1
|
Mutlu HS, Solakoğlu S. Ethanolic extract of Momordica charantia L. fruits ameloriates TNBS and AA induced colitis in rats: a histological and electron microscopic study. Biotech Histochem 2025; 100:146-160. [PMID: 40260731 DOI: 10.1080/10520295.2025.2486455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
The anti-inflammatory effect of the ethanol extract of Momordica charantia in two different chemically induced inflammatory bowel disease models, which are frequently used in experimental studies, was investigated. For this purpose, IBD models were created with acetic acid (AA) and 2,4,6 trinitrobenzene sulphonic acid (TNBS) in rats and 300 mg/kg M.charantia extract was given by oral gavage for 10 days. In the animal experiment phase, a total of 42 animals in six groups were arranged so that two different experimental models could be studied simultaneously. Colon tissues were examined at light and electron microscopy levels. In the microscopic examination, areas of inflammation extending to the muscularis externa were observed in the macroscopically severely damaged areas in both IBD model groups, and epithelial damage, mucosal inflammation, and crypt abscess were observed in the macroscopically less damaged areas. Microscopic large intestine damage was significantly reduced in M.charantia administered groups compared to disease models. TNF-α and IL-1β expression, which was determined to be increased in the AA and TNBS groups immunohistochemically, was observed to decrease in the treatment groups. The surface epithelium was evaluated by electron microscopic observations. This study demonstrates the positive effect of M.charantia ethanol extract on colon histopathology in two different IBD models and highlights the importance of considering inflammation-related cell populations in the treatment of this disease.
Collapse
Affiliation(s)
- Hasan Serdar Mutlu
- Histology and Embryology Department, Faculty of Medicine, Giresun University, Giresun, Türkiye
- Institute of Graduate Studies in Health Sciences, İstanbul University, İstanbul, Türkiye
| | - Seyhun Solakoğlu
- Histology and Embryology Department, İstanbul Faculty of Medicine, İstanbul University, İstanbul, Türkiye
| |
Collapse
|
2
|
Pickett JR, Wu Y, Ta HT. VCAM-1 as a common biomarker in inflammatory bowel disease and colorectal cancer: unveiling the dual anti-inflammatory and anti-cancer capacities of anti-VCAM-1 therapies. Cancer Metastasis Rev 2025; 44:40. [PMID: 40095109 PMCID: PMC11913972 DOI: 10.1007/s10555-025-10258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Vascular cell adhesion molecule (VCAM)-1 has garnered significant research attention due to its potential as a disease biomarker and drug target across several inflammatory pathologies-including atherosclerosis, asthma, rheumatoid arthritis, and inflammatory bowel disease (IBD). The VCAM-1 protein has also been noted for its functional involvement in cancer metastasis and drug resistance to conventional chemotherapeutics. Although the anti-inflammatory and anti-cancer facets of VCAM-1 antagonisation have been examined separately, there is yet to be a review that explicitly addresses the functional interrelationship between these mechanisms. Furthermore, the pleiotropic mechanisms of anti-VCAM-1 therapies may present a useful paradigm for designing drug candidates with synergistic anti-inflammatory and anti-tumorigenic effects. The pathological overlap between inflammatory bowel disease (IBD) and colitis-associated colorectal cancer (CRC) serves as the quintessential disease model to observe this therapeutic duality. This review thereby details the adhesive mechanisms of VCAM-1 in colorectal disease-specifically, driving immune cell infiltration during IBD and tumour cell metastasis in CRC-and posits the potential of this receptor as a common drug target for both diseases. To explore this hypothesis, the current progress of novel VCAM-1-directed drug candidates in experimental models of IBD and CRC is also discussed.
Collapse
Affiliation(s)
- Jessica R Pickett
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, 4111, QLD, Australia.
| |
Collapse
|
3
|
Toskas A, Milias S, Papamitsou T, Meditskou S, Kamperidis N, Sioga A. The role of IL-19, IL-24, IL-21 and IL-33 in intestinal mucosa of inflammatory bowel disease: A narrative review. Arab J Gastroenterol 2025; 26:9-17. [PMID: 38395629 DOI: 10.1016/j.ajg.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024]
Abstract
Interleukins are potential therapeutic targets that can alter the prognosis and progression of inflammatory bowel disease (IBD). The roles of IL-6, IL-10, IL-17, and IL-23 have been extensively studied, setting the stage for the development of novel treatments for patients with IBD. Other cytokines have been less extensively studied. Members of the IL-20 family, mainly IL-19 and IL-24, are involved in the pathogenesis of IBD, but their exact role remains unclear. Similarly, IL-33, a newly identified cytokine, has been shown to control the Th1 effector response and the action of colonic Tregs in animal models of colitis and patients with IBD. IL-21 is involved in the Th1, Th2, and Th17 responses. Data support a promising future use of these interleukins as biomarkers of severe diseases and as potential therapeutic targets for novel monoclonal antibodies. This review aims to summarize the existing studies involving animal models of colitis and patients with IBD to clarify their role in the intestinal mucosa.
Collapse
Affiliation(s)
- Alexandros Toskas
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; St Marks Hospital, Watford Rd, Harrow, London, United Kingdom.
| | - Stefanos Milias
- Private Histopathology Laboratory, Ploutonos 27, Thessaloniki, Greece.
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Antonia Sioga
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
4
|
Huang QT, Ma XD, Zhang JN, Lin WX, Shen XX, Huang ZW, Zhang X, Wu XY, Dou YX, Su ZR, Su JY, Li YC, Liu YH, Xie YL, Lin RF, Huang HY, Zhang QH, Huang XQ. A Hepatic Oxidative Metabolite of Palmatine Ameliorates DSS-Induced Ulcerative Colitis by Regulating Macrophage Polarization Through AMPK/NF-κB Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:285-307. [PMID: 39880666 DOI: 10.1142/s0192415x25500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Palmatine (PAL) and berberine are both classified as protoberberine alkaloids, derived from several traditional Chinese herbs such as Coptis chinensis Franch. and Phellodendron chinense Schneid. These compounds are extensively used in treating dysentery and colitis. PAL is one of the crucial quality markers for these plants in the Chinese Pharmacopoeia. A key metabolite of PAL, 8-Oxypalmatine (OPAL), shows favorable anti-inflammatory activity and better safety compared to PAL, though its mechanisms in ulcerative colitis (UC) are not fully understood. This study used a dextran sodium sulfate-induced colitis mouse model to explore OPAL's effects. The results indicated that OPAL provided superior therapeutic effects to those of PAL, alleviating colitis symptoms and reducing colon inflammation by modulating pro-inflammatory (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and anti-inflammatory (transforming growth factor-β and interleukin-10) cytokines. Additionally, OPAL helped rebuild the mucus barrier and upregulated tight junction proteins, thereby restoring intestinal integrity. Notably, OPAL inhibited the M1 macrophages infiltration while promoting M2 macrophage distribution in the colon. Its role in fostering M2 polarization and modulating the inflammatory cytokine profile was further confirmed in vitro. Importantly, the anti-inflammatory effects were primarily linked to AMP-activated protein kinase activation, which subsequently inhibited the nuclear factor-kappa B pathway. These findings highlight OPAL as a crucial active metabolite responsible for the therapeutic effects of PAL against UC, emphasizing its potential as a novel treatment for this condition.
Collapse
Affiliation(s)
- Qi-Ting Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, P. R. China
| | - Xing-Dong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, P. R. China
| | - Jia-Na Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, P. R. China
| | - Wei-Xiong Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xue-Xia Shen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Zhuo-Wen Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xia Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xiao-Yan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yao-Xing Dou
- School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524005, P. R. China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ji-Yan Su
- Foshan Maternity & Child Healthcare Hospital Foshan 528000, P. R. China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Yu-Cui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yu-Hong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - You-Liang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Rong-Feng Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Hai-Yang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, (Dongguan Hospital of Traditional Chinese Medicine), Dongguan 523000, P. R. China
| | - Qi-Hui Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xiao-Qi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, P. R. China
| |
Collapse
|
5
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
6
|
Kang C, Kim J, Jeong Y, Yoo JW, Jung Y. Colon-Targeted Poly(ADP-ribose) Polymerase Inhibitors Synergize Therapeutic Effects of Mesalazine Against Rat Colitis Induced by 2,4-Dinitrobenzenesulfonic Acid. Pharmaceutics 2024; 16:1546. [PMID: 39771525 PMCID: PMC11728683 DOI: 10.3390/pharmaceutics16121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: In addition to oncological applications, poly(ADP-ribose) polymerase (PARP) inhibitors have potential as anti-inflammatory agents. Colon-targeted delivery of PARP inhibitors has been evaluated as a pharmaceutical strategy to enhance their safety and therapeutic efficacy against gut inflammation. Methods: Colon-targeted PARP inhibitors 5-aminoisoquinoline (5-AIQ) and 3-aminobenzamide (3-AB) were designed and synthesized by azo coupling with salicylic acid (SA), yielding 5-AIQ azo-linked with SA (AQSA) and 3-AB azo-linked with SA (ABSA). Additional conjugation of AQSA with acidic amino acids yielded glutamic acid-conjugated AQSA (AQSA-Glu) and aspartic acid-conjugated AQSA, which further increased the hydrophilicity of AQSA. Results: The distribution coefficients of PARP inhibitors were lowered by chemical modifications, which correlated well with drug permeability via the Caco-2 cell monolayer. All derivatives were effectively converted to their corresponding PARP inhibitors in the cecal contents. Compared with observations in the oral administration of PARP inhibitors, AQSA-Glu and ABSA resulted in the accumulation of much greater amounts of each PARP inhibitor in the cecum. ABSA accumulated mesalazine (5-ASA) in the cecum to a similar extent as sulfasalazine (SSZ), a colon-targeted 5-ASA prodrug. In the DNBS-induced rat colitis model, AQSA-Glu enhanced the anticolitic potency of 5-AIQ. Furthermore, ABSA was more effective against rat colitis than SSZ or AQSA-Glu, and the anticolitic effects of AQSA-Glu were augmented by combined treatment with a colon-targeted 5-ASA prodrug. In addition, the colon-targeted delivery of PARP inhibitors substantially reduced their systemic absorption. Conclusions: Colon-targeted PARP inhibitors may improve the therapeutic and toxicological properties of inhibitors and synergize the anticolitic effects of 5-ASA.
Collapse
Affiliation(s)
| | | | | | | | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Republic of Korea; (C.K.); (J.K.); (Y.J.); (J.-W.Y.)
| |
Collapse
|
7
|
Khayatan D, Lemberg DA, Day AS. The Role of Topical Tacrolimus in the Management of Inflammatory Bowel Disease: A Comprehensive Review. J Clin Med 2024; 13:5518. [PMID: 39337004 PMCID: PMC11432474 DOI: 10.3390/jcm13185518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Management of ulcerative colitis and Crohn's disease, the main subtypes of inflammatory bowel disease (IBD), focuses on the induction and maintenance of remission. Tacrolimus, a member of a group of drugs termed calcineurin inhibitors, may have a role in the medical management of IBD when given either systemically or topically. This review aimed to evaluate the available data focusing on the use of topical tacrolimus in the management of IBD. Reports of the use of topical tacrolimus in IBD were extracted from databases up to 31 May 2024. Topical tacrolimus therapy appears to have reasonable efficacy in the induction and maintenance of remission in patients with refractory IBD, with an acceptable safety profile. Overall, the available data are supportive of the use of topical tacrolimus in selected patients. Further comparative clinical studies are required to more fully delineate the role of this drug.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Daniel A. Lemberg
- Paediatric Gastroenterology, Sydney Children’s Hospital, Randwick, Sydney 2031, Australia;
| | - Andrew S. Day
- Paediatric Gastroenterology, Sydney Children’s Hospital, Randwick, Sydney 2031, Australia;
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
8
|
Li J, Li Q, Ma W, Zhang Y, Li X. Expression of MAF bZIP transcription factor B protects against ulcerative colitis through the inhibition of the NF-κB pathway. Immun Inflamm Dis 2024; 12:e1372. [PMID: 39172054 PMCID: PMC11340633 DOI: 10.1002/iid3.1372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
PURPOSE The aim of this study was to explore whether MAF bZIP transcription factor B (MAFB) might alleviate ulcerative colitis (UC) in dextran sulfate sodium (DSS)-induced mice and LPS-induced IEC-6 cells. METHODS UC in vivo and in vitro model was established by using DSS and LPS, respectively. The mice body weight and disease activity index (DAI) score were recorded daily, and colon length was measured. Moreover, the permeability was evaluated utilizing a fluorescein isothiocyanate dextran (FITC-Dextran) probe. Histopathological changes of DSS-induced colitis mice was assessed utilizing H&E staining. Next, qRT-PCR was performed to detect IL-1β, IL-6, TNF-α, and IL-10 level in in vivo and in vitro. Furthermore, the level of MDA, SOD, CAT, and GSH were evaluated in colon tissues. Besides, the expressions of tight junction proteins and NF-κB pathway relative proteins were examined in colitis mice and IEC-6 cells using western blot, immunohistochemistry and immunofluorescence. RESULTS MAFB level was downregulated in DSS-induced colitis mice. Moreover, the upregulation of MAFB protected mice from DSS-induced colitis by suppressing DSS-induced inflammation, oxidative stress, and intestinal barrier impairment. We also demonstrated that the upregulation of MAFB inactivated NF-κB pathway in DSS-caused colitis mice. Subsequently, we observed that MAFB upregulation could inhibit LPS-caused epithelial barrier impairment and inflammation in IEC-6 cells. Additionally, MAFB overexpression could suppress the activation of NF-κB pathway in IEC-6 cells. CONCLUSION The upregulation of MAFB could protect against UC via the suppression of inflammation and the intestinal barrier impairment through inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Jingwen Li
- Department of GastroenterologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Qingmin Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Department of MedicineZhangqiu District Gaoguanzhai Community Health Service CenterJinanShandongChina
| | - Wei Ma
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongsheng Zhang
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Xiaonan Li
- Department of General PracticeShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
9
|
Han H, Gao M, Wang F, Luo Z, Jiang X, Qiu Y, Su J, Duan X, Luo S, Tang S, Khan A, Zou Z, Chen C, Yin Q, Qiu J, Zhang H. Protective effects of patchouli alcohol against DSS-induced ulcerative colitis. Sci Rep 2024; 14:16745. [PMID: 39033185 PMCID: PMC11271309 DOI: 10.1038/s41598-024-66259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Patchouli alcohol (PA) is a widely used pharmaceutical ingredient in various Chinese traditional herbal medicine (THM) formulations, known for its modulatory effects on the gut microbiota. The present study investigated PA's anti-inflammatory and regulatory effects on gut microbiota and its mode of action (MOA). Based on the assessments of ulcerative colitis (UC) symptoms, PA exhibited promising preventions against inflammatory response. In accordance, the expressions of pro-inflammatory factors, including interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and chemokine ligand 5 were significantly attenuated under PA treatment. Furthermore, PA enhanced the intestinal barrier damage caused by dextran sodium sulfate (DSS). Interestingly, PA exhibited negligible inventions on DSS-induced gut microbiota dysbiosis. PA did not affect the diversity of the DSS gut microbiota, it did alter the composition, as evidenced by a significant increase in the Firmicutes-Bacteroidetes (F/B) ratio. Finally, the MOA of PA against inflammation in DSS-treated mice was addressed by suppressing the expressions of heme oxygenase-1 (HO-1) and inducible nitric oxide synthase (iNOS). In conclusion, PA prevented inflammatory response in the DSS-induced UC mice model via directly suppressing HO-1 and iNOS-associated antioxidant signal pathways, independent of its effects on gut microbiota composition.
Collapse
Affiliation(s)
- Huifang Han
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Fanghong Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zheng Luo
- Jiulongpo District Center for Disease Control and Prevention, Chongqing Municipality, Chongqing, 400039, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Junhao Su
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China
| | - Ahmad Khan
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qi Yin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
10
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
11
|
Shahrokh S, Baradaran Ghavami S, Asadzadeh Aghdaei H, Parigi TL, Farmani M, Danese S, Ebrahimi Daryani N, Vossoughinia H, Balaii H, Alborzi F, Khoramjoo SM, Khanabadi B, Seyed Salehi A, Bastani A, Sharifi M, Safari MT, Malekpour H, Sherkat G, Saberafsharian M, Miri MB, Moosavi SH, Anaraki F, Nazemalhosseini-Mojarad E, Mohebbi SR, Shojaie S, Pourhoseingholi MA, Zali MR. High prevalence of SARS-Coronavirus-2 in patients with inflammatory bowel disease and the role of soluble angiotensin converting Enzyme2. Arch Physiol Biochem 2024; 130:325-332. [PMID: 35617972 DOI: 10.1080/13813455.2022.2080228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022]
Abstract
Context: Patients with inflammatory bowel disease (IBD) were found to have the higher intestinal expression of Angiotensin-Converting Enzyme2 (ACE2) that could consequently increase susceptibility to COVID-19 infection.Objective: This study reports the outcomes of COVID-19 infection in a large cohort of IBD patients. We compare levels of serum ACE and IFN-α between COVID19 patients with and without IBD. We performed a cross-sectional retrospective multicenter study.Methods: We enrolled patients with IBD screened for SARS-COV-2 in six medical centres in Iran from June to November 2020. The blood samples were drawn to measure COVID-19 IgM and IgG, and serum levels of sACE2, sACE1, and interferon-α, regardless of suspicious symptoms have done the molecular test.Results: A total of 534 IBD patients were included in the study. Of these, 109 (20.0%) cases had detectable IgG and IgM against SARS-CoV-2. sACE2 levels were higher in IBD patients than controls, whereas ACE1and IFN-α levels were similar among groups.
Collapse
Affiliation(s)
- Shabnam Shahrokh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tommaso Lorenzo Parigi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IBD Center, Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | | | - Hassan Vossoughinia
- Department of Gastroenterology and Hepatology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hedieh Balaii
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Foroogh Alborzi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mobin Khoramjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Binazir Khanabadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Seyed Salehi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Bastani
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mohsen Sharifi
- Isfahan University of Medical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Taghi Safari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazal Sherkat
- Medicine Faculty of Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | | | - Fakhrosadat Anaraki
- Colorectal division of surgrical ward, Taleghani hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Shojaie
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Pourhoseingholi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Zheng J, Ahmad AA, Yang C, Liang Z, Shen W, Liu J, Yan Z, Han J, Yang Y, Dong P, Lan X, Salekdeh GH, Ding X. Orally Administered Lactobacillus rhamnosus CY12 Alleviates DSS-Induced Colitis in Mice by Restoring the Intestinal Barrier and Inhibiting the TLR4-MyD88-NF-κB Pathway via Intestinal Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598717 DOI: 10.1021/acs.jafc.3c07279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Oral ingestion of probiotics is a promising approach to relieving inflammatory disease through regulating the gut microbiota. A newly discovered strain, Lactobacillus rhamnosus CY12 (LCY12), obtained from cattle-yak milk, displayed numerous probiotic properties. These included enhanced viability in low pH and bile environments, adhesion capabilities, and potent antimicrobial effects. The research aimed to explore the beneficial impacts of the novel LCY12 strain on colitis in mice induced by dextran sulfate sodium (DSS) and to elucidate the underlying molecular mechanisms. The results of the study showed that administration of LCY12 effectively helped to reduce the negative effects of DSS-induced body weight loss, disease activity index score, colon length shortening, loss of goblet cells, and overall histopathological scores in the intestines. Simultaneously, LCY12 administration significantly alleviated intestinal inflammation and safeguarded intestinal barrier integrity by enhancing IL-10 levels, while dampening IL-6, IL-1β, and TNF-α production. Additionally, LCY12 boosted the presence of tight junction proteins. Furthermore, LCY12 hindered the TLR4/MyD88/NF-κB signaling pathway by downregulating TLR4 and MyD88 expression, inactivating phosphorylated IκBα, and preventing translocation of NF-κB p65 from the cytoplasm to the nucleus. The LCY12 also increased specific intestinal microbial communities and short-chain fatty acid (SCFA) production. Altogether, LCY12 oral administration alleviated colitis induced with DSS in mice by improving intestinal barrier function and regulating inflammatory cytokines, SCFA production, and intestinal microbiota.
Collapse
Affiliation(s)
- Juanshan Zheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anum Ali Ahmad
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Chen Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zeyi Liang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Wenxiang Shen
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jing Liu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zuoting Yan
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100 Nairobi, Kenya
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yayuan Yang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengcheng Dong
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Laboratory of Animal Genome and Gene Function, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Xuezhi Ding
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs & Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
13
|
Kumarapperuma H, Wang R, Little PJ, Kamato D. Mechanistic insight: Linking cardiovascular complications of inflammatory bowel disease. Trends Cardiovasc Med 2024; 34:203-211. [PMID: 36702388 DOI: 10.1016/j.tcm.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide despite an aggressive reduction of traditional cardiovascular risk factors. Underlying inflammatory conditions such as inflammatory bowel disease (IBD) increase the risk of developing CVD. A broad understanding of the underlying pathophysiological processes between IBD and CVD is required to treat and prevent cardiovascular events in patients with IBD. This review highlights the commonality between IBD and CVD, including dysregulated immune response, genetics, environmental risk factors, altered gut microbiome, stress, endothelial dysfunction and abnormalities, to shed light on an essential area of modern medicine.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Ran Wang
- Mater Research Institute, The University of Queensland, Translational Research Institute, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia; School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
14
|
Bravo Iniguez A, Du M, Zhu MJ. α-Ketoglutarate for Preventing and Managing Intestinal Epithelial Dysfunction. Adv Nutr 2024; 15:100200. [PMID: 38438107 PMCID: PMC11016550 DOI: 10.1016/j.advnut.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
The epithelium lining the intestinal tract serves a multifaceted role. It plays a crucial role in nutrient absorption and immune regulation and also acts as a protective barrier, separating underlying tissues from the gut lumen content. Disruptions in the delicate balance of the gut epithelium trigger inflammatory responses, aggravate conditions such as inflammatory bowel disease, and potentially lead to more severe complications such as colorectal cancer. Maintaining intestinal epithelial homeostasis is vital for overall health, and there is growing interest in identifying nutraceuticals that can strengthen the intestinal epithelium. α-Ketoglutarate, a metabolite of the tricarboxylic acid cycle, displays a variety of bioactive effects, including functioning as an antioxidant, a necessary cofactor for epigenetic modification, and exerting anti-inflammatory effects. This article presents a comprehensive overview of studies investigating the potential of α-ketoglutarate supplementation in preventing dysfunction of the intestinal epithelium.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA, United States.
| |
Collapse
|
15
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
16
|
Wen X, Peng H, Zhang H, He Y, Guo F, Bi X, Liu J, Sun Y. Wheat Bran Polyphenols Ameliorate DSS-Induced Ulcerative Colitis in Mice by Suppressing MAPK/NF-κB Inflammasome Pathways and Regulating Intestinal Microbiota. Foods 2024; 13:225. [PMID: 38254526 PMCID: PMC10814686 DOI: 10.3390/foods13020225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Wheat bran (WB) is the primary by-product of wheat processing and contains a high concentration of bioactive substances such as polyphenols. This study analyzed the qualitative and quantitative components of polyphenols in wheat bran and their effects on ulcerative colitis (UC) using the dextran sulfate sodium (DSS)-induced colitis model in mice. The potential mechanism of wheat bran polyphenols (WBP) was also examined. Our findings indicate that the main polyphenol constituents of WBP were phenolic acids, including vanillic acid, ferulic acid, caffeic acid, gallic acid, and protocatechuic acid. Furthermore, WBP exerted remarkable protective effects against experimental colitis. This was achieved by reducing the severity of colitis and improving colon morphology. Additionally, WBP suppressed colonic inflammation via upregulation of the anti-inflammatory cytokine IL-10 and downregulation of pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in colon tissues. Mechanistically, WBP ameliorated DSS-induced colitis in mice by inhibiting activation of the MAPK/NF-κB pathway. In addition, microbiome analysis results suggested that WBP modulated the alteration of gut microbiota caused by DSS, with an enhancement in the ratio of Firmicutes/Bacteroidetes and adjustments in the number of Helicobacter, Escherichia-Shigella, Akkermansia, Lactobacillus, Lachnospiraceae_NK4A136_group at the genus level. To conclude, the findings showed that WBP has excellent prospects in reducing colonic inflammation in UC mice.
Collapse
Affiliation(s)
- Xusheng Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Han Peng
- Department of Food Science and Technology, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA;
| | - Hua Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China;
| | - Yangzheng He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Fanghua Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Xin Bi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Jiahua Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; (X.W.); (Y.H.); (F.G.); (X.B.); (J.L.)
| |
Collapse
|
17
|
Li L, Kang Y. The Gut Microbiome and Autoimmune Hepatitis: Implications for Early Diagnostic Biomarkers and Novel Therapies. Mol Nutr Food Res 2023; 67:e2300043. [PMID: 37350378 DOI: 10.1002/mnfr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic liver disease that may last for decades and eventually develop into cirrhosis and liver failure. In recent years, people have paid more attention to the microbiome-gut-liver axis, which provides guidance for all to explore the role of microbiome in the occurrence and development of liver diseases. In this review, the possible mechanism of intestinal microbes promoting the occurrence of AIH, mainly expounding the key ways such as bacterial ecological imbalance, intestinal leakage, and molecular simulation between microbes and autoantigens is summarized. In addition, this paper also discusses that intestinal microbiome has great potential as a biomarker for early diagnosis of AIH, and intestinal microbiome is also a candidate target for prevention and treatment of AIH. Finally, the study summarizes and prospects the targeted therapy of intestinal microorganisms to prevent the occurrence and development of AIH.
Collapse
Affiliation(s)
- Liping Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
18
|
Wang J, Yao M, Zou J, Ding W, Sun M, Zhuge Y, Gao F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2797. [PMID: 37887947 PMCID: PMC10610125 DOI: 10.3390/nano13202797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Though the anti-miR-301a (anti-miR) is a promising treatment strategy for inflammatory bowel disease (IBD), the degradability and the poor targeting of the intestine are a familiar issue. This study aimed to develop a multifunctional oral nanoparticle delivery system loaded with anti-miR for improving the targeting ability and the therapeutic efficacy. The HA-CS/ES100/PLGA nanoparticles (HCeP NPs) were prepared using poly (lactic-co-glycolic acid) copolymer (PLGA), enteric material Eudragit®S100 (ES100), chitosan (CS), and hyaluronic acid (HA). The toxicity of nanoparticles was investigated via the Cell Counting Kit-8, and the cellular uptake and inflammatory factors of nanoparticles were further studied. Moreover, we documented the colon targeting and pharmacodynamic properties of nanoparticles. The nanoparticles with uniform particle size exhibited pH-sensitive release, favorable gene protection, and storage stability. Cytology experiments showed that anti-miR@HCeP NPs improved the cellular uptake through HA and reduced pro-inflammatory factors. Administering anti-miR@HCeP NPs orally to IBD mice markedly reduced their pro-inflammatory factors levels and disease activity indices. We also confirmed that anti-miR@HCeP NPs mostly accumulated in the colon site, and effectively repaired the intestinal barrier, as well as relieved intestinal inflammation. The above nanoparticle is a candidate of the treatment for IBD due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Junshan Wang
- Department of Gastroenterology, Chongming Branch of Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 202157, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Mingyue Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; (M.Y.); (J.Z.); (W.D.); (M.S.)
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Niechcial A, Schwarzfischer M, Wawrzyniak M, Atrott K, Laimbacher A, Morsy Y, Katkeviciute E, Häfliger J, Westermann P, Akdis CA, Scharl M, Spalinger MR. Spermidine Ameliorates Colitis via Induction of Anti-Inflammatory Macrophages and Prevention of Intestinal Dysbiosis. J Crohns Colitis 2023; 17:1489-1503. [PMID: 36995738 PMCID: PMC10588784 DOI: 10.1093/ecco-jcc/jjad058] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/31/2023]
Abstract
BACKGROUND AND AIMS Exacerbated immune activation, intestinal dysbiosis and a disrupted intestinal barrier are common features among inflammatory bowel disease [IBD] patients. The polyamine spermidine, which is naturally present in all living organisms, is an integral component of the human diet, and exerts beneficial effects in human diseases. Here, we investigated whether spermidine treatment ameliorates intestinal inflammation and offers therapeutic potential for IBD treatment. METHODS We assessed the effect of oral spermidine administration on colitis severity in the T cell transfer colitis model in Rag2-/- mice by endoscopy, histology and analysis of markers of molecular inflammation. The effects on the intestinal microbiome were determined by 16S rDNA sequencing of mouse faeces. The impact on intestinal barrier integrity was evaluated in co-cultures of patient-derived macrophages with intestinal epithelial cells. RESULTS Spermidine administration protected mice from intestinal inflammation in a dose-dependent manner. While T helper cell subsets remained unaffected, spermidine promoted anti-inflammatory macrophages and prevented the microbiome shift from Firmicutes and Bacteroides to Proteobacteria, maintaining a healthy gut microbiome. Consistent with spermidine as a potent activator of the anti-inflammatory molecule protein tyrosine phosphatase non-receptor type 2 [PTPN2], its colitis-protective effect was dependent on PTPN2 in intestinal epithelial cells and in myeloid cells. The loss of PTPN2 in epithelial and myeloid cells, but not in T cells, abrogated the barrier-protective, anti-inflammatory effect of spermidine and prevented the anti-inflammatory polarization of macrophages. CONCLUSION Spermidine reduces intestinal inflammation by promoting anti-inflammatory macrophages, maintaining a healthy microbiome and preserving epithelial barrier integrity in a PTPN2-dependent manner.
Collapse
Affiliation(s)
- Anna Niechcial
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andrea Laimbacher
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Egle Katkeviciute
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Westermann
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Ruan H, Wang Y, Zhang J, Huang Y, Yang Y, Wu C, Guo M, Luo J, Yang M. Zearalenone-14-glucoside specifically promotes dysplasia of Gut-Associated Lymphoid Tissue: A natural product for constructing intestinal nodular lymphatic hyperplasia model. J Adv Res 2023; 52:135-150. [PMID: 37230382 PMCID: PMC10555928 DOI: 10.1016/j.jare.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Zearalenone-14-glucoside (Z14G) is a modified mycotoxin that widely contaminates food across the world. Our preliminary experiment showed that Z14G degrades to zearalenone (ZEN) in the intestine exerting toxicity. Notably, oral administration of Z14G in rats induces intestinal nodular lymphatic hyperplasia. OBJECTIVES To investigate the mechanism of Z14G intestinal toxicity and how it differs from ZEN toxicity. We conducted a precise toxicology study on the intestine of rats exposed to Z14G and ZEN using multi-omics technology. METHODS Rats were exposed to ZEN (5 mg/kg), Z14G-L (5 mg/kg), Z14G-H (10 mg/kg), and pseudo germ free (PGF)-Z14G-H (10 mg/kg) for 14 days. Histopathological studies were performed on intestines from each group and compared. Metagenomic, metabolomic, and proteomic analyses were performed on rat feces, serum, and intestines, respectively. RESULTS Histopathological studies showed that Z14G exposure resulted in dysplasia of gut-associated lymphoid tissue (GALT) compared to ZEN exposure. The elimination of gut microbes in the PGF-Z14G-H group alleviated or eliminated Z14G-induced intestinal toxicity and GALT dysplasia. Metagenomic analysis revealed that Z14G exposure significantly promoted the proliferation of Bifidobacterium and Bacteroides compared to ZEN. Metabolomic analysis showed that Z14G exposure significantly reduced bile acid, while proteomic analysis found that Z14G exposure significantly reduced the expression of C-type lectins compared to ZEN. CONCLUSIONS Our experimental results and previous research suggest that Z14G is hydrolyzed to ZEN by Bifidobacterium and Bacteroides promoting their co-trophic proliferation. This leads to inactivation of lectins by hyperproliferative Bacteroides when ZEN caused intestinal involvement, resulting in abnormal lymphocyte homing and ultimately GALT dysplasia. It is noteworthy that Z14G is a promising model drug to establish rat models of intestinal nodular lymphatic hyperplasia (INLH), which is of great significance for studying the pathogenesis, drug screening and clinical application of INLH.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yanan Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Chongming Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
21
|
Li M, He SX, He YX, Hu XH, Zhou Z. Detecting potential causal relationship between inflammatory bowel disease and rosacea using bi-directional Mendelian randomization. Sci Rep 2023; 13:14910. [PMID: 37689807 PMCID: PMC10492847 DOI: 10.1038/s41598-023-42073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/05/2023] [Indexed: 09/11/2023] Open
Abstract
The association between rosacea and inflammatory bowel disease (IBD) has been studied in previous observational studies. It is unclear, however, whether the association is causal or not. Independent genetic variants for IBD were chosen as instruments from published Genome-wide association studies (GWAS) studies involving 38,155 cases with an IBD diagnosis and 48,485 controls in order to investigate the causal effect of IBD on rosacea. Summarized data for rosacea were gathered from various GWAS studies that included 1195 cases and 211,139 controls without rosacea. Reverse-direction Mendelian randomization (MR) analysis was done to investigate the relationship between genetically proxied rosacea and IBD. With the use of the inverse variance-weighted (IVW), MR-Egger, and weighted median approaches, a 2-sample Mendelian randomization study was carried out. Analysis of heterogeneity and sensitivity was performed to examine the pleiotropy and robustness of effect estimates. The forward-direction of the MR study was to reveal that genetic predisposition to IBD including its two main subtypes: Crohn's disease (CD) and ulcerative colitis (UC) was associated with an increased risk of rosacea. The reverse-direction MR analyses did not demonstrate that a genetic predisposition to rosacea was associated with total IBD, UC and CD. Our findings provided evidence for a causal impact of IBD, UC, and CD on rosacea, but not vice versa. The elevated incidence of rosacea in patients with IBD should be recognized by doctors to make an early diagnosis and initiate specialized therapy.
Collapse
Affiliation(s)
- Min Li
- Department of Dermatology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Si Xian He
- Department of Dermatology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Yuan Xiong He
- Department of Dermatology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Xiao Han Hu
- Department of Dermatology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China
| | - Zhou Zhou
- Department of Dermatology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
22
|
Qiao X, Gao Q, Yang L, Wang X, Wang Z, Li Z, Xu J, Xue C. In-Depth Analysis of the Mechanism of Astaxanthin Succinate Diester in Reducing Ulcerative Colitis in C57BL/6J Mice Based on Microbiota Informatics. Molecules 2023; 28:6513. [PMID: 37764289 PMCID: PMC10537600 DOI: 10.3390/molecules28186513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
This paper aims to explore the effect and mechanism of water-soluble astaxanthin succinate diester (Asta-SD) on ulcerative colitis (UC) induced by dextran sodium sulfate in zebrafish and C57BL/6J mice. Asta-SD was synthesized with hydrophilic fatty acid succinic anhydride and the hydroxyl groups at the ends of F-Asta were synthesized by esterifying. Through the construction of a zebrafish intestinal inflammation model, it was found that Asta-SD could effectively reduce the levels of ROS and increase the number of healthy intestinal lysosomes in zebrafish. After continuous gavage of Asta-SD for seven days, the body weight, disease activity index, colonic length, colonic histopathology, expression of inflammatory factors, and intestinal flora of the mice were measured. The results showed that Asta-SD could significantly alleviate weight loss and colonic shrinkage, as well as reducing pro-inflammatory cytokines and recess injury in UC mice. The 16S rRNA gene sequencing showed that Asta-SD significantly increased the beneficial bacteria (Lactobacillus, Anaerotruncus) and decreased the relative abundance of pathogenic bacteria, effectively maintaining intestinal microbiota homeostasis in mice. Based on Pearson analysis, Bacteroides, Parabacteroides, and Butyrimionas were expected to be associated with the significant difference in the expression of inflammatory factors between the UC and the corresponding host. Thus, Asta-SD significantly improves UC and maintains intestinal microbiota homeostasis.
Collapse
Affiliation(s)
- Xing Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Qun Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Lu Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Zhaojie Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (X.Q.); (Q.G.); (L.Y.); (X.W.); (Z.W.); (Z.L.); (C.X.)
| |
Collapse
|
23
|
Zhang C, Cao Z, Lei H, Chen C, Du R, Song Y, Zhang C, Zhou J, Lu Y, Huang L, Shen P, Zhang L. Discovery of a novel small molecule with efficacy in protecting against inflammation in vitro and in vivo by enhancing macrophages activation. Biomed Pharmacother 2023; 165:115273. [PMID: 37536035 DOI: 10.1016/j.biopha.2023.115273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Immune response and inflammation highly contribute to many metabolic syndromes such as inflammatory bowel disease (IBD), ageing and cancer with disruption of host metabolic homeostasis and the gut microbiome. Icariin-1 (GH01), a small-molecule flavonoid derived from Epimedium, has been shown to protect against systemic inflammation. However, the molecular mechanisms by which GH01 ameliorates ulcerative colitis via regulation of microbiota-mediated macrophages polarization remain elusive. In this study, we found that GH01 effectively ameliorated dextran sulfate sodium (DSS)-induced colitis symptoms in mice. Disruption of intestinal barrier function, commensal microbiota and its metabolites were also significantly restored by GH01 in a dose-dependent manner. Of note, we also found that GH01 enhanced phagocytic ability of macrophages and switched macrophage phenotype from M1 to M2 both in vitro and in vivo. Such macrophage polarization was highly associated with intestinal barrier integrity and the gut microbial community. Consequently, GH01 exhibited strong anti-inflammatory capacity by inhibiting TLR4 and NF-κB pathways and proinflammatory factors (IL-6). These findings suggested that GH01 might be a potential nutritional intervention strategy for IBD treatment with the gut microbial community-meditated macrophage as the therapeutic targets.
Collapse
Affiliation(s)
- Cui Zhang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China; State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hehua Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Chuan Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Du
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Song
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlin Zhou
- Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Yujing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan 528225, China
| | - Luodong Huang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China.
| | - Limin Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Han Y, Liu L, Chen Y, Zheng H, Yao M, Cao L, Sferra TJ, Ke X, Peng J, Shen A. Qing Hua Chang Yin alleviates chronic colitis of mice by protecting intestinal barrier function and improving colonic microflora. Front Pharmacol 2023; 14:1176579. [PMID: 37576825 PMCID: PMC10413571 DOI: 10.3389/fphar.2023.1176579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1β and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.
Collapse
Affiliation(s)
- Yuying Han
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liya Liu
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Huifang Zheng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mengying Yao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liujing Cao
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Xiao Ke
- Department of Gastroenterology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Clinical Medical Research Centre of Chinese Medicine for Spleen and Stomach, Fuzhou, China
| | - Jun Peng
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Aling Shen
- Clinical Research Institute, The Second Affiliated Hospital and Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
25
|
Yin J, Zhao Z, Huang J, Xiao Y, Rehmutulla M, Zhang B, Zhang Z, Xiang M, Tong Q, Zhang Y. Single-cell transcriptomics reveals intestinal cell heterogeneity and identifies Ep300 as a potential therapeutic target in mice with acute liver failure. Cell Discov 2023; 9:77. [PMID: 37488127 PMCID: PMC10366100 DOI: 10.1038/s41421-023-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/15/2023] [Indexed: 07/26/2023] Open
Abstract
Acute liver failure (ALF) is a severe life-threatening disease associated with the disorder of the gut-liver axis. However, the cellular characteristics of ALF in the gut and related therapeutic targets remain unexplored. Here, we utilized the D-GALN/LPS (D/L)-induced ALF model to characterize 33,216 single-cell transcriptomes and define a mouse ALF intestinal cellular atlas. We found that unique, previously uncharacterized intestinal immune cells, including T cells, B cells, macrophages, and neutrophils, are responsive to ALF, and we identified the transcriptional profiles of these subsets during ALF. We also delineated the heterogeneity of intestinal epithelial cells (IECs) and found that ALF-induced cell cycle arrest in intestinal stem cells and activated specific enterocyte and goblet cell clusters. Notably, the most significantly altered IECs, including enterocytes, intestinal stem cells and goblet cells, had similar activation patterns closely associated with inflammation from intestinal immune activation. Furthermore, our results unveiled a common Ep300-dependent transcriptional program that coordinates IEC activation during ALF, which was confirmed to be universal in different ALF models. Pharmacological inhibition of Ep300 with an inhibitor (SGC-CBP30) inhibited this cell-specific program, confirming that Ep300 is an effective target for alleviating ALF. Mechanistically, Ep300 inhibition restrained inflammation and oxidative stress in the dysregulated cluster of IECs through the P38-JNK pathway and corrected intestinal ecology by regulating intestinal microbial composition and metabolism, thereby protecting IECs and attenuating ALF. These findings confirm that Ep300 is a novel therapeutic target in ALF and pave the way for future pathophysiological studies on ALF.
Collapse
Affiliation(s)
- Jie Yin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianzheng Huang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mewlude Rehmutulla
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Biqiong Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zijun Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
26
|
Jun YK, Yu DA, Han YM, Lee SR, Koh SJ, Park H. The Relationship Between Rosacea and Inflammatory Bowel Disease: A Systematic Review and Meta-analysis. Dermatol Ther (Heidelb) 2023:10.1007/s13555-023-00964-6. [PMID: 37338720 DOI: 10.1007/s13555-023-00964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
INTRODUCTION Rosacea and inflammatory bowel disease (IBD) are chronic inflammatory disorders of the skin and the gut, which are interfaces between the environment and the human body. Although growing evidence has implicated a possible link between rosacea and IBD, it remains unclear whether IBD increases the risk of rosacea and vice versa. Therefore, we investigated the association between rosacea and IBD in this study. METHODS We performed a systematic review and meta-analysis according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) guidelines. RESULTS Eight eligible studies were included in this meta-analysis. Overall, the prevalence of rosacea was higher in the IBD group than in the control group, with a pooled odds ratio (OR) of 1.86 (95% confidence interval [CI](1), 1.52-2.26). Both the Crohn's disease and the ulcerative colitis groups had higher prevalences of rosacea than the control group, with ORs of 1.74 (95% CI 1.34-2.28) and 2.00 (95% CI 1.63-2.45), respectively. Compared with those in the control group, the risks of IBD, Crohn's disease, and ulcerative colitis were significantly higher in the rosacea group, with incidence rate ratios of 1.37 (95% CI 1.22-1.53), 1.60 (95% CI 1.33-1.92), and 1.26 (95% CI 1.09-1.45), respectively. CONCLUSION Our meta-analysis suggests that IBD is bidirectionally associated with rosacea. Future interdisciplinary studies are needed to better understand the mechanism of interaction between rosacea and IBD .
Collapse
Affiliation(s)
- Yu Kyung Jun
- Division of Gastroenterology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Korea
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Da-Ae Yu
- Department of Dermatology, Konkuk University School of Medicine, Seoul, Korea
| | - Yoo Min Han
- Department of Internal Medicine and Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Korea
| | - Soo Ran Lee
- Department of Dermatology, SMG-SNU Boramae Medical Center, 20 Boramaero-5-gil, Dongjak-gu, Seoul, 07061, Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 03080, Korea.
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea.
| | - Hyunsun Park
- Department of Dermatology, SMG-SNU Boramae Medical Center, 20 Boramaero-5-gil, Dongjak-gu, Seoul, 07061, Korea.
- Laboratory of Intestinal Mucosa and Skin Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Wang Y, Zhang J, Zhang B, Lu M, Ma J, Liu Z, Huang J, Ma J, Yang X, Wang F, Tang X. Modified Gegen Qinlian decoction ameliorated ulcerative colitis by attenuating inflammation and oxidative stress and enhancing intestinal barrier function in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116538. [PMID: 37086872 DOI: 10.1016/j.jep.2023.116538] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Gegen Qinlian decoction (MGQD), which was first documented in Treatise on Febrile Disease, is recognized as a classic prescription to treat ulcerative colitis (UC). However, its protective mechanism against UC remains to be fully elucidated. AIM OF THE STUDY To explore the impact and the potential molecular mechanism of MGQD on dextran sodium sulfate (DSS)-induced UC mice and tumor necrosis factor alpha (TNF-α)-induced Caco-2 cell monolayer model of intestinal barrier. MATERIALS AND METHODS The chemical components of MGQD and MGQD drug containing serum (MGQD-DS) were characterized by LC-MS/MS. The therapeutic effect of MGQD on DSS-induced UC was evaluated based on body weight, disease activity index (DAI), colon length, colonic histopathological injury, inflammatory cytokines, oxidative stress response and intestinal barrier function. Cell Counting Kit (CCK)-8 assay was applied to detect the effect of MGQD-DS on the viability of Caco-2 cells. Additionally, TNF-α-induced Caco-2 cell monolayer model of intestinal barrier was established in vitro. The Caco-2 cell monolayers were administered blank serum or MGQD-DS to observe the effects of MGQD-DS on transepithelial electrical resistance (TEER), permeability of fluorescein isothiocyanate (FITC)-dextran, inflammatory cytokines, oxidative stress indicators and intestinal epithelial barrier (IEB). RESULTS MGQD significantly improved symptoms and pathological damage in UC mice by downregulating the expression of interleukin (IL)-1β and malondialdehyde (MDA), attenuating the loss of goblet cells and the destruction of intestinal epithelial ultrastructure, and upregulating the expression of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), zonula occludens-1 (ZO-1), Occludin, Claudin-1 and E-cadherin. In vitro, MGQD-DS significantly reduced the flux of FITC-dextran, increased the TEER, inhibited the expression of IL-21, IL-17A and MDA, and promoted the expression of IL-4, IL-10, transforming growth factor-β (TGF-β), SOD, CAT, GSH, Occludin and E-cadherin in TNF-α-induced Caco-2 cell monolayer model of intestinal barrier. CONCLUSION MGQD can ameliorate DSS-induced UC mice and TNF-α-induced Caco-2 cell monolayer model of intestinal barrier, and the protective effect is related to its inhibition of inflammation, alleviation of oxidative stress, and repair of intestinal barrier damage.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jiaqi Zhang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Beihua Zhang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Mengxiong Lu
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Ma
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhihong Liu
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jinke Huang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Jinxin Ma
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xuefei Yang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Fengyun Wang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Xudong Tang
- Department of Gastroenterology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100191, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
28
|
Yuan SN, Wang MX, Han JL, Feng CY, Wang M, Wang M, Sun JY, Li NY, Simal-Gandara J, Liu C. Improved colonic inflammation by nervonic acid via inhibition of NF-κB signaling pathway of DSS-induced colitis mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154702. [PMID: 36764096 DOI: 10.1016/j.phymed.2023.154702] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/14/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nervonic acid (C24:1∆15, 24:1 ω-9, cis-tetracos-15-enoic acid; NA), a long-chain monounsaturated fatty acid, plays an essential role in prevention of metabolic diseases, and immune regulation, and has anti-inflammatory properties. As a chronic, immune-mediated inflammatory disease, ulcerative colitis (UC) can affect the large intestine. The influences of NA on UC are largely unknown. PURPOSE The present study aimed to decipher the anti-UC effect of NA in the mouse colitis model. Specifically, we wanted to explore whether NA can regulate the levels of inflammatory factors in RAW264.7 cells and mouse colitis model. METHODS To address the above issues, the RAW264.7 cell inflammation model was established by lipopolysaccharide (LPS), then the inflammatory factors tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), Interleukin-1β (IL-1β), and Interleukin-10 (IL-10) were detected by Enzyme-linked immunosorbent assay (ELISA). The therapeutic effects of NA for UC were evaluated using C57BL/6 mice gavaged dextran sodium sulfate (DSS). Hematoxylin and eosin (H&E) staining, Myeloperoxidase (MPO) kit assay, ELISA, immunofluorescence assay, and LC-MS/MS were used to assess histological changes, MPO levels, inflammatory factors release, expression and distribution of intestinal tight junction (TJ) protein ZO-1, and metabolic pathways, respectively. The levels of proteins involved in the nuclear factor kappa-B (NF-κB) pathway in the UC were investigated by western blotting and RT-qPCR. RESULTS In vitro experiments verified that NA could reduce inflammatory response and inhibit the activation of key signal pathways associated with inflammation in LPS-induced RAW264.7 cells. Further, results from the mouse colitis model suggested that NA could restore intestinal barrier function and suppress NF-κB signal pathways to ameliorate DSS-induced colitis. In addition, untargeted metabolomics analysis of NA protection against UC found that NA protected mice from colitis by regulating citrate cycle, amino acid metabolism, pyrimidine and purine metabolism. CONCLUSION These results suggested that NA could ameliorate the secretion of inflammatory factors, suppress the NF-κB signaling pathway, and protect the integrity of colon tissue, thereby having a novel role in prevention or treatment therapy for UC. This work for the first time indicated that NA might be a potential functional food ingredient for preventing and treating inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Sheng-Nan Yuan
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Mu-Xuan Wang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Jin-Long Han
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Cai-Yun Feng
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China
| | - Meng Wang
- Shanxi Functional Food Engineering Center Co. Ltd, Xian 710000, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Jin-Yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China; Shandong Huatai Nutrition and Health Industry Technology Research Institute Co. Ltd, Jinan 250100, China.
| | - Ning-Yang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, China.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E-32004 Ourense, Spain.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, China; Shandong Huatai Nutrition and Health Industry Technology Research Institute Co. Ltd, Jinan 250100, China.
| |
Collapse
|
29
|
Liu X, Chen S, Liu H, Xie J, Hasan KMF, Zeng Q, Wei S, Luo P. Structural properties and anti-inflammatory activity of purified polysaccharides from Hen-of-the-woods mushrooms ( Grifola frondosa). Front Nutr 2023; 10:1078868. [PMID: 36824172 PMCID: PMC9941675 DOI: 10.3389/fnut.2023.1078868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Grifola frondosa is an edible medicinal mushroom that has been proven to have a variety of health benefits. The main active ingredients of this mushroom are polysaccharides. In this study, ultrasonic-assisted extraction was used to obtain crude Grifola frondosa polysaccharides (GFPs). Then, purified GFP was obtained after purification. The optimum extraction conditions were an extraction time of 71 min, an extraction temperature of 90°C in a solid-to-liquid ratio of 1:37 g/mL, and an ultrasonic power of 500 W. GFP was purified using DEAE-52 and Sephadex G-100. The structural characterization of GFP was performed using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), ion chromatography (IC), and ultraviolet (UV) visible photometry. The morphology of GFP was analyzed by scanning electron microscopy (SEM), thermogravimetric differential scanning calorimetry (TG-DSC), and Congo red testing. In addition, the administration of GFP in oxazolone (OXZ)-induced ulcerative colitis (UC) in mice was found to prevent weight loss. Different doses of GFP (80, 160, and 320 mg/kg body weight) were used, and sulfapyridine (SASP) was used as a positive control (370 mg/kg body weight) for the treatment of OXZ-induced UC. After treatment, the mice were killed, and blood and colon tissue samples were collected. GFP was found to prevent decreases in colon length and the levels of leukocytes, platelets, and neutrophils in UC mice. Moreover, GFP also decreased the expression of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α and interleukin (IL)-1 β], increased IL-10, and reduced colon injury in UC mice. The results showed that Under these conditions, the predicted polysaccharide yield was 21.72%, and the actual extraction rate was 21.13%. The polysaccharide composition (molar ratio) was composed of fucose (0.025), glucosamine hydrochloride (0.004), galactose (0.063), glucose (0.869), and mannose (0.038). GFP was also found to have a typical absorption peak, and the GFP extracted using the ultrasound-assisted extraction protocol was mainly β-glucan. These results indicate that ultrasound-assisted extraction of GFP could reduce OXZ-induced intestinal inflammation as a promising candidate for the treatment of UC, with the potential for development as a food supplement to improve intestinal diseases.
Collapse
Affiliation(s)
- Xiaoyi Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shuai Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jiao Xie
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - K. M. Faridul Hasan
- Simonyi Károly Faculty of Engineering, University of Sopron, Sopron, Hungary
| | - Qibing Zeng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China,*Correspondence: Shaofeng Wei,
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang, China,Peng Luo,
| |
Collapse
|
30
|
Doggwiler V, Lanz M, Paredes V, Lipps G, Imanidis G. Tablet formulation with dual control concept for efficient colonic drug delivery. Int J Pharm 2023; 631:122499. [PMID: 36529358 DOI: 10.1016/j.ijpharm.2022.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Aim of this study was to develop a tablet formulation for targeted colonic drug release by implementing two control mechanisms: A pH-sensitive coating layer based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, combined with a matrix based on plant-derived polysaccharide xyloglucan to inhibit drug release after coating removal in the small intestine and to allow microbiome triggered drug release in the colon. In vitro dissolution tests simulated the passage through the entire gastrointestinal tract with a four-stage protocol, including microbial xyloglucanase addition in physiologically relevant concentrations as microbiome surrogate to the colonic dissolution medium. Matrix erosion was monitored in parallel to drug release by measurement of reducing sugar equivalents resulting from xyloglucan hydrolysis. Limited drug release in gastric and small intestinal test stages and predominant release in the colonic stage was achieved. The xyloglucan matrix controlled drug release after dissolution of the enteric coating through the formation of a gummy polysaccharide layer at the tablet surface. Matrix degradation was dependent on enzyme concentration in the colonic medium and significantly accelerated drug release resulting in erosion-controlled release process. Drug release at physiologically relevant enzyme concentration was completed within the bounds of colonic transit time. The dual control concept was applicable to two drug substances with different solubility, providing similar release rates in colonic environment containing xyloglucanase. Drug solubility mechanistically affected release, with diffusion of caffeine, but not of 5-ASA, contributing to the overall release rate out of the matrix tablet.
Collapse
Affiliation(s)
- Viviane Doggwiler
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michael Lanz
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Valeria Paredes
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georg Lipps
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georgios Imanidis
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
31
|
Zhou Z, He W, Tian H, Zhan P, Liu J. Thyme ( Thymus vulgaris L.) polyphenols ameliorate DSS-induced ulcerative colitis of mice by mitigating intestinal barrier damage, regulating gut microbiota, and suppressing TLR4/NF-κB-NLRP3 inflammasome pathways. Food Funct 2023; 14:1113-1132. [PMID: 36594593 DOI: 10.1039/d2fo02523j] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Thyme (Thymus vulgaris L.) is an important medicinal and edible homologous plant, and the composition and bioactivity of its polyphenol extracts have attracted widespread attention from researchers. In this study, the polyphenols in thyme were separated and identified by UPLC/MS-MS and UPLC-DAD, and the intervention effect and mechanism of thyme polyphenols (TP) on ulcerative colitis (UC) were analyzed in combination with dextran sulfate sodium salt (DSS)-induced mice colitis model. It was found that the main substances of TP were scutellarin (160.68 ± 2.09 mg g-1), rosmarinic acid (80.33 ± 1.74 mg g-1), scutellarein (56.53 ± 1.32 mg g-1), apigenin-7-O-glucuronide (21.06 ± 0.68 mg g-1), gallic acid (13.80 ± 0.73 mg g-1), and ferulic acid (12.00 ± 0.20 mg g-1). TP and sulfasalazine, which were respectively supplemented to these experimental mice at 200 mg per kg bw and 100 mg per kg bw, showed similar effects on alleviating intestinal inflammation, as indicated by the consistency of the decreased NLRP3 and TLR4 proteins and inhibited pro-inflammatory cytokine secretion in NF-κB inflammatory signaling pathway. Furthermore, the treatment with TP at doses of 200 and 400 mg per kg bw both effectively upregulated tight junction protein expression and enhanced intestinal epithelial cell integrity. Consistently, the abundany of probiotics including Blautia, Bacteroides, Romboutsia, and Faecalibaculum associated with the synthesis of short chain fatty acids (SCFAs) were elevated, whereas harmful bacteria including Escherichia Shigella, Muribaculum, and Clostridium sensu stricto 1 associated with the inflammatory process were significantly inhibited. Notably, TP supplemented at the dose of 100 mg per kg bw showed weak mitigated effects on the above symptoms, while the other two TP experimental groups showed similar promising therapeutic potential, suggesting that such beneficial effects required a certain dose of TP to be achieved. These results indicated that TP could suppress the TLR4/NLRP3-NF-κB inflammasome pathways, protect the intestinal epithelial barrier, and remodel the disordered gut microbiota, which suggested that TP might be a promising dietary strategy for UC.
Collapse
Affiliation(s)
- Zuman Zhou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Wanying He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710100, China.
| | - Jianshu Liu
- Shaanxi Provincial Research Center of Functional Food Engineering Technology, Xi'an 710100, China
| |
Collapse
|
32
|
Phillygenin Attenuated Colon Inflammation and Improved Intestinal Mucosal Barrier in DSS-induced Colitis Mice via TLR4/Src Mediated MAPK and NF-κB Signaling Pathways. Int J Mol Sci 2023; 24:ijms24032238. [PMID: 36768559 PMCID: PMC9917337 DOI: 10.3390/ijms24032238] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, relapsing, and nonspecific inflammatory bowel disease (IBD). Phillygenin (PHI), a natural bioactive ingredient, isolated from Forsythiae Fructus, exhibits anti-inflammatory, anti-oxidative, and hepatoprotective activities. However, few reports provide direct evidence on the efficacy of PHI in improving colitis mice. The present study elucidated that the symptoms of DSS-induced colitis mice were alleviated after PHI administration, including body weight loss, the disease activity index, colon length shortening, colonic pathological damage, splenomegaly, and hepatomegaly. PHI treatment improved the intestinal mucosal barrier by protecting goblet cells, promoting gene expressions of Clca1, Slc26a3, and Aqp8, increasing tight junction proteins (TJs), and reducing epithelial cell apoptosis. In addition, the levels of oxidative stress (MPO, SOD, and MDA) and inflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-10) were reversed by PHI in colitis mice. According to transcriptome and network pharmacology analysis, inflammatory pathway might be an important mechanism for PHI to improve colitis. Western blotting displayed that the PHI inhibited the activation of tyrosine kinase Src mediated by TLR4, and then reduced the phosphorylation of downstream proteins p38, JNK, and NF-κB in colitis mice. In summary, our results suggested that PHI might be an appropriate and effective drug candidate to protect colitis.
Collapse
|
33
|
Huang X, Zhang Y, Huang J, Gao W, Yongfang X, Zeng C, Gao C. The effect of FMT and vitamin C on immunity-related genes in antibiotic-induced dysbiosis in mice. PeerJ 2023; 11:e15356. [PMID: 37193034 PMCID: PMC10183171 DOI: 10.7717/peerj.15356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Antibiotics are double-edged swords. Although antibiotics are used to inhibit pathogenic bacteria, they also run the risk of destroying some of the healthy bacteria in our bodies. We examined the effect of penicillin on the organism through a microarray dataset, after which 12 genes related to immuno-inflammatory pathways were selected by reading the literature and validated using neomycin and ampicillin. The expression of genes was measured using qRT-PCR. Several genes were significantly overexpressed in antibiotic-treated mice, including CD74 and SAA2 in intestinal tissues that remained extremely expressed after natural recovery. Moreover, transplantation of fecal microbiota from healthy mice to antibiotic-treated mice was made, where GZMB, CD3G, H2-AA, PSMB9, CD74, and SAA1 were greatly expressed; however, SAA2 was downregulated and normal expression was restored, and in liver tissue, SAA1, SAA2, SAA3 were extremely expressed. After the addition of vitamin C, which has positive effects in several aspects, to the fecal microbiota transplantation, in the intestinal tissues, the genes that were highly expressed after the fecal microbiota transplantation effectively reduced their expression, and the unaffected genes remained normally expressed, but the CD74 gene remained highly expressed. In liver tissues, normally expressed genes were not affected, but the expression of SAA1 was reduced and the expression of SAA3 was increased. In other words, fecal microbiota transplantation did not necessarily bring about a positive effect of gene expression restoration, but the addition of vitamin C effectively reduced the effects of fecal microbiota transplantation and regulated the balance of the immune system.
Collapse
Affiliation(s)
- Xiaorong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Yv Zhang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Junsong Huang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Gao
- Chongqing University of Posts and Telecommunications, Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing, China
| | - Xie Yongfang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chuisheng Zeng
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| | - Chao Gao
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Tele-communications, Chongqing, China
| |
Collapse
|
34
|
Efficacy and safety of erythropoietin in a chronic model of Inflammatory Bowel Disease. Biomed Pharmacother 2022; 156:113944. [DOI: 10.1016/j.biopha.2022.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
35
|
Silva I, Mendes P, Guerra S, Pinto R, Mateus V. Anti-Inflammatory Effect of Topiramate in a Chronic Model of TNBS-Induced Colitis. Int J Mol Sci 2022; 23:9127. [PMID: 36012393 PMCID: PMC9409153 DOI: 10.3390/ijms23169127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/01/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic and relapsing inflammatory response in the gastrointestinal tract, resulting in severe symptoms such as abdominal pain, vomiting, diarrhea, bloody stools, and weight loss. Currently, there is no cure, and the pharmacological treatment includes drugs that induce and keep the patient in remission, not reversing the underlying pathogenic mechanism. These therapies, in the long term, may cause various side effects and complications, which has increased the need to investigate new, more effective, and safer pharmacological approaches. In preclinical studies, topiramate has demonstrated a potential anti-inflammatory effect by inhibiting the production of several pro-inflammatory cytokines. This study aimed to investigate the effect of topiramate in a chronic TNBS-induced colitis model in rodents. Experimental colitis was induced by four intrarectal administrations of 1% TNBS in female CD-1 mice. Topiramate 10 and 20 mg were administered intraperitoneally for 14 days. Several parameters were evaluated, such as bodyweight, alkaline phosphatase (ALP), fecal hemoglobin, fecal calprotectin, tumor necrosis factor (TNF)-α, and interleukin (IL)-10. Topiramate reduces TNBS-induced colonic damage in a model of chronic experimental colitis and normalizes the stool consistency and anus appearance. Additionally, topiramate significantly reduced the concentration of ALP, fecal hemoglobin, fecal calprotectin, TNF-α, and IL-10, demonstrating it to be a promising pharmacological approach for the treatment of IBD in the future.
Collapse
Affiliation(s)
- Inês Silva
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Sofia Guerra
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
| | - Rui Pinto
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
- JCS, Dr. Joaquim Chaves, Laboratório de Análises Clínicas, Miraflores, 1495-069 Algés, Portugal
| | - Vanessa Mateus
- H&TRC–Health and Technology Research Center, ESTeSL–Lisbon School of Health and Technology, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal
- iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, 1990-096 Lisbon, Portugal
| |
Collapse
|
36
|
Lin Z, Chen L, Cheng M, Zhu F, Yang X, Zhao W, Zuo J, He S. Cortex periplocae modulates the gut microbiota to restrict colitis and colitis-associated colorectal cancer via suppression of pathogenic Th17 cells. Biomed Pharmacother 2022; 153:113399. [PMID: 35834986 DOI: 10.1016/j.biopha.2022.113399] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Aberrant microbe-immune cell interaction is a predisposing factor in inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Cortex Periplocae is a famous traditional Chinese medicine with putative anti-rheumatoid arthritis and anti-dyspepsia effects. Here, we show that the Periploca sepium periplosides (PePs), a cardiac glycosides-free pregnane glycosides extract from root bark of Cortex Periplocae, alleviates colon inflammation, improves intestinal epithelial barrier function, and prevents colitis-associated tumorigenesis in mice with colitis and CAC. Mechanistically, PePs treatment modulates abnormal gut microbiota composition in model mice, especially enriches an anti-inflammatory commensal bacterium A. muciniphila BAA-835. We further demonstrate that the altered gut microbiota following PePs treatment plays an important role in modulation of intestinal Type 17 immunity in both colitis and CAC mouse model. Our results indicate that PePs may be used as a potential gut microbiota modulator to treat IBD and CAC.
Collapse
Affiliation(s)
- Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengnan Cheng
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weimin Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China; Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Animal Model Exp Med 2022; 5:311-322. [PMID: 35808814 PMCID: PMC9434590 DOI: 10.1002/ame2.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever‐expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high‐throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.
Collapse
Affiliation(s)
- Yunchang Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
38
|
Cheng J, Ma X, Zhang H, Wu X, Li M, Ai G, Zhan R, Xie J, Su Z, Huang X. 8-Oxypalmatine, a novel oxidative metabolite of palmatine, exhibits superior anti-colitis effect via regulating Nrf2 and NLRP3 inflammasome. Biomed Pharmacother 2022; 153:113335. [PMID: 35779424 DOI: 10.1016/j.biopha.2022.113335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Palmatine (PAL) is an isoquinoline alkaloid derived from Fibraureae caulis Pierre that has been used to relieve inflammatory diseases like ulcerative colitis (UC). The metabolites of PAL were believed to contribute significantly to its outstanding biological activities. 8-Oxypalmatine (OPAL), a liver-mediated oxidative metabolite of PAL, has been firstly identified in the present work. We aimed to comparatively investigate the potential effect and mechanism of OPAL and PAL on dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Results indicated that OPAL and PAL effectively mitigated clinical manifestations, DAI scores and pathological damage compared with the model group. Moreover, treatment with OPAL and PAL effectively mitigated oxidative stress markers and inflammatory mediators in colon. Additionally, OPAL and PAL significantly activated the Nrf2 pathway, while substantially suppressed the activation of NLRP3 inflammasome. Furthermore, OPAL showed superior anti-colitis effect to PAL, which was similar to the positive drug mesalazine with much smaller dosage. These findings suggested that OPAL exerted appreciable protective effect on DSS-induced colitis, at least in part, via activating Nrf2 pathway and inhibiting NLRP3 inflammasome. OPAL might have the potential to be further developed into a promising candidate for the treatment of UC.
Collapse
Affiliation(s)
- Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xingdong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Haitao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, PR China
| | - Xiaoyan Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Xiaoqi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, PR China.
| |
Collapse
|
39
|
Luo YT, Wu J, Zhu FY, Wu JQ, Wu P, Liu YC. Gancao Xiexin Decoction Ameliorates Ulcerative Colitis in Mice via Modulating Gut Microbiota and Metabolites. Drug Des Devel Ther 2022; 16:1383-1405. [PMID: 35601674 PMCID: PMC9114650 DOI: 10.2147/dddt.s352467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/25/2022] [Indexed: 01/30/2023] Open
Abstract
Purpose Ulcerative colitis (UC) is a chronic inflammatory bowel disease that starts with mucosal inflammation of the rectum and extends proximally in the colon in a continuous manner over a variable distance. Although it is more common in North America and Western Europe, its incidence is also increasing in Asia. Despite the introduction of several different classes of medications, the treatment options for UC may be insufficiently effective and burdened with significant side effects. In the present study, the therapeutic effects of Gancao Xiexin decoction (GCXX) were investigated on mice with dextran sulfate sodium (DSS)-induced colitis with exploration of the underlying mechanisms. Methods Colitis was induced in C57BL/6 mice by administering 3% DSS in drinking water for 7 days. GCXX and (or) the standard of care anti-inflammatory drug, mesalazine (5-aminosalicylic acid) were then administered for 7 days. The gut microbiota was characterized by 16S rDNA high-throughput gene sequencing and gut metabolites were detected by untargeted metabolomics. Germ-free mice were subsequently used to determine whether GCXX ameliorated UC principally through modulation of the gut microbiota. Results GCXX treatment was demonstrated to significantly reduce disease activity index (DAI) scores, prevent colonic shortening, ameliorate colonic tissue damage and reduce the levels of pro-inflammatory cytokines. Furthermore, analysis of the gut microbiota showed that GCXX-treated mice had higher relative quantity of Dubosiella (P<0.05) and lower relative quantity of Escherichia-Shigella (P<0.05). Metabolomics analysis indicated that GCXX could reduce the level of linoleic acid (P<0.05) and regulate its metabolism pathway. Moreover, in germ-free mice, GCXX failed to increase body weight, reduce DAI scores, or alleviate either colonic shortening or colonic damage. Conclusion The present study demonstrated that GCXX ameliorated DSS-induced colitis principally through modulating the gut microbiota and metabolites. This information should be integrated into the overall mechanisms of GCXX treatment of UC.
Collapse
Affiliation(s)
- Yi-Ting Luo
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jin Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Fang-Yuan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Jia-Qian Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Pei Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Ying-Chao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| |
Collapse
|
40
|
Che YH, Yu ZY, Geng FN, He M, Yang ZB, Zheng YY, Zhang CG, Zhao Y, Wu XM, Liu H. Effects of the Traditional Chinese Medicine Formula Ento-PB in Experimental Models of Ulcerative Colitis. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221078453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The traditional Chinese medicine (TCM) formula Ento-PB containing Periplaneta americana (Linnaeus) (Blattidae) and Taraxacum mongolicum Hand.-Mazz. (Compositae) has great potential for treating inflammation. This study explored the effects of Ento-PB on ulcerative colitis (UC). The UC model was induced with 2,4,6-trinitrobenzene sulfonic acid (TNBS) by enema. Male Sprague–Dawley rats (n = 32) were divided into four groups: (1) control group that received 2.5 mL/kg normal saline, (2) TNBS group that received 2.5 mL/kg normal saline, (3) Ento-PB low-dose group that received 100 mg/kg Ento-PB, and (4) Ento-PB high-dose group that received 200 mg/kg Ento-PB. Rats were administered drugs via enema for 14 days after modeling. The disease activity index (DAI), colon mucosa damage index (CMDI), histopathological score (HS), levels of interleukin-8 (IL-8), IL-10, IL-17, tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) in serum, contents of IL-2, myeloperoxidase (MPO), transforming growth factor-β1 (TGF-β1), and epidermal growth factor (EGF) in the colon, and abundance of Bifidobacterium, Lactobacillus, Enterococcus, Bacteroides, and Escherichia coli were assessed. Ento-PB administration showed a significant reduction in DAI, CMDI, and HS, contents of IL-2, IL-8, IL-17, TNF-α, CRP, and MPO, and a significant increase in the levels of IL-10, TGF-β1, and EGF. Compared with the TNBS-administered group, the abundance of Bifidobacterium, Lactobacillus, Enterococcus, and E. coli decreased, while an obvious increase in the proportion of Bacteroides was found in the Ento-PB-administered groups. Ento-PB alleviated inflammation in UC by regulating the equilibrium of Th1/Th17/Treg cytokines and recovering the imbalance between the gut microbiota. Applying Ento-PB in treating UC could be suggested.
Collapse
Affiliation(s)
- Yi-Hao Che
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng-Yong Yu
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
- Yunnan Provincial Engineering Research Center for Comprehensive Development and Utilization of Special Spice Plants R&D,Wenshan University, Wenshan, Yunnan, China
| | - Fu-Neng Geng
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
- Good Doctor Pharmaceutical Group Co. Ltd, Chengdu, Sichuan, China
| | - Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Zhi-Bin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yuan-Yuan Zheng
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
- Neuro Psychiatric Hospital of Jilin Province, Siping, Jilin, China
| | - Cheng-Gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Xiu-Mei Wu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
- National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy,Dali University, Dali, Yunnan, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, College of Pharmacy, Dali University, Dali, Yunnan, China
| |
Collapse
|
41
|
Yiyi Fuzi Baijiang Decoction Alleviates Ulcerative Colitis Partly by Regulating TLR4-Mediated PI3K/Akt and NF- κB Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8780514. [PMID: 35211182 PMCID: PMC8863463 DOI: 10.1155/2022/8780514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/12/2022] [Indexed: 12/28/2022]
Abstract
Yiyi Fuzi Baijiang Decoction (YFBD), an ancient prescription developed by the ancient Chinese physician, Zhang Zhongjing, has shown remarkable effects in treating ulcerative colitis (UC). However, there are few studies on its mechanism. This study was designed to explore the potential mechanism of YFBD in treating UC. The principal ingredients of YFBD were analyzed using high-performance liquid chromatography (HPLC). Dextran sulfate sodium- (DSS-) induced mice and lipopolysaccharide- (LPS-) stimulated RAW264.7 cells were used in the study. The body weight and disease activity index (DAI) of mice were recorded and analyzed for 10 days. After sacrifice, the colonic tissues were harvested. The colon length was measured, and the histopathological changes were observed by hematoxylin and eosin staining. The levels of inflammatory cytokines in mice colons and RAW246.7 cells were determined by real-time quantitative PCR and immunofluorescence. The effects of YFBD on the TLR4-mediated PI3K/Akt and NF-κB pathways were determined by western blot analysis. HPLC identified five compounds in YFBD: chlorogenic acid, caffeic acid, benzoylmesaconine, benzoyl aconitine, and quercetin. YFBD alleviated weight loss, colon shortening, and colonic histopathological lesion in mice. Meanwhile, it decreased the DAI and histological score of mice with UC. In addition, YFBD remarkably decreased the levels of interleukin- (IL-) 6, IL-1β, and tumor necrosis factor (TNF)-α in the colons of DSS-induced mice and LPS-stimulated RAW246.7 cells. Furthermore, the expression of key proteins in TLR4-mediated PI3K/Akt and NF-κB pathways significantly decreased with YFBD treatment. In conclusion, YFBD had protective effects on mice with UC, which was in part related to its anti-inflammatory effects and downregulation of TLR4-mediated PI3K/Akt and NF-κB pathways.
Collapse
|
42
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
43
|
Tamburini B, La Manna MP, La Barbera L, Mohammadnezhad L, Badami GD, Shekarkar Azgomi M, Dieli F, Caccamo N. Immunity and Nutrition: The Right Balance in Inflammatory Bowel Disease. Cells 2022; 11:cells11030455. [PMID: 35159265 PMCID: PMC8834599 DOI: 10.3390/cells11030455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an increasingly urgent medical problem that strongly impairs quality of life for patients. A global rise in incidence has been observed over the last few decades, with the highest incidence rates recorded in North America and Europe. Still, an increased incidence has been reported in the last ten years in newly industrialized countries in Asia, including China and India, both with more than one billion inhabitants. These data underline that IBD is an urgent global health problem. In addition, it is estimated that between 20% and 30% of IBD patients will develop colorectal cancer (CRC) within their lifetime and CRC mortality is approximately 50% amongst IBD patients. Although the exact etiology of IBD is still being defined, it is thought to be due to a complex interaction between many factors, including defects in the innate and adaptive immune system; microbial dysbiosis, i.e., abnormal levels of, or abnormal response to, the gastrointestinal microbiome; a genetic predisposition; and several environmental factors. At present, however, it is not fully understood which of these factors are the initiators of inflammation and which are compounders. The purpose of this review is to analyze the complex balance that exists between these elements to maintain intestinal homeostasis and prevent IBD or limit adverse effects on people’s health.
Collapse
Affiliation(s)
- Bartolo Tamburini
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
- Correspondence:
| | - Lidia La Barbera
- Rheumatology Section, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Piazza delle Cliniche, 2, 90110 Palermo, Italy;
| | - Leila Mohammadnezhad
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, 90127 Palermo, Italy; (B.T.); (L.M.); (G.D.B.); (M.S.A.); (F.D.); (N.C.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
44
|
Liang M, Liwen Z, Jianguo S, Juan D, Fei D, Yin Z, Changping W, Jianping C. Fecal Microbiota Transplantation Controls Progression of Experimental Autoimmune Hepatitis in Mice by Modulating the TFR/TFH Immune Imbalance and Intestinal Microbiota Composition. Front Immunol 2021; 12:728723. [PMID: 34912328 PMCID: PMC8667314 DOI: 10.3389/fimmu.2021.728723] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal microbiota (IM) dysbiosis contributes to the development of autoimmune hepatitis (AIH). This study aimed to investigate the potential effect of fecal microbiota transplantation (FMT) in a murine model of experimental AIH (EAH), a condition more similar to that of AIH patients. Changes in the enteric microbiome were determined in AIH patients and EAH mice. Moreover, we established an experimental model of secondary EAH mice harboring dysbiosis (ABx) to analyze the effects of therapeutic FMT administration on follicular regulatory T (TFR) and helper T (TFH) cell imbalances and IM composition in vivo. Alterations of the IM composition and bacterial translocation occurred in AIH patients compared to nonalcoholic fatty liver disease patients and healthy controls (HCs). Therapeutic FMT significantly attenuated liver injury and bacterial translocation and improved the imbalance between splenic TFR cells and TFH cells in ABx EAH mice. Furthermore, therapeutic FMT also partially reversed the increasing trend in serum liver enzymes (ALT and AST) of CXCR5-/-EAH mice on the 28th day. Finally, therapeutic FMT could effectively restore antibiotic-induced IM dysbiosis in EAH mice. Taken together, our findings demonstrated that FMT was capable of controlling hepatitis progression in EAH mice, and the associated mechanism might be involved in the regulation of the TFR/TFH immune imbalance and the restoration of IM composition.
Collapse
Affiliation(s)
- Ma Liang
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China.,Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Zhang Liwen
- Department of Pediatrics, the Second People's Hospital of Changzhou, Affiliate Hospital of Nanjing Medical University, Changzhou, China
| | - Song Jianguo
- Department of Gastroenterology, The People's Hospital of Wuqia, Xinjiang, China
| | - Dai Juan
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ding Fei
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhang Yin
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wu Changping
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Chen Jianping
- Department of Gastroenterology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
45
|
Isolation of Lactococcus lactis from Whole Crop Rice and Determining Its Probiotic and Antimicrobial Properties towards Gastrointestinal Associated Bacteria. Microorganisms 2021; 9:microorganisms9122513. [PMID: 34946115 PMCID: PMC8703902 DOI: 10.3390/microorganisms9122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Antimicrobial resistance is an emerging condition that increases the risk of spreading and prolonging infectious diseases globally. Therefore, a new alternative strategy for antibiotics is required urgently to control pathogens spreading. Probiotics are considered as an alternative for antibiotics that inhibit pathogens. In the present study, potent lactic acid bacteria (LAB) were isolated and screened for their probiotic characteristics and antagonistic activity against intestinal pathogens by agar well diffusion, Time and Dose-dependent killing assay, minimum inhibitor, and minimum bactericidal concentration (MIC/MBC), and co-culture methods. The Lactococcus lactis RWP-3 and RWP-7 fermented the different carbohydrate substrates and produced different extracellular enzymes. Both isolates showed significant tolerant capability in the gastric, duodenal, and intestinal juices. In addition, RWP-3 and RWP-7 had hydrophobicity and aggregation properties in a time-dependent manner. Furthermore, the cell-free secondary metabolites (CFS) of RWP-3 and RWP-7 showed strong antibacterial activity against Escherichia coli,Staphylococcus aureus, Pseudomonas aeruginosa and Enterococcus faecalis. A co-culture study revealed that the RWP-3 and RWP-7 strongly compete with pathogen growths. RWP-3 and RWP-7 showed strong antagonistic activities against tested pathogens with significant probiotic characteristics, suggesting that these strains obtained could be used as an alternative strategy for the antibiotic to control infectious pathogens.
Collapse
|
46
|
Javanshir N, Hosseini GNG, Sadeghi M, Esmaeili R, Satarikia F, Ahmadian G, Allahyari N. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol Proced Online 2021; 23:23. [PMID: 34847891 PMCID: PMC8903605 DOI: 10.1186/s12575-021-00160-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
Due to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Finding the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, production of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were discussed. In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-dependent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of diseases. However, further study of these mechanisms requires extensive research on various aspects.
Collapse
Affiliation(s)
- Nahid Javanshir
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran
| | | | - Mahdieh Sadeghi
- Department of Science, Islamic Azad University - Parand Branch, Parand, Iran
| | | | - Fateme Satarikia
- Department of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| | - Najaf Allahyari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology. (NIGEB), P.O. Box: 14155-6343, Tehran, Iran.
| |
Collapse
|
47
|
Wan F, Han H, Zhong R, Wang M, Tang S, Zhang S, Hou F, Yi B, Zhang H. Dihydroquercetin supplement alleviates colonic inflammation potentially through improved gut microbiota community in mice. Food Funct 2021; 12:11420-11434. [PMID: 34673859 DOI: 10.1039/d1fo01422f] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The purpose of the current study was to investigate the effect of dietary dihydroquercetin (DHQ) supplementation on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were given DHQ supplementation (3 g kg-1) throughout the study, starting 14 days prior to DSS treatment for 1 week followed by 2 days without DSS. The results showed that dietary DHQ supplementation restored DSS-induced disease activity index (DAI), colon length and histopathology scores of the colon tissue. Additionally, supplementation with DHQ reduced the pro-inflammatory cytokine levels, and enhanced the level of IL-10 in the serum. qPCR results indicated that DHQ supplementation significantly downregulated IL-1β, IL-6, and TNF-α, and upregulated IL-10 gene mRNA expression. Western blot results proved that DHQ supplementation upregulated ZO-1 and occludin levels. Using amplicon sequencing technology, 16S rRNA sequencing results showed that DHQ supplementation increased the fecal Firmicutes/Bacteroidetes ratio and the relative abundance of Lactobacillus and Dubosiella, and decreased the relative abundance of Bacteroidetes. Additionally, DHQ supplementation restored the decreased fecal acetic acid and butyric acid concentrations in DSS-induced colitis mice. Besides, Spearman's correlation analysis showed that Dubosiella was positively correlated with the butyric acid level and Bacteroidetes was positively correlated with the mRNA expression of IL-1β and IL-6. Both Lactobacillus and Dubosiella showed a negative correlation with the mRNA expression of IL-1β, IL-6, and TNF-α, and Dubosiella was positively correlated with IL-10. In summary, it was found that DHQ supplementation alleviated DSS-induced colitis which may be potentially associated with altered fecal microbiota communities in mice.
Collapse
Affiliation(s)
- Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. .,State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China. .,State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
48
|
Armillaria luteo-virens Sacc Ameliorates Dextran Sulfate Sodium Induced Colitis through Modulation of Gut Microbiota and Microbiota-Related Bile Acids. Nutrients 2021; 13:nu13113926. [PMID: 34836184 PMCID: PMC8623807 DOI: 10.3390/nu13113926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/08/2023] Open
Abstract
Armillaria luteo-virens Sacc (ALS) is a rare wild Chinese medicinal and edible basidiomycete. However, its protective effect on intestinal functions and the underlying mechanism is still unknown. This work explored the improvement of dextran sulfate sodium (DSS)-induced colitis by ALS. ALS supplementation markedly improved colitis symptoms, gut barrier integrity, and goblet loss in DSS-treated mice. In addition, ALS inhibited colonic inflammation through the inhibition/activation of the mitogen-activated protein kinases/NF-κB signaling pathway. The 16S rRNA gene-based microbiota analysis revealed that ALS altered the gut microbiota composition, decreasing the richness of Enterobacteriaceae and increasing the abundance of Lactobacillaceae. The bile-acid-targeted metabolomic analysis showed that ALS recovered the microbial bile acid metabolism in the gut, enabling the activation of the farnesoid X receptor signaling by these acids, thus maintaining the intestinal homeostasis. Importantly, broad-spectrum antibiotic treatment reduced the efficacy of ALS-induced protection from colitis. Overall, our findings suggest that ALS may represent a novel approach in the nutritional intervention to prevent colitis.
Collapse
|
49
|
Si X, Liu N, Jia H, Wang J, Pan L, Dong L, Rong Z, Yang Y, Wu Z. Gut relief formula attenuates dextran sulfate sodium-induced colitis by regulating NF-κB signaling and the intestinal microbiota in mice. Food Funct 2021; 12:10983-10993. [PMID: 34652352 DOI: 10.1039/d1fo01477c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background. Inflammatory bowel disease (IBD) is a chronic relapsing disorder of the gastrointestinal tract. The nutrition care gut relief formula (GR), a combination of natural products and nutrients, has been shown to benefit gastrointestinal health. However, the underlying mechanism responsible for this effect is incompletely defined. Objective. This study was conducted to evaluate the hypothesis that GR could attenuate dextran sulfate sodium (DSS)-induced colitis by enhancing intestinal mucosal immunity and regulating intestinal microflora in mice. Methods. Six-week-old C57BL/6J mice orally administered with GR (7.5 mg per mouse per day) or an equal volume of vehicle were treated with sterile water or 2.5% DSS for 6 days to induce colitis. Histological damage, inflammatory cell infiltration, and colonic microbiome community were analyzed to evaluate the beneficial effect of GR. Results. GR administration ameliorated the severity of colitis as evidenced by reduced body weight loss, decreased colon shortening, reduced myeloperoxidase (MPO) activity, inhibited proinflammatory cytokine secretion, and decreased histological damage in DSS-challenged mice. Additionally, enhancement of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in response to DSS was attenuated by GR administration. Meanwhile, DSS treatment resulted in reduction of the glutathione (GSH) level and tight junction protein abundance, as compared with the controls. Of note, these adverse effects were remarkably eliminated by GR administration. Further study showed that the protective effect of GR was associated with the inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice. Conclusion. Collectively, the data provided herein demonstrated that GR administration alleviated intestinal mucosal inflammation and mucosal barrier dysfunction. These beneficial effects were associated with inhibited activation of STAT3 and NF-κB signaling pathways, as well as upregulated abundances of Lactobacillus in the colon tissues of mice.
Collapse
Affiliation(s)
- Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Jiaqi Wang
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Lina Pan
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ling Dong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Zhixing Rong
- Ausnutria Institute of Food and Nutrition, Ausnutria Dairy (China) Co. Ltd, Changsha 410200, Hunan, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
50
|
Cao R, Wu X, Guo H, Pan X, Huang R, Wang G, Liu J. Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules 2021; 26:6604. [PMID: 34771012 PMCID: PMC8588024 DOI: 10.3390/molecules26216604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Naringin is a kind of multi-source food additive which has been explored broadly for its various biological activities and therapeutic potential. In the present study, the protective effect and mechanism of naringin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated. The results showed that naringin significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), colon length shortening, and colon pathological damage. The tissue and serum secretion of inflammatory cytokines, as well as the oxidative stress, were decreased accordingly upon naringin intervention. Naringin also decreased the proteins involved in inflammation and increased the expression of tight junction (TJ) proteins. Moreover, naringin increased the relative abundance of Firmicutes/Bacteroides and reduced the content of Proteobacteria to improve the intestinal flora disorder caused by DSS, which promotes the intestinal health of mice. It was concluded that naringin can significantly ameliorate the pathogenic symptoms of UC through inhibiting inflammatory response and regulating intestinal microbiota, which might be a promising natural therapeutic agent for the dietary treatment of UC and the improvement of intestinal symbiosis.
Collapse
Affiliation(s)
- Ruige Cao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xing Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Hui Guo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Gangqiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| |
Collapse
|