1
|
Guo Q, Tang Y, Wang S, Xia X. Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment. Redox Biol 2025; 80:103515. [PMID: 39904189 PMCID: PMC11847112 DOI: 10.1016/j.redox.2025.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of cancer. Non-invasive therapies that promote intracellular ROS generation, including photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), have emerged as novel approaches for cancer treatment. These therapies directly kill tumor cells by generating ROS, and although they show great promise in tumor treatment, many challenges remain to be addressed in practical applications. Firstly, the inherent complexity of the tumor microenvironment (TME), such as hypoxia and elevated glutathione (GSH) levels, hinders ROS generation, thereby significantly diminishing the efficacy of ROS-based therapies. In addition, these therapies are influenced by their intrinsic mechanisms. To overcome these limitations, various nanoparticle (NP) systems have been developed to improve the therapeutic efficacy of non-invasive therapies against tumors. This review first summarizes the mechanisms of ROS generation for each non-invasive therapy and their current limitations, with a particular focus on the enhancement strategies for each therapy based on NP systems. Additionally, various strategies to modulate the TME are highlighted. These strategies aim to amplify ROS generation in non-invasive therapies and enhance their anti-tumor efficiency. Finally, the current challenges and possible solutions for the clinical translation of ROS-based non-invasive therapies are also discussed.
Collapse
Affiliation(s)
- Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yingnan Tang
- School of Pharmacy, Hunan Vocational College of Science And Technology, Changsha, Hunan, 410208, China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Neshastehriz A, Hormozi-Moghaddam Z, Kichi ZA, Taheri SM, Amini SM, Aghaei A. Overcoming breast cancer cell treatment resistance by optimizing sonodynamic therapy and radiation sensitizers on lncRNA PVT1 and miR-1204 expression. Photodiagnosis Photodyn Ther 2025; 51:104433. [PMID: 39645013 DOI: 10.1016/j.pdpdt.2024.104433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Acoustic cavitation is a foundational mechanism in ultrasound therapy, primarily through inertial cavitation resulting from microbubble collapse. Sonodynamic therapy, with inertial acoustic cavitation threshold and low-dose radiation in the presence of sensitizers, may provide significant effects for cancer treatment, potentially overcoming resistance encountered with single therapies. METHODS MCF7 breast cancer cells were subjected to sonodynamic therapy either alone or combined with ionizing radiation, gold nanoparticles coated with apigenin, and methylene blue. Several parameters were evaluated, including reactive oxygen species (ROS) generation and colonization. Additionally, the investigation included assessing the long non-coding RNA (lncRNA) PTV1 with miRNA1204 and related genes using Real-Time PCR. RESULTS Sonodynamic therapy at a mechanical index of 0.31 as acoustic cavitation threshold increased intracellular ROS. Combining sonodynamic therapy and 2 Gy X-ray radiation with methylene blue and gold nanoparticles coated with apigenin significantly decreased plating efficiency (4.44±1.69), and survival fraction (2.75±1.98) compared with control (Ctrl.) (98.77±4.49) and (97.59± 2.94), respectively. This was associated with a marked increase in ROS with a mean fluorescence intensity of 20,576.2 ± 4.6 (>4.5 times). The combined treatment also increased p53 expression and decreased the expression of PVT1, miR-1204, and related genes. CONCLUSION Sonodynamic therapy in inertial acoustic cavitation threshold, combined with ionizing radiation in the presence of biocompatible nanoparticles, could enhance the therapeutic effects on the miR-1204, derived from lncRNA PVT1, that functions as an oncogenic microRNA in breast cancer. This approach has the potential to overcome treatment resistance encountered with single therapies.
Collapse
Affiliation(s)
- Ali Neshastehriz
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Zeinab Hormozi-Moghaddam
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Abedi Kichi
- Department of Genetics, Faculty of biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Seyedeh Mona Taheri
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Amini
- Radiation Biology Research center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Amir Aghaei
- Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Xu Z, Zhang X, Shan Q, Zhu W, Jiang S, Li R, Wu X, Huo M, Ying B, Chen C, Chen X, Zhang K, Chen W, Chen J. Fluorocarbon-Functionalized Polymerization-Induced Self-Assembly Nanoparticles Alleviate Hypoxia to Enhance Sonodynamic Cancer Therapy. Adv Healthc Mater 2025; 14:e2403251. [PMID: 39487634 DOI: 10.1002/adhm.202403251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Sonodynamic therapy (SDT) is an ultrasound-based, noninvasive cancer treatment that targets tumor cells by triggering reactive oxygen species production. However, the limited accumulation of sonosensitizers and the insufficient supply of O2 to the hypoxic environment at the tumor site greatly limit the effectiveness of SDT. To address these issues, positively charged porphyrin-containing nanoparticles (NPs) from self-assembling of fluorocarbon/polyethylene glycol amphiphilic block copolymer, which is synthesized through reversible addition-fragmentation chain transfer polymerization, are constructed. The NPs with fluorocarbon core and positively charged hydrophilic shells not only stabilize the sonosensitizer and improve its cellular uptake, but also act as an O2 carrier alleviating the hypoxic tumor environment. In vitro and in vivo experiments demonstrate that the NPs effectively deliver O2 to the tumor and supply sufficient O2 to Renca cells after ultrasound treatment. Consequently, the NPs inhibit hypoxia-induced resistance to SDT and significantly produce reactive oxygen species by activated porphyrin moieties, inducing apoptosis in cancer cells. These oxygen-enhanced sonosensitizer NPs hold promise for cancer therapies such as photodynamic therapy, radiotherapy, and chemotherapy by overcoming hypoxia-induced resistance.
Collapse
Affiliation(s)
- Zhikang Xu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuanxuan Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Qianyun Shan
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Zhu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shangxu Jiang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rumei Li
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaojin Wu
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Meng Huo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bin Ying
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chen Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaoting Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kai Zhang
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Jian Chen
- Department of Ultrasound in Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| |
Collapse
|
4
|
Fu X, Hu X. Ultrasound-Controlled Prodrug Activation: Emerging Strategies in Polymer Mechanochemistry and Sonodynamic Therapy. ACS APPLIED BIO MATERIALS 2024; 7:8040-8058. [PMID: 38698527 PMCID: PMC11653258 DOI: 10.1021/acsabm.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Ultrasound has gained prominence in biomedical applications due to its noninvasive nature and ability to penetrate deep tissue with spatial and temporal resolution. The burgeoning field of ultrasound-responsive prodrug systems exploits the mechanical and chemical effects of ultrasonication for the controlled activation of prodrugs. In polymer mechanochemistry, materials scientists exploit the sonomechanical effect of acoustic cavitation to mechanochemically activate force-sensitive prodrugs. On the other hand, researchers in the field of sonodynamic therapy adopt fundamentally distinct methodologies, utilizing the sonochemical effect (e.g., generation of reactive oxygen species) of ultrasound in the presence of sonosensitizers to induce chemical transformations that activate prodrugs. This cross-disciplinary review comprehensively examines these two divergent yet interrelated approaches, both of which originated from acoustic cavitation. It highlights molecular and materials design strategies and potential applications in diverse therapeutic contexts, from chemotherapy to immunotherapy and gene therapy methods, and discusses future directions in this rapidly advancing domain.
Collapse
Affiliation(s)
- Xuancheng Fu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
5
|
Dong G, Jia L, Gao S, Lin M, Wang R, Yang F, Ruan J, Lv Y. In vitro and in vivo investigation of the inhibitory effects of Sinoporphyrin sodium-mediated Sonodynamic therapy on human oral squamous cell carcinoma. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113061. [PMID: 39532015 DOI: 10.1016/j.jphotobiol.2024.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Sonodynamic therapy (SDT) is an innovative, non-invasive approach to cancer treatment, by using low-intensity ultrasound to trigger the activation of sonosensitizers localized within cancerous cells. This current study aimed to explore the therapeutic efficacy of a new sonosensitizer, Sinoporphyrin Sodium (DVDMS), under ultrasound irradiation, against oral squamous cell carcinoma (OSCC)-derived SCC-154 cells, both in vitro and in vivo. METHODS Fluorescence spectra, cytotoxicity assessments, uptake mechanisms, and subcellular distributions of DVDMS within the SCC-154 cell line were detected. Additionally, the study comprehensively assessed the antitumor effect, oxidative stress responses, apoptosis, apoptosis-related proteins, autophagic processes, and ultrastructural changes in SCC-154 cells, both in vitro and in vivo, subsequent to treatment with low-intensity ultrasound (at 1.0 MHz, 1 W/cm2 in vitro and 3 W/cm2 in vivo) in conjunction with DVDMS also being examined. RESULTS The findings indicate that SCC-154 cells exhibit heightened sensitivity to DVDMS compared to SAS and HSC-3 cell lines. Within SCC-154 cells, DVDMS primarily localizes within the mitochondria and lysosomes. DVDMS-based SDT significantly increased the intracellular levels of reactive oxygen species (ROS), induced morphological changes such as mitochondrial swelling and formation of autolysosomes, and exhibited a notable dose-dependent reduction in cell viability in vitro. Also, DVDMS-SDT demonstrated significant inhibition of xenograft growth without discernible adverse effects. Mechanistically, DVDMS-SDT upregulated Bax expression while downregulating Bcl-2 expression, which led to the Bax/Bcl-2 ratio and induced autophagy. CONCLUSION DVDMS-SDT triggers mitochondrial-dependent apoptosis in SCC-154 cells, unlike 5-ALA and protoporphyrin IX (PpIX). Also, the combination of DVDMS with ultrasound stimulation induces autophagy, with the onset of autophagic processes preceding apoptosis.
Collapse
Affiliation(s)
- Guogang Dong
- Department of Anatomy, Harbin Medical University, Harbin 150086, China; Department of Radiology, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China
| | - Limin Jia
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Shuhua Gao
- Department of Second Assigned Outpatient, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China
| | - Monan Lin
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Ruilin Wang
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Fuyu Yang
- Department of Anatomy, Harbin Medical University, Harbin 150086, China
| | - Juanjuan Ruan
- War Trauma Treatment Center, The General Hospital of Eastern Theater Command of the Chinese People's Liberation Army (PLA), Nanjing 210002, China.
| | - Yanhong Lv
- Department of Anatomy, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
6
|
Martínez SR, Odella E, Ibarra LE, Sosa Lochedino A, Wendel AB, Durantini AM, Chesta CA, Palacios RE. Conjugated polymer nanoparticles as sonosensitizers in sono-inactivation of a broad spectrum of pathogens. ULTRASONICS 2024; 137:107180. [PMID: 37847942 DOI: 10.1016/j.ultras.2023.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023]
Abstract
Sonodynamic inactivation (SDI) of pathogens has an important advantage when compared to optical excitation-based protocols due to the deeper penetration of ultrasound (US) excitation in biological media or animal tissue. Sonosensitizers (SS) are compounds or systems that upon US stimulation in the therapeutic window (frequency = 0.8-3 MHz and intensity < 3 W/cm2) can induce damage to vital components of pathogenic microorganisms. Herein, we report the synthesis and application of conjugated polymer nanoparticles (CPNs) as an efficient SS in SDI of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae and Candida tropicalis. A frequent problem in the design and testing of new SS for SDI is the lack of proper sonoreactor characterization which leads to reproducibility concerns. To address this issue, we performed dosimetry experiments in our setup. This enables the validation of our results by other researchers and facilitates meaningful comparisons with different SDI systems in future studies. On a different note, it is generally accepted that the mechanisms of action underlying SS-mediated SDI involve the production of reactive oxygen species (ROS). In an attempt to establish the nature of the cytotoxic species involved in our CPNs-based SDI protocol, we demonstrated that singlet oxygen (1O2) does not play a major role in the observed sonoinduced killing effect. SDI experiments in planktonic cultures of optimally growing pathogens using CPNs result in a germicide effect on the studied pathogenic microorganisms. The implementation of SDI protocols using CPNs was further tested in mature biofilms of a MRSA resulting in ∼40 % reduction of biomass and ∼70 % reduction of cellular viability. Overall, these results highlight the unique and unexplored capacity of CPNs to act as sonosensitizers opening new possibilities in the design and application of novel inactivation protocols against morbific microbes.
Collapse
Affiliation(s)
- Sol R Martínez
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Emmanuel Odella
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Luis E Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), UNRC y CONICET, Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Arianna Sosa Lochedino
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Ana B Wendel
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Física, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina
| | - Andrés M Durantini
- Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina
| | - Carlos A Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| | - Rodrigo E Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto (UNRC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Río Cuarto X5804BYA, Córdoba, Argentina; Departamento de Química. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Río Cuarto X5804BYA, Córdoba, Argentina.
| |
Collapse
|
7
|
Liu X, Lai J, Su J, Zhang K, Li J, Li C, Ning Z, Wang C, Zhu B, Li Y, Zhao M. Selenadiazole Inhibited Adenovirus-Induced Apoptosis through the Oxidative-Damage-Mediated Bcl-2/Stat 3/NF-κB Signaling Pathway. Pharmaceuticals (Basel) 2023; 16:1474. [PMID: 37895944 PMCID: PMC10610542 DOI: 10.3390/ph16101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Human adenovirus type 7 (HAdV7) infection causes severe pneumonia, yet there are still no breakthroughs in treatment options for adenovirus, and the road to antiviral drug development faces major challenges. We attempted to find new drugs and we stumbled upon one: selenadiazole. Selenadiazole has been shown to have significant anti-tumor effects due to its unique chemical structure and drug activity. However, its effectiveness against viruses has not been evaluated yet. In our study, selenadiazole also showed superior antiviral activity. In vitro experiments, selenadiazole was able to inhibit adenovirus-mediated mitochondrial-oxidative-damage-related apoptosis, and in in vivo experiments, selenadiazole was able to inhibit apoptosis by modulating the apoptotic signaling pathway Bcl-2/Stat3/NF-κB, etc., and was able to largely attenuate adenovirus-infection-induced pneumonia and lung injury in mice. This study aims to describe a new antiviral treatment option from the perspective of anti-adenovirus-mediated oxidative stress and its associated apoptosis and to provide theoretical guidance for the treatment of clinical adenovirus infection to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yinghua Li
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| | - Mingqi Zhao
- Center Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510120, China; (X.L.); (J.L.); (J.S.); (J.L.); (C.L.); (Z.N.); (C.W.); (B.Z.)
| |
Collapse
|
8
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
9
|
Snehota M, Kolarikova M, Vachutka J, Hosikova B, Balazova K, Dolezal L, Kolarova H. Newly Designed 3D-Printed Sonication Test Cell Optimized for In Vitro Sonication Experiments. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00167-9. [PMID: 37330389 DOI: 10.1016/j.ultrasmedbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVE Precise control over the ultrasound field parameters experienced by biological samples during sonication experiments in vitro may be quite challenging. The main goal of this work was to outline an approach to construction of sonication test cells that would minimize the interaction between the test cells and ultrasound. METHODS Optimal dimensions of the test cell were determined through measurements conducted in a water sonication tank using 3D-printed test objects. The offset of local acoustic intensity variability inside the sonication test cell was set to value of ±50% of the reference value (i.e., local acoustic intensity measured at last axial maximum in the free-field condition). The cytotoxicity of several materials used for 3D printing was determined using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. RESULTS The sonication test cells were 3D printed from polylactic acid material, which was not toxic to the cells. Silicone membrane HT-6240, which was used to construct the bottom of the test cell, was found to reduce ultrasound energy minimally. Final ultrasound profiles inside the sonication test cells indicated the desired variability of local acoustic intensity. The cell viability in our sonication test cell was comparable to that of commercial culture plates with bottoms constructed with silicone membrane. CONCLUSION An approach to construction of sonication test cells minimizing the interaction of the test cell and ultrasound has been outlined.
Collapse
Affiliation(s)
- Martin Snehota
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Marketa Kolarikova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jaromir Vachutka
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.
| | - Klara Balazova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ladislav Dolezal
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
10
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
11
|
Yang Y, Huang J, Liu M, Qiu Y, Chen Q, Zhao T, Xiao Z, Yang Y, Jiang Y, Huang Q, Ai K. Emerging Sonodynamic Therapy-Based Nanomedicines for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204365. [PMID: 36437106 PMCID: PMC9839863 DOI: 10.1002/advs.202204365] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/25/2022] [Indexed: 05/08/2023]
Abstract
Cancer immunotherapy effect can be greatly enhanced by other methods to induce immunogenic cell death (ICD), which has profoundly affected immunotherapy as a highly efficient paradigm. However, these treatments have significant limitations, either by causing damage of the immune system or limited to superficial tumors. Sonodynamic therapy (SDT) can induce ICD to promote immunotherapy without affecting the immune system because of its excellent spatiotemporal selectivity and low side effects. Nevertheless, SDT is still limited by low reactive oxygen species yield and the complex tumor microenvironment. Recently, some emerging SDT-based nanomedicines have made numerous attractive and encouraging achievements in the field of cancer immunotherapy due to high immunotherapeutic efficiency. However, this cross-cutting field of research is still far from being widely explored due to huge professional barriers. Herein, the characteristics of the tumor immune microenvironment and the mechanisms of ICD are firstly systematically summarized. Subsequently, the therapeutic mechanism of SDT is fully summarized, and the advantages and limitations of SDT are discussed. The representative advances of SDT-based nanomedicines for cancer immunotherapy are further highlighted. Finally, the application prospects and challenges of SDT-based immunotherapy in future clinical translation are discussed.
Collapse
Affiliation(s)
- Yunrong Yang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Jia Huang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Min Liu
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Yige Qiu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yuqi Yang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| | - Qiong Huang
- Department of PharmacyXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
- Hunan Provincial Key Laboratory of Cardiovascular ResearchXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410078P. R. China
| |
Collapse
|
12
|
Zhao Y, Zhang X, Zhang X, Shen G, Li W, Wang Q. Integrinβ1/FAK/ERK signalling pathway is essential for Chinese mitten crab Eriocheir sinensis hemocyte survival. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108473. [PMID: 36470403 DOI: 10.1016/j.fsi.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Integrins are cellular adhesion molecules that mediate cell-cell, cell-extracellular matrix, and cell-pathogen interactions. Integrins can stimulate various signaling pathways by binding to different ligands, thereby exerting immunological functions. While integrins have been found to primarily play a role in bacterial agglutination, phagocytosis, and inhibition of apoptosis in invertebrates, the specific signaling pathway and mechanism of action remain unclear. In vertebrates, β1 integrin and extracellular matrix interactions can associate with focal adhesion kinase (FAK) to initiate MAPK/ERK signaling and regulate cell survival; however, in invertebrates (e.g., Chinese mitten crab), the mechanisms of integrins are poorly understood. The purpose of this study was to investigate whether integrinβ1/FAK activation of the MAPK/ERK pathway regulates hemocyte survival and the associated mechanism. Treatment with an integrinβ1 inhibitor RGD (a conserved tripeptide Arg-Gly-Asp), decreased the levels of FAK and ERK expression and phosphorylation, followed by an intensification of apoptosis. Similar results were obtained following siRNA knockdown of integrinβ1 expression. We further found that the attenuation of ERK phosphorylation enhanced the level of Caspase-3 expression. Together, these findings suggest that integrinβ1 activates the FAK/ERK signaling cascade and is involved in the survival of Chinese mitten crab hemocytes.
Collapse
Affiliation(s)
- Yuehong Zhao
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaoli Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaona Zhang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqing Shen
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense and Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
13
|
Effect of ultrasound with methylene blue as sound sensitive agent on virus inactivation. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
14
|
Zhou HY, Chen Y, Li P, He X, Zhong J, Hu Z, Liu L, Chen Y, Cui G, Sun D, Zheng T. Sonodynamic therapy for breast cancer: A literature review. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Breast cancer (BC) is a malignant tumor with the highest incidence among women. Surgery, radiotherapy, and chemotherapy are currently used as the first-line methods for treating BC. Sonodynamic therapy (SDT) in combination with sonosensitizers exerts a synergistic effect. The therapeutic effects of SDT depend on factors, such as the intensity, frequency, and duration of ultrasound, and the type and the biological model of sonosensitizer. Current reviews have focused on the possibility of using tumor-seeking sonosensitizers, sometimes in combination with different therapies, such as immunotherapy. This study elucidates the therapeutic mechanism of interaction between SDT and tissue as well as the current progress in medical applications of SDT to BC.
Collapse
Affiliation(s)
- Hai-ying Zhou
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yi Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Ping Li
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Xiaoxin He
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Jieyu Zhong
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Zhengming Hu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Li Liu
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Yun Chen
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Guanghui Cui
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Desheng Sun
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| | - Tingting Zheng
- Department of Ultrasonography, Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Institute of Ultrasound Medicine, Shenzhen-PKU-HKUST Medical Center , Shenzhen , 518036 , China
| |
Collapse
|
15
|
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, Cui D. Recent developments of sonodynamic therapy in antibacterial application. NANOSCALE 2022; 14:12999-13017. [PMID: 36052726 DOI: 10.1039/d2nr01847k] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid emergence of pathogenic bacteria poses a serious threat to global health. Notably, traditional antibiotic therapies suffer from the risk of strengthening bacterial drug resistance. Sonodynamic therapy (SDT) combining sonosensitizers and low-intensity ultrasound (US) has broadened the way towards treating drug-resistant bacteria. The allure of this therapy emerges from the capacity to focus the US energy on bacterial infection sites buried deep in tissues, locally activating the sonosensitizers to produce cytotoxic reactive oxygen species (ROS) with the ability to induce bacterial death. The past decade has witnessed the rapid development of antibacterial SDT owing to their excellent penetration, favorable biocompatibility and specific targeting ability. This review summarizes available sonosensitizers for antibacterial SDT, and digs into innovative biotechnologies to improve SDT efficiency, such as enhancing the targeting ability of sonosensitizers, image-guided assisted SDT, improvement of hypoxia and combination of SDT with other therapies. Finally, we conclude with the present challenges and provide insights into the future research of antibacterial SDT.
Collapse
Affiliation(s)
- Ruhao Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
- State Key Laboratory of Ocean Engineering, Key Laboratory of Hydrodynamics of Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China
| | - Qianwen Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ang Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Ning Tang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P.R. China.
- National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, 28 Jiangchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
16
|
Investigation of Sonosensitizers Based on Phenothiazinium Photosensitizers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The main advantage of sonodynamic therapy (SDT), the combining of ultrasound with a sonosensitizer, over photodynamic therapy (PDT) is that ultrasound penetrates deeper into tissues to activate the sonosensitizer, which offers noninvasive therapy for tumors in a site-oriented approach. In this study, we synthesized two symmetrical phenothiazine derivatives in which the methyl groups of MB (methylene blue) have been replaced by a hexyl and hydroxyethyl chains, named 3,7-bis(dihexylamino)-phenothiazin-5-ium iodide (MB6C) and 3,7-bis(di(2-hydroxyethyl)amino)-phenothiazin-5-ium iodide (MBOH), respectively. We explore the efficiency differences between PDT and SDT induced by these phenothiazine derivatives based on the standard of methylene blue (MB). Spectral studies indicate that these MB analogs exhibit sonosensitization ability with a similar tendency to the photosensitization ability. This means that MB, MBOH, and MB6C can be potential photosensitizers and sonosensitizers. After biological evaluation, we conclude that compound MB6C is a potential PDT and SDT candidate because it exhibits higher uptake, efficient intracellular phototoxicity and sonotoxicity over MB and MBOH, with IC50 values of ~2.5 µM and ~5 µM, respectively.
Collapse
|
17
|
Lei H, Kim JH, Son S, Chen L, Pei Z, Yang Y, Liu Z, Cheng L, Kim JS. Immunosonodynamic Therapy Designed with Activatable Sonosensitizer and Immune Stimulant Imiquimod. ACS NANO 2022; 16:10979-10993. [PMID: 35723442 DOI: 10.1021/acsnano.2c03395] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sonodynamic therapy (SDT) has garnered extensive attention as a noninvasive treatment for deep tumors. Furthermore, imiquimod (R837), an FDA-approved toll-like receptor 7 agonist, is commonly used in clinical settings as an immune adjuvant. We prepared an activatable sonodynamic sensitizer platform (MR) based on glutathione-sensitive disulfide bonds linking Leu-MB, the reduced form of methylene blue (MB), and R837 to achieve efficient combinatory SDT and immunotherapy for tumors without harming normal tissues. We also used the amphiphilic polymer C18PMH-PEG to create self-assembled MB-R837-PEG (MRP) nanoparticles for immunosonodynamic therapy (iSDT). iSDT is a cancer treatment that combines activatable SDT and immunotherapy. Our iSDT demonstrated an excellent sonodynamic effect only at the tumor site, demonstrating high specificity in killing tumor cells when compared to SDT reported in the literature. The iSDT improves its tumor-killing effect by inducing an immune response, which is accomplished by secreted immune adjuvants in the tumor site. MRP was selectively activated by glutathione in the tumor microenvironment to release MB and R837, exhibiting excellent antitumor sonodynamic and immune responses. In addition, when combined with an α-PD-L1 antibody for immune checkpoint blockade, this therapy effectively inhibited tumor metastasis. Furthermore, mice treated with iSDT and α-PD-L1 antibody did not develop tumors even after tumor reinoculation, indicating that long-term immune memory was achieved. The concept of sonodynamic sensitizer preparation as a next-generation iSDT based on a noninvasive synergistic therapeutic modality applicable in the near future is presented in this study.
Collapse
Affiliation(s)
- Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuqi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
18
|
Wang X, Wu M, Li H, Jiang J, Zhou S, Chen W, Xie C, Zhen X, Jiang X. Enhancing Penetration Ability of Semiconducting Polymer Nanoparticles for Sonodynamic Therapy of Large Solid Tumor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104125. [PMID: 34989170 PMCID: PMC8867194 DOI: 10.1002/advs.202104125] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Indexed: 05/19/2023]
Abstract
Sonodynamic therapy (SDT) holds growing promise in deep-seated or large solid tumor treatment owing to its high tissue penetration depth ability; however, its therapeutic efficacy is often compromised due to the hypopermeable and hypoxic characteristics in the tumor milieu. Herein, a semiconducting polymer nanoparticle (SPNC) that synergistically enhances tumor penetration and alleviates tumor hypoxia is reported for sonodynamic therapy of large solid tumors. SPNC comprises a semiconducting polymer nanoparticle core as a sonodynamic converter coated with a poly (ethylene glycol) corona. An oxygen-modulating enzyme, catalase, is efficiently conjugated to the surface of nanoparticles via the coupling reaction. Superior to its counterpart SPNCs (SPNC2 (84 nm) and SPNC3 (134 nm)), SPNC with the smallest size (SPNC1 (35 nm)) can efficiently penetrate throughout the tumor interstitium to alleviate whole tumor hypoxia in a large solid tumor model. Upon ultrasound (US) irradiation, SPNC1 can remotely generate sufficient singlet oxygen to eradicate tumor cells at a deep-tissue depth. Such a single treatment of SPNC1-medicated sonodynamic therapy effectively inhibits tumor growth in a large solid tumor mouse model. Therefore, this study provides a generalized strategy to synergistically overcome both poor penetration and hypoxia of large tumors for enhanced cancer treatment.
Collapse
Affiliation(s)
- Xin Wang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Jianli Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Chen Xie
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing University of Posts & TelecommunicationsNanjing210023P. R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
19
|
Araújo Martins Y, Zeferino Pavan T, Fonseca Vianna Lopez R. Sonodynamic therapy: Ultrasound parameters and in vitro experimental configurations. Int J Pharm 2021; 610:121243. [PMID: 34743959 DOI: 10.1016/j.ijpharm.2021.121243] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/07/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023]
Abstract
Sonodynamic therapy (SDT) is a new therapeutic modality for noninvasive cancer treatment based on the association of ultrasound and sonosensitizer drugs. Up to date, there is not a consensus on the standardization of the experimental conditions for the in vitro studies to correctly assess cell viability during SDT. Therefore, this review article mainly describes how the main ultrasound parameters and experimental setups of ultrasound application in vitro studies can influence the SDT bioeffects/response. The sonodynamic action is impacted by the combination of frequency, intensity, duty cycle, and ultrasound application time. The variation of experimental setups in cell culture, such as the transducer position, cell-transducer distance, coupling medium thickness, or type of culture, also influences the sonodynamic response. The intensity, duty cycle, and sonication duration increase cytotoxicity and reactive oxygen species production. For similar ultrasound parameters, differences in the experimental configuration impact cell death in vitro. Four main experimental setups are used to assess for SDT in cell culture (i) a planar transducer placed directly in contact with the bottom of the culture microplate; (ii) microplate positioned in the transducer's far-field using a water tank; (iii) sealed cell culture tubes immersed in water away from the transducer; and (iv) transducer dipped directly into the well with cell culture. Because of the significant variations in the experimental setups, sonodynamic response can significantly vary, and the translation of these results for in vivo experimentation is difficult. Therefore, a well-designed and detailed in vitro experimental setup is vital for understanding the interactions among the biological medium, the sonosensitizer, and the ultrasound for the in vitro to in vivo translation in SDT.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil
| | - Theo Zeferino Pavan
- Department of Physics, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP-USP), University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renata Fonseca Vianna Lopez
- Pharmaceutical Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (FCFRP-USP), Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
20
|
Salahuddin N, Akelah A, Elnagar M, Abdelwahab MA. Antibacterial and cytotoxicity of methylene blue loaded-cellulose nanocarrier on breast cancer cell line. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
21
|
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic Sonosensitizers for Sonodynamic Therapy: From Small Molecules and Nanoparticles toward Clinical Development. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101976. [PMID: 34350690 DOI: 10.1002/smll.202101976] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Sonodynamic therapy (SDT) is a novel noninvasive therapeutic modality that combines low-intensity ultrasound and sonosensitizers. Versus photo-mediated therapy, SDT has the advantages of deeper tissue penetration, high accuracy, and less side effects. Sonosensitizers are critical for therapeutic efficacy during SDT and organic sonosensitizers are important because of their clear structure, easy monitoring, evaluation of drug metabolism, and clinical transformation. Notably, nanotechnology can be used in the field of sonosensitizers and SDT to overcome the inherent obstacles and achieve sustainable innovation. This review introduces organic small molecule sonosensitizers, nano organic sonosensitizers, and their clinical translation by providing ideas and references for the design of sonosensitizers and SDT so as to promote its transformation to clinical applications in the future.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Yang
- Department of Cardiovascular, Xiang'an Hospital of Xiamen University, Xiamen, 361102, China
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jie Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Engineering Research Center of Eye Regenerative Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
22
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
23
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
24
|
Adelnia A, Mokhtari-Dizaji M, Hoseinkhani S, Bakhshandeh M. The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue. Skin Res Technol 2020; 27:376-384. [PMID: 33085810 DOI: 10.1111/srt.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND We investigated the effect of dual-frequency sonication on the viability of B16F10 melanoma cells in the presence of methylene blue (MB) encapsulated in nanoliposomes. METHODS Treatment protocols were studied: sonication groups (40 kHz, 1 MHz and dual-frequency), the same sonication groups with nanoliposomes containing MB, MB free and nanoliposomes containing MB groups, and so sham and control groups. The nanoliposomes were prepared by the lipid film hydration method. The cell viability of the different treatment groups was evaluated by the MTT assay. RESULTS The dual-frequency protocols caused higher viability losses compared to the kHz and MHz sonications (P < .05). In presence of the nanoliposomes containing MB, dual frequency led to 6% and 3% viability for 600 and 1200 seconds, respectively, while the corresponding values were 10% and 4% for the 40 kHz protocols and 22% and 9% for the 1 MHz, as compared to the control group (100%). The result of KI dosimetry showed that the cavitation activity of the dual-frequency protocol was about 1.23, as compared to sonication at 40 kHz and 1 MHz. CONCLUSION Enhancement of inertial cavitation induction by dual-frequency sonication may be the primary effective mechanism, which causes increased sonochemical processes and drug release from nanocarriers.
Collapse
Affiliation(s)
- Akbar Adelnia
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hoseinkhani
- Department of Biochemistry, Faculty of Biosciences, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Bakhshandeh
- Department of Radiology Technology, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Snehota M, Vachutka J, Ter Haar G, Dolezal L, Kolarova H. Therapeutic ultrasound experiments in vitro: Review of factors influencing outcomes and reproducibility. ULTRASONICS 2020; 107:106167. [PMID: 32402858 DOI: 10.1016/j.ultras.2020.106167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 05/07/2023]
Abstract
Current in vitro sonication experiments show immense variability in experimental set-ups and methods used. As a result, there is uncertainty in the ultrasound field parameters experienced by sonicated samples, poor reproducibility of these experiments and thus reduced scientific value of the results obtained. The scope of this narrative review is to briefly describe mechanisms of action of ultrasound, list the most frequently used experimental set-ups and focus on a description of factors influencing the outcomes and reproducibility of these experiments. The factors assessed include: proper reporting of ultrasound exposure parameters, experimental geometry, coupling medium quality, influence of culture vessels, formation of standing waves, motion/rotation of the sonicated sample and the characteristics of the sample itself. In the discussion we describe pros and cons of particular exposure geometries and factors, and make a few recommendations as to how to increase the reproducibility and validity of the experiments performed.
Collapse
Affiliation(s)
- Martin Snehota
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| | - Jaromir Vachutka
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic.
| | - Gail Ter Haar
- Joint Department of Physics and Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London and The Royal Marsden NHS Foundation Trust, Sutton, London SM2 5PT, United Kingdom
| | - Ladislav Dolezal
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 775 15, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 5, Olomouc 779 00, Czech Republic
| |
Collapse
|
26
|
Mazur S, Rzymowska J, Grzybowska-Szatkowska L. Contemporary directions of application of low power ultrasounds in anticancer therapy. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the recent years, research has been conducted on the role of ultrasounds (US) in anticancer therapy. Although the mechanisms of impact on cancer cells have not yet been fully understood, it is known that the best results are obtained using low power ultrasound. Currently applying ultrasounds to organisms is considered in three areas of influence: thermal (thermic effect), cavitation (cavitation effect), other than thermal and cavitation ones (non-thermal, non-cavitation effect). Under the influence of ultrasonic wave with low power, the absorption of drugs is increased as well as of anti-angiogenic activity. Sonodynamic therapy is aimed at destroying dividing cancer cells through the formation of free radicals in the cavitation mechanism and in the presence of sonosensitizers. At the same time under the influence of US, local hyperthermia is generated. In vivo studies showed a synergistic increase in cytotoxicity due to the effects of ultrasonic hyperthermia and adriamycin. The thermal effect and inertial cavitation are described as two factors induced by US, which may lead to damage to the vascular network within the neoplastic lesion. A proportional increase in tumor echogenicity to the frequency range of the applied ultrasound wave has been demonstrated. The strategy of combining US with photosensitizers, chemotherapeutics or contrast agents is gaining more and more recognition. Obtained results from inter developed studies on antineoplastic sonodynamic therapy indicate that it may become a new additional cancer treatment strategy.
Collapse
Affiliation(s)
- Sebastian Mazur
- Department of Physiotherapy, Independent Public Teaching Hospital No 1 in Lublin, Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University, Lublin, Poland
| | | |
Collapse
|
27
|
Lin H, Li S, Wang J, Chu C, Zhang Y, Pang X, Lv P, Wang X, Zhao Q, Chen J, Chen H, Liu W, Chen X, Liu G. A single-step multi-level supramolecular system for cancer sonotheranostics. NANOSCALE HORIZONS 2019; 4:190-195. [PMID: 32254155 DOI: 10.1039/c8nh00276b] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A multi-level supramolecular system produced by single-step Fe3+-mediated ionic crosslinking self-assembly can overcome the critical issues of current sonodynamic therapy (SDT) and address the need to monitor therapeutic effects in vivo with a non-invasive approach. This rational design of organic sonosensitizer-based formulation shows great potential for clinical SDT against deep-seated cancer.
Collapse
Affiliation(s)
- Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sonodynamic Therapy on Intracranial Glioblastoma Xenografts Using Sinoporphyrin Sodium Delivered by Ultrasound with Microbubbles. Ann Biomed Eng 2018; 47:549-562. [DOI: 10.1007/s10439-018-02141-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022]
|
29
|
Qian X, Zheng Y, Chen Y. Micro/Nanoparticle-Augmented Sonodynamic Therapy (SDT): Breaking the Depth Shallow of Photoactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8097-8129. [PMID: 27384408 DOI: 10.1002/adma.201602012] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/28/2016] [Indexed: 05/08/2023]
Abstract
The fast development of photoactivation for cancer treatment provides an efficient photo-therapeutic strategy for cancer treatment, but traditional photodynamic or photothermal therapy suffers from the critical issue of low in vivo penetration depth of tissues. As a non-invasive therapeutic modality, sonodynamic therapy (SDT) can break the depth barrier of photoactivation because ultrasound has an intrinsically high tissue-penetration performance. Micro/nanoparticles can efficiently augment the SDT efficiency based on nanobiotechnology. The state-of-art of the representative achievements on micro/nanoparticle-enhanced SDT is summarized, and specific functions of micro/nanoparticles for SDT are discussed, from the different viewpoints of ultrasound medicine, material science and nanobiotechnology. Emphasis is put on the relationship of structure/composition-SDT performance of micro/nanoparticle-based sonosensitizers. Three types of micro/nanoparticle-augmented SDT are discussed, including organic and inorganic sonosensitizers and micro/nanoparticle-based but sonosensitizer-free strategies to enhance the SDT outcome. SDT-based synergistic cancer therapy augmented by micro/nanoparticles and their biosafety are also included. Some urgent critical issues and potential developments of micro/nanoparticle-augmented SDT for efficient cancer treatment are addressed. It is highly expected that micro/nanoparticle-augmented SDT will be quickly developed as a new and efficient therapeutic modality which will find practical applications in cancer treatment. At the same time, fundamental disciplines regarding materials science, chemistry, medicine and nanotechnology will be advanced.
Collapse
Affiliation(s)
- Xiaoqin Qian
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, P. R. China
| | - Yuanyi Zheng
- Sixth Affiliated Hospital of Shanghai Jiaotong University & Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, P. R. China.
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
30
|
Wang Z, Shao Y, Li C, Lv Z, Wang H, Zhang W, Zhao X. A β-integrin from sea cucumber Apostichopus japonicus exhibits LPS binding activity and negatively regulates coelomocyte apoptosis. FISH & SHELLFISH IMMUNOLOGY 2016; 52:103-110. [PMID: 26994670 DOI: 10.1016/j.fsi.2016.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Integrins are a family of membrane glycoproteins, which are the major receptors for extracellular matrix and cell-cell adhesion molecules. In this study, a 1038 bp sequence representing the full-length cDNA of a novel β-integrin subunit (designated as AjITGB) was cloned from Apostichopus japonicas by using combined transcriptome sequencing and RACE approaches. The deduced amino acid sequence of AjITGB shared a conserved tripeptide Arg-Gly-Asp (RGD) binding domain with an S-diglyceridecysteine or N-Palm cysteine residue (C(31)), a transmembrane domain, and a β-integrin cytoplasmic domain. Spatial distribution analysis showed that AjITGB was constitutively expressed in all tested tissues with dominant expression in the muscles and weak expression in the respiratory tree. The pathogen Vibrio splendidus challenge and LPS stimulation could both significantly down-regulate the mRNA expression of AjITGB. Functional investigation revealed that recombinant AjITGB displayed higher LPS binding activity but lower binding activity to PGN and MAN. More importantly, knockdown of AjITGB by specific siRNA resulted in the significant promotion of coelomocyte apoptosis in vitro. Results indicated that AjITGB may serve as an apoptosis inhibitor with LPS binding activity during host-pathogen interaction in sea cucumber.
Collapse
Affiliation(s)
- Zhenhui Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China.
| | - Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Haihong Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| | - Xuelin Zhao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
31
|
Ju D, Yamaguchi F, Zhan G, Higuchi T, Asakura T, Morita A, Orimo H, Hu S. Hyperthermotherapy enhances antitumor effect of 5-aminolevulinic acid-mediated sonodynamic therapy with activation of caspase-dependent apoptotic pathway in human glioma. Tumour Biol 2016; 37:10415-26. [PMID: 26846106 DOI: 10.1007/s13277-016-4931-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/28/2016] [Indexed: 01/08/2023] Open
Abstract
Sonodynamic therapy (SDT) has shown great potential as an approach for cancer treatment, and hyperthermotherapy (HT) is also a promising cancer therapy. Here, we investigate whether HT could improve the efficacy of SDT and to make a preliminary exploration on potential mechanism. Xenograft tumor was established in nude mice model, and SNB19 and U87MG glioma cell lines were utilized for in vitro experiment. Alamar blue assay was performed to assess cell viability. Optical microscope was used to characterize the morphology changes of the glioma cells induced by SDT and HT treatments. Apoptotic rate, mitochondrial membrane potential (MMP), and intracellular production of reactive oxygen species (ROS) were examined by flow cytometer. The cell apoptosis of tumor tissues were detected by TUNEL assay. Furthermore, the expression of apoptosis-related proteins was detected with Western blot in vitro and immunohistochemistry in vivo. SDT plus HT group could significantly reduce the cell viability with circular-cell morphological change, compared with SDT group, and cell viability was decreased depending on raise of 5-ALA concentration, ultrasound exposure time, and temperature. The results also indicate that HT increased a conspicuous apoptosis, ROS production, and a remarkable loss in MMP induced by 5-ALA-SDT in vitro. Meanwhile, our data also demonstrated that the combined treatment could significantly induce apoptosis and delay tumor growth in vivo. Furthermore, in both in vitro and in vivo experiments, SDT plus HT group expressed significantly higher protein levels of Bax and cleaved caspase-3, 8, and 9 compared to SDT, HT, and control groups and significantly lower protein level of bcl-2 than the other three groups, while the expression of these proteins was unchanged between HT and control groups. HT may provide an important promotion on 5-ALA-SDT and further propose that SDT in combination with HT is a new potential application for the treatment of human glioma.
Collapse
Affiliation(s)
- Donghui Ju
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.,Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Fumio Yamaguchi
- Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Guangzhi Zhan
- Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Tadashi Higuchi
- Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Takayuki Asakura
- Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Akio Morita
- Department of Neurological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Hideo Orimo
- Division of Metabolism and Nutrition, Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
32
|
Wang X, Ip M, Leung AW, Wang P, Zhang H, Hua H, Xu C. Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus. ULTRASONICS 2016; 65:137-44. [PMID: 26482395 DOI: 10.1016/j.ultras.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 05/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) commonly causes refractory infections and has recently become a serious public health concern. The present study was designed to investigate sonodynamic action of hypocrellin B on MRSA. A MRSA strain (ATCC BAA-43) was used in the present study. The dark toxicity of hypocrellin B on MRSA and its uptake in MRSA first were measured. And then bacteria were incubated with hypocrellin B and exposed to ultrasound. After sonodynamic treatment, colony forming unit assay and bacterial viability assay were conducted. Membrane permeability assay, DNA fragmentation assay, and DNA synthesis assay were also performed to examine the underlying mechanism. The results showed that hypocrellin B at concentrations of up to 500 μM had no toxicity to MRSA in the dark. After incubation for 50 min, hypocrellin B could be maximally absorbed by MRSA, and exhibited significant sonodynamic activity in a dose-dependent manner. The 5-log reduction in colony forming unit (CFU) was observed after hypocrellin B (40 μM) treatment at an intensity of 1.38 W/cm(2) ultrasound for 5 min. Compared to the control, hypocrellin B alone and ultrasound sonication alone group, more dead cells were found and bacterial membrane integrity was notably damaged after sonodynamic treatment of hypocrellin B. However, no remarkable DNA damage was found in MRSA after sonodynamic treatment of hypocrellin B. All the findings demonstrated that hypocrellin B could serve as a potential antibacterial sonosensitizer to significantly cause damage to the membrane integrity of MRSA and inhibit its growth under ultrasound sonication.
Collapse
Affiliation(s)
- Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heyu Hua
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
33
|
McHale AP, Callan JF, Nomikou N, Fowley C, Callan B. Sonodynamic Therapy: Concept, Mechanism and Application to Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:429-50. [PMID: 26486350 DOI: 10.1007/978-3-319-22536-4_22] [Citation(s) in RCA: 216] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sonodynamic therapy (SDT) represents an emerging approach that offers the possibility of non-invasively eradicating solid tumors in a site-directed manner. It involves the sensitization of target tissues with a non-toxic sensitizing chemical agent and subsequent exposure of the sensitized tissues to relatively low-intensity ultrasound. Essentially, both aspects (the sensitization and ultrasound exposure) are harmless, and cytotoxic events occur when both are combined. Due to the significant depth that ultrasound penetrates tissue, the approach provides an advantage over similar alternative approaches, such as photodynamic therapy (PDT), in which less penetrating light is employed to provide the cytotoxic effect in sensitized tissues. This suggests that sonodynamic therapy may find wider clinical application, particularly for the non-invasive treatment of less accessible lesions. Early SDT-based approaches employed many of the sensitizers used in PDT, although the manner in which ultrasound activates the sensitizer differs from activation events in PDT. Here we will review the currently accepted mechanisms by which ultrasound activates sensitizers to elicit cytotoxic effects. In addition, we will explore the breath of evidence from in-vitro and in-vivo SDT-based studies, providing the reader with an insight into the therapeutic potential offered by SDT in the treatment of cancer.
Collapse
Affiliation(s)
- Anthony P McHale
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| | - John F Callan
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK.
| | - Nikolitsa Nomikou
- Division of Surgery and Interventional Science, University College London, 4th Floor, 67-73 Riding House St, London, W1W 7EJ, England, UK
| | - Colin Fowley
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| | - Bridgeen Callan
- School of Pharmacy and Pharmaceutical Sciences, University of Ulster, Coleraine, Co. Derry, BT2 1SA, UK
| |
Collapse
|
34
|
Lv Z, Li C, Zhang W, Jin C, Shao Y, Xuemei D, Qingxi H. Nemo like kinase negatively regulates NF-κB activation and coelomocytes apoptosis in Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:109-115. [PMID: 26363086 DOI: 10.1016/j.dci.2015.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Nuclear factor kappa B (NF-κB) transcription factors are related to several physiological processes, including innate and acquired immunity. In this study, a novel negative regulator of the Nemo-like kinase (NLK) gene was identified from Apostichopus japonicus through PCR (denoted as AjNLK). The complete AjNLK cDNA was of 2335 bp, with a 5'-UTR of 315 bp, a 3'-UTR of 718 bp, and a putative ORF of 1302 bp, and encoded a polypeptide of 433 amino acid residues with a typical serine/threonine protein kinase domain. Blast analysis revealed that AjNLK shared a high degree of structural conservation with its counterparts from other invertebrates and vertebrates. Spatial expression analysis indicated that the expression of AjNLK mRNA transcripts was higher in the tentacles than that in coelomocytes. The expression of AjNLK mRNA in coelomocytes was suppressed after Vibrio splendidus challenge by 0.51-fold and 0.41-fold at 72 and 96 h, respectively, compared with that in the control group. Similarly, AjNLK expression was down-regulated in primary coelomocytes exposed to 1 μg mL(-1) lipopolysaccharide (LPS). Functional investigation further revealed that the NF-κB factor p105 was induced at both mRNA and protein levels after AjNLK silencing in vitro. Meanwhile, the apoptosis of LPS-induced coelomocytes was significantly inhibited in AjNLK siRNA-transfected coelomocytes. These results supported that AjNLK negatively regulated NF-κB activation and cell apoptosis in sea cucumber.
Collapse
Affiliation(s)
- Zhimeng Lv
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China.
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Chunua Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Yina Shao
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Duan Xuemei
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| | - Han Qingxi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province 315211, China
| |
Collapse
|
35
|
Wang X, Ip M, Leung AW, Yang Z, Wang P, Zhang B, Ip S, Xu C. Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli. ULTRASONICS 2015; 62:75-9. [PMID: 26026869 DOI: 10.1016/j.ultras.2015.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 05/19/2023]
Abstract
Bacterial contamination is an important cause of foodborne diseases. The present study aimed to investigate sonodynamic action of curcumin on foodborne bacteria Bacillus cereus (B. cereus) and Escherichia coli (E. coli). The uptake of curcumin was measured for optimizing the concentration incubation time before ultrasound sonication, and colony forming units (CFU) were counted after ultrasound treatment. The chromosomal DNA fragmentation of bacteria was analyzed and the effect of hypoxic condition on the antibacterial efficacy of sonodynamic action of curcumin was also assessed in this study. The results showed that the maximum uptake of curcumin in B. cereus and E. coli occurred in 50min after curcumin incubation. Curcumin had sonodynamic bactericidal activity in a curcumin dose-dependent manner, and 5.6-log reduction in CFU of B. cereus was observed after curcumin treatment (2.0μM), however, only 2-log reduction in CFU of E. coli after 40μM curcumin treatment. No significant change in chromosomal DNA was found after the combined treatment of curcumin and ultrasound. The survival of B. cereus and E. coli after sonodynamic treatment in hypoxic group was significantly higher than that in normal oxygen group. These findings indicated that sonodynamic action of curcumin had significant inactivation effect on foodborne bacteria, and B. cereus was more sensitive to sonodynamic treatment of curcumin than E. coli. Sonodynamic antibacterial activity of curcumin might be dependent on the oxygen environment.
Collapse
Affiliation(s)
- Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhengrong Yang
- Shenzhen Center of Disease Control and Prevention, Shenzhen, China
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Siupo Ip
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
36
|
Li Y, Zhou Q, Hu Z, Yang B, Li Q, Wang J, Zheng J, Cao W. 5-Aminolevulinic Acid-Based Sonodynamic Therapy Induces the Apoptosis of Osteosarcoma in Mice. PLoS One 2015; 10:e0132074. [PMID: 26161801 PMCID: PMC4498784 DOI: 10.1371/journal.pone.0132074] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/09/2015] [Indexed: 01/03/2023] Open
Abstract
Objective Sonodynamic therapy (SDT) is promising for treatment of cancer, but its effect on osteosarcoma is unclear. This study examined the effect of 5-Aminolevulinic Acid (5-ALA)-based SDT on the growth of implanted osteosarcoma and their potential mechanisms in vivo and in vitro. Methods The dose and metabolism of 5-ALA and ultrasound periods were optimized in a mouse model of induced osteosarcoma and in UMR-106 cells. The effects of ALA-SDT on the proliferation and apoptosis of UMR-106 cells and the growth of implanted osteosarcoma were examined. The levels of mitochondrial membrane potential (ΔψM), ROS production, BcL-2, Bax, p53 and caspase 3 expression in UMR-106 cells were determined. Results Treatment with 5-ALA for eight hours was optimal for ALA-SDT in the mouse tumor model and treatment with 2 mM 5-ALA for 6 hours and ultrasound (1.0 MHz 2.0 W/cm2) for 7 min were optimal for UMR-106 cells. SDT, but not 5-ALA, alone inhibited the growth of implanted osteosarcoma in mice (P<0.01) and reduced the viability of UMR-106 cells (p<0.05). ALA-SDT further reduced the tumor volumes and viability of UMR-106 cells (p<0.01 for both). Pre-treatment with 5-ALA significantly enhanced the SDT-mediated apoptosis (p<0.01) and morphological changes. Furthermore, ALA-SDT significantly reduced the levels of ΔψM, but increased levels of ROS in UMR-106 cells (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Moreover, ALA-SDT inhibited the proliferation of osteosarcoma cells and BcL-2 expression, but increased levels of Bax, p53 and caspase 3 expression in the implanted osteosarcoma tissues (p<0.05 or p<0.01 vs. the Control or the Ultrasound). Conclusions The ALA-SDT significantly inhibited osteosarcoma growth in vivo and reduced UMR-106 cell survival by inducing osteosarcoma cell apoptosis through the ROS-related mitochondrial pathway.
Collapse
Affiliation(s)
- Yongning Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Qi Zhou
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Zheng Hu
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Bin Yang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin, 150080, China
| | - Qingsong Li
- Cardiovascular Institute, the First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jianhua Wang
- Department of Anatomy, College of Basic Medical Sciences, Harbin Medical University, Harbin, 150080, China
| | - Jinhua Zheng
- Department of Anatomy, College of Basic Medical Sciences, Harbin Medical University, Harbin, 150080, China
| | - Wenwu Cao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
- Materials Research Institute, the Pennsylvania State University, University Park, PA, 16802, United States of America
- * E-mail:
| |
Collapse
|
37
|
He LL, Wang YX, Wu XX, Liu XP, Wang X, Liu B, Wang X. Enhancement of the binding affinity of methylene blue to site I in human serum albumin by cupric and ferric ions. LUMINESCENCE 2015; 30:1380-8. [PMID: 25833007 DOI: 10.1002/bio.2910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
In this work, the binding characteristics of methylene blue (MB) to human serum albumin (HSA) and the influence of Cu(2+) and Fe(3+) on the binding affinity of MB to HSA were investigated using fluorescence, absorption, circular dichroism (CD) spectroscopy and molecular modelling. The results of competitive binding experiments using the site probes ketoprofen and ibuprofen as specific markers suggested that MB was located in site I within sub-domain IIA of HSA. The molecular modelling results agreed with the results of competitive site marker experiments and the results of CD spectra indicated that the interaction between MB and HSA caused the conformational changes in HSA. The binding affinity of MB to HSA was enhanced but to a different extent in the presence of Cu(2+) and Fe(3+), respectively, which indicated that the influence of different metal ions varied. Enhancement of the binding affinity of MB to HSA in the presence of Cu(2+) is due to the formation of Cu(2+)-HSA complex leading to the conformational changes in HSA, whereas in the presence of Fe(3+), enhancement of the binding affinity is due to the greater stability of the Fe(3+)-HSA-MB complex compared with the MB-HSA complex.
Collapse
Affiliation(s)
- Ling-Ling He
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yong-Xia Wang
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xiao-Xia Wu
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xian-Ping Liu
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
38
|
Wood AKW, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:905-28. [PMID: 25728459 PMCID: PMC4362523 DOI: 10.1016/j.ultrasmedbio.2014.11.019] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 05/05/2023]
Abstract
The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy-sonodynamic therapy, ultrasound-mediated chemotherapy, ultrasound-mediated gene delivery and anti-vascular ultrasound therapy-was reviewed. Each technique consistently resulted in the death of cancer cells, and the bio-effects of ultrasound were attributed primarily to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform that can monitor the success of anti-cancer therapy. Little attention, however, has been given either to the direct assessment of the mechanisms underlying the observed bio-effects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data, there could be prompt application of a therapy technique in the treatment of cancer patients.
Collapse
Affiliation(s)
- Andrew K W Wood
- Department Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
39
|
Su X, Wang X, Liu Q, Wang P, Xu C, Leung AW. The role of Beclin 1 in SDT-induced apoptosis and autophagy in human leukemia cells. Int J Radiat Biol 2015; 91:472-9. [PMID: 25758178 DOI: 10.3109/09553002.2015.1021961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To prove the occurrence of autophagy after treatment by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (SDT) of human chronic myelogenous leukemia K562 cells as well as its relationship with apoptosis. MATERIALS AND METHODS The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium (MTT) assay was adopted to examine cytotoxicity of different treatments. Nuclear morphology changes were observed under a fluorescence microscopy with 4'-6-Diamidino-2-Phenylindole (DAPI) staining. Western blotting was used to analyze the expression of caspase-3, Beclin 1 (BECN 1) and the conversion of LC3- phosphatidylethanolamine conjugate/a cytosolic form of LC3 (LC3 II/I). Fluorescence microscope was used to identify the formation of autophagic vacuoles (AVO) during autophagy. RESULTS Under optimal conditions, SDT was shown to induce autophagy in K562 cells, which caused the up-regulation of Beclin-1 and the formation of AVO. In addition, pre-treatment of cancer cells with Beclin 1-targeted short hairpin RNA (Beclin 1 shRNA) was shown to reduce the level of LC3-II accumulation and staining with punctate spots of monodansylcadaverine (MDC) staining. Besides, the cytotoxic effect of SDT was significantly increased by Beclin 1 shRNA. Furthermore, studies showed a marked effect on the apoptosis of cells by Beclin 1 shRNA to sonodamage with increased DAPI staining and caspase-3 cleavage. CONCLUSIONS These results demonstrated that SDT significantly induced autophagy of K562 cells, probably to protect the K562 cells from sonodamage.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University , Xi'an, Shaanxi , China
| | | | | | | | | | | |
Collapse
|
40
|
Su X, Wang P, Yang S, Zhang K, Liu Q, Wang X. Sonodynamic therapy induces the interplay between apoptosis and autophagy in K562 cells through ROS. Int J Biochem Cell Biol 2015; 60:82-92. [PMID: 25578562 DOI: 10.1016/j.biocel.2014.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/15/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
Abstract
Sonodynamic therapy (SDT) is a relatively new approach in the treatment of various cancers including leukemia cells. The aim of this study is to investigate the occurrence of apoptosis and autophagy after treated by protoporphyrin IX (PpIX)-mediated SDT (PpIX-SDT) on human leukemia K562 cells as well as the relationship between them. Firstly, mitochondrial-dependent apoptosis was observed through morphological observation and biochemical analysis. Meanwhile, SDT was shown to induce autophagy in K562 cells, which caused an increase in EGFP-LC3 puncta cells, a conversion of LC3 II/I, formation of acidic vesicular organelles (AVOs) and co-localization between LC3 and LAMP2 (a lysosome marker). Besides, pretreatment with autophagy inhibitor 3-MA or bafilomycin A1 was shown to provide protection against autophagy and to enhance SDT-induced apoptosis and necrosis, while the apoptosis suppressor z-VAD-fmk failed to affect formation of autophagic vacuoles or partially prevented SDT-induced cytotoxicity, which suggested that SDT-induced autophagy functioned as a survival mechanism. Additionally, this study reported apparent apoptosis and autophagy with dependence on intracellular reactive oxygen species (ROS) production. Preliminary data showed that ROS scavenger N-acetylcysteine (NAC) effectively blocked the SDT induced accumulation of ROS, reversed sono-damage, cell apoptosis and autophagy. Taken together, these data indicate that autophagy may be cytoprotective in our experimental system, and the ROS caused by PpIX-SDT treatment may play an important role in initiating apoptosis and autophagy.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shuang Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Kun Zhang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Quanhong Liu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaobing Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China.
| |
Collapse
|
41
|
He LL, Wang X, Wu XX, Wang YX, Kong YM, Wang X, Liu BM, Liu B. Protein damage and reactive oxygen species generation induced by the synergistic effects of ultrasound and methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 134:361-366. [PMID: 25025307 DOI: 10.1016/j.saa.2014.06.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/10/2014] [Accepted: 06/21/2014] [Indexed: 06/03/2023]
Abstract
The sonodynamic damage to protein in the presence of methylene blue (MB) and the various influencing factors including ultrasonic irradiation time and MB concentration on the damage of protein were studied by fluorescence and absorption spectra. In addition, the mechanisms of the synergistic effects of ultrasound and MB were studied by oxidation-extraction photometry with several reactive oxygen species (ROS) scavengers. The results indicated that the damage of protein induced by the synergistic effects of ultrasound and MB were more serious than those that ultrasound or MB alone was applied. The damage of protein could be mainly due to the generation of ROS. The damage degree of protein increased with the increase of ultrasonic irradiation time and MB concentration because of the increased quantities of ROS generation. Both (1)O₂ and ·OH were the important mediators of the ultrasound-inducing protein damage in the presence of MB.
Collapse
Affiliation(s)
- Ling-Ling He
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| | - Xiao-Xia Wu
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yong-Xia Wang
- College of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yu-Mei Kong
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bing-Mi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| |
Collapse
|
42
|
Wang X, Ip M, Leung AW, Xu C. Sonodynamic inactivation of methicillin-resistant Staphylococcus aureus in planktonic condition by curcumin under ultrasound sonication. ULTRASONICS 2014; 54:2109-14. [PMID: 25059434 DOI: 10.1016/j.ultras.2014.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 06/12/2014] [Accepted: 06/19/2014] [Indexed: 05/19/2023]
Abstract
Methicillin-Resistant Staphylococcus aureus (MRSA) is an important cause of difficult-to-treat infections. The present study aims to investigate sonodynamic inactivation of MRSA in planktonic condition using curcumin under ultrasound sonication. Dark toxicity of curcumin to MRSA was investigated to choose the concentration range of curcumin used in the study. The uptake of curcumin in MRSA was observed before ultrasound sonication. After sonication colony forming units (CFUs) and bacterial viability were investigated using fluorescence assay. Additionally, chromosomal DNA fragmentation was also analyzed. Curcumin showed no dark toxicity to MRSA in the concentration range of⩽500μM. The maximum uptake of curcumin in MRSA occurred in 50min after curcumin incubation. Counting of CFUs showed that curcumin had significantly sonodynamic killing effect on MRSA in a curcumin dose-dependent manner, and 5-log reduction in CFU was observed after curcumin treatment (40μM) at room temperature in the dark for 50min followed by exposure to ultrasound with intensity of 1.56W/cm(2) for 5min. The ratio of green-fluorescent intensity to red-fluorescent intensity was obviously decreased after curcumin treatment under ultrasound sonication. No significant change in chromosomal DNA was found in the cultured MRSA after the combined treatment of curcumin and ultrasound. These results demonstrated that sonodynamic action of curcumin had significant inactivation of MRSA in planktonic condition.
Collapse
Affiliation(s)
- Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| |
Collapse
|
43
|
Zhuang D, Hou C, Bi L, Han J, Hao Y, Cao W, Zhou Q. Sonodynamic effects of hematoporphyrin monomethyl ether onStaphylococcus aureus in vitro. FEMS Microbiol Lett 2014; 361:174-80. [PMID: 25319068 DOI: 10.1111/1574-6968.12628] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Deshu Zhuang
- Department of Stomatology; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Chunyan Hou
- Department of Stomatology; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Liangjia Bi
- Department of Stomatology; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Jialong Han
- Department of Stomatology; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Yanru Hao
- Department of Stomatology; The First Affiliated Hospital; Harbin Medical University; Harbin China
| | - Wenwu Cao
- Condensed Matter Science and Technology Institute; Harbin Institute of Technology; Harbin China
| | - Qi Zhou
- Condensed Matter Science and Technology Institute; Harbin Institute of Technology; Harbin China
| |
Collapse
|
44
|
Li YJ, Huang P, Jiang CL, Jia DX, Du XX, Zhou JH, Han Y, Sui H, Wei XL, Liu L, Yuan HH, Zhang TT, Zhang WJ, Xie R, Lang XH, Wang LY, Liu T, Bai YX, Tian Y. Sonodynamically induced anti-tumor effect of 5-aminolevulinic acid on pancreatic cancer cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2671-2679. [PMID: 25220273 DOI: 10.1016/j.ultrasmedbio.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT), a promising modality for cancer treatment, involves the synergistic interaction of ultrasound and some chemical compounds termed sonosensitizers. However, its effect on pancreatic cancer cells remains unclear. In our study, we sought to identify the cytotoxic effects of ultrasound-activated 5-aminolevulinic acid on human pancreatic cancer Capan-1 cells. Cell viability was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) analysis; mitochondrial membrane potential was assessed using the fluorescent probe jc-1; apoptosis was evaluated by flow cytometry; cell morphology was investigated by scanning electron microscopy; apoptosis-related protein expression was analyzed by Western blot assay. We found that SDT significantly decreased the survival rate of cells, and this effect increased with 5-aminolevulinic acid concentration and ultrasound exposure time. The mechanism underlying the effect of SDT involves, in part, the induction of a conspicuous loss in mitochondrial membrane potential and, in part, the induction of apoptosis through upregulation of Bax expression, downregulation of Bcl-2 and increased activation of procaspase-3. These results indicate that the ultrasonically induced cell killing effect could be enhanced by 5-ALA and that the mitochondrial pathway might be involved in the cell damage process. We conclude that SDT is a promising new methodology for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yan Jing Li
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Cai Ling Jiang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - De Xin Jia
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Xue Du
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jian Hua Zhou
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Li Wei
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Heng Heng Yuan
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ting Ting Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen Jie Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Hui Lang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Ying Wang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Xian Bai
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ye Tian
- Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China.
| |
Collapse
|
45
|
Xiang J, Leung AW, Xu C. Effect of ultrasound sonication on clonogenic survival and mitochondria of ovarian cancer cells in the presence of methylene blue. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1755-1761. [PMID: 25253821 DOI: 10.7863/ultra.33.10.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of ultrasound sonication in the presence of methylene blue on clonogenic survival and mitochondria of ovarian cancer cells. METHODS Human ovarian cancer HO-8910 cells, which were incubated with different concentrations of methylene blue for 1 hour, were exposed to an ultrasonic wave for 5 seconds with intensity of 0.46 W/cm(2). Clonogenic survival of HO-8910 cells after ultrasound sonication was measured by a colony-forming unit assay. Mitochondrial structural changes were observed on transmission electron microscopy, and the mitochondrial membrane potential was evaluated by confocal laser-scanning microscopy with rhodamine 123 staining. RESULTS The colony-forming units of HO-8910 cells decreased considerably after ultrasound sonication in the presence of methylene blue. Transmission electron microscopy showed slightly enlarged mitochondria in the ultrasound-treated cells in the absence of methylene blue; however, seriously damaged mitochondria, even with almost complete disappearance of cristae, were found in the cells treated by ultrasound sonication in the presence of methylene blue. The mitochondrial membrane potential collapsed significantly when HO-8910 cells were treated by ultrasound sonication in the presence of methylene blue (P < .05). CONCLUSIONS Ultrasound sonication in the presence of methylene blue markedly damaged mitochondrial structure and function and decreased clonogenic survival of HO-8910 cells.
Collapse
Affiliation(s)
- Junyan Xiang
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.)
| | - Albert Wingnang Leung
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.)
| | - Chuanshan Xu
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.).
| |
Collapse
|
46
|
Wang S, Hu Z, Wang X, Gu C, Gao Z, Cao W, Zheng J. 5-Aminolevulinic acid-mediated sonodynamic therapy reverses macrophage and dendritic cell passivity in murine melanoma xenografts. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2125-2133. [PMID: 25023114 DOI: 10.1016/j.ultrasmedbio.2014.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/16/2014] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT) uses a combination of sonosensitizing drugs and low-intensity therapeutic ultrasound to cause apoptosis and autophagy of tumor cells. However, its effects on the tumor microenvironment, especially on the immune state, remain unknown. In this study, we investigated the transformation of macrophages and dendritic cells (DCs) in the tumor microenvironment during 5-aminolevulinic acid (5-ALA)-mediated SDT in mice transplanted with B16F10 melanomas. Tumor growth and mouse weight were measured. Hematoxylin-eosin staining was used to evaluate tumor morphology to quantify the anti-tumor efficacy of 5-ALA-mediated SDT. We investigated anti-tumor immunity in the tumor microenvironment by immunocytochemical staining of CD68, CD163, CD80, CD86, tumor necrosis factor α (TNF-α), interleukin 10 (IL-10) and interferon γ (IFN-γ). Tumor growth was restrained by 5-ALA-mediated SDT in B16F10 melanoma-bearing mice. CD68 levels increased and CD163 decreased, indicating that M2 macrophages were converted to the M1 phenotype in the tumor. The increase in CD80 and CD86 showed that DCs in the tumor microenvironment tend to mature after SDT treatment. The cytokines INF-γ, TNF-α and IL-10 significantly increased in SDT. Application of low-intensity therapeutic ultrasound alone also led to similar trends in our study, but combined treatment with 5-ALA yielded a change. The original stabilized immune state in the tumor microenvironment can be interrupted by low-intensity therapeutic ultrasound combined with 5-ALA, which enhanced the pro-inflammatory response and reversed the passive properties of macrophages and dendritic cells.
Collapse
Affiliation(s)
- Shan Wang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, China; Department of Oral Pathology, Stomatological Hospital, Harbin Medical University, Harbin, P. R. China
| | - Zheng Hu
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, China
| | - Xiaolong Wang
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Chuanwen Gu
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Zhongxiuzi Gao
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Wenwu Cao
- Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, China; Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Jinhua Zheng
- Department of Anatomy, Basic Medical Science College, Harbin Medical University, Harbin, China; Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin, China; Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
47
|
Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 2014; 19:502-9. [DOI: 10.1016/j.drudis.2014.01.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
|
48
|
Apoptosis of THP-1 derived macrophages induced by sonodynamic therapy using a new sonosensitizer hydroxyl acetylated curcumin. PLoS One 2014; 9:e93133. [PMID: 24676101 PMCID: PMC3968056 DOI: 10.1371/journal.pone.0093133] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 03/02/2014] [Indexed: 12/31/2022] Open
Abstract
Curcumin is extracted from the rhizomes of the traditional Chinese herb Curcuma longa. Our previous study indicated curcumin was able to function as a sonosensitizer. Hydroxyl acylated curcumin was synthesized from curcumin to eliminate the unstable hydroxy perssad in our group. The potential use of Hydroxyl acylated curcumin as a sonosensitizer for sonodynamic therapy (SDT) requires further exploration. This study investigated the sonodynamic effect of Hydroxyl acylated curcumin on THP-1 macrophage. THP-1 macrophages were cultured with Hydroxyl acylated curcumin at a concentration of 5.0 μg/mL for 4 hours and then exposed to pulse ultrasound irradiation (0.5 W/cm2 with 1.0 MHz ) for 5 min, 10 min and 15 min. Six hours later, cell viability decreased significantly by CCK-8 assay. After ultrasound irradiation, the ratio of apoptosis and necrosis in SDT group was higher than that in control, Hydroxyl acylated curcumin alone and ultrasound alone. Moreover, the apoptotic rate was higher than necrotic rate with the flow cytometry analysis. Furthermore, Hydroxyl acylated curcumin-SDT induced reactive oxygen species (ROS) generation in THP-1 macrophages immediately after the ultrasound treatment while ROS generation was reduced significantly with the scavenger of singlet oxygen Sodium azide (NaN3). Hydroxyl acylated curcumin-SDT led to a conspicuous loss of mitochondrial membrane potential (MMP) compared with other groups, while MMP was increased significantly with the scavenger of singlet oxygen Sodium azide (NaN3), ROS inhibitor N-acetyl cysteine (NAC) and Mitochondrial Permeability Transition Pore (MPTP) inhibitor Cyclosporin A (CsA). The cytochrome C, cleaved-Caspase-9, cleaved-Caspase-3 and cleaved-PARP upregulated after SDT through Western blotting. These findings suggested that Hydroxyl acylated curcumin under low-intensity ultrasound had sonodynamic effect on THP-1 macrophages via generation of intracellular singlet oxygen and mitochondria-caspase signaling pathway, indicating that Hydroxyl acylated curcumin could be used as a novel sonosensitizer in SDT for atherosclerosis.
Collapse
|
49
|
Photodynamic action of methylene blue in osteosarcoma cells in vitro. Photodiagnosis Photodyn Ther 2014; 11:13-9. [DOI: 10.1016/j.pdpdt.2013.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 01/20/2023]
|
50
|
Su X, Li Y, Wang P, Wang X, Liu Q. Protoporphyrin IX-mediated sonodynamic action induces apoptosis of K562 cells. ULTRASONICS 2014; 54:275-284. [PMID: 23978616 DOI: 10.1016/j.ultras.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/14/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The present study aims to investigate apoptosis of human leukemia K562 cells induced by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (PpIX-SDT). METHODS The uptakes of intracellular PpIX in K562 cells were detected by flow cytometry. The sub-cellular localization of PpIX was imaged by confocal microscope. The cytotoxic effect of PpIX-SDT was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium) assay. Apoptosis was evaluated by chromatin condensation with DAPI (4'-6-diamidino-2-phenylindole) staining, decrease of mitochondria membrane potential (MMP), re-distribution of Bax, and the expression changes of the key apoptosis-associated protein (Caspase-3 and polypeptide poly (ADP-robose) polymerase). The possible mechanism of SDT-induced apoptosis was investigated by detecting by intracellular ROS (reactive oxygen species) generation and effect of ROS scavenger-NAC (N-acetylcysteine) on SDT induced apoptosis. RESULTS The intracellular PpIX increased quickly within 2 h after PpIX administration and PpIX mainly localized in the mitochondria. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound was significantly boosted. In addition, the ultrasound induced some extent of chromatin condensation and MMP loss was greatly enhanced by the presence of 2 μg/ml PpIX, where PpIX alone treatment showed no or only slight effect. Time-dependent Bax translocation, caspase-3 activation and PARP cleavage were detected in SDT treatment groups. Besides, intracellular ROS production was significantly enhanced after SDT, and the general ROS scavenger NAC could obviously alleviate the SDT-caused cell viability loss, MMP loss, Bax redistribution and nuclear changes. CONCLUSIONS These results indicated that PpIX-mediated sonodynamic action could induce apoptosis on K562 cells, and the intracellular ROS was involved in the PpIX-SDT induced apoptosis.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062 Shaanxi, China
| | | | | | | | | |
Collapse
|