1
|
Kwak ML, Ng A, Nakao R. Nation-wide surveillance of ticks (Acari: Ixodidae) on dogs and cats in Singapore. Acta Trop 2025; 263:107536. [PMID: 39864721 DOI: 10.1016/j.actatropica.2025.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Companion animals are major reservoirs of zoonotic parasites and pathogens. Among these, ticks and tick-borne pathogens are of particular concern. Efforts to study the zoonotic risks associated with companion animals in Singapore have been hampered by a poor understanding of the ticks of local dogs and cats. To address this knowledge gap, ticks from companion animals were collected as part of Singapore's first nation-wide tick surveillance program beginning in 2018. Under the program, a total of 362 ticks were collected from dogs and one cat. These represented three tick genera and five species: Haemaphysalis bispinosa, Haemaphysalis hystricis, Haemaphysalis papuana, Rhipicephalus linnaei, and Dermacentor auratus. The most dominant species within companion animal-tick communities in Singapore were H. bispinosa and R. linnaei. The species diversity and health risks associated with companion animal ticks in Singapore are discussed.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; IUCN parasite specialist group, Gland, Switzerland.
| | - Abigail Ng
- IUCN parasite specialist group, Gland, Switzerland
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
2
|
Kwak ML, Chavatte JM, Hsu CD, Ng A, Lee BPYH, Nazir NB, Abas NFM, Lee EQH, Nakao R, Malleret B. Nation-wide surveillance of tick (Acari: Ixodidae) infestations of humans in Singapore. Ticks Tick Borne Dis 2025; 16:102441. [PMID: 39826236 DOI: 10.1016/j.ttbdis.2025.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/12/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Ticks are an increasingly important threat to public health in Southeast Asia, due to the role of many tick species as parasites of humans and as vectors of zoonotic pathogens. Singapore is a densely populated Southeast Asian nation with a rich tick fauna and a significant mosaic of city and greenspace. However, apart from occasional case reports, the human-biting ticks in Singapore have received little attention from researchers. Based on an ongoing nationwide tick surveillance program beginning in 2018 and literature records (since 2002), we present data from 51 cases of tick infestation in humans in Singapore involving 128 individual ticks of 11 species. The genera Dermacentor, Haemaphysalis, Ixodes, and Amblyomma were all found to bite humans in Singapore. The most common species infesting humans in Singapore was Dermacentor auratus which was responsible for more than half of all infestations. The first records of Haemaphysalis papuana in Singapore are also presented, with 3 cases of human infestation by this tick species. Finally, we highlight the Singapore National Tick Reference Collection (SNTRC) as an invaluable resource for the identification and study of ticks in Singapore.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; IUCN parasite specialist group, Gland, Switzerland.
| | - Jean-Marc Chavatte
- National Public Health Laboratory, National Centre for Infectious Diseases, Ministry of Health Singapore
| | - Chia-Da Hsu
- Department of Veterinary Healthcare, Mandai Wildlife Group, Singapore
| | - Abigail Ng
- IUCN parasite specialist group, Gland, Switzerland
| | - Benjamin P Y-H Lee
- Wildlife & Natural Heritage Division, The Royal Commission of AlUla, Saudi Arabia
| | - Nazmi Bin Nazir
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nadia Faradilla Maharani Abas
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Erica Qian Hui Lee
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Benoit Malleret
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
3
|
Kwak ML, Lee L, Tan DJX, Rheindt FE, Nakao R. Nation-wide surveillance of ticks (Acari: Ixodidae) on birds in Singapore. Acta Trop 2024; 260:107411. [PMID: 39341439 DOI: 10.1016/j.actatropica.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Surveillance programs focused on bird ticks are often challenging owing to the difficulty in capturing and screening birds as well as the fact that ticks on avian hosts frequently occur at a low prevalence. Nonetheless, elucidating the diversity and host preferences of avian ticks is critical for understanding public health risks posed by both migratory and resident birds. The first nation-wide surveillance program of avian ticks was initiated to examine bird-tick interactions in Singapore, a key juncture along the East Asian-Australasian flyway. Two tick species were detected, namely Haemaphysalis wellingtoni and Rhipicephalus linnaei, while five bird species were found to host ticks in Singapore, namely Columba livia, Gallus gallus, Ixobrychus flavicollis, Lanius cristatus, and Pitta moluccensis. The threats posed to public health by the human-biting tick H. wellingtoni are discussed along with the potential for migratory birds and ticks to transport tick-borne pathogens into, and through, Singapore.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan.
| | - Leshon Lee
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, 117377, Singapore
| | - David J X Tan
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Frank E Rheindt
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan; Division of Parasitology, Veterinary Research Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
4
|
Koh EY, Tan AKS, Yeo D, Lau C, Tan LY, Ng OW, Ong J, Chong S, Toh S, Chen J, Wong WK, Tan BZY, He-Lee C, Heng ZP, Liang I, Fernandez CJ, Chang SF, Er KBH. Detection of African Swine Fever Virus from Wild Boar, Singapore, 2023. Emerg Infect Dis 2023; 29:2580-2583. [PMID: 37708842 PMCID: PMC10683832 DOI: 10.3201/eid2912.230966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
We detected African swine fever virus (ASFV) from a wild boar in Singapore. In <72 hours, we confirmed and reported ASFV p72 genotype II, CD2v serogroup 8, and IGR-II variant by using a combination of real-time PCR and whole-genome sequencing. Continued biosurveillance will be needed to monitor ASFV in Singapore.
Collapse
|
5
|
Mazuecos L, Contreras M, Kasaija PD, Manandhar P, Grąźlewska W, Guisantes-Batan E, Gomez-Alonso S, Deulofeu K, Fernandez-Moratalla I, Rajbhandari RM, Sojka D, Grubhoffer L, Karmacharya D, Gortazar C, de la Fuente J. Natural Clerodendrum-derived tick repellent: learning from Nepali culture. EXPERIMENTAL & APPLIED ACAROLOGY 2023:10.1007/s10493-023-00804-4. [PMID: 37285111 PMCID: PMC10293375 DOI: 10.1007/s10493-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
Ticks attaching to ear canals of humans and animals are the cause of otoacariasis, common in rural areas of Nepal. The plant Clerodendrum viscosum is used in multiple indigenous systems of medicine by ethnic communities in the Indo-Nepali-Malaysian region. Visiting the Chitwan National Park, we learned that in indigenous medicine, flower extract of C. viscosum is utilized to treat digestive disorders and extracts from leaves as tick repellent to prevent ticks from invading or to remove them from the ear canal. The objective of our study was to provide support to indigenous medicine by characterizing the in vivo effect of leave extracts on ticks under laboratory conditions and its phytochemical composition. We collected plant parts of C. viscosum (leaves and flowers) and mango (Mangifera indica) leaves at the Chitwan National Park, previously associated with repellent activity to characterize their effect on Ixodes ricinus ticks by in vivo bioassays. A Q-ToF high-resolution analysis (HPLC-ESI-QToF) was conducted to elucidate phenolic compounds with potential repellent activity. Clerodendrum viscosum and M. indica leaf extracts had the highest tick repellent efficacy (%E = 80-100%) with significant differences when compared to C. viscosum flowers extracts (%E = 20-60%) and phosphate-buffered saline. Phytochemicals with tick repellent function as caffeic acid, fumaric acid and p-coumaric acid glucoside were identified in C. viscosum leaf extracts by HPLC-ESI-QToF, but not in non-repellent flower extracts. These results support the Nepali indigenous medicine application of C. viscosum leaf extracts to repel ticks. Additional research is needed for the development of natural and green repellent formulations to reduce the risks associated with ticks resistant to acaricides.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain.
| | - Marinela Contreras
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - Paul D Kasaija
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- National Livestock Resources Research Institute (NaLIRRI/NARO), Wakiso District, P.O. Box 5704, Wakiso, Uganda
| | - Prajwol Manandhar
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Weronika Grąźlewska
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Eduardo Guisantes-Batan
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | - Sergio Gomez-Alonso
- Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, Ciudad Real, 13005, Spain
| | | | | | | | - Daniel Sojka
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Academy of Sciences of the Czech Republic, Branišovská 1160/31, České Budějovice, 37005, Czech Republic
| | - Dibesh Karmacharya
- Center for Molecular Dynamics Nepal (CMDN), Thapathali Road 11, Kathmandu, 44600, Nepal
| | - Christian Gortazar
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
| | - José de la Fuente
- Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, Ciudad Real, 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
6
|
Figueroa A, Low MEY, Lim KKP. Singapore's herpetofauna: updated and annotated checklist, history, conservation, and distribution. Zootaxa 2023; 5287:1-378. [PMID: 37518684 DOI: 10.11646/zootaxa.5287.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 08/01/2023]
Abstract
Given Singapore's location at the confluence of important maritime trading routes, and that it was established as a British East India Company trading post in 1819, it is unsurprising that Singapore has become one of the centres of natural history collecting and research in Southeast Asia. Despite its small size, Singapore is home to a diverse herpetofauna assemblage and boasts a rich herpetological history. The first systematic studies of Singapore's herpetofauna (within the Linnaean binomial framework) date back to Stamford Raffles and the naturalists hired by him who first came to the island in 1819. Specimens that were collected during and after this time were deposited in museums worldwide. Over time, 39 species from Singapore were described as new to science. Due to the entrepôt nature of Singapore with its associated purchasing and trading of specimens (both alive and dead), poor record-keeping, and human introductions, numerous extraneous species from outside of Singapore were reported to occur on the island. Such issues have left a complicated legacy of ambiguous records and taxonomic complications concerning the identity of Singapore's species-rich herpetofauna, many of which were only resolved in the past 30-40 years. By compiling a comprehensive collection of records and publications relating to the herpetofauna of Singapore, we construct an updated and more accurate listing of the herpetofauna of Singapore. Our investigation culminated in the evaluation of 309 species, in which we compiled a final species checklist recognising 166 species (149 native and 17 non-native established species). Among the 149 native species are two caecilians, 24 frogs, one crocodilian, 13 turtles (three visitors), 34 lizards, and 75 snakes. Of the 17 non-native species are five frogs, four turtles, six lizards, and two snakes. The remaining 143 species represent species to be excluded from Singapore's herpetofauna species checklist. For each of the 309 species examined, we provide species accounts and explanatory annotations. Furthermore, we discuss Singapore's herpetofauna from a historical and conservation perspective. Immediate deforestation and nationwide urbanisation following colonisation completely eliminated many species from throughout much of the country and restricted them to small, degraded forest patches. We hope this publication highlights the importance of publishing observations and serves as a valuable resource to future researchers, naturalists, biological consultants, and policy makers in initiating studies on species ecology, distribution, status, and promoting conservation efforts to safeguard Singapore's herpetofauna.
Collapse
Affiliation(s)
| | - Martyn E Y Low
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| | - Kelvin K P Lim
- Lee Kong Chian Natural History Museum; 2 Conservatory Drive; Singapore 117377.
| |
Collapse
|
7
|
Fong PY, Yong JSE, Koh LH. An unusual case of ear pain in a child. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2022; 51:454-455. [PMID: 35906948 DOI: 10.47102/annals-acadmedsg.2022117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Pei Yuan Fong
- Department of Otolaryngology, KK Women's and Children's Hospital,Singapore
| | | | | |
Collapse
|
8
|
Krčmar S, Klobučar A, Vucelja M, Boljfetić M, Kučinić M, Madić J, Cvek M, Mađarić BB. DNA barcoding of hard ticks (Ixodidae), notes on distribution of vector species and new faunal record for Croatia. Ticks Tick Borne Dis 2022; 13:101920. [DOI: 10.1016/j.ttbdis.2022.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
|
9
|
Farid DS, Sallam NH, Eldein AMS, Soliman ES. Cross-sectional seasonal prevalence and relative risk of ectoparasitic infestations of rodents in North Sinai, Egypt. Vet World 2021; 14:2996-3006. [PMID: 35017849 PMCID: PMC8743766 DOI: 10.14202/vetworld.2021.2996-3006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
Background and Aim: Rodents are ubiquitous animals that host ectoparasites and transmit zoonotic diseases. We conducted a cross-sectional study on the seasonal variation, period prevalence (Pp), and relative risk of ectoparasitic infestations in rodents collected in North Sinai, Egypt, from September 2019 to August 2020. Materials and Methods: We captured 380 rodents during the study period. Rodents were euthanized to perform species identification, and 2930 external parasites were collected and identified using light microscopic examination with systemic keys depending on morphological characters. Results: Rattus norvegicus (brown rat), Rattus rattus frugivorus (white-bellied rat), Rattus rattus alexandrines (gray-bellied rat), and Mus musculusdomesticus (house mouse) were captured at the highest frequencies during summer (n=186), followed by spring (n=84), fall (n=71), and winter (n=39), with a higher proportion of males captured in all seasons. Analysis of the infestation Pp revealed highly significant increases (p<0.01) in ectoparasites during the winter. Temperature, humidity, and dew point were significantly (p<0.01) correlated with the numbers of captured and infested rodents. Parasitological examinations showed the higher risks of flea (Echidnophaga gallinacea, Xenopsylla cheopis, and Leptopsylla segnis) and lice (Hoplopleura hirsuta, Hoplopleura ocanthopus, Hoplopleura oenomydis, and Polyplax spinulosa) infestations during winter and mite (Laelaps nuttalli, Dermanyssus gallinae, Ornithonyssus bacoti, and Myobia musculi) infestations during summer. Conclusion: We conclude that ectoparasitic infestation prevalence and risk varies with predominating macroclimatic conditions. Strict preventive and biosecurity measures should be applied to combat rodent-related problems.
Collapse
Affiliation(s)
- Doaa S. Farid
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish 45516, Egypt
| | - Nahla H. Sallam
- Department of Parasitology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmed M. Salah Eldein
- Department of Wildlife and Zoo, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam S. Soliman
- Animal, Poultry, and Environmental Hygiene Division, Department of Animal Hygiene, Zoonosis, and Animal Behavior, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
10
|
Chitimia-Dobler L, Schaper S, Bröker M, Nava S. Long-Term Itching in a Tourist Following Bite by a Nymph of Dermacentor auratus (Acari: Ixodidae) in Cambodia. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:2495-2498. [PMID: 34027980 DOI: 10.1093/jme/tjab088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/14/2023]
Abstract
The impact of tick bites during holidays in tropical countries is seldom reported. Here, we describe long-term skin alterations and itching experienced by a German tourist following the bite of a nymph of Dermacentor auratus Supino, 1897 in Cambodia. Tick infestation may be neglected by travelers. Therefore, careful travel history is necessary when travelers report a tick bite after spending holiday in tropical and subtropical countries.
Collapse
Affiliation(s)
| | - Sabine Schaper
- Bundeswehr Institute of Microbiology, Neuherbergstrasse, Munich,Germany
| | | | - Santiago Nava
- IDICAL (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, E.E.A. Rafaela, Rafaela, Santa Fe, Argentina
| |
Collapse
|
11
|
Yen TY, Wang HC, Chang YC, Su CL, Chang SF, Shu PY, Tsai KH. Seroepidemiological Study of Spotted Fever Group Rickettsiae and Identification of a Putative New Species, Rickesttsia sp. Da-1, in Gongliao, Northeast Taiwan. Pathogens 2021; 10:pathogens10111434. [PMID: 34832589 PMCID: PMC8617620 DOI: 10.3390/pathogens10111434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Tick-borne spotted fever group (SFG) rickettsioses were neglected in Taiwan. The study reported a seroepidemiological survey of SFG rickettsiae in residents in Gongliao District, Northeast Taiwan. Blood samples were examined for antibodies against SFG rickettsiae by enzyme-linked immunosorbent assay and immunofluorescence assay. Risk factors were assessed using logistic regression. Ticks parasitizing dogs were collected within a 2 km radius from the houses of seropositive participants, and PCR was performed to detect possible tick-borne pathogens. Of 1108 participants, 75 (6.8%) had antibodies against SFG rickettsiae. Residents were more likely to be seropositive if they were older than 65 years, recruited by Dr. Enjoy’s Clinic, or resided in Jilin village. A total of 184 ticks including 5 species (Rhipicephalus sanguineus, Rhipicephalus haemaphysaloides, Dermacentor auratus, Haemaphysalis hystricis, Haemaphysalis ornithophila) were collected. Rickettsia spp. were detected in 6.5% (12/184) of ticks. Rickettsia sp. TwKM01 was found in 6 R. sanguineus and 4 R. haemaphysaloides; while Rickettsia sp. TwKM03 was identified in 1 R. sanguineus. Moreover, gene-based pairwise analysis indicated identification of a putative new species, Rickettsia sp. Da-1, in D. auratus. These findings provided evidence of SFG rickettsiae infection in ticks and suggested SFG rickettsiae exposure in the residents.
Collapse
Affiliation(s)
- Tsai-Ying Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (T.-Y.Y.); (H.-C.W.)
| | - Hsi-Chieh Wang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (T.-Y.Y.); (H.-C.W.)
| | - Yin-Chao Chang
- Dr. Enjoy’s Clinic, Gong-Liao District, New Taipei City 228003, Taiwan;
| | - Chien-Ling Su
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (C.-L.S.); (S.-F.C.)
| | - Shu-Fen Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (C.-L.S.); (S.-F.C.)
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei 115210, Taiwan; (C.-L.S.); (S.-F.C.)
- Correspondence: (P.-Y.S.); (K.-H.T.); Tel.: +886-2-26531372 (P.-Y.S.); +886-2-33668103 (K.-H.T.)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100025, Taiwan; (T.-Y.Y.); (H.-C.W.)
- Department of Public Health, College of Public Health, National Taiwan University, Taipei 100025, Taiwan
- Correspondence: (P.-Y.S.); (K.-H.T.); Tel.: +886-2-26531372 (P.-Y.S.); +886-2-33668103 (K.-H.T.)
| |
Collapse
|
12
|
Ernieenor FCL, Apanaskevich DA, Ernna G, Ellyncia BB, Md Zain BM, Mariana A, Yaakop S. Morphological and molecular identification of medically important questing Dermacentor species collected from some recreational areas of Peninsular Malaysia. Syst Parasitol 2021; 98:731-751. [PMID: 34677736 DOI: 10.1007/s11230-021-10008-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
Abstract
Questing is a situation when a tick is seeking to get closer or ambush its potential host. However, information on questing tick species in Malaysia is still lacking, thus the association with tick-borne diseases (TBD) is not completely understood. The aim of this study was to investigate the tick species from five most frequently visited recreational areas in Pahang and Terengganu states, which were recorded to have high potential of TBD cases. By implementing handpick method, a total of 18 males and 15 females belonging to five Dermacentor Koch, 1844 species, were collected, namely D. compactus Neumann 1901, D. tricuspis (Schulze, 1933), D. auratus Supino 1897, D. steini (Schulze, 1933), and D. falsosteini Apanaskevich, Apanaskevich & Nooma respectively. The specimens were collected and identified based on morphological characters prior to obtaining the molecular data of COI and 16S rDNA. The D. compactus was the most abundant species collected in this study, while D. falsosteini was the least. All species were distinctly separated on the Neighbor Joining and Maximum Parsimony tree topologies and supported with high bootstrap values. Furthermore, a low intraspecific variation (0.00 - 0.01) was observed amongst the individuals of the same species in both genes. Meanwhile, each Dermacentor species was genetically different, with interspecific values ranging from 0.13-0.19 and 0.11-0.20 for COI and 16S rDNA. These findings had successfully recorded the tick species that were potentially associated with TBD, and which might be circulated among humans and animals. This study also has some implications on the diversity and geographical extension of Dermacentor ticks, thus should warrant further investigation as a potential vector of tick-borne diseases and public health importance.
Collapse
Affiliation(s)
- Faraliana Che Lah Ernieenor
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Dmitry A Apanaskevich
- United States National Tick Collection, The James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, 30460-8042, USA
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia, 199034
| | - George Ernna
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Bd Bilin Ellyncia
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Badrul Munir Md Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ahamad Mariana
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Salmah Yaakop
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
13
|
Mendoza-Roldan JA, Mendoza-Roldan MA, Otranto D. Reptile vector-borne diseases of zoonotic concern. Int J Parasitol Parasites Wildl 2021; 15:132-142. [PMID: 34026483 PMCID: PMC8121771 DOI: 10.1016/j.ijppaw.2021.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Reptile vector-borne diseases (RVBDs) of zoonotic concern are caused by bacteria, protozoa and viruses transmitted by arthropod vectors, which belong to the subclass Acarina (mites and ticks) and the order Diptera (mosquitoes, sand flies and tsetse flies). The phyletic age of reptiles since their origin in the late Carboniferous, has favored vectors and pathogens to co-evolve through millions of years, bridging to the present host-vector-pathogen interactions. The origin of vector-borne diseases is dated to the early cretaceous with Trypanosomatidae species in extinct sand flies, ancestral of modern protozoan hemoparasites of zoonotic concern (e.g., Leishmania and Trypanosoma) associated to reptiles. Bacterial RVBDs are represented by microorganisms also affecting mammals of the genera Aeromonas, Anaplasma, Borrelia, Coxiella, Ehrlichia and Rickettsia, most of them having reptilian clades. Finally, reptiles may play an important role as reservoirs of arborivuses, given the low host specificity of anthropophilic mosquitoes and sand flies. In this review, vector-borne pathogens of zoonotic concern from reptiles are discussed, as well as the interactions between reptiles, arthropod vectors and the zoonotic pathogens they may transmit.
Collapse
Affiliation(s)
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
14
|
Chavatte JM, Octavia S. The complete mitochondrial genome of Dermacentor (Indocentor) auratus (Acari, Ixodidae). ACTA ACUST UNITED AC 2021; 28:6. [PMID: 33464203 PMCID: PMC7814750 DOI: 10.1051/parasite/2021002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022]
Abstract
Dermacentor (Indocentor) auratus Supino, 1897 is a prominent ixodid vector of numerous pathogens of public health and veterinary importance. Using long-range PCR of two overlapping regions sequenced on an Illumina MiSeq machine, the complete mitochondrial genome of D. auratus is reported here. The resulting contigs were able to be assembled into a complete and circularised genome which had the general organisation of the mitochondrial genomes of the Metastriates. It had a total length of 14,766 bp and contained 37 genes, including 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, as well as 2 non-coding control regions and 3 tick-boxes. The phylogenetic analysis on the whole mitogenome confirmed the position of D. auratus within the Dermacentor clade.
Collapse
Affiliation(s)
- Jean-Marc Chavatte
- National Public Health Laboratory, National Centre for Infectious Diseases, Block G, Level 13, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| | - Sophie Octavia
- National Public Health Laboratory, National Centre for Infectious Diseases, Block G, Level 13, 16 Jalan Tan Tock Seng, Singapore 308442, Singapore
| |
Collapse
|