPARγ participation in the PSM effects. In the in vivo experiments spontaneously hypertensive rats (SHRs) with induced T2D were treated with PSM or pioglitazone as a referent PPARγ full agonist, and pathology-relevant biochemical markers were analysed. The results provided details on the PSM modulation of the glucose homeostasis and its potential mechanism. The in silico studies focused on analysis of the protein-ligand interactions in crystal structures of human PPARγ-partial agonist complexes, pharmacophore modelling and molecular docking. They outlined key pharmacophoric features, typical for the PPARγ partial agonists, which were used for pharmacophore-based docking of the main PSM sapogenin. The in silico studies, strongly suggest possible involvement of PPARγ-mediated mechanisms in the in vivo antidiabetic and antioxidant effects of PSM from A. corniculatus.
Collapse
Affiliation(s)
- Merilin Al Sharif
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Petko Alov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Antonia Diukendjieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Vessela Vitcheva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Rumyana Simeonova
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ilina Krasteva
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Aleksandar Shkondrov
- Faculty of Pharmacy, Medical University of Sofia, Dunav 2 Str., 1000 Sofia, Bulgaria.
| | - Ivanka Tsakovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 105, 1113 Sofia, Bulgaria.
| |
Collapse
|
17
|
Sekulic-Jablanovic M, Petkovic V, Wright MB, Kucharava K, Huerzeler N, Levano S, Brand Y, Leitmeyer K, Glutz A, Bausch A, Bodmer D. Effects of peroxisome proliferator activated receptors (PPAR)-γ and -α agonists on cochlear protection from oxidative stress. PLoS One 2017; 12:e0188596. [PMID: 29182629 PMCID: PMC5705132 DOI: 10.1371/journal.pone.0188596] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/22/2023] Open
Abstract
Various insults cause ototoxicity in mammals by increasing oxidative stress leading to apoptosis of auditory hair cells (HCs). The thiazolidinediones (TZDs; e.g., pioglitazone) and fibrate (e.g., fenofibrate) drugs are used for the treatment of diabetes and dyslipidemia. These agents target the peroxisome proliferator-activated receptors, PPARγ and PPARα, which are transcription factors that influence glucose and lipid metabolism, inflammation, and organ protection. In this study, we explored the effects of pioglitazone and other PPAR agonists to prevent gentamicin-induced oxidative stress and apoptosis in mouse organ of Corti (OC) explants. Western blots showed high levels of PPARγ and PPARα proteins in mouse OC lysates. Immunofluorescence assays indicated that PPARγ and PPARα proteins are present in auditory HCs and other cell types in the mouse cochlea. Gentamicin treatment induced production of reactive oxygen species (ROS), lipid peroxidation, caspase activation, PARP-1 cleavage, and HC apoptosis in cultured OCs. Pioglitazone mediated its anti-apoptotic effects by opposing the increase in ROS induced by gentamicin, which inhibited the subsequent formation of 4-hydroxy-2-nonenal (4-HNE) and activation of pro-apoptotic mediators. Pioglitazone mediated its effects by upregulating genes that control ROS production and detoxification pathways leading to restoration of the reduced:oxidized glutathione ratio. Structurally diverse PPAR agonists were protective of HCs. Pioglitazone (PPARγ-specific), tesaglitazar (PPARγ/α-specific), and fenofibric acid (PPARα-specific) all provided >90% protection from gentamicin toxicity by regulation of overlapping subsets of genes controlling ROS detoxification. This study revealed that PPARs play important roles in the cochlea, and that PPAR-targeting drugs possess therapeutic potential as treatment for hearing loss.
Collapse
Affiliation(s)
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Krystsina Kucharava
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nathan Huerzeler
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Soledad Levano
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yves Brand
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Katharina Leitmeyer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrea Glutz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc Diabetol 2017; 16:120. [PMID: 28962617 PMCID: PMC5622555 DOI: 10.1186/s12933-017-0604-9] [Citation(s) in RCA: 329] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress and inflammation.
Collapse
Affiliation(s)
- Basil S Karam
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Wonjoon Koh
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph G Akar
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
20
|
Activation of PPAR-γ by pioglitazone attenuates oxidative stress in aging rat cerebral arteries through upregulating UCP2. J Cardiovasc Pharmacol 2015; 64:497-506. [PMID: 25490415 DOI: 10.1097/fjc.0000000000000143] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing amounts of evidence implicate oxidative stress as having a pivotal role in age-related cerebrovascular dysfunction, which is an important risk factor for the development of cerebrovascular disease. Previous studies have shown that the activation of the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) in vascular endothelial cells results in an improvement of vascular function. Pioglitazone, a well-known PPAR-γ agonist, protects against oxidative stress in the rostral ventrolateral medulla by the upregulation of mitochondrial uncoupling protein 2 (UCP2). In this study, we sought to explore the effects and the underlying mechanisms of pioglitazone on age-related oxidative stress elevation and cerebrovascular dysfunction in aging rat cerebral arteries. A natural aging model was constructed and used in these experiments. One-month oral administration of pioglitazone (20 mg·kg·d) ameliorated the production of reactive oxygen species, promoted endothelial nitric oxide synthase phosphorylation and increased the nitric oxide available, thus improving endothelium-dependent relaxation in aging rat cerebral arteries. One-month pioglitazone administration also restored PPAR-γ expression and increased the levels of UCP2 in aging rat cerebral arteries. Using in vitro studies, we demonstrated that pioglitazone attenuated reactive oxygen species levels in aging human umbilical vein endothelial cells through PPAR-γ activation. Furthermore, we found that this occurs in an UCP2-dependent manner. Our study demonstrated that the activation of PPAR-γ by pioglitazone protected against oxidative stress damage in aging cerebral arteries by upregulating UCP2. PPAR-γ may be a new target in treating age-related cerebrovascular dysfunction.
Collapse
|
21
|
The Recovery of Hibernating Hearts Lies on a Spectrum: from Bears in Nature to Patients with Coronary Artery Disease. J Cardiovasc Transl Res 2015; 8:244-52. [DOI: 10.1007/s12265-015-9625-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 12/13/2022]
|
22
|
Holley CT, Long EK, Lindsey ME, McFalls EO, Kelly RF. Recovery of hibernating myocardium: what is the role of surgical revascularization? J Card Surg 2014; 30:224-31. [PMID: 25470424 DOI: 10.1111/jocs.12477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial responses to chronic ischemia represent a continuum of adaptations resulting, over time, in a stress-resistant phenotype. One such adaptation, hibernating myocardium (HM), has increased antioxidant capacity that protects against ischemia-induced oxidative stress. Studies have suggested that revascularization alone may not fully restore cardiac function, highlighting the need for targeted therapies to serve as adjuncts to the innate healing process following revascularization. In our review, we discuss current understanding of HM and the recovery process following surgical revascularization, focusing on animal models of HM to understand implications for human patients.
Collapse
|
23
|
Holley CT, Duffy CM, Butterick TA, Long EK, Lindsey ME, Cabrera JA, Ward HB, McFalls EO, Kelly RF. Expression of uncoupling protein-2 remains increased within hibernating myocardium despite successful coronary artery bypass grafting at 4 wk post-revascularization. J Surg Res 2014; 193:15-21. [PMID: 25199570 DOI: 10.1016/j.jss.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/23/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have previously shown that mitochondrial uncoupling protein-2 (UCP-2) is increased in a swine model of hibernating myocardium (HM). Although UCP-2 reduces oxidant stress, it can promote inefficiency of the electron transport chain. In this study, we tested whether UCP-2 remains increased in revascularized HM (RHM) after coronary artery bypass grafting (CABG). METHODS Seven swine underwent thoracotomy with placement of a constrictor on the left anterior descending artery (LAD). Twelve weeks later, a left internal mammary artery graft was placed on the distal LAD. Four weeks post-CABG, computed tomography angiography documented patent grafts and function. At the terminal study, blood flow to the LAD and remote territories were assessed during high dose dobutamine and mitochondria isolated from both regions for analysis. Comparisons were made to a group of swine with HM who underwent constrictor placement without bypass grafting (n = 4). RESULTS During dobutamine infusion, RHM demonstrated lower blood flows (2.44 ± 0.23 versus 3.43 ± 0.30 mL/min/g; P < 0.05) and reduced wall thickening (33 ± 9% versus 52 ± 13%; P < 0.05) compared with remote regions. RHM had lower respiratory control indices (3.7 ± 0.3 versus 4.3 ± 0.4; P < 0.05) with persistently increased UCP-2 content. CONCLUSIONS Despite patent grafts, RHM demonstrates a submaximal response to dobutamine infusion and increased mitochondrial UCP-2 expression. These data support the notion that recovery of the mitochondria in RHM is delayed early post-CABG and may contribute to impaired oxygen consumption and contractile reserve during catecholamine challenges.
Collapse
Affiliation(s)
| | - Cayla M Duffy
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN; Geriatric Research and Clinical Center (GRECC), Minneapolis Veterans Affairs Health Care System (VAHCS), Minneapolis, MN
| | - Tammy A Butterick
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, MN; Geriatric Research and Clinical Center (GRECC), Minneapolis Veterans Affairs Health Care System (VAHCS), Minneapolis, MN
| | - Eric K Long
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Megan E Lindsey
- College of Medicine, University of Minnesota, Minneapolis, MN
| | - Jesús A Cabrera
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Herbert B Ward
- Department of Surgery, University of Minnesota, Minneapolis, MN; Department of Cardiothoracic Surgery, Minneapolis VAHCS, Minneapolis, MN
| | | | - Rosemary F Kelly
- Department of Surgery, University of Minnesota, Minneapolis, MN; Department of Surgery, University of Minnesota, Minneapolis, MN.
| |
Collapse
|
24
|
Minghetti L, Salvi R, Lavinia Salvatori M, Ajmone-Cat MA, De Nuccio C, Visentin S, Bultel-Poncé V, Oger C, Guy A, Galano JM, Greco A, Bernardo A, Durand T. Nonenzymatic oxygenated metabolites of α-linolenic acid B1- and L1-phytoprostanes protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. Free Radic Biol Med 2014; 73:41-50. [PMID: 24794409 DOI: 10.1016/j.freeradbiomed.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/27/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
Phytoprostanes (PhytoP's) are formed in higher plants from α-linolenic acid via a nonenzymatic free radical-catalyzed pathway and act as endogenous mediators capable of protecting cells from damage under various conditions related to oxidative stress. Humans are exposed to PhytoP's, as they are present in relevant quantities in vegetable food and pollen. The uptake of PhytoP's through the olfactory epithelium of the nasal mucosa, upon pollen grain inhalation, is of interest as the intranasal pathway is regarded as a direct route of communication between the environment and the brain. On this basis, we sought to investigate the potential activities of PhytoP's on immature cells of the central nervous system, which are particularly susceptible to oxidative stress. In neuroblastoma SH-SY5Y cells, used as a model for undifferentiated neurons, B1-PhytoP's, but not F1-PhytoP's, increased cell metabolic activity and protected them from oxidant damage caused by H2O2. Moreover, B1-PhytoP's induced a moderate depolarization of the mitochondrial inner membrane potential. These effects were prevented by the PPAR-γ antagonist GW9662. When SH-SY5Y cells were induced to differentiate toward a more mature phenotype, they became resistant to B1-PhytoP activities. B1-PhytoP's also influenced immature cells of an oligodendroglial line, as they increased the metabolic activity of oligodendrocyte progenitors and strongly accelerated their differentiation to immature oligodendrocytes, through mechanisms at least partially dependent on PPAR-γ activity. However, B1-PhytoP's did not protect oligodendrocyte progenitors against oxidant injury. Taken together, these data suggest that B1-PhytoP's, through novel mechanisms involving PPAR-γ, can specifically affect immature brain cells, such as neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant injury and promoting myelination.
Collapse
Affiliation(s)
- Luisa Minghetti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Rachele Salvi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Maria Lavinia Salvatori
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| | - Anita Greco
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonietta Bernardo
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, UM I, UM II, ENSCM, Montpellier, France
| |
Collapse
|
25
|
Bermejo-Nogales A, Calduch-Giner JA, Pérez-Sánchez J. Tissue-specific gene expression and functional regulation of uncoupling protein 2 (UCP2) by hypoxia and nutrient availability in gilthead sea bream (Sparus aurata): implications on the physiological significance of UCP1-3 variants. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:751-762. [PMID: 24154671 DOI: 10.1007/s10695-013-9882-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/12/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to assess in an integrative manner the physiological regulation of uncoupling protein 2 (UCP2) in gilthead sea bream. A contig of 1,325 nucleotides in length with an open reading frame of 307 amino acids was recognized as UCP2 after searches in our transcriptome reference database ( http://www.nutrigroup-iats.org/seabreamdb ). Gene expression mapping by quantitative real-time PCR revealed a ubiquitous profile that clearly differs from that of UCP1 and UCP3 variants with the greatest abundance in liver and white skeletal muscle, respectively. The greatest abundance of UCP2 transcripts was found in the heart, with a relatively high expression level in blood cells, where UCP1 and UCP3 transcripts were practically undetectable. Functional studies revealed that UCP2 mRNA expression remains either unaltered or up-regulated upon feed restriction in glycolytic (white skeletal muscle) and highly oxidative muscle tissues (heart and red skeletal muscle), respectively. In contrast, exposure to hypoxic conditions (18-19% oxygen saturation) markedly down-regulated the UCP2 mRNA expression in blood cells in a cellular environment with increased haematocrit, blood haemoglobin content, and circulating levels of glucose and lactate, and total plasma antioxidant activity. These findings demonstrated that UCP2 expression is highly regulated at the transcriptional level, arising this UCP variant as an important piece of the complex trade-off between metabolic and redox sensors. This feature would avoid the activation of futile cycles of energy wastage if changes in tissue oxidative and antioxidant metabolic capabilities are able to maintain the production of reactive oxygen species at a low regulated level.
Collapse
Affiliation(s)
- Azucena Bermejo-Nogales
- Nutrigenomics and Fish Growth Endocrinology Group, Department of Biology, Culture and Pathology of Marine Species, Institute of Aquaculture Torre de la Sal, CSIC, 12595, Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Ralf P. Brandes
- From the Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Hu-Lu-Ba-Wan Attenuates Diabetic Nephropathy in Type 2 Diabetic Rats through PKC- α /NADPH Oxidase Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:504642. [PMID: 23878600 PMCID: PMC3708432 DOI: 10.1155/2013/504642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 05/18/2013] [Accepted: 05/19/2013] [Indexed: 11/17/2022]
Abstract
Hu-Lu-Ba-Wan (HLBW) is a Chinese herbal prescription used to treat kidney deficiency. The aim of this study was to explore the effect and mechanism of HLBW on diabetic nephropathy (DN) in type 2 diabetic rats. The rat model of DN was established by being fed a high-fat diet and intravenous injection of streptozotocin. Then, HLBW decoction was administered for 16 weeks. Blood glucose level, lipid profile, renal function, 24-hour total urinary protein, and albumin content were examined. Renal morphology and superoxide anion levels were evaluated. The activity of nicotinamide-adenine dinucleotide phosphate (NADPH) and protein kinase C-alpha (PKC-α) related genes expression in renal tissue were also determined. Our data demonstrated that HLBW significantly improved hyperglycemia, hyperlipidemia, and proteinuria in diabetic rats compared with those of control group. HLBW also alleviated glomerular expansion and fibrosis, extracellular matrix accumulation and effacement of the foot processes. Additionally, HLBW reduced superoxide anion level, NADPH oxidase activity, the protein and mRNA expressions of p47phox, and the protein expression of phosphorylated PKC-α in renal tissue. These results suggest that HLBW is effective in the treatment of DN in rats. The underlying mechanism may be related to the attenuation of renal oxidative stress via PKC-α/NADPH oxidase signaling pathway.
Collapse
|
28
|
Cabrera JA, Ziemba EA, Colbert R, Anderson LB, Sluiter W, Duncker DJ, Butterick TA, Sikora J, Ward HB, Kelly RF, McFalls EO. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning. Am J Physiol Heart Circ Physiol 2012; 302:H1974-82. [PMID: 22389388 DOI: 10.1152/ajpheart.00372.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Altered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated during subsequent ischemia. Fourteen pigs underwent a SWOP protocol with ten 2-minute balloon inflations in the LAD artery, each separated by 2 minutes reperfusion. Twenty-four hours later, mitochondria were isolated from SWOP and SHAM pig hearts and analyzed for uncoupling protein (UCP)-2 content by western blot analysis, proteomic changes by iTRAQ(®) and respiration by an oxygen electrode. In parallel in vivo studies, high-energy nucleotides were obtained by transmural biopsy from anesthetized SWOP and SHAM pigs at baseline and during sustained low-flow ischemia. Compared with SHAM mitochondria, ex vivo SWOP heart tissue demonstrated increased expression of UCP-2, Complex IV (cytochrome c oxidase) and Complex V (ATPase) proteins. In comparison with SHAM pigs during in vivo conditions, transmural energetics in SWOP hearts, as estimated by the free energy of ATP hydrolysis (ΔG(0)), were similar at baseline but had decreased by the end of low-flow ischemia (-57.0 ± 2.1 versus -51.1 ± 1.4 kJ/mol; P < 0.05). In conclusion, within isolated mitochondria from preconditioned SWOP hearts, UCP-2 is increased and in concert with enhanced Complex IV and V proteins, imparts a favorable energetic state during low-flow ischemia. These data support the notion that mitochondrial adaptations that may reduce oxidant damage do not reduce the overall efficiency of energetics during sustained oxygen deprivation.
Collapse
Affiliation(s)
- Jesús A Cabrera
- Cardiology and Cardiothoracic Surgery Sections, VA Medical Center, University of Minnesota, Minneapolis, MN 55417, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|