1
|
Zhou B, Shetye G, Klein LL, Wolf NM, Lee H, McAlpine JB, Harris G, Chen SN, Suh JW, Cho SH, Franzblau SG, Abad-Zapatero C, Pauli GF. Structure-Based Analysis of Semisynthetic Anti-TB Rufomycin Analogues. JOURNAL OF NATURAL PRODUCTS 2025; 88:907-925. [PMID: 40126472 PMCID: PMC12038834 DOI: 10.1021/acs.jnatprod.4c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
This study employed structural information from cocrystals of rufomycin 4 (1a) and caseinolytic protein C1 (ClpC1)-NTD-wt to guide design and semisynthesis of rufomycin analogues, evaluate their antituberculosis (TB) biological profiles, and establish structure-activity relationships (SAR). Covering three regions of interest (ROIs, A-C) as modification sites, 14 of the 30 semisynthetic analogues (2-31) showed similar or improved MICs relative to the main natural precursors, rufomycins 4/6 (1a/b). Compounds 5 and 27 exhibited up to 10-fold enhanced potency against Mycobacterium tuberculosis (Mtb) in vitro, with MIC values of 1.9 and 1.4 nM, respectively. Evaluation of ClpC1-binding properties used existing ClpC1-NTD complexes with rufomycin 4 (PDB: 6cn8) and ecumicin (PDB: 6pbs) as references. The newly reported X-ray ClpC1-NTD cocrystal structure of 11 (syn. But4-Cl) revealed significant conformational effects involving the side chains of certain amino acids of the heptapeptide and confirmed the importance of ROIs A-C for medicinal chemistry efforts. Observed interactions of the N-terminal tail of ClpC1 with the rufomycin analogues vs ecumicin explains their different modes of inactivating the ClpC1/P1/P2 homeostatic machinery. Collectively, the observations inform further SAR optimization strategies for the rufomycin class of antibiotics and complement our understanding of their mode of action.
Collapse
Affiliation(s)
- Bin Zhou
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Gauri Shetye
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Larry L. Klein
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Nina M. Wolf
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Hyun Lee
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - James B. McAlpine
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guy Harris
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Shao-Nong Chen
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Joo Won Suh
- Myongji
Bioefficacy Research Center, Myongji University, Myongji-Ro 116, Yongin, Gyeonggi-Do 17058, Republic of Korea
- Microbiohealthcare
Co., Ltd., Myongji-Ro
116, Yongin, Gyeonggi-Do 17058, Republic
of Korea
| | - Sang-Hyun Cho
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Celerino Abad-Zapatero
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| | - Guido F. Pauli
- Institute
for Tuberculosis Research, Pharmacognosy Institute, Center for Biomolecular
Sciences, andDepartment of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Feilcke R, Eckenstaler R, Lang M, Richter A, Imming P. A Simple In Vitro Method to Determine Bactericidal Activity Against Mycobacterium abscessus Under Hypoxic Conditions. Antibiotics (Basel) 2025; 14:299. [PMID: 40149109 PMCID: PMC11939544 DOI: 10.3390/antibiotics14030299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Non-replicating persisters (NRPs) of Mycobacterium abscessus are a bacterial subpopulation that can survive in the host under unfavorable conditions, such as hypoxia or nutrient starvation. The eradication of these bacteria is difficult, which is one reason for the long treatment duration and treatment failure. The drug discovery process should therefore contain methods to screen activity against NRPs. Methods: A hypoxic environment is used to generate NRPs of M. abscessus that are termed low-oxygen persisters (LOPs). For this, an oxidation process is used to transition a replicating culture of M. abscessus distributed in microtiter plates within a sealable box into LOPs. Colony counting, automated object counting, bactericidal activity determination of known agents, and confocal laser scanning microscopy are used to study the obtained culture. Results: The obtained culture shows typical attributes of non-replicating cells, such as significantly reduced replication, the reversibility of the LOP state under aerobic conditions, delayed regrowth on solid medium, altered morphological patterns on a single-cell level, and phenotypical resistance against a variety of clinically relevant antimycobacterial compounds. The study reveals metronidazole and niclosamide as bactericidal against M. abscessus LOPs. These compounds can be used as LOP verification compounds within the described model. Conclusions: Our model is easily implemented and quickly identifies compounds that are inactive under hypoxic conditions. It can therefore accelerate the identification of clinically effective antimycobacterial drug substances, and can be a helpful tool during the drug development process.
Collapse
Affiliation(s)
| | | | | | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle, Germany
| |
Collapse
|
3
|
Abdelaziz R, Dube M, Mann L, Richter A, Robaa D, Reiling N, Abdel-Halim M, Imming P. Synthesis and Antimycobacterial Assays of Some New Ethambutol Analogs. Molecules 2025; 30:600. [PMID: 39942704 PMCID: PMC11820526 DOI: 10.3390/molecules30030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/16/2025] Open
Abstract
Ethambutol (EMB) is a first-line anti-tuberculosis drug that is also considered in treatment regimens for infections caused by non-tuberculous mycobacteria (NTM). EMB targets the arabinosyl transferases EmbCAB, which are important for the synthesis of cell wall constituents. To further explore and narrow down the structural variability of EMB, we synthesized three series of new EMB analogs. We tested their activity against Mycobacterium tuberculosis, Mycobacterium smegmatis, Mycobacterium abscessus and Mycobacterium intracellulare. Only analogs that very closely resembled EMB showed comparable antimycobacterial activity.
Collapse
Affiliation(s)
- Rana Abdelaziz
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| | - Mthandazo Dube
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| | - Lea Mann
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| | - Adrian Richter
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| | - Dina Robaa
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| | - Norbert Reiling
- RG Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 1–40, 23845 Borstel, Germany;
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 23845 Borstel, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, German University in Cairo, Cairo 11835, Egypt;
| | - Peter Imming
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany; (R.A.); (M.D.); (L.M.); (A.R.); (D.R.)
| |
Collapse
|
4
|
Souza IV, Fróes da Motta Dacome ML, Frederico Rozada AM, Rosa JS, Sampiron EG, Ferreira DG, Gauze GF, Norman Negri MF, de Lima Scodro RB, Cardoso RF, Caleffi-Ferracioli KR. A new N-acylhydrazone oxadiazole derivative with activity against mycobacteria. Future Microbiol 2025; 20:33-44. [PMID: 39440547 PMCID: PMC11974343 DOI: 10.1080/17460913.2024.2412439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Aim: To evaluate the anti-Mycobacterium tuberculosis (Mtb) potential of the hybrid oxadiazol-4-methoxynaphthalene (6n) derived from N-acylhydrazone (4k).Materials & methods: The study determined the minimal inhibitory concentration of (6n) against Mtb H37Rv and Mtb clinical isolates, potential combination of (6n) with anti-tuberculosis drugs and carried out time kill curve assay of Mtb H37Rv. Additional contribution for the analysis of (6n) was explored by in silico pharmacokinetics, and in vitro and in vivo cytotoxicity determinations.Results: The newly synthesized molecule (6n) demonstrated anti-Mtb activity, low cytotoxicity and selectivity for Mtb.Conclusion: The derivative (6n) emerges as a potential anti-TB drug candidate.
Collapse
Affiliation(s)
- Izabella Ventura Souza
- Postgraduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Maria Luiza Fróes da Motta Dacome
- Postgraduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | | | - Jonathan Sanches Rosa
- Postgraduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| | - Eloisa Gibin Sampiron
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Deisiany Gomes Ferreira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | | | | | | | - Rosilene Fressatti Cardoso
- Postgraduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
- Postgraduate Program in Health Sciences, State University of Maringa, Maringa, Parana, Brazil
| | - Katiany Rizzieri Caleffi-Ferracioli
- Postgraduate Program of Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
5
|
Postnikov EB, Sychev AV, Lavrova AI. Dose–Response Curve in REMA Test: Determination from Smartphone-Based Pictures. ANALYTICA 2024; 5:619-631. [DOI: 10.3390/analytica5040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
We report a workflow and a software description for digital image colorimetry aimed at obtaining a quantitative dose–response curve and the minimal inhibitory concentration in the Resazurin Microtiter Assay (REMA) test of the activity of antimycobacterial drugs. The principle of this analysis is based on the newly established correspondence between the intensity of the a* channel of the CIE L*a*b* colour space and the concentration of resorufin produced in the course of this test. The whole procedure can be carried out using free software. It has sufficiently mild requirements for the quality of colour images, which can be taken by a typical smartphone camera. Thus, the approach does not impose additional costs on the medical examination points and is widely accessible. Its efficiency is verified by applying it to the case of two representatives of substituted 2-(quinolin-4-yl) imidazolines. The direct comparison with the data on the indicator’s fluorescence obtained using a commercial microplate reader argues that the proposed approach provides results of the same range of accuracy on the quantitative level. As a result, it would be possible to apply the strategy not only for new low-cost studies but also for expanding databases on drug candidates by quantitatively reprocessing existing data, which were earlier documented by images of microplates but analysed only qualitatively.
Collapse
Affiliation(s)
- Eugene B. Postnikov
- Department of Theoretical Physics, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
| | - Alexander V. Sychev
- Research Center for Condensed Matter Physics, Kursk State University, Radishcheva st. 33, Kursk 305000, Russia
| | - Anastasia I. Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology, Lygovsky av. 2–4, Saint-Petersburg 191036, Russia
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, Nevskogo St. 14, Kaliningrad 236041, Russia
| |
Collapse
|
6
|
Nakamura H, Hikichi H, Seto S, Hijikata M, Keicho N. Transcriptional regulators SP110 and SP140 modulate inflammatory response genes in Mycobacterium tuberculosis-infected human macrophages. Microbiol Spectr 2024; 12:e0010124. [PMID: 39162523 PMCID: PMC11448263 DOI: 10.1128/spectrum.00101-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
Understanding the functions of human transcriptional regulatory genes SP110 and SP140 during Mycobacterium tuberculosis infection is crucial; in a mouse model, homologous genes Sp110 and Sp140 have been shown to negatively regulate inflammatory response genes, including the type I interferon (IFN) response. The reduction of these genes in mice is associated with susceptibility to M. tuberculosis infection and the development of necrotizing granulomatous lesions. To investigate the involvement of SP110 and SP140 in human inflammatory response, we analyzed their regulatory manner in THP-1 macrophages infected with M. tuberculosis. Genome-wide transcriptional profiling revealed that the depletion of SP110 and/or SP140 impaired the induction of gene expression associated with inflammatory responses, including IFN response genes, although it had little effect on the intracellular proliferation of M. tuberculosis. By contrast, genes related to phosphorylation were upregulated in infected macrophages with SP110 and/or SP140 knockdown, but downregulated in infected control macrophages without their knockdown. Reverse transcription-quantitative PCR and ELISA further confirmed the impairment of the induction of IFN response genes by the depletion of SP110 and/or SP140 in M. tuberculosis-infected macrophages. These findings suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses in M. tuberculosis-infected macrophages. IMPORTANCE Tuberculosis (TB) is one of the most serious infectious diseases, with high morbidity and mortality worldwide. C3HeB/FeJ mice are widely utilized for evaluating anti-TB drugs because their drug sensitivity and pathology during M. tuberculosis infection resemble those of human TB, including the development of necrotizing granulomas. Downregulation of the transcriptional regulatory genes Sp110 and Sp140 in C3HeB/FeJ mice has been demonstrated to activate gene expression associated with inflammatory responses during M. tuberculosis infection, resulting in susceptibility to the infection. Here, we examined the regulatory manner of SP110 and SP140 using transcriptomic analysis in M. tuberculosis-infected human macrophages. Depletion of SP110 and/or SP140 in M. tuberculosis-infected THP-1 macrophages impaired the induction of gene expression associated with inflammatory responses, including interferon response genes, compared with that in control macrophages. These results suggest that human SP110 and SP140 act as positive regulators for genes associated with inflammatory responses upon M. tuberculosis infection.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruka Hikichi
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shintaro Seto
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Naoto Keicho
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| |
Collapse
|
7
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
8
|
Bartolomeu-Gonçalves G, Souza JMD, Fernandes BT, Spoladori LFA, Correia GF, Castro IMD, Borges PHG, Silva-Rodrigues G, Tavares ER, Yamauchi LM, Pelisson M, Perugini MRE, Yamada-Ogatta SF. Tuberculosis Diagnosis: Current, Ongoing, and Future Approaches. Diseases 2024; 12:202. [PMID: 39329871 PMCID: PMC11430992 DOI: 10.3390/diseases12090202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Tuberculosis (TB) remains an impactful infectious disease, leading to millions of deaths every year. Mycobacterium tuberculosis causes the formation of granulomas, which will determine, through the host-pathogen relationship, if the infection will remain latent or evolve into active disease. Early TB diagnosis is life-saving, especially among immunocompromised individuals, and leads to proper treatment, preventing transmission. This review addresses different approaches to diagnosing TB, from traditional methods such as sputum smear microscopy to more advanced molecular techniques. Integrating these techniques, such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP), has significantly improved the sensitivity and specificity of M. tuberculosis identification. Additionally, exploring novel biomarkers and applying artificial intelligence in radiological imaging contribute to more accurate and rapid diagnosis. Furthermore, we discuss the challenges of existing diagnostic methods, including limitations in resource-limited settings and the emergence of drug-resistant strains. While the primary focus of this review is on TB diagnosis, we also briefly explore the challenges and strategies for diagnosing non-tuberculous mycobacteria (NTM). In conclusion, this review provides an overview of the current landscape of TB diagnostics, emphasizing the need for ongoing research and innovation. As the field evolves, it is crucial to ensure that these advancements are accessible and applicable in diverse healthcare settings to effectively combat tuberculosis worldwide.
Collapse
Affiliation(s)
- Guilherme Bartolomeu-Gonçalves
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Joyce Marinho de Souza
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Faculdade de Ciências da Saúde, Biomedicina, Universidade do Oeste Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil
| | - Bruna Terci Fernandes
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Curso de Farmácia, Faculdade Dom Bosco, Cornélio Procópio CEP 86300-000, Paraná, Brazil
| | | | - Guilherme Ferreira Correia
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Isabela Madeira de Castro
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | | | - Gislaine Silva-Rodrigues
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Eliandro Reis Tavares
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
- Departamento de Medicina, Pontifícia Universidade Católica do Paraná, Campus Londrina CEP 86067-000, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| | - Marsileni Pelisson
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Marcia Regina Eches Perugini
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Programa de Pós-Graduação em Fisiopatologia Clínica e Laboratorial, Universidade Estadual de Londrina, Londrina CEP 86038-350, Paraná, Brazil
- Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina CEP 86057-970, Paraná, Brazil
| |
Collapse
|
9
|
Habjan E, Lepioshkin A, Charitou V, Egorova A, Kazakova E, Ho VQ, Bitter W, Makarov V, Speer A. Modulating mycobacterial envelope integrity for antibiotic synergy with benzothiazoles. Life Sci Alliance 2024; 7:e202302509. [PMID: 38744470 PMCID: PMC11094368 DOI: 10.26508/lsa.202302509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Developing effective tuberculosis drugs is hindered by mycobacteria's intrinsic antibiotic resistance because of their impermeable cell envelope. Using benzothiazole compounds, we aimed to increase mycobacterial cell envelope permeability and weaken the defenses of Mycobacterium marinum, serving as a model for Mycobacterium tuberculosis Initial hit, BT-08, significantly boosted ethidium bromide uptake, indicating enhanced membrane permeability. It also demonstrated efficacy in the M. marinum-zebrafish embryo infection model and M. tuberculosis-infected macrophages. Notably, BT-08 synergized with established antibiotics, including vancomycin and rifampicin. Subsequent medicinal chemistry optimization led to BT-37, a non-toxic and more potent derivative, also enhancing ethidium bromide uptake and maintaining synergy with rifampicin in infected zebrafish embryos. Mutants of M. marinum resistant to BT-37 revealed that MMAR_0407 (Rv0164) is the molecular target and that this target plays a role in the observed synergy and permeability. This study introduces novel compounds targeting a new mycobacterial vulnerability and highlights their cooperative and synergistic interactions with existing antibiotics.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Vicky Charitou
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Anna Egorova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Elena Kazakova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Vien Qt Ho
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Moscow, Russia
| | - Alexander Speer
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Location VU Medical Center, Amsterdam, Netherlands
| |
Collapse
|
10
|
Moyo P, Ofori M, Bodede OS, Wooding M, Khorommbi NK, McGaw LJ, Danquah CA, Maharaj VJ. Investigation of the antimycobacterial activity of African medicinal plants combined with chemometric analysis to identify potential leads. Sci Rep 2024; 14:14660. [PMID: 38918410 PMCID: PMC11199645 DOI: 10.1038/s41598-024-65369-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
The emergence of drug-resistant Mycobacterium tuberculosis strains is a threat to global health necessitating the discovery of novel chemotherapeutic agents. Natural products drug discovery, which previously led to the discovery of rifamycins, is a valuable approach in this endeavor. Against this backdrop, we set out to investigate the in vitro antimycobacterial properties of medicinal plants from Ghana and South Africa, evaluating 36 extracts and their 252 corresponding solid phase extraction (SPE) generated fractions primarily against the non-pathogenic Mycobacterium smegmatis and Mycobacterium aurum species. The most potent fraction was further evaluated in vitro against infectious M. tuberculosis strain. Crinum asiaticum (bulb) (Amaryllidaceae) emerged as the most potent plant species with specific fractions showing exceptional, near equipotent activity against the non-pathogenic Mycobacterium species (0.39 µg/ml ≤ MIC ≤ 25 µg/ml) with one fraction being moderately active (MIC = 32.6 µg/ml) against M. tuberculosis. Metabolomic analysis led to the identification of eight compounds predicted to be active against M. smegmatis and M. aurum. In conclusion, from our comprehensive study, we generated data which provided an insight into the antimycobacterial properties of Ghanaian and South African plants. Future work will be focused on the isolation and evaluation of the compounds predicted to be active.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Private Bag X 20, Pretoria, 0028, South Africa
| | - Michael Ofori
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- Department of Pharmaceutical Sciences, Dr Hilla Limann Technical University, Wa, Ghana
| | - Olusola S Bodede
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Private Bag X 20, Pretoria, 0028, South Africa
| | - Madelien Wooding
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Private Bag X 20, Pretoria, 0028, South Africa
| | - Ndivhuwo Kevin Khorommbi
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Private Bag X 20, Pretoria, 0028, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Private Bag X04, Pretoria, 0110, South Africa
| | - Cynthia A Danquah
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana.
| | - Vinesh J Maharaj
- Biodiscovery Center, Department of Chemistry, University of Pretoria, Hatfield, Private Bag X 20, Pretoria, 0028, South Africa.
| |
Collapse
|
11
|
Lyons MA, Obregon-Henao A, Ramey ME, Bauman AA, Pauly S, Rossmassler K, Reid J, Karger B, Walter ND, Robertson GT. Use of multiple pharmacodynamic measures to deconstruct the Nix-TB regimen in a short-course murine model of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0101023. [PMID: 38501805 PMCID: PMC11064538 DOI: 10.1128/aac.01010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen [bedaquiline-pretomanid-linezolid (BPaL)] during the first 3 weeks of treatment at human equivalent doses. The rRNA synthesis (RS) ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, together with solid culture CFU counts and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time-course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.
Collapse
Affiliation(s)
- M. A. Lyons
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - A. Obregon-Henao
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - M. E. Ramey
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - A. A. Bauman
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - S. Pauly
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - K. Rossmassler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - J. Reid
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - B. Karger
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - N. D. Walter
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
| | - G. T. Robertson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| |
Collapse
|
12
|
Kumari N, Sharma R, Ali J, Chandra G, Singh S, Krishnan MY. The use of Mycobacterium tuberculosis H37Ra-infected immunocompetent mice as an in vivo model of persisters. Tuberculosis (Edinb) 2024; 145:102479. [PMID: 38262199 DOI: 10.1016/j.tube.2024.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Persistence of Mycobacterium tuberculosis (Mtb) is one of the challenges to successful treatment of tuberculosis (TB). In vitro models of non-replicating Mtb are used to test the efficacy of new molecules against Mtb persisters. The H37Ra strain is attenuated for growth in macrophages and mice. We validated H37Ra-infected immunocompetent mice for testing anti-TB molecules against slow/non-replicating Mtb in vivo. Swiss mice were infected intravenously with H37Ra and monitored for CFU burden and histopathology for a period of 12 weeks. The bacteria multiplied at a slow pace reaching a maximum load of ∼106 in 8-12 weeks depending on the infection dose, accompanied by time and dose-dependent histopathological changes in the lungs. Surprisingly, four-weeks of treatment with isoniazid-rifampicin-ethambutol-pyrazinamide combination caused only 0.4 log10 and 1 log10 reduction in CFUs in lungs and spleen respectively. The results show that ∼40 % of the H37Ra bacilli in lungs are persisters after 4 weeks of anti-TB therapy. Isoniazid/rifampicin monotherapy also showed similar results. A combination of bedaquiline and isoniazid reduced the CFU counts to <200 (limit of detection), compared to ∼5000 CFUs by isoniazid alone. The study demonstrates an in vivo model of Mtb persisters for testing new leads using a BSL-2 strain.
Collapse
Affiliation(s)
- Neetu Kumari
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Romil Sharma
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Juned Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Gyan Chandra
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India
| | - Sarika Singh
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Manju Y Krishnan
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh, 226 031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
13
|
Omar S, Whitfield MG, Nolan MB, Ngom JT, Ismail N, Warren RM, Klopper M. Bedaquiline for treatment of non-tuberculous mycobacteria (NTM): a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:211-240. [PMID: 38134888 PMCID: PMC10832598 DOI: 10.1093/jac/dkad372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Non-tuberculous mycobacteria (NTM) infections are increasing in incidence and associated mortality. NTM are naturally resistant to a variety of antibiotics, complicating treatment. We conducted a literature assessment on the efficacy of bedaquiline in treating NTM species in vitro and in vivo (animal models and humans); meta-analyses were performed where possible. METHOD Four databases were searched using specific terms. Publications were included according to predefined criteria. Bedaquiline's impact on NTM in vitro, MICs and epidemiological cut-off (ECOFF) values were evaluated. A meta-analysis of bedaquiline efficacy against NTM infections in animal models was performed. Culture conversion, cure and/or relapse-free cure were used to evaluate the efficacy of bedaquiline in treating NTM infection in humans. RESULTS Fifty studies met the inclusion criteria: 33 assessed bedaquiline's impact on NTM in vitro, 9 in animal models and 8 in humans. Three studies assessed bedaquiline's efficacy both in vitro and in vivo. Due to data paucity, an ECOFF value of 0.5 mg/mL was estimated for Mycobacterium abscessus only. Meta-analysis of animal studies showed a 1.86× reduction in bacterial load in bedaquiline-treated versus no treatment within 30 days. In humans, bedaquiline-including regimens were effective in treating NTM extrapulmonary infection but not pulmonary infection. CONCLUSIONS Bedaquiline demonstrated strong antibacterial activity against various NTM species and is a promising drug to treat NTM infections. However, data on the genomic mutations associated with bedaquiline resistance were scarce, preventing statistical analyses for most mutations and NTM species. Further studies are urgently needed to better inform treatment strategies.
Collapse
Affiliation(s)
- Shatha Omar
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michael G Whitfield
- Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, National Institute for Health Research, Imperial College London, London, UK
| | - Margaret B Nolan
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Justice T Ngom
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nabila Ismail
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rob M Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marisa Klopper
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council (SAMRC) Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Leite DI, Campaniço A, Costa PAG, Correa IA, da Costa LJ, Bastos MM, Moreira R, Lopes F, Jordaan A, Warner DF, Boechat N. New azaaurone derivatives as potential multitarget agents in HIV-TB coinfection. Arch Pharm (Weinheim) 2024; 357:e2300560. [PMID: 38032154 DOI: 10.1002/ardp.202300560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.
Collapse
Affiliation(s)
- Debora I Leite
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Andre Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro A G Costa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora A Correa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana J da Costa
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Monica M Bastos
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nubia Boechat
- Instituto de Tecnologia em Fármacos, Laboratório de Síntese de Fármacos (LASFAR), Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- Programa de Pós Graduação em Farmacologia e Química Medicinal (PPGFQM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
15
|
Campaniço A, Harjivan SG, Freitas E, Serafini M, Gaspar MM, Capela R, Gomes P, Jordaan A, Madureira AM, André V, Silva AB, Duarte MT, Portugal I, Perdigão J, Moreira R, Warner DF, Lopes F. Structural Optimization of Antimycobacterial Azaaurones Towards Improved Solubility and Metabolic Stability. ChemMedChem 2023; 18:e202300410. [PMID: 37845182 DOI: 10.1002/cmdc.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
While N-acetyl azaaurones have already been disclosed for their potential against tuberculosis (TB), their low metabolic stability remains an unaddressed liability. We now report a study designed to improve the metabolic stability and solubility of the azaaurone scaffold and to identify the structural requirements for antimycobacterial activity. Replacing the N-acetyl moiety for a N-carbamoyl group led to analogues with sub- and nanomolar potencies against M. tuberculosis H37Rv, as well as equipotent against drug-susceptible and drug-resistant M. tuberculosis isolates. The new N-carbamoyl azaaurones exhibited improved microsomal stability, compared to their N-acetylated counterparts, with several compounds displaying moderate to high kinetic solubility. The frequency of spontaneous resistance to azaaurones was observed to be in the range of 10-8 , a value that is comparable to current TB drugs in the market. Overall, these results reveal that azaaurones are amenable to structural modifications to improve metabolic and solubility liabilities, and highlight their potential as antimycobacterial agents.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Shrika G Harjivan
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Elisabete Freitas
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marco Serafini
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Pedro Gomes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Audrey Jordaan
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Ana M Madureira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Vânia André
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
- Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento (IST-ID), Avenida António José de Almeida, n.° 12, 1000-043, Lisboa, Portugal
| | - Andreia B Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - M Teresa Duarte
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, Rondebosch, 7701, South Africa
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
16
|
Huang L, Niu Y, Zhang L, Yang R, Wu M. Diagnostic value of chemiluminescence for urinary lipoarabinomannan antigen assay in active tuberculosis: insights from a retrospective study. Front Cell Infect Microbiol 2023; 13:1291974. [PMID: 38145052 PMCID: PMC10748405 DOI: 10.3389/fcimb.2023.1291974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose This study aimed to assess the efficacy of chemiluminescence-based urinary lipoarabinomannan (LAM) antigen assay as a diagnostic tool for identifying active tuberculosis. Methods A retrospective study was conducted on 166 Tuberculosis (TB), 22 Non-Tuberculous Mycobacteria (NTM), 69 Non-TB cases, and 73 healthy controls from Zhangjiagang First Peoples Hospital between July 2022 and November 2022. Clinical and laboratory data were collected, including urine samples for LAM antigen detection, sputum samples and pleural effusion for GeneXpert, TB-DNA, and culture. Results TB group exhibited a higher LAM positivity rate (P < 0.001). CD4 count and diabetes as independent factors influencing the diagnostic accuracy of LAM. The LAM assay showed a sensitivity of 50.6% and a specificity of 95.65%. Notably, LAM's sensitivity was superior to TB-DNA (50.60% vs. 38.16%, P < 0.05). LAM's PTB detection rate was 51.7%, superior to TB-DNA (P = 0.047). Moreover, in EPTB cases, the LAM detection rate was 42.11%, surpassing Gene Xpert (P = 0.042), as well as exceeding the detection rates of TB-DNA and sputum culture. Conclusion LAM antigen detection using chemiluminescence has demonstrated outstanding clinical diagnostic value for active TB, especially in the diagnosis of extrapulmonary TB. The convenience of sample collection in this diagnostic approach allows for widespread application in the clinical diagnosis of active tuberculosis, particularly in cases of EPTB and sputum-negative patients.
Collapse
Affiliation(s)
- Luyi Huang
- Department of Infectious, Zhangjiagang First Peoples Hospital, Suzhou, China
| | - Yayan Niu
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Li Zhang
- Department of Infectious, Zhangjiagang First Peoples Hospital, Suzhou, China
| | - Rong Yang
- Department of Infectious, Zhangjiagang First Peoples Hospital, Suzhou, China
| | - Meiying Wu
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Yernale NG, Suliphuldevara Mathada B, Shivprasad S, Hiremath S, Karunakar P, Venkatesulu A. Spectroscopic, theoretical and computational investigations of novel benzo[b]thiophene based ligand and its M(II) complexes: As high portentous antimicrobial and antioxidant agents. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123114. [PMID: 37454435 DOI: 10.1016/j.saa.2023.123114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
The reaction of 3-chlorobenzo[b]thiophene-2-carbohydrazide with 4-(diethylamino) salicylaldehyde gave the new ligand; 3-chloro-N'-(4-(diethylamino)-2-hydroxybenzylidene)-benzo[b]thiophene-2-carbohydrazide. The Cu(II), Co(II), Ni(II), and Zn(II) complexes have been successfully prepared. The ligand and the complexes were characterized by analytical, FT-IR, 1H NMR, mass, UV-visible spectroscopy, molar conductivity, and magnetic susceptibility measurements. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C = N), carboxyl (C = O), and phenolic oxygen (O-H) donor atoms. Density Functional Theory (DFT) estimations for the ligand at the DFT/B3LYP level via 6-31G++ (d, p) replicate the structure and geometry. Finally, HOMO and LUMO analyses were used for the charge transfer interface of the structure. Furthermore, molecular docking and ADME calculations were also performed to correlate and interpret the experimental results. The antimicrobial activity study illustrated enhancement in the activity of the free ligand upon complex formation, and the Cu(II) complex (MIC 25 µg mL-1) may be considered a promising antibacterial agent, and the Ni(II) and Zn(II) complexes (MIC 25 µg mL-1) as promising antifungal agents. Also, synthesized Cu(II) and Zn(II) metal complexes (MIC 3.125 µg mL-1) showed promising anti-TB activity against M. tuberculosis. Further, benzo[b]thiophene-based ligand and its metal complexes were evaluated for in vitro antioxidant activity, and in silico docking studies were carried out against Cytochrome c Peroxidase (PDB ID: 2X08).
Collapse
Affiliation(s)
| | | | - Swami Shivprasad
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Sunilkumar Hiremath
- Department of Chemistry, Guru Nanak First Grade College, Bidar, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Kumaraswamy Layout, Bangalore 560111, Karnataka, India
| | - Adavala Venkatesulu
- Department of PG Studies and Research Centre in Physics, Govt. First Grade College, Hosakote, Bangalore Rural, Karnataka, India
| |
Collapse
|
18
|
Lyons MA, Obregon-Henao A, Ramey ME, Bauman AA, Pauly S, Rossmassler K, Reid J, Karger B, Walter ND, Robertson GT. Use of Multiple Pharmacodynamic Measures to Deconstruct the Nix-TB Regimen in a Short-Course Murine Model of Tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566205. [PMID: 37986955 PMCID: PMC10659381 DOI: 10.1101/2023.11.08.566205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A major challenge for tuberculosis (TB) drug development is to prioritize promising combination regimens from a large and growing number of possibilities. This includes demonstrating individual drug contributions to the activity of higher-order combinations. A BALB/c mouse TB infection model was used to evaluate the contributions of each drug and pairwise combination in the clinically relevant Nix-TB regimen (bedaquiline-pretomanid-linezolid [BPaL]) during the first three weeks of treatment at human equivalent doses. RS ratio, an exploratory pharmacodynamic (PD) marker of ongoing Mycobacterium tuberculosis rRNA synthesis, to-gether with solid culture CFU and liquid culture time to positivity (TTP) were used as PD markers of treatment response in lung tissue; and their time course profiles were mathematically modeled using rate equations with pharmacologically interpretable parameters. Antimicrobial interactions were quantified using Bliss independence and Isserlis formulas. Subadditive (or antagonistic) and additive effects on bacillary load, assessed by CFU and TTP, were found for bedaquiline-pretomanid and linezolid-containing pairs, respectively. In contrast, subadditive and additive effects on rRNA synthesis were found for pretomanid-linezolid and bedaquiline-containing pairs, respectively. Additionally, accurate predictions of the response to BPaL for all three PD markers were made using only the single-drug and pairwise effects together with an assumption of negligible three-way drug interactions. The results represent an experimental and PD modeling approach aimed at reducing combinatorial complexity and improving the cost-effectiveness of in vivo systems for preclinical TB regimen development.
Collapse
|
19
|
Memon AA, Fu X, Fan XY, Xu L, Xiao J, Rahman MU, Yang X, Yao YF, Deng Z, Ma W. Substrate DNA Promoting Binding of Mycobacterium tuberculosis MtrA by Facilitating Dimerization and Interpretation of Affinity by Minor Groove Width. Microorganisms 2023; 11:2505. [PMID: 37894163 PMCID: PMC10609481 DOI: 10.3390/microorganisms11102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
In order to deepen the understanding of the role and regulation mechanisms of prokaryotic global transcription regulators in complex processes, including virulence, the associations between the affinity and binding sequences of Mycobacterium tuberculosis MtrA have been explored extensively. Analysis of MtrA 294 diversified 26 bp binding sequences revealed that the sequence similarity of fragments was not simply associated with affinity. The unique variation patterns of GC content and periodical and sequential fluctuation of affinity contribution curves were observed along the sequence in this study. Furthermore, docking analysis demonstrated that the structure of the dimer MtrA-DNA (high affinity) was generally consistent with other OmpR family members, while Arg 219 and Gly 220 of the wing domain interacted with the minor groove. The results of the binding box replacement experiment proved that box 2 was essential for binding, which implied the differential roles of the two boxes in the binding process. Furthermore, the results of the substitution of the nucleotide at the 20th and/or 21st positions indicated that the affinity was negatively associated with the value of minor groove width precisely at the 21st position. The dimerization of the unphosphorylated MtrA facilitated by a low-affinity DNA fragment was observed for the first time. However, the proportion of the dimer was associated with the affinity of substrate DNA, which further suggested that the affinity was actually one characteristic of the stability of dimers. Based on the finding of 17 inter-molecule hydrogen bonds identified in the interface of the MtrA dimer, including 8 symmetric complementary ones in the conserved α4-β5-α5 face, we propose that hydrogen bonds should be considered just as important as salt bridges and the hydrophobic patch in the dimerization. Our comprehensive study on a large number of binding fragments with quantitative affinity values provided new insight into the molecular mechanism of dimerization, binding specificity and affinity determination of MtrA and clues for solving the puzzle of how global transcription factors regulate a large quantity of target genes.
Collapse
Affiliation(s)
- Aadil Ahmed Memon
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiao-Yong Fan
- Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Lingyun Xu
- Shanghai Huaxin Biotechnology Co., Ltd., Room 604, Building 1, Tongji Chuangyuan, No. 99 South Changjiang Road, Baoshan District, Shanghai 200441, China
| | - Jihua Xiao
- Shanghai Huaxin Biotechnology Co., Ltd., Room 604, Building 1, Tongji Chuangyuan, No. 99 South Changjiang Road, Baoshan District, Shanghai 200441, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoqi Yang
- Shanghai Huaxin Biotechnology Co., Ltd., Room 604, Building 1, Tongji Chuangyuan, No. 99 South Changjiang Road, Baoshan District, Shanghai 200441, China
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
20
|
Ahalwat S, Bhatt DC, Rohilla S, Jogpal V, Sharma K, Virmani T, Kumar G, Alhalmi A, Alqahtani AS, Noman OM, Almoiliqy M. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals (Basel) 2023; 16:1108. [PMID: 37631023 PMCID: PMC10458796 DOI: 10.3390/ph16081108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Resistance to isoniazid (INH) is common and increases the possibility of acquiring multidrug-resistant tuberculosis. For this study, isoniazid-loaded nanostructured lipid carriers (INH-NLCs) were developed and effectively functionalized with mannose (Man) to enhance the residence time of the drug within the lungs via specific delivery and increase the therapeutic efficacy of the formulation. The mannose-functionalized isoniazid-loaded nanostructured lipid carrier (Man-INH-NLC) formulation was evaluated with respect to various formulation parameters, namely, encapsulation efficiency (EE), drug loading (DL), average particle size (PS), zeta potential (ZP), polydispersity index (PDI), in vitro drug release (DR), and release kinetics. The in vitro inhalation behavior of the developed formulation after nebulization was investigated using an Andersen cascade impactor via the estimation of the mass median aerosolized diameter (MMAD) and geometric aerodynamic diameter (GAD) and subsequently found to be suitable for effective lung delivery. An in vivo pharmacokinetic study was carried out in a guinea pig animal model, and it was demonstrated that Man-INH-NLC has a longer residence time in the lungs with improved pharmacokinetics when compared with unfunctionalized INH-NLC, indicating the enhanced therapeutic efficacy of the Man-INH-NLC formulation. Histopathological analysis led us to determine that the extent of tissue damage was more severe in the case of the pure drug solution of isoniazid compared to the Man-INH-NLC formulation after nebulization. Thus, the nebulization of Man-INH-NLC was found to be safe, forming a sound basis for enhancing the therapeutic efficacy of the drug for improved management in the treatment of pulmonary tuberculosis.
Collapse
Affiliation(s)
- Shaveta Ahalwat
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Dinesh Chandra Bhatt
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Surbhi Rohilla
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India;
| | - Vikas Jogpal
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Kirti Sharma
- School of Medical and Allied Sciences, G. D. Goenka University, Gurugram 122103, India; (V.J.); (K.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, India; (T.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.S.A.); (O.M.N.)
| | - Marwan Almoiliqy
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
21
|
Watson DJ, Wiesner L, Matimela T, Beukes D, Meyers PR. Tandem LC-MS Identification of Antitubercular Compounds in Zones of Growth Inhibition Produced by South African Filamentous Actinobacteria. Molecules 2023; 28:molecules28114276. [PMID: 37298751 DOI: 10.3390/molecules28114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Novel antitubercular compounds are urgently needed to combat drug-resistant Mycobacterium tuberculosis (Mtb). Filamentous actinobacteria have historically been an excellent source of antitubercular drugs. Despite this, drug discovery from these microorganisms has fallen out of favour due to the continual rediscovery of known compounds. To increase the chance of discovering novel antibiotics, biodiverse and rare strains should be prioritised. Subsequently, active samples need to be dereplicated as early as possible to focus efforts on truly novel compounds. In this study, 42 South African filamentous actinobacteria were screened for antimycobacterial activity using the agar overlay method against the Mtb indicator Mycolicibacterium aurum under six different nutrient growth conditions. Known compounds were subsequently identified through extraction and high-resolution mass spectrometric analysis of the zones of growth inhibition produced by active strains. This allowed the dereplication of 15 hits from six strains that were found to be producing puromycin, actinomycin D and valinomycin. The remaining active strains were grown in liquid cultures, extracted and submitted for screening against Mtb in vitro. Actinomadura napierensis B60T was the most active sample and was selected for bioassay-guided purification. This resulted in the identification of tetromadurin, a known compound, but which we show for the first time to have potent antitubercular activity, with the MIC90s within the range of 73.7-151.6 nM against M. tuberculosis H37RvTin vitro under different test conditions. This shows that South African actinobacteria are a good source of novel antitubercular compounds and warrant further screening. It is also revealed that active hits can be dereplicated by HPLC-MS/MS analysis of the zones of growth inhibition produced by the agar overlay technique.
Collapse
Affiliation(s)
- Daniel J Watson
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Tlhalefo Matimela
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Denzil Beukes
- School of Pharmacy, University of the Western Cape, Bellville 7535, South Africa
| | - Paul R Meyers
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
22
|
Next-Generation Diarylquinolines Improve Sterilizing Activity of Regimens with Pretomanid and the Novel Oxazolidinone TBI-223 in a Mouse Tuberculosis Model. Antimicrob Agents Chemother 2023; 67:e0003523. [PMID: 36920217 PMCID: PMC10112056 DOI: 10.1128/aac.00035-23] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
A regimen comprised of bedaquiline (BDQ, or B), pretomanid, and linezolid (BPaL) is the first oral 6-month regimen approved by the U.S. Food and Drug Administration and recommended by the World Health Organization for the treatment of extensively drug-resistant tuberculosis. We used a well-established BALB/c mouse model of tuberculosis to evaluate the treatment-shortening potential of replacing bedaquiline with either of two new, more potent diarylquinolines, TBAJ-587 and TBAJ-876, in early clinical trials. We also evaluated the effect of replacing linezolid with a new oxazolidinone, TBI-223, exhibiting a larger safety margin with respect to mitochondrial toxicity in preclinical studies. Replacing bedaquiline with TBAJ-587 at the same 25-mg/kg dose significantly reduced the proportion of mice relapsing after 2 months of treatment, while replacing linezolid with TBI-223 at the same 100-mg/kg dose did not significantly change the proportion of mice relapsing. Replacing linezolid or TBI-223 with sutezolid in combination with TBAJ-587 and pretomanid significantly reduced the proportion of mice relapsing. In combination with pretomanid and TBI-223, TBAJ-876 at 6.25 mg/kg was equipotent to TBAJ-587 at 25 mg/kg. We conclude that replacement of bedaquiline with these more efficacious and potentially safer diarylquinolines and replacement of linezolid with potentially safer and at least as efficacious oxazolidinones in the clinically successful BPaL regimen may lead to superior regimens capable of treating both drug-susceptible and drug-resistant TB more effectively and safely.
Collapse
|
23
|
Larkins-Ford J, Aldridge BB. Advances in the design of combination therapies for the treatment of tuberculosis. Expert Opin Drug Discov 2023; 18:83-97. [PMID: 36538813 PMCID: PMC9892364 DOI: 10.1080/17460441.2023.2157811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tuberculosis requires lengthy multi-drug therapy. Mycobacterium tuberculosis occupies different tissue compartments during infection, making drug access and susceptibility patterns variable. Antibiotic combinations are needed to ensure each compartment of infection is reached with effective drug treatment. Despite drug combinations' role in treating tuberculosis, the design of such combinations has been tackled relatively late in the drug development process, limiting the number of drug combinations tested. In recent years, there has been significant progress using in vitro, in vivo, and computational methodologies to interrogate combination drug effects. AREAS COVERED This review discusses the advances in these methodologies and how they may be used in conjunction with new successful clinical trials of novel drug combinations to design optimized combination therapies for tuberculosis. Literature searches for approaches and experimental models used to evaluate drug combination effects were undertaken. EXPERT OPINION We are entering an era richer in combination drug effect and pharmacokinetic/pharmacodynamic data, genetic tools, and outcome measurement types. Application of computational modeling approaches that integrate these data and produce predictive models of clinical outcomes may enable the field to generate novel, effective multidrug therapies using existing and new drug combination backbones.
Collapse
Affiliation(s)
- Jonah Larkins-Ford
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Current address: MarvelBiome Inc, Woburn, MA, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology and Tufts University School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (CIMAR), Tufts University, Boston, MA, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, USA
| |
Collapse
|
24
|
Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat Rev Microbiol 2022; 20:685-701. [PMID: 35478222 PMCID: PMC9045034 DOI: 10.1038/s41579-022-00731-y] [Citation(s) in RCA: 197] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
Abstract
Despite two decades of intensified research to understand and cure tuberculosis disease, biological uncertainties remain and hamper progress. However, owing to collaborative initiatives including academia, the pharmaceutical industry and non-for-profit organizations, the drug candidate pipeline is promising. This exceptional success comes with the inherent challenge of prioritizing multidrug regimens for clinical trials and revamping trial designs to accelerate regimen development and capitalize on drug discovery breakthroughs. Most wanted are markers of progression from latent infection to active pulmonary disease, markers of drug response and predictors of relapse, in vitro tools to uncover synergies that translate clinically and animal models to reliably assess the treatment shortening potential of new regimens. In this Review, we highlight the benefits and challenges of 'one-size-fits-all' regimens and treatment duration versus individualized therapy based on disease severity and host and pathogen characteristics, considering scientific and operational perspectives.
Collapse
Affiliation(s)
- Véronique A Dartois
- Center for Discovery and Innovation, and Hackensack Meridian School of Medicine, Department of Medical Sciences, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Eric J Rubin
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| |
Collapse
|
25
|
Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules 2022; 27:molecules27206948. [PMID: 36296540 PMCID: PMC9608607 DOI: 10.3390/molecules27206948] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike Tuberculosis (TB), Mycobacterium abscessus lung disease is a highly drug-resistant bacterial infection with no reliable treatment options. De novo M. abscessus drug discovery is urgently needed but is hampered by the bacterium's extreme drug resistance profile, leaving the current drug pipeline underpopulated. One proposed strategy to accelerate de novo M. abscessus drug discovery is to prioritize screening of advanced TB-active compounds for anti-M. abscessus activity. This approach would take advantage of the greater chance of homologous drug targets between mycobacterial species, increasing hit rates. Furthermore, the screening of compound series with established structure-activity-relationship, pharmacokinetic, and tolerability properties should fast-track the development of in vitro anti-M. abscessus hits into lead compounds with in vivo efficacy. In this review, we evaluated the effectiveness of this strategy by examining the literature. We found several examples where the screening of advanced TB chemical matter resulted in the identification of anti-M. abscessus compounds with in vivo proof-of-concept, effectively populating the M. abscessus drug pipeline with promising new candidates. These reports validate the screening of advanced TB chemical matter as an effective means of fast-tracking M. abscessus drug discovery.
Collapse
|
26
|
Bongaerts N, Edoo Z, Abukar AA, Song X, Sosa-Carrillo S, Haggenmueller S, Savigny J, Gontier S, Lindner AB, Wintermute EH. Low-cost anti-mycobacterial drug discovery using engineered E. coli. Nat Commun 2022; 13:3905. [PMID: 35798732 PMCID: PMC9262897 DOI: 10.1038/s41467-022-31570-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Whole-cell screening for Mycobacterium tuberculosis (Mtb) inhibitors is complicated by the pathogen's slow growth and biocontainment requirements. Here we present a synthetic biology framework for assaying Mtb drug targets in engineered E. coli. We construct Target Essential Surrogate E. coli (TESEC) in which an essential metabolic enzyme is deleted and replaced with an Mtb-derived functional analog, linking bacterial growth to the activity of the target enzyme. High throughput screening of a TESEC model for Mtb alanine racemase (Alr) revealed benazepril as a targeted inhibitor, a result validated in whole-cell Mtb. In vitro biochemical assays indicated a noncompetitive mechanism unlike that of clinical Alr inhibitors. We establish the scalability of TESEC for drug discovery by characterizing TESEC strains for four additional targets.
Collapse
Affiliation(s)
- Nadine Bongaerts
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Zainab Edoo
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Ayan A Abukar
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Xiaohu Song
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sebastián Sosa-Carrillo
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- Institut Pasteur, Inria de Paris, Université Paris Cité, InBio, Paris, France
| | - Sarah Haggenmueller
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Juline Savigny
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sophie Gontier
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Ariel B Lindner
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| | - Edwin H Wintermute
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| |
Collapse
|
27
|
Beever A, Kachour N, Owens J, Sasaninia K, Kolloli A, Kumar R, Ramasamy S, Sisliyan C, Khamas W, Subbian S, Venketaraman V. L-GSH Supplementation in Conjunction With Rifampicin Augments the Treatment Response to Mycobacterium tuberculosis in a Diabetic Mouse Model. Front Pharmacol 2022; 13:879729. [PMID: 35814213 PMCID: PMC9263396 DOI: 10.3389/fphar.2022.879729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Both active tuberculosis (TB) and asymptomatic latent Mycobacterium tuberculosis (M. tb) infection (LTBI) cause significant health burdens to humans worldwide. Individuals with immunocompromising health conditions, such as Type 2 Diabetes Mellitus (T2DM), have a weakened ability to control M. tb infection and are more susceptible to reactivation of LTBI to active diseases. T2DM cases are known to have glutathione (GSH) deficiency and impaired immune cell function, including the granulomatous response to M. tb infection. We have previously reported that liposomal glutathione (L-GSH) supplementation can restore the immune cell effector responses of T2DM cases. However, the effects of L-GSH supplementation on the bactericidal activities of first-line anti-TB drug rifampicin (RIF) against M. tb infection have yet to be explored. The aim of this study is to elucidate the effects of L-GSH supplementation in conjunction with RIF treatment during an active M. tb infection in a diabetic mouse model. In this study, we evaluated total and reduced levels of GSH, cytokine profiles, malondialdehyde (MDA) levels, M. tb burden, and granulomatous response in the lungs. We show that L-GSH supplementation caused a significant reduction in M. tb burden in the lungs, decreased oxidative stress, and increased the production of IFN-γ, TNF-α, IL-17, IL-10, and TGF-β1compared to the untreated mice. In addition, L-GSH supplementation in conjunction with RIF treatment achieved better control of M. tb infection in the lungs and significantly reduced the levels of oxidative stress compared to treatment with RIF alone. Moreover, L-GSH in conjunction with RIF significantly increased TGF-β1 levels compared to treatment with RIF alone. These findings suggest potential therapeutic benefits of L-GSH supplementation in conjunction with first-line antibiotic therapy against M. tb infection in individuals with T2DM.
Collapse
Affiliation(s)
- Abrianna Beever
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - Nala Kachour
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
| | - James Owens
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Afsal Kolloli
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Ranjeet Kumar
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Santhamani Ramasamy
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Christina Sisliyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Wael Khamas
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Selvakumar Subbian
- Public Health Research Institute(PHRI) Center at New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Vishwanath Venketaraman
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, United States
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Vishwanath Venketaraman,
| |
Collapse
|
28
|
Pasha MA, Mondal S, Panigrahi N, Shetye G, Ma R, Franzblau SG, Zheng YT, Murugesan S. One-Pot Synthesis of Novel Hydrazono 1,3-Thiazolidin-4-One Derivatives: Molecular Modelling, ADMET And Biological Evaluation of Anti-HIV And Anti-Tubercular Agents. Curr HIV Res 2022; 20:255-271. [PMID: 35549861 DOI: 10.2174/1570162x20666220512163049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/25/2021] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The necessity for newer anti-HIV and anti-tubercular medications has arisen as a result of the prevalence of opportunistic infections caused by HIV (human immunodeficiency virus). OBJECTIVE A series of ten new hydrazono 1,3-thiazolidin-4-one derivatives were synthesized in one-pot and evaluated for anti-HIV and anti-tubercular activities. Molecular Docking was perormed with HIV-1 reverse transcriptase protein (PDB ID: 1REV) and Mycobacterium Tuberculosis (M. tuberculosis) H37Rv protein (PDB ID: 2YES) receptors along with drug-likeness and ADMET properties. METHODS One-pot synthesis of hydrazono 1,3-thiazolidin-4-one derivatives was carried out by ketones, thiosemicarbazide and ethylchloroacetate with the catalyst of anhydrous sodium acetate. All the synthesized compounds were characterized, and evaluated for their in-vitro anti-HIV and also evaluated for their in-vitro anti-tubercular activity against M. tuberculosis H37Rv. In-silico predicted physicochemical parameters were done by MedChem DesignerTM software version 5.5 and ADMET parameters by pkCSM online tool. Furthermore, molecular docking was performed with pyrx 0.8 by autodock vina software. RESULTS All the synthesized compounds were characterized and evaluated for their in-vitro anti-HIV activity for inhibition of syncytia formation, which shows KTE1 with EC5¬0 47.95 µM and Selectivity Index (SI) of >4.17 and for inhibition of p24 antigen production EC5¬0 was found to be 80.02 µM and SI of >2.49. The compounds were also evaluated for their in-vitro anti-tubercular activity against M. tuberculosis H37Rv, in which KTE1 MIC values of 12.5µg/ml with SI of >4.0 and cytotoxicity against Vero cell lines. In-silico predicted physicochemical parameters for synthesized compounds which were found to be drug-like. Furthermore, docking has shown a good dock score and binding energy with anti-HIV and anti-tubercular receptors. CONCLUSION From the novel synthesized molecules none of the molecule is as effective as standards for anti-HIV and anti-tubercular drugs and hence can be further explored for its potential activities. Furthermore, derivatization was made to achieve more potent compounds for anti-HIV and anti-tubercular drugs.
Collapse
Affiliation(s)
- Mohammad Arif Pasha
- Department of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, Rushikonda, GITAM (Deemed to be University), Visakhapatnam-530045. Andhra Pradesh. India
| | - Sumanta Mondal
- Department of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, Rushikonda, GITAM (Deemed to be University), Visakhapatnam-530045. Andhra Pradesh. India
| | - Naresh Panigrahi
- Department of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, Rushikonda, GITAM (Deemed to be University), Visakhapatnam-530045. Andhra Pradesh. India
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois-60612. USA
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois-60612. USA
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois-60612. USA
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province /Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan-650223. China
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani-333031. Rajasthan. India
| |
Collapse
|
29
|
New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals (Basel) 2022; 15:ph15050576. [PMID: 35631402 PMCID: PMC9146500 DOI: 10.3390/ph15050576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/30/2023] Open
Abstract
A series of 25 new benzothiazole−urea−quinoline hybrid compounds were synthesized successfully via a three-step synthetic sequence involving an amidation coupling reaction as a critical step. The structures of the synthesized compounds were confirmed by routine spectroscopic tools (1H and 13C NMR and IR) and by mass spectrometry (HRMS). In vitro evaluation of these hybrid compounds for their antitubercular inhibitory activity against the Mycobacterium tuberculosis H37Rv pMSp12::GPF bioreporter strain was undertaken. Of the 25 tested compounds, 17 exhibited promising anti-TB activities of less than 62.5 µM (MIC90). Specifically, 13 compounds (6b, 6g, 6i−j, 6l, 6o−p, 6r−t, and 6x−y) showed promising activity with MIC90 values in the range of 1−10 µM, while compound 6u, being the most active, exhibited sub-micromolar activity (0.968 µM) in the CAS assay. In addition, minimal cytotoxicity against the HepG2 cell line (cell viability above 75%) in 11 of the 17 compounds, at their respective MIC90 concentrations, was observed, with 6u exhibiting 100% cell viability. The hybridization of the quinoline, urea, and benzothiazole scaffolds demonstrated a synergistic relationship because the activities of resultant hybrids were vastly improved compared to the individual entities. In silico ADME predictions showed that the majority of these compounds have drug-like properties and are less likely to potentially cause cardiotoxicity (QPlogHERG > −5). The results obtained in this study indicate that the majority of the synthesized compounds could serve as valuable starting points for future optimizations as new antimycobacterial agents.
Collapse
|
30
|
Chemical-genetic interaction mapping links carbon metabolism and cell wall structure to tuberculosis drug efficacy. Proc Natl Acad Sci U S A 2022; 119:e2201632119. [PMID: 35380903 PMCID: PMC9169745 DOI: 10.1073/pnas.2201632119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Efforts to improve tuberculosis therapy include optimizing multidrug regimens to take advantage of drug–drug synergies. However, the complex host environment has a profound effect on bacterial metabolic state and drug activity, making predictions of optimal drug combinations difficult. In this study, we leverage a newly developed library of conditional knockdown Mycobacterium tuberculosis mutants in which genetic depletion of essential genes mimics the effect of drug therapy. This tractable system allowed us to assess the effect of growth condition on predicted drug–drug interactions. We found that these interactions can be differentially sensitive to the metabolic state, and select in vitro–defined interactions can be leveraged to accelerate bacterial killing during infection. These findings suggest strategies for optimizing tuberculosis therapy. Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drug–drug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemical–genetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivo–relevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemical–genetic–environmental interactions that can be used to optimize drug–drug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
Collapse
|
31
|
Aryal N, Chen J, Bhattarai K, Hennrich O, Handayani I, Kramer M, Straetener J, Wommer T, Berscheid A, Peter S, Reiling N, Brötz-Oesterhelt H, Geibel C, Lämmerhofer M, Mast Y, Gross H. High Plasticity of the Amicetin Biosynthetic Pathway in Streptomyces sp. SHP 22-7 Led to the Discovery of Streptcytosine P and Cytosaminomycins F and G and Facilitated the Production of 12F-Plicacetin. JOURNAL OF NATURAL PRODUCTS 2022; 85:530-539. [PMID: 35263115 DOI: 10.1021/acs.jnatprod.1c01051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A chemical reinvestigation of the Indonesian strain Streptomyces sp. SHP 22-7 led to the isolation of three new pyrimidine nucleosides, along with six known analogues and zincphyrin. The structures of the new compounds (6, 7, 10) were elucidated by employing spectroscopic techniques (NMR, MS, CD, and IR) as well as enantioselective analyses of methyl branched side chain configurations. Application of the precursor-directed feeding approach led to the production and partial isolation of nine further pyrimidine analogues. The new compounds 6, 7, and 11 and three of the known compounds (2-4) were found to possess antimycobacterial and cytotoxic properties.
Collapse
Affiliation(s)
- Niraj Aryal
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Junhong Chen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Keshab Bhattarai
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Hennrich
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, 72076 Tübingen, Germany
| | - Ira Handayani
- Research Center for Biotechnology, National Research and Innovation Agency of Indonesia (RC Biotechnology BRIN), Jl.Raya Bogor Km.46, Cibinong, 16911, Bogor, West Java, Indonesia
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, 72076 Tübingen, Germany
| | - Tatjana Wommer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, 72076 Tübingen, Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, 72076 Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Parkallee 22, 23845 Borstel, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20095 Hamburg, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen (IMIT), Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
| | - Christian Geibel
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Lämmerhofer
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis, University of Tübingen, 72076 Tübingen, Germany
| | - Yvonne Mast
- German Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Alexey R, Dariya S, Liudmyla I, Lilia V, Valeriy M, Dmytro L, Oleksandr B, Svitlana S, Sergii O, Elijah B, Mariia S, Yaroslav B, Pavel K. Structure-based virtual screening and biological evaluation of novel inhibitors of mycobacterium Z-ring formation. J Cell Biochem 2022; 123:852-862. [PMID: 35297088 DOI: 10.1002/jcb.30232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 11/07/2022]
Abstract
The major part of commercial prodrugs against Mycobacterium tuberculosis (Mtb) demonstrated a significant inhibitory effect on cell division and inhibition of bacterial growth in vitro. However, further implementation often failed to overcome the compensatory system of interchangeable cascades. This is the most common situation for the compounds, which hit the key enzymes activities involved in all basic stages of the cell cycle. We decided to find more compounds, which could affect a cytoskeleton complex playing important role in sensing the external signals, intracellular transport, and cell division. In general, the bacterial cytoskeleton is crucial for response to the environment and participates in cell-to-cell communication. In turn, filamentous temperature-sensitive Z (FtsZ) protein, a mycobacterial tubulin homolog, is essential for Z-ring formation and further bacteria cell division. We predicted the most preferable binding-sites and conducted a high-throughput virtual screening. Modeling results suggest that some compounds bind in a specific region on the surface Mtb FtsZ, which is absent in human, and other could hit GTPase activity of the FtsZ. Further in vitro studies confirmed that these novel molecules can efficiently bind to these pockets, demonstrating an effect on the polymerization state and kinetics mechanisms. The rescaling of the experiment on the cell line revealed that reported compounds are able to alter the polymerization level of the filamentous and, therefore, prevent mycobacteria reproduction.
Collapse
Affiliation(s)
- Rayevsky Alexey
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
| | - Samofalova Dariya
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
- R&D Department, Life Chemicals Inc., Niagara-on-the-Lake, Ontario, Canada
| | - Ishchenko Liudmyla
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Vygovska Lilia
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Mazur Valeriy
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Labudzynskyi Dmytro
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Borysov Oleksandr
- Department of Molecular Modeling, Enamine Ltd., Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Spivak Svitlana
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Ozheredov Sergii
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Stykhylias Mariia
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Blume Yaroslav
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| | - Karpov Pavel
- Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Кyiv, Ukraine
| |
Collapse
|
33
|
Gold B, Zhang J, Quezada LL, Roberts J, Ling Y, Wood M, Shinwari W, Goullieux L, Roubert C, Fraisse L, Bacqué E, Lagrange S, Filoche-Rommé B, Vieth M, Hipskind PA, Jungheim LN, Aubé J, Scarry SM, McDonald SL, Li K, Perkowski A, Nguyen Q, Dartois V, Zimmerman M, Olsen DB, Young K, Bonnett S, Joerss D, Parish T, Boshoff HI, Arora K, Barry CE, Guijarro L, Anca S, Rullas J, Rodríguez-Salguero B, Martínez-Martínez MS, Porras-De Francisco E, Cacho M, Barros-Aguirre D, Smith P, Berthel SJ, Nathan C, Bates RH. Identification of β-Lactams Active against Mycobacterium tuberculosis by a Consortium of Pharmaceutical Companies and Academic Institutions. ACS Infect Dis 2022; 8:557-573. [PMID: 35192346 PMCID: PMC8922279 DOI: 10.1021/acsinfecdis.1c00570] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/28/2022]
Abstract
Rising antimicrobial resistance challenges our ability to combat bacterial infections. The problem is acute for tuberculosis (TB), the leading cause of death from infection before COVID-19. Here, we developed a framework for multiple pharmaceutical companies to share proprietary information and compounds with multiple laboratories in the academic and government sectors for a broad examination of the ability of β-lactams to kill Mycobacterium tuberculosis (Mtb). In the TB Drug Accelerator (TBDA), a consortium organized by the Bill & Melinda Gates Foundation, individual pharmaceutical companies collaborate with academic screening laboratories. We developed a higher order consortium within the TBDA in which four pharmaceutical companies (GlaxoSmithKline, Sanofi, MSD, and Lilly) collectively collaborated with screeners at Weill Cornell Medicine, the Infectious Disease Research Institute (IDRI), and the National Institute of Allergy and Infectious Diseases (NIAID), pharmacologists at Rutgers University, and medicinal chemists at the University of North Carolina to screen ∼8900 β-lactams, predominantly cephalosporins, and characterize active compounds. In a striking contrast to historical expectation, 18% of β-lactams screened were active against Mtb, many without a β-lactamase inhibitor. One potent cephaloporin was active in Mtb-infected mice. The steps outlined here can serve as a blueprint for multiparty, intra- and intersector collaboration in the development of anti-infective agents.
Collapse
Affiliation(s)
- Ben Gold
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Jun Zhang
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Landys Lopez Quezada
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Julia Roberts
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Yan Ling
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Madeleine Wood
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Wasima Shinwari
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Laurent Goullieux
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Christine Roubert
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Laurent Fraisse
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
| | - Eric Bacqué
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | - Sophie Lagrange
- Sanofi,
Infectious Diseases Therapeutic Area, 69280 Marcy l’Étoile, France
- Evotec
(Lyon) SAS, 69007 Lyon, France
| | | | - Michal Vieth
- Lilly
Biotechnology Center, Eli Lilly and Company, 10290 Campus Point Dr, San Diego, California 92121, United States
| | - Philip A. Hipskind
- Lilly
Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Louis N. Jungheim
- YourEncore, 20 North Meridian Street, Indianapolis, Indiana 46204, United States
| | - Jeffrey Aubé
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Sarah M. Scarry
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stacey L. McDonald
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kelin Li
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew Perkowski
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Quyen Nguyen
- Division
of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Véronique Dartois
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - Matthew Zimmerman
- Public
Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey 07103, United States
| | - David B. Olsen
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Merck
& Co., Inc., Infectious Diseases, 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shilah Bonnett
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Douglas Joerss
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Ave E, Suite 400, Seattle, Washington 98102, United States
| | - Helena I. Boshoff
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory
of Clinical Immunology and Microbiology, Bethesda, Maryland 20892, United States
| | - Laura Guijarro
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Sara Anca
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Joaquín Rullas
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | | | | | | | - Monica Cacho
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - David Barros-Aguirre
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Paul Smith
- Independent Consultant, Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| | - Steven J. Berthel
- Panorama Global, 2101
4th Avenue, Suite 2100, Seattle, Washington 98121, United States
| | - Carl Nathan
- Department
of Microbiology & Immunology, Weill
Cornell Medicine, 413 East 69th Street, New York, New York 10021, United
States
| | - Robert H. Bates
- Global Health Pharma R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid 28760, Spain
| |
Collapse
|
34
|
Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrob Agents Chemother 2022; 66:e0219221. [PMID: 35266826 PMCID: PMC9017349 DOI: 10.1128/aac.02192-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.
Collapse
|
35
|
Ahmed DM, Chen JM, Sanders DAR. Pyrazole and Triazole Derivatives as Mycobacterium tuberculosis UDP-Galactopyranose Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15020197. [PMID: 35215309 PMCID: PMC8874540 DOI: 10.3390/ph15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
UDP-galactopyranose mutase (UGM) is an essential enzyme involved in the bacterial cell wall synthesis, and is not present in mammalian cells. Thus, UGM from Mycobacterium tuberculosis (Mtb) represents a novel and attractive drug target for developing antituberculosis agents. A pyrazole-based compound, MS208, was previously identified as a mixed inhibitor of MtbUGM which targets an allosteric site. To understand more about the structure activity relationship around the MS208 scaffold as a MtbUGM inhibitor, thirteen pyrazoles and triazole analogues were synthesized and tested against both MtbUGM and Mycobacterium tuberculosis in vitro. While the introduced structural modifications to MS208 did not improve the antituberculosis activity, most of the compounds showed MtbUGM inhibitory activity. Interestingly, the pyrazole derivative DA10 showed a competitive model for MtbUGM inhibition with improved Ki value of 51 ± 4 µM. However, the same compound did not inhibit the growth of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Dalia M. Ahmed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Jeffrey M. Chen
- Vaccine and Infectious Disease Organization, Saskatoon, SK S7N 5E3, Canada;
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - David A. R. Sanders
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence:
| |
Collapse
|
36
|
Cyrhetrenyl and Cymantrenyl N-acylhydrazone Complexes Based on Isoniazid: Synthesis, Characterization, X-ray Crystal Structures and Antitubercular Activity Evaluation. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Model-Based Meta-Analysis of Relapsing Mouse Model Studies from the Critical Path to Tuberculosis Drug Regimens Initiative Database. Antimicrob Agents Chemother 2022; 66:e0179321. [PMID: 35099274 PMCID: PMC8923195 DOI: 10.1128/aac.01793-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a leading infectious disease-related cause of death worldwide, necessitating the development of new and improved treatment regimens. Non-clinical evaluation of candidate drug combinations via the relapsing mouse model (RMM) is an important step in regimen development, through which candidate regimens that provide the greatest decrease in probability of relapse following treatment in mice may be identified for further development. Although RMM studies are a critical tool to evaluate regimen efficacy, making comprehensive "apples to apples" comparisons of regimen performance in the RMM has been a challenge, in large part due to the need to evaluate and adjust for variability across studies arising from differences in design and execution. To address this knowledge gap, we performed a model-based meta-analysis on data for 17 unique regimens obtained from a total of 1592 mice across 28 RMM studies. Specifically, a mixed-effects logistic regression model was developed that described the treatment duration-dependent probability of relapse for each regimen and identified relevant covariates contributing to inter-study variability. Using the model, covariate-normalized metrics of interest, namely treatment duration required to reach 50% and 10% relapse probability, were derived and used to compare relative regimen performance. Overall, the model-based meta-analysis approach presented herein enables cross-study comparison of efficacy in the RMM, and provides a framework whereby data from emerging studies may be analyzed in the context of historical data to aid in selecting candidate drug combinations for clinical evaluation as TB drug regimens.
Collapse
|
38
|
Abstract
Given the low treatment success rates of drug-resistant tuberculosis (TB), novel TB drugs are urgently needed. The landscape of TB treatment has changed considerably over the last decade with the approval of three new compounds: bedaquiline, delamanid and pretomanid. Of these, delamanid and pretomanid belong to the same class of drugs, the nitroimidazoles. In order to close the knowledge gap on how delamanid and pretomanid compare with each other, we summarize the main findings from preclinical research on these two compounds. We discuss the compound identification, mechanism of action, drug resistance, in vitro activity, in vivo pharmacokinetic profiles, and preclinical in vivo activity and efficacy. Although delamanid and pretomanid share many similarities, several differences could be identified. One finding of particular interest is that certain Mycobacterium tuberculosis isolates have been described that are resistant to either delamanid or pretomanid, but with preserved susceptibility to the other compound. This might imply that delamanid and pretomanid could replace one another in certain regimens. Regarding bactericidal activity, based on in vitro and preclinical in vivo activity, delamanid has lower MICs and higher mycobacterial load reductions at lower drug concentrations and doses compared with pretomanid. However, when comparing in vivo preclinical bactericidal activity at dose levels equivalent to currently approved clinical doses based on drug exposure, this difference in activity between the two compounds fades. However, it is important to interpret these comparative results with caution knowing the variability inherent in preclinical in vitro and in vivo models.
Collapse
Affiliation(s)
- Saskia E. Mudde
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Corresponding author. E-mail:
| | | | - Anne Lenaerts
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Hannelore I. Bax
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurriaan E. M. De Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
39
|
Consalvi S, Venditti G, Zhu J, Boshoff HI, Arora K, De Logu A, Ioerger TR, Rubin EJ, Biava M, Poce G. 6-Fluorophenylbenzohydrazides inhibit Mycobacterium tuberculosis growth through alteration of tryptophan biosynthesis. Eur J Med Chem 2021; 226:113843. [PMID: 34520959 PMCID: PMC10994514 DOI: 10.1016/j.ejmech.2021.113843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
A major constraint in reducing tuberculosis epidemic is the emergence of strains resistant to one or more of clinically approved antibiotics, which emphasizes the need of novel drugs with novel targets. Genetic knockout strains of Mycobacterium tuberculosis (Mtb) have established that tryptophan (Trp) biosynthesis is essential for the bacterium to survive in vivo and cause disease in animal models. An anthranilate-like compound, 6-FABA, was previously shown to synergize with the host immune response to Mtb infection in vivo. Herein, we present a class of anthranilate-like compounds endowed with good antimycobacterial activity and low cytotoxicity. We show how replacing the carboxylic moiety with a hydrazide led to a significant improvement in both activity and cytotoxicity relative to the parent compound 6-FABA. Several new benzohydrazides (compounds 20-31, 33, 34, 36, 38 and 39) showed good activities against Mtb (0.625 ≤ MIC≤6.25 μM) and demonstrated no detectable cytotoxicity against Vero cell assay (CC50 ≥ 1360 μM). The target preliminary studies confirmed the hypothesis that this new class of compounds inhibits Trp biosynthesis. Taken together, these findings indicate that fluorophenylbenzohydrazides represent good candidates to be assessed for drug discovery.
Collapse
Affiliation(s)
- Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Giulia Venditti
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy
| | - Junhao Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Helena I Boshoff
- National Institute of Allergy and Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kriti Arora
- National Institute of Allergy and Infectious Diseases, Laboratory of Clinical Immunology and Microbiology, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Alessandro De Logu
- Department of Life and Environmental Sciences, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Thomas R Ioerger
- Department of Computer Science, Texas A&M University, 3112 TAMU, College Station, TX, 77843, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
40
|
Muliaditan M, Della Pasqua O. Bacterial growth dynamics and pharmacokinetic-pharmacodynamic relationships of rifampicin and bedaquiline in BALB/c mice. Br J Pharmacol 2021; 179:1251-1263. [PMID: 34599506 PMCID: PMC9303191 DOI: 10.1111/bph.15688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/07/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Translational efforts in the evaluation of novel anti-tubercular drugs demand better integration of pharmacokinetic-pharmacodynamic data arising from preclinical protocols. However, parametric approaches that discriminate drug effect from the underlying bacterial growth dynamics have not been fully explored, making it difficult to translate and/or extrapolate preclinical findings to humans. This analysis aims to develop a drug-disease model that allows distinction between drug- and system-specific properties. EXPERIMENTAL APPROACH Given their clinical relevance, rifampicin and bedaquiline were used as test compounds. A two-state model was used to describe bacterial growth dynamics. The approach assumes the existence of fast- and slow-growing bacterial populations. Drug effect on the growth dynamics of each subpopulation was characterised in terms of potency (EC50 -F and EC50 -S) and maximum killing rate. KEY RESULTS The doubling time of the fast- and slow-growing population was estimated to be 25 h and 42 days, respectively. Rifampicin was more potent against the fast-growing (EC50 -F = 4.8 mg·L-1 ), as compared with the slow-growing population (EC50 -S = 60.2 mg·L-1 ). Bedaquiline showed higher potency than rifampicin (EC50 -F = 0.19 mg·L-1 ; EC50 -S = 3.04 mg·L-1 ). External validation procedures revealed an effect of infection route on the apparent potency of rifampicin. CONCLUSION AND IMPLICATIONS Model parameter estimates suggest that nearly maximum killing rate is achieved against fast-growing, but not against slow-growing populations at the tested doses. Evidence of differences in drug potency for each subpopulation may facilitate the translation of preclinical findings and improve the dose rationale for anti-tubercular drugs in humans.
Collapse
Affiliation(s)
- Morris Muliaditan
- Clinical Pharmacology & Therapeutics Group, School of Life and Medical Sciences, University College London, London, UK
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, School of Life and Medical Sciences, University College London, London, UK.,Clinical Pharmacology, Modelling and Simulation, GlaxoSmithKline, Brentford, UK
| |
Collapse
|
41
|
Walter I, Adam S, Gentilini MV, Kany AM, Brengel C, Thomann A, Sparwasser T, Köhnke J, Hartmann RW. Structure-Activity Relationship and Mode-Of-Action Studies Highlight 1-(4-Biphenylylmethyl)-1H-imidazole-Derived Small Molecules as Potent CYP121 Inhibitors. ChemMedChem 2021; 16:2786-2801. [PMID: 34010508 PMCID: PMC8519103 DOI: 10.1002/cmdc.202100283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/29/2022]
Abstract
CYP121 of Mycobacterium tuberculosis (Mtb) is an essential target for the development of novel potent drugs against tuberculosis (TB). Besides known antifungal azoles, further compounds of the azole class were recently identified as CYP121 inhibitors with antimycobacterial activity. Herein, we report the screening of a similarity-oriented library based on the former hit compound, the evaluation of affinity toward CYP121, and activity against M. bovis BCG. The results enabled a comprehensive SAR study, which was extended through the synthesis of promising compounds and led to the identification of favorable features for affinity and/or activity and hit compounds with 2.7-fold improved potency. Mode of action studies show that the hit compounds inhibit substrate conversion and highlighted CYP121 as the main antimycobacterial target of our compounds. Exemplified complex crystal structures of CYP121 with three inhibitors reveal a common binding site. Engaging in both hydrophobic interactions as well as hydrogen bonding to the sixth iron ligand, our compounds block a solvent channel leading to the active site heme. Additionally, we report the first CYP inhibitors that are able to reduce the intracellular replication of M. bovis BCG in macrophages, emphasizing their potential as future drug candidates against TB.
Collapse
Affiliation(s)
- Isabell Walter
- Department for Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.166123SaarbrückenGermany
| | - Sebastian Adam
- Workgroup Structural Biology of Biosynthetic EnzymesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Saarland UniversitySaarbrückenGermany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORECentre for Experimental and Clinical Infection ResearchA Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI)HannoverGermany
| | - Andreas M. Kany
- Department for Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.166123SaarbrückenGermany
| | - Christian Brengel
- Department for Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.166123SaarbrückenGermany
| | - Andreas Thomann
- Department for Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.166123SaarbrückenGermany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORECentre for Experimental and Clinical Infection ResearchA Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI)HannoverGermany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic EnzymesHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Saarland UniversitySaarbrückenGermany
| | - Rolf W. Hartmann
- Department for Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.166123SaarbrückenGermany
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2.366123SaarbrückenGermany
| |
Collapse
|
42
|
Comparative Analysis of Pharmacodynamics in the C3HeB/FeJ Mouse Tuberculosis Model for DprE1 inhibitors TBA-7371, PBTZ169 and OPC-167832. Antimicrob Agents Chemother 2021; 65:e0058321. [PMID: 34370580 PMCID: PMC8522729 DOI: 10.1128/aac.00583-21] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple drug discovery initiatives for tuberculosis are currently ongoing to identify and develop new potent drugs with novel targets in order to shorten treatment duration. One of the drug classes with a new mode of action are DprE1 inhibitors targeting an essential process in cell wall synthesis of Mycobacterium tuberculosis. In this investigation, three DprE1 inhibitors currently in clinical trials, TBA-7371, PBTZ169 and OPC-167832, were evaluated side-by-side as single agents in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon tuberculosis infection. The goal was to confirm the efficacy of the DprE1 inhibitors in a mouse tuberculosis model with advanced pulmonary pathology, and perform comprehensive analysis of plasma, lung and lesion-centric drug levels to establish pharmacokinetic-pharmacodynamic (PK-PD) parameters predicting efficacy at the site of infection. Results showed significant efficacy for all three DprE1 inhibitors in the C3HeB/FeJ mouse model after two months of treatment. Superior efficacy was observed for OPC-167832 even at low dose levels, which can be attributed to its low MIC, favorable distribution and sustained retention above the MIC throughout the dosing interval in caseous necrotic lesions where the majority of bacteria reside in C3HeB/FeJ mice. These results support further progression of the three drug candidates through clinical development for tuberculosis treatment.
Collapse
|
43
|
Abstract
Models of nonreplication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against nonreplicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states and to development of drugs that can overcome phenotypic resistance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multistress model of nonreplication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide, and other reactive nitrogen intermediates arising from nitrite at low pH and low concentrations of a fatty acid (butyrate) as a carbon source.
Collapse
|
44
|
In Vitro Profiling of Antitubercular Compounds by Rapid, Efficient, and Nondestructive Assays Using Autoluminescent Mycobacterium tuberculosis. Antimicrob Agents Chemother 2021; 65:e0028221. [PMID: 34097493 PMCID: PMC8284454 DOI: 10.1128/aac.00282-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-infective drug discovery is greatly facilitated by the availability of in vitro assays that are more proficient at predicting the preclinical success of screening hits. Tuberculosis (TB) drug discovery is hindered by the relatively slow growth rate of Mycobacterium tuberculosis and the use of whole-cell-based in vitro assays that are inherently time-consuming, and for these reasons, rapid, noninvasive bioluminescence-based assays have been widely used in anti-TB drug discovery and development. In this study, in vitro assays that employ autoluminescent M. tuberculosis were optimized to determine MIC, minimum bactericidal concentration (MBC), time-kill curves, activity against macrophage internalized M. tuberculosis (90% effective concentration [EC90]), and postantibiotic effect (PAE) to provide rapid and dynamic biological information. Standardization of the luminescence-based MIC, MBC, time-kill, EC90, and PAE assays was accomplished by comparing results of established TB drugs and two ClpC1-targeting TB leads, ecumicin and rufomycin, to those obtained from conventional assays and/or to previous studies. Cumulatively, the use of the various streamlined luminescence-based in vitro assays has reduced the time for comprehensive in vitro profiling (MIC, MBC, time-kill, EC90, and PAE) by 2 months. The luminescence-based in vitro MBC and EC90 assays yield time and concentration-dependent kill information that can be used for pharmacokinetic-pharmacodynamic (PK-PD) modeling. The MBC and EC90 time-kill graphs revealed a significantly more rapid bactericidal activity for ecumicin than rufomycin. The PAEs of both ecumicin and rufomycin were comparable to that of the first-line TB drug rifampin. The optimization of several nondestructive, luminescence-based TB assays facilitates the in vitro profiling of TB drug leads in an efficient manner.
Collapse
|
45
|
Stancil SL, Mirzayev F, Abdel-Rahman SM. Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date. Drug Des Devel Ther 2021; 15:2815-2830. [PMID: 34234413 PMCID: PMC8253981 DOI: 10.2147/dddt.s281639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/28/2021] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) is the most deadly infectious disease globally. Although most individuals achieve a cure, a substantial portion develop multi-drug resistant TB which is exceedingly difficult to treat, and the number of effective agents is dwindling. Development of new anti-tubercular medications is imperative to combat existing drug resistance and accelerate global eradication of TB. Pretomanid (PA-824) represents one of the newest drug classes (ie, nitroimidazooxazines) approved in 2019 by the United States Food and Drug Administration as part of a multi-drug regimen (with bedaquiline and linezolid, BPaL) and recommended by the World Health Organization (WHO) to treat extensively-resistant (XR-TB) and multi-drug resistant tuberculosis (MDR-TB). Approval was granted through the FDA's Limited Population Pathway for Antibacterial and Antifungal Drugs, which accelerates approval for antimicrobial drugs used to treat life-threatening or serious infections in a limited population with unmet need. This review details the pharmacology, efficacy, and safety of this new agent and describes evidence to date for its role in the treatment of drug resistant TB including published, ongoing, and planned studies.
Collapse
Affiliation(s)
- Stephani L Stancil
- Division of Adolescent Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| | | | - Susan M Abdel-Rahman
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64108, USA
| |
Collapse
|
46
|
Gurram SR, Azam MA. Design, synthesis and biological evaluation of some novel N'-(1,3-benzothiazol-2-yl)-arylamide derivatives as antibacterial agents. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01730-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Antimycobacterial Activity, Synergism, and Mechanism of Action Evaluation of Novel Polycyclic Amines against Mycobacterium tuberculosis. Adv Pharmacol Pharm Sci 2021; 2021:5583342. [PMID: 34240057 PMCID: PMC8238621 DOI: 10.1155/2021/5583342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium tuberculosis has developed extensive resistance to numerous antimycobacterial agents used in the treatment of tuberculosis. Insufficient intracellular accumulation of active moieties allows for selective survival of mycobacteria with drug resistance mutations and accordingly promotes the development of microbial drug resistance. Discovery of compounds with new mechanisms of action and physicochemical properties that promote intracellular accumulation, or compounds that act synergistically with other antimycobacterial drugs, has the potential to reduce and prevent further drug resistance. To this end, antimycobacterial activity, mechanism of action, and synergism in combination therapy were investigated for a series of polycyclic amine derivatives. Compound selection was based on the presence of moieties with possible antimycobacterial activity, the inclusion of bulky lipophilic carriers to promote intracellular accumulation, and previously demonstrated bioactivity that potentially support inhibition of efflux pump activity. The most potent antimycobacterial demonstrated a minimum inhibitory concentration (MIC99) of 9.6 μM against Mycobacterium tuberculosis H37Rv. Genotoxicity and inhibition of the cytochrome bc1 respiratory complex were excluded as mechanisms of action for all compounds. Inhibition of cell wall synthesis was identified as a likely mechanism of action for the two most active compounds (14 and 15). Compounds 5 and 6 demonstrated synergistic activity with the known Rv1258c efflux pump substrate, spectinomycin, pointing to possible efflux pump inhibition. For this series, the nature of the side chain, rather than the type of polycyclic carrier, seems to play a determining role in the antimycobacterial activity and cytotoxicity of the compounds. Contrariwise, the nature of the polycyclic carrier, particularly the azapentacycloundecane cage, appears to promote synergistic activity. Results point to the possibility of combining an azapentacycloundecane carrier with a side chain that promotes antimycobacterial activity to develop dual acting molecules for the treatment of Mycobacterium tuberculosis.
Collapse
|
48
|
In-vivo expressed Mycobacterium tuberculosis antigens recognised in three mouse strains after infection and BCG vaccination. NPJ Vaccines 2021; 6:81. [PMID: 34083546 PMCID: PMC8175414 DOI: 10.1038/s41541-021-00343-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/23/2021] [Indexed: 01/15/2023] Open
Abstract
Novel tuberculosis (TB)-vaccines preferably should (i) boost host immune responses induced by previous BCG vaccination and (ii) be directed against Mycobacterium tuberculosis (Mtb) proteins expressed throughout the Mtb infection-cycle. Human Mtb antigen-discovery screens identified antigens encoded by Mtb-genes highly expressed during in vivo murine infection (IVE-TB antigens). To translate these findings towards animal models, we determined which IVE-TB-antigens are recognised by T-cells following Mtb challenge or BCG vaccination in three different mouse strains. Eleven Mtb-antigens were recognised across TB-resistant and susceptible mice. Confirming previous human data, several Mtb-antigens induced cytokines other than IFN-γ. Pulmonary cells from susceptible C3HeB/FeJ mice produced less TNF-α, agreeing with the TB-susceptibility phenotype. In addition, responses to several antigens were induced by BCG in C3HeB/FeJ mice, offering potential for boosting. Thus, recognition of promising Mtb-antigens identified in humans validates across multiple mouse TB-infection models with widely differing TB-susceptibilities. This offers translational tools to evaluate IVE-TB-antigens as diagnostic and vaccine antigens.
Collapse
|
49
|
Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050461. [PMID: 34068171 PMCID: PMC8152995 DOI: 10.3390/ph14050461] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a curable airborne disease currently treated using a drug regimen consisting of four drugs. Global TB control has been a persistent challenge for many decades due to the emergence of drug-resistant Mtb strains. The duration and complexity of TB treatment are the main issues leading to treatment failures. Other challenges faced by currently deployed TB regimens include drug-drug interactions, miss-matched pharmacokinetics parameters of drugs in a regimen, and lack of activity against slow replicating sub-population. These challenges underpin the continuous search for novel TB drugs and treatment regimens. This review summarizes new TB drugs/drug candidates under development with emphasis on their chemical classes, biological targets, mode of resistance generation, and pharmacokinetic properties. As effective TB treatment requires a combination of drugs, the issue of drug-drug interaction is, therefore, of great concern; herein, we have compiled drug-drug interaction reports, as well as efficacy reports for drug combinations studies involving antitubercular agents in clinical development.
Collapse
|
50
|
Solcia MC, Campos DL, Grecco JA, Paiva Silva CS, Bento da Silva P, Cristiane da Silva I, Balduino da Silva AP, Silva J, Oda FB, Gonzaga Dos Santos A, Pavan FR. Growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) against Mycobacterium tuberculosis in vitro and in vivo. Tuberculosis (Edinb) 2021; 128:102087. [PMID: 34022507 DOI: 10.1016/j.tube.2021.102087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis is the major etiological agent for tuberculosis (TB), which is the leading cause of single pathogen infection-related deaths worldwide. The End TB Strategy of the World Health Organization aimed to decrease the incidence of TB by 20% between 2015 and 2020, which was not achieved. Here, the growth-inhibitory effects of tris-(1,10-phenanthroline) iron (II) complex ([Fe(phen)3]2+), a known commercially available cheap chemical substance, were examined. The best in vitro results showed great activity with MIC ranging from 0.77 to 3.06 μM against clinical strains and at low pH (mimicking the granuloma) with MIC of 0.21 μM. Preliminary safety analysis revealed that the complex did not exhibit cytotoxic activity against different cell lines or mutagenic activity in vitro. The complex was orally bioavailable after 2 h of administration in vivo. Additionally, the results of the acute toxicity test revealed that the complex did not exert toxic effects in female BALB/c mice. The mechanism of action was performed using D29 mycobacteriophages where the treatment with different concentrations of the complex inhibited viral protein synthesis, which indicated that the anti-TB mechanisms of the complex involve protein synthesis inhibition. These findings suggested that [Fe(phen)3]2+ is a potential novel therapeutic for TB.
Collapse
Affiliation(s)
- Mariana Cristina Solcia
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Júlia Araújo Grecco
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Caio Sander Paiva Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Isabel Cristiane da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana Paula Balduino da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Joás Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil
| | - Fernando Bombarda Oda
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, 14800-903, Brazil
| | - André Gonzaga Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, São Paulo, 14800-903, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Tuberculosis Research Laboratory, Araraquara, São Paulo, 14800-903, Brazil.
| |
Collapse
|