1
|
Characterization of the Protective Immune Responses Conferred by Recombinant BCG Overexpressing Components of Mycobacterium tuberculosis Sec Protein Export System. Vaccines (Basel) 2022; 10:vaccines10060945. [PMID: 35746553 PMCID: PMC9229301 DOI: 10.3390/vaccines10060945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) is the only approved vaccine against tuberculosis (TB). However, its efficacy in preventing pulmonary TB in adults is limited. Despite its variable efficacy, BCG offers a number of unique and beneficial characteristics, which make it suitable as a vaccine vehicle to express recombinant molecules. In Mycobacterium tuberculosis, the general Sec pathway is an essential cellular process, and it is responsible for exporting the majority of proteins across the cytoplasmic membrane, including potent immune-protective antigens, such as members of the antigen 85 (Ag85) complex. We engineered BCG to overexpress the M. tuberculosis SecDFG proteins in order to improve the efficiency of the Sec-dependent export system and, thus, enhance the secretion of immunogenic proteins. BCGSecDFG displayed increased intracellular survival within macrophages in vitro and greater persistence in the lymphoid organs of vaccinated mice than parental BCG. In addition, vaccination with BCGSecDFG generated higher numbers of IFN-γ-secreting T cells in response to secreted mycobacterial antigens compared to BCG, particularly members of the Ag85 complex. Furthermore, vaccination with BCGSecDFG significantly reduced the bacterial load in the lungs and spleens of M. tuberculosis-infected mice, which was comparable to the protection afforded by parental BCG. Therefore, the modification of protein secretion in BCG can improve antigen-specific immunogenicity.
Collapse
|
2
|
Redmann RK, Kaushal D, Golden N, Threeton B, Killeen SZ, Kuehl PJ, Roy CJ. Particle Dynamics and Bioaerosol Viability of Aerosolized Bacillus Calmette-Guérin Vaccine Using Jet and Vibrating Mesh Clinical Nebulizers. J Aerosol Med Pulm Drug Deliv 2022; 35:50-56. [PMID: 34619040 PMCID: PMC8867098 DOI: 10.1089/jamp.2021.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background: Bacillus Calmette-Guérin (BCG) is a vaccine used to protect against tuberculosis primarily in infants to stop early infection in areas of the world where the disease is endemic. Normally administered as a percutaneous injection, BCG is a live significantly attenuated bacteria that is now being investigated for its potential within an inhalable vaccine formulation. This study investigates the feasibility and performance of two jet and two vibrating mesh nebulizers aerosolizing BCG and the resulting particle characteristics and residual viability of the bacteria postaerosolization. Methods: A jet nebulizer (Collison), outfitted either with a 3- or 6-jet head, was compared with two clinical nebulizers, the vibrating mesh Omron MicroAir and Aerogen Solo devices. Particle characteristics, including aerodynamic particle sizing, was performed on all devices within a common aerosol chamber configuration and comparable BCG innocula concentrations. Integrated aerosol samples were collected for each generator and assayed for bacterial viability using conventional microbiological technique. Results: A batch lot of BCG (Danish) was grown to titer and used in all generator assessments. Aerosol particles within the respirable range were generated from all nebulizers at four different concentrations of BCG. The jet nebulizers produced a uniformly smaller particle size than the vibrating mesh devices, although particle concentrations by mass were similar across all devices tested with the exception of the Aerogen Solo, which resulted in a low concentration of BCG aerosols. Conclusions: The resulting measured viable BCG aerosol concentration fraction produced by each device approximated one another; however, a measurable decrease of efficiency and overall viability reduction in the jet nebulizer was observed in higher BCG inoculum starting concentrations, whereas the vibrating mesh nebulizer returned a remarkably stable viable aerosol fraction irrespective of inoculum concentration.
Collapse
Affiliation(s)
- Rachel K. Redmann
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Nadia Golden
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Breeanna Threeton
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Stephanie Z. Killeen
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA
| | - Philip J. Kuehl
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Chad J. Roy
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, USA.,Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, Louisiana, USA.,Address correspondence to: Chad J. Roy, PhD, Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| |
Collapse
|
3
|
Khan A, Bakhru P, Saikolappan S, Das K, Soudani E, Singh CR, Estrella JL, Zhang D, Pasare C, Ma Y, Sun J, Wang J, Hunter RL, Tony Eissa N, Dhandayuthapani S, Jagannath C. An autophagy-inducing and TLR-2 activating BCG vaccine induces a robust protection against tuberculosis in mice. NPJ Vaccines 2019; 4:34. [PMID: 31396406 PMCID: PMC6683161 DOI: 10.1038/s41541-019-0122-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/15/2019] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium bovis BCG is widely used as a vaccine against tuberculosis due to M. tuberculosis (Mtb), which kills millions of people each year. BCG variably protects children, but not adults against tuberculosis. BCG evades phagosome maturation, autophagy, and reduces MHC-II expression of antigen-presenting cells (APCs) affecting T-cell activation. To bypass these defects, an autophagy-inducing, TLR-2 activating C5 peptide from Mtb-derived CFP-10 protein was overexpressed in BCG in combination with Ag85B. Recombinant BCG85C5 induced a robust MHC-II-dependent antigen presentation to CD4 T cells in vitro, and elicited stronger TH1 cytokines (IL-12, IL-1β, and TNFα) from APCs of C57Bl/6 mice increasing phosphorylation of p38MAPK and ERK. BCG85C5 also enhanced MHC-II surface expression of MΦs by inhibiting MARCH1 ubiquitin ligase that degrades MHC-II. BCG85C5 infected APCs from MyD88 or TLR-2 knockout mice showed decreased antigen presentation. Furthermore, BCG85C5 induced LC3-dependent autophagy in macrophages increasing antigen presentation. Consistent with in vitro effects, BCG85C5 markedly expanded both effector and central memory T cells in C57Bl/6 mice protecting them against both primary aerosol infection with Mtb and reinfection, but was less effective among TLR-2 knockout mice. Thus, BCG85C5 induces stronger and longer lasting immunity, and is better than BCG against tuberculosis of mice.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Pearl Bakhru
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Sankaralingam Saikolappan
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Kishore Das
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Emily Soudani
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Christopher R. Singh
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Jaymie L. Estrella
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | - Dekai Zhang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Yue Ma
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jianjun Sun
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Houston, TX USA
| | - Jin Wang
- Methodist Hospital Research Institute, Houston, TX USA
| | - Robert L. Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
| | | | - Subramanian Dhandayuthapani
- Molecular and Translational Medicine, Paul L. Foster School of Medicine Texas Tech University Health Sciences Center, El Paso, TX USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX USA
- Methodist Hospital Research Institute, Houston, TX USA
| |
Collapse
|
4
|
Protective efficacy of recombinant BCG over-expressing protective, stage-specific antigens of Mycobacterium tuberculosis. Vaccine 2018; 36:2619-2629. [PMID: 29627232 DOI: 10.1016/j.vaccine.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/21/2018] [Accepted: 03/24/2018] [Indexed: 01/13/2023]
Abstract
Tuberculosis (TB) remains a major cause of mortality and morbidity worldwide, yet current control strategies, including the existing BCG vaccine, have had little impact on disease control. CysVac2, a fusion protein comprising stage-specific Mycobacterium tuberculosis antigens, provided superior protective efficacy against chronic M. tuberculosis infection in mice, compared to BCG. To determine if the delivery of CysVac2 in the context of BCG could improve BCG-induced immunity and protection, we generated a recombinant strain of BCG overexpressing CysVac2 (rBCG:CysVac2). Expression of CysVac2 in BCG was facilitated by the M. tuberculosis hspX promoter, which is highly induced inside phagocytic cells and induces strong cellular immune responses to antigens expressed under its regulation. Intradermal vaccination with rBCG:CysVac2 resulted in increased monocyte/macrophage recruitment and enhanced antigen-specific CD4+ T cell priming compared to parental BCG, indicating CysVac2 overexpression had a marked effect on rBCG induced-immunity. Further, rBCG:CysVac2 was a more potent inducer of antigen-specific multifunctional CD4+ T cells (CD4+IFN-γ+TNF+IL-2+) than BCG after vaccination of mice. This improved immunogenicity however did not influence protective efficacy, with both BCG and rBCG:CysVac2 affording comparable level of protection aerosol infection with M. tuberculosis. Boosting either BCG or rBCG:CysVac2 with the CysVac2 fusion protein resulted in a similar improvement in protective efficacy. These results demonstrate that the expression of protective antigens in BCG can augment antigen-specific immunity after vaccination but does not alter protection against infection, further highlighting the challenge of developing effective vaccines to control TB.
Collapse
|
5
|
Hart BE, Lee S. Overexpression of a Mycobacterium ulcerans Ag85B-EsxH Fusion Protein in Recombinant BCG Improves Experimental Buruli Ulcer Vaccine Efficacy. PLoS Negl Trop Dis 2016; 10:e0005229. [PMID: 27941982 PMCID: PMC5179062 DOI: 10.1371/journal.pntd.0005229] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/22/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022] Open
Abstract
Buruli ulcer (BU) vaccine design faces similar challenges to those observed during development of prophylactic tuberculosis treatments. Multiple BU vaccine candidates, based upon Mycobacterium bovis BCG, altered Mycobacterium ulcerans (MU) cells, recombinant MU DNA, or MU protein prime-boosts, have shown promise by conferring transient protection to mice against the pathology of MU challenge. Recently, we have shown that a recombinant BCG vaccine expressing MU-Ag85A (BCG MU-Ag85A) displayed the highest level of protection to date, by significantly extending the survival time of MU challenged mice compared to BCG vaccination alone. Here we describe the generation, immunogenicity testing, and evaluation of protection conferred by a recombinant BCG strain which overexpresses a fusion of two alternative MU antigens, Ag85B and the MU ortholog of tuberculosis TB10.4, EsxH. Vaccination with BCG MU-Ag85B-EsxH induces proliferation of Ag85 specific CD4+ T cells in greater numbers than BCG or BCG MU-Ag85A and produces IFNγ+ splenocytes responsive to whole MU and recombinant antigens. In addition, anti-Ag85A and Ag85B IgG humoral responses are significantly enhanced after administration of the fusion vaccine compared to BCG or BCG MU-Ag85A. Finally, mice challenged with MU following a single subcutaneous vaccination with BCG MU-Ag85B-EsxH display significantly less bacterial burden at 6 and 12 weeks post-infection, reduced histopathological tissue damage, and significantly longer survival times compared to vaccination with either BCG or BCG MU-Ag85A. These results further support the potential of BCG as a foundation for BU vaccine design, whereby discovery and recombinant expression of novel immunogenic antigens could lead to greater anti-MU efficacy using this highly safe and ubiquitous vaccine. Mycobacterium ulcerans (MU) infection causes a highly disfiguring, necrotic skin disease known as Buruli ulcer (BU). Antibiotic treatments have low efficacy if the infection is diagnosed after ulceration begins, leading to frequent dependence on surgical removal of infected tissues. A prophylactic vaccine for BU does not exist and several attempts to create an effective vaccine have shown limited success. We recently demonstrated that a recombinant strain of M. bovis BCG expressing the immunodominant MU-Ag85A conferred significantly enhanced protection against experimental BU compared to the standard BCG vaccine. Here we show that BCG expression of a fusion between two alternative MU antigens, Ag85B and EsxH, can promote antigen-specific T cell and humoral immune response capable of significantly improving survival and protection against BU pathology, compared to BCG MU-Ag85A alone. These results support the potential for using the highly safe and ubiquitous BCG vaccine as a platform for further BU vaccine development.
Collapse
Affiliation(s)
- Bryan E. Hart
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sunhee Lee
- Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Liu W, Xu Y, Yan J, Shen H, Yang E, Wang H. Ag85B synergizes with ESAT-6 to induce efficient and long-term immunity of C57BL/6 mice primed with recombinant Bacille Calmette-Guerin. Exp Ther Med 2016; 13:208-214. [PMID: 28123491 PMCID: PMC5245152 DOI: 10.3892/etm.2016.3944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/04/2016] [Indexed: 11/05/2022] Open
Abstract
The latest probable scenario in vaccination strategies is to prime one live attenuated vaccine candidate followed by boost dose of second vaccine candidate. In the present study, we primed the mice with a recombinant Bacille Calmette-Guerin (BCG) comprising Ag85B and ESAT-6 followed by boost doses of Ag85B, ESAT-6 and Ag85B-ESAT-6 fusion protein in the DDA adjuvant, separately. After boost doses of 8 and 12 weeks, the levels of antigen-stimulated T cells secreting interferon (IFN)-γ, the content of the IFN-γ, tumor necrosis factor-α and interleukin-4 in the splenocytes in vitro culture supernatant, the antigen-specific immunoglobulin (Ig)G titer from mouse serum, IgG subclass and the population of antigen-specific CD4+ and CD8+ T cells were detected. The present study showed that recombinant BCG along with boost doses of Ag85B or ESAT-6 individually did not induce efficient T-helper (Th) 1-type immune response. On the other hand, recombinant BCG with boost doses of Ag85B-ESAT-6 fusion protein enhanced longer lasting predominant Th1 immune response. This result suggested that Ag85B might synergize with ESAT-6 protein in order to produce better as well as effective immune response. Thus, the present study concluded recombinant BCG with boost doses of Ag85B-ESAT-6 fusion protein could be a good strategy to improve the immune protective efficacy.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jingran Yan
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Hongbo Shen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Enzhuo Yang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
7
|
Prendergast KA, Counoupas C, Leotta L, Eto C, Bitter W, Winter N, Triccas JA. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection. Vaccine 2016; 34:2608-15. [PMID: 27060378 DOI: 10.1016/j.vaccine.2016.03.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG.
Collapse
Affiliation(s)
- Kelly A Prendergast
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Claudio Counoupas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Lisa Leotta
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia
| | - Carolina Eto
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Winter
- INRA, Université de Tours, UMR 1282, Infectiologie et Santé Publique, 37380 Nouzilly, France
| | - James A Triccas
- Microbial Pathogenesis and Immunity Group, Discipline of Infectious Diseases and Immunology, University of Sydney, Sydney, NSW, Australia; Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Liang J, Teng X, Yuan X, Zhang Y, Shi C, Yue T, Zhou L, Li J, Fan X. Enhanced and durable protective immune responses induced by a cocktail of recombinant BCG strains expressing antigens of multistage of Mycobacterium tuberculosis. Mol Immunol 2015; 66:392-401. [DOI: 10.1016/j.molimm.2015.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/23/2015] [Accepted: 04/23/2015] [Indexed: 01/09/2023]
|
9
|
rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B. Infect Immun 2014; 82:3900-9. [PMID: 25001602 DOI: 10.1128/iai.01499-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy.
Collapse
|
10
|
Tan K, Liang J, Teng X, Wang X, Zhang J, Yuan X, Fan X. Comparison of BCG prime-DNA booster and rBCG regimens for protection against tuberculosis. Hum Vaccin Immunother 2013; 10:391-8. [PMID: 24192709 DOI: 10.4161/hv.26969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Developing an effective adult prophylaxis vaccine is a high priority in the global control of tuberculosis (TB), because TB remains an important public health problem and the current widely used BCG vaccine provides effective protection only for children but variable protection against adult TB. BCG priming-heterologous vaccines booster and recombinant BCG technologies have been thought as two important regimens for inducing effective protection against adult TB. Obviously, defining the protective efficacy of the two regimens would benefit more rational design of the future adult TB vaccines. In this study, a recombinant BCG strain (rBCG::685A) expressing the fusion protein of ESAT-6 and Ag85A (r685A) of Mycobacterium tuberculosis was constructed successfully and the secretion of r685A protein from rBCG strain was confirmed by western blotting with anti-ESAT-6 and anti-Ag85A polyclonal antibodies, respectively. The immune responses and protective effects in rBCG::685A vaccinated C57BL/6 mice were compared with that of our previous reported BCG prime-pcD685A booster regimen. Boosting BCG with pcD685A DNA elicited higher level of r685A protein specific IFN-γ secreted by splenocytes and a more significant increase of both TNF-α and iNOS responses in the lung, thus providing better control of bacterial growth in both lung and spleen of immunized mice challenged with virulent M. tuberculosis, compared with mice vaccinated with rBCG::685A or BCG alone. Our results have implications for development of more effective adult TB vaccines for improved control of TB.
Collapse
Affiliation(s)
- Kun Tan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Jinping Liang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xindong Teng
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xiaochun Wang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Jingyan Zhang
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xuefeng Yuan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| | - Xionglin Fan
- Department of Pathogen Biology; Lab of Bio-safety, School of Preclinical Medicine; Tongji Medical College; Huazhong University of Science & Technology; Wuhan, PR China
| |
Collapse
|
11
|
You Q, Wu Y, Wu Y, Wei W, Wang C, Jiang D, Yu X, Zhang X, Wang Y, Tang Z, Jiang C, Kong W. Immunogenicity and protective efficacy of heterologous prime-boost regimens with mycobacterial vaccines and recombinant adenovirus- and poxvirus-vectored vaccines against murine tuberculosis. Int J Infect Dis 2012; 16:e816-25. [PMID: 22921259 DOI: 10.1016/j.ijid.2012.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To evaluate regimens using bacillus Calmette-Guérin (BCG) or recombinant BCG (rBCG) overexpressing Ag85B for priming, followed by boosting with a modified vaccinia virus Ankara strain (MVA) and/or adenovirus vector (AD) expressing an Ag85B-ESAT6 fusion protein. METHODS Cellular and humoral immune responses were determined after subcutaneous vaccination, which was employed to trigger systemic immunity against intravenous infection in a mouse model of tuberculosis (TB). Bacterial loads and lung histology were evaluated. RESULTS The relative IgG2a and IgG1 antibody levels indicated that the viral-vectored vaccines generated a T-helper type 1 (Th1)-biased response after two doses of viral boost vaccinations. Boosting BCG-primed mice with viral vaccines induced a Th1 immune response that included both CD4 and CD8 T-cells generating antigen-specific interferon-gamma (IFN-γ) and CD8 T cytotoxic activity. Only mice vaccinated with two different viral boosters after BCG priming exhibited a significant reduction in bacterial burden in the lung after challenge. Histology examinations confirmed the attenuation of lung damage and more compact granulomas. After mycobacteria priming, boosting with AD85B-E6 followed by MVA85B-E6 afforded better protection than the reverse order of administration of the viral vectors. CONCLUSIONS This study demonstrates the potential of multiple heterologous viral booster vaccines, although the exact correlates of protection and optimal regimens should be further investigated for the rational design of future vaccine strategies.
Collapse
Affiliation(s)
- Qingrui You
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Gaoxin District Changchun, Jilin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Live attenuated Salmonella vaccines displaying regulated delayed lysis and delayed antigen synthesis to confer protection against Mycobacterium tuberculosis. Infect Immun 2011; 80:815-31. [PMID: 22144485 DOI: 10.1128/iai.05526-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Live recombinant attenuated Salmonella vaccine (RASV) strains have great potential to induce protective immunity against Mycobacterium tuberculosis by delivering M. tuberculosis antigens. Recently, we reported that, in orally immunized mice, RASV strains delivering the M. tuberculosis early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10) antigens via the Salmonella type III secretion system (SopE amino-terminal region residues 1 to 80 with two copies of ESAT-6 and one copy of CFP-10 [SopE(Nt80)-E2C]) afforded protection against aerosol challenge with M. tuberculosis. Here, we constructed and evaluated an improved Salmonella vaccine against M. tuberculosis. We constructed translational fusions for the synthesis of two copies of ESAT-6 plus CFP-10 fused to the OmpC signal sequence (OmpC(SS)-E2C) and amino acids 44 to 338 of antigen 85A (Ag85A(294)) flanked by the signal sequence (SS) and C-terminal peptide (CT) of β-lactamase (Bla(SS)-Ag85A(294)-Bla(CT)) to enable delivery via the Salmonella type II secretion system. The genes expressing these proteins were cloned as an operon transcribed from P(trc) into isogenic Asd(+)/MurA(+) pYA3681 lysis vector derivatives with different replication origins (pBR, p15A, pSC101), resulting in pYA4890, pYA4891, and pYA4892 for SopE(Nt80)-E2C/Ag85A(294) synthesis and pYA4893 and pYA4894 for OmpC(SS)-E2C/Ag85A(294) synthesis. Mice orally immunized with the RASV χ11021 strain engineered to display regulated delayed lysis and regulated delayed antigen synthesis in vivo and harboring pYA4891, pYA4893, or pYA4894 elicited significantly greater humoral and cellular immune responses, and the RASV χ11021 strain afforded a greater degree of protection against M. tuberculosis aerosol challenge in mice than RASVs harboring any other Asd(+)/MurA(+) lysis plasmid and immunization with M. bovis BCG, demonstrating that RASV strains displaying regulated delayed lysis with delayed antigen synthesis resulted in highly immunogenic delivery vectors for oral vaccination against M. tuberculosis infection.
Collapse
|
13
|
Lin CW, Su IJ, Chang JR, Chen YY, Lu JJ, Dou HY. Recombinant BCG coexpressing Ag85B, CFP10, and interleukin-12 induces multifunctional Th1 and memory T cells in mice. APMIS 2011; 120:72-82. [PMID: 22151310 DOI: 10.1111/j.1600-0463.2011.02815.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium tuberculosis (MTB) continues to be a leading cause of human deaths due to an infectious agent. Current efforts are focused on making better TB vaccines. We describe the generation and immunological characterization of recombinant BCG (rBCG). This rBCG was generated by incorporating an expression plasmid encoding two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 into a BCG strain. Immunogenicity studies in mice showed that rBCG coexpressing Ag85B, CFP10, and IL-12 (rBCG::Ag85B-CFP10-IL-12) induces a robust immune response in mice. The rBCG vaccine promotes a T-cell response against MTB that is characterized by a high proportion of polyfunctional and memory T cells in spleen and lung. Our results showed strong immunogenicity and mycobacterial growth inhibition of rBCG::Ag85B-CFP10 plus IL-12 than that of BCG vaccine.
Collapse
Affiliation(s)
- Chih-Wei Lin
- Division of Infectious Diseases, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
West NP, Thomson SA, Triccas JA, Medveczky CJ, Ramshaw IA, Britton WJ. Delivery of a multivalent scrambled antigen vaccine induces broad spectrum immunity and protection against tuberculosis. Vaccine 2011; 29:7759-65. [PMID: 21846485 DOI: 10.1016/j.vaccine.2011.07.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 12/23/2022]
Abstract
The development of effective anti-Tuberculosis (TB) vaccines is an important step towards improved control of TB in high burden countries. Subunit vaccines are advantageous in terms of safety, particularly in the context of high rates of HIV co-infection, but they must contain sufficient Mycobacterium tuberculosis antigens to stimulate immunity in genetically diverse human populations. We have used a novel approach to develop a synthetic scrambled antigen vaccine (TB-SAVINE), comprised of overlapping, recombined peptides from four M. tuberculosis proteins, Ag85B, ESAT-6, PstS3 and Mpt83, each of which is immunogenic and protective against experimental TB. This polyvalent TB-SAVINE construct stimulated CD4 and CD8T cell responses against the individual proteins and M. tuberculosis in C57BL/6 and Balb/c mice, when delivered as DNA, Fowl Pox Virus or Vaccinia Virus vaccines. In addition, the DNA-TBS vaccine induced protective immunity against pulmonary M. tuberculosis infection in C57BL/6 mice. Co-immunization of Balb/c mice with virally expressed TBS and HIV1-SAVINE vaccine stimulated strong T cell responses to both the M. tuberculosis and HIV proteins, indicating no effects of antigenic competition. Further development of this TB-SAVINE vaccine expressing components from multiple M. tuberculosis proteins may prove an effective vaccine candidate against TB, which could potentially form part of a safe, combined preventative strategy together with HIV immunisations.
Collapse
Affiliation(s)
- Nicholas P West
- Mycobacterial Research Program, Centenary Institute, NSW, 2042, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Sheikh JA, Khuller GK, Verma I. Immunotherapeutic role of Ag85B as an adjunct to antituberculous chemotherapy. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2011; 9:4. [PMID: 21703025 PMCID: PMC3142482 DOI: 10.1186/1476-8518-9-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/26/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Immunotherapy to enhance the efficiency of the immune response in tuberculosis patients and to eliminate the persisters could be an additional valuable strategy to complement anti-mycobacterial chemotherapy. This study was designed to assess the immunotherapeutic potential of Ag85B as an adjunct to chemotherapy and its effect against active and persister bacteria left after therapy in mouse model of tuberculosis. METHODS 6-8 week old female Balb/c mice were infected with Mycobacterium tuberculosis and treated with chemotherapy or immunotherapy. Protective efficacy was measured in terms of bacterial counts in lungs and spleen. Immune correlates of protection in terms of Th1 and Th2 cytokines were measured by ELISA. RESULTS Therapeutic effect of Ag85B was found to be comparable to that of short term dosage of antituberculous drugs (ATDs). The therapeutic effect of ATDs was augmented by the simultaneous treatment with rAg85B and moreover therapy with this protein allowed us to reduce ATD dosage. This therapy was found to be effective even in case of drug persisters. The levels of antigen specific IFNγ and IL-12 were significantly increased after immunotherapy as compared to the basal levels; moreover antigen specific IL-4 levels were depressed on immunotherapy with Ag85B. CONCLUSION We demonstrated in this study that the new combination approach using immunotherapy and concurrent chemotherapy should offer several improvements over the existing regimens to treat tuberculosis. The therapeutic effect is associated not only with initiating a Th1 response but also with switching the insufficient Th2 immune status to the more protective Th1 response.
Collapse
Affiliation(s)
- Javaid A Sheikh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| | | | | |
Collapse
|
16
|
Matvieieva NA, Vasylenko MY, Shahovsky AM, Bannykova MO, Kvasko OY, Kuchuk NV. Effective Agrobacterium-mediated transformation of chicory (Cichorium intybus L.) with Mycobacterium tuberculosis antigene ESAT6. CYTOL GENET+ 2011. [DOI: 10.3103/s0095452711010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kong CU, Ng LG, Nambiar JK, Spratt JM, Weninger W, Triccas JA. Targeted induction of antigen expression within dendritic cells modulates antigen-specific immunity afforded by recombinant BCG. Vaccine 2011; 29:1374-81. [DOI: 10.1016/j.vaccine.2010.12.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/24/2010] [Accepted: 12/16/2010] [Indexed: 11/26/2022]
|
18
|
Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 2011; 17:189-94. [PMID: 21258338 DOI: 10.1038/nm.2285] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/07/2010] [Indexed: 01/11/2023]
Abstract
All tuberculosis vaccines currently in clinical trials are designed as prophylactic vaccines based on early expressed antigens. We have developed a multistage vaccination strategy in which the early antigens Ag85B and 6-kDa early secretory antigenic target (ESAT-6) are combined with the latency-associated protein Rv2660c (H56 vaccine). In CB6F1 mice we show that Rv2660c is stably expressed in late stages of infection despite an overall reduced transcription. The H56 vaccine promotes a T cell response against all protein components that is characterized by a high proportion of polyfunctional CD4(+) T cells. In three different pre-exposure mouse models, H56 confers protective immunity characterized by a more efficient containment of late-stage infection than the Ag85B-ESAT6 vaccine (H1) and BCG. In two mouse models of latent tuberculosis, we show that H56 vaccination after exposure is able to control reactivation and significantly lower the bacterial load compared to adjuvant control mice.
Collapse
Affiliation(s)
- Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Given that TB still constitutes a tremendous public health problem at the start of the 21st Century, it may come as a surprise that Bacillus Calmette-Guérin (BCG), developed nearly 100 years ago, is today still the only vaccine available against TB. Owing to its limited efficiency in controlling TB, much effort has been deployed to develop new, improved vaccines, with initial preclinical models showing encouraging results. However, since most individuals worldwide have been vaccinated with BCG, new vaccine developments have to be placed in that context. Consequently, several approaches explore the heterologous prime-boost strategy. In this strategy, BCG-primed immunity will be strengthened or prolonged by the administration of antigens present in BCG but formulated in a different manner; either as purified antigens in the presence of appropriate adjuvants, as DNA vaccines or as viral-encoded mycobacterial antigens.
Collapse
|
20
|
Xu Y, Liu W, Shen H, Yan J, Yang E, Wang H. Recombinant Mycobacterium bovis BCG expressing chimaeric protein of Ag85B and ESAT-6 enhances immunostimulatory activity of human macrophages. Microbes Infect 2010; 12:683-9. [PMID: 20417300 DOI: 10.1016/j.micinf.2010.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 10/19/2022]
Abstract
Recombinant BCG strain that secretes the chimaeric protein of Ag85B and ESAT-6 has been demonstrated to augment Th1 immune response in C57BL/6 mice. In this paper, we studied the immunostimulatory activity of the recombinant BCG strains in vitro and found out that rBCG-A(N)-E-A(C) activated THP-1 cells and induced higher expression levels of CD86, CD80, CD40 and HLA-DR, especially increased the ratio of CD86/CD80. Likewise, rBCG-A(N)-E-A(C) infection was able to stimulate an increase in TNF-alpha production of macrophages. Moreover, rBCG-A(N)-E-A(C) up-regulated the expression of EFHD2, ACTB and ACTG1 in the macrophages and improved the ability of antigen presentation and the CD8(+) T-cells immune response. Taken together, this rBCG-A(N)-E-A(C) strain enhanced the immunostimulatory activity of human macrophages and could be a potential vaccine against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
21
|
Triccas JA. Recombinant BCG as a vaccine vehicle to protect against tuberculosis. Bioeng Bugs 2010; 1:110-5. [PMID: 21326936 PMCID: PMC3026451 DOI: 10.4161/bbug.1.2.10483] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/01/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium bovis Bacille Calmette Guérin (BCG) was first administered to humans in 1921 and has subsequently been delivered to an estimated 3 billion individuals, with a low incidence of serious complications. The vaccine is immunogenic and is stable and cheap to produce. Additionally, the vaccine can be engineered to express foreign molecules in a functional form, and this has driven the development of BCG as a recombinant vector to protect against infectious diseases and malignancies such as cancer. However, it is now clear that the existing BCG vaccine has proved insufficient to control the spread of tuberculosis, and a major focus of tuberculosis vaccine development programs is the construction and testing of modified forms of BCG. This review summarizes the strategies employed to develop recombinant forms of BCG and describes the potential of these vaccines to stimulate protective immunity and protect against Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- James A Triccas
- Discipline of Infectious Diseases and Immunology, Blackburn Building, University of Sydney, NSW Australia.
| |
Collapse
|
22
|
Recombinant Mycobacterium bovis BCG expressing the chimeric protein of antigen 85B and ESAT-6 enhances the Th1 cell-mediated response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1121-6. [PMID: 19515867 DOI: 10.1128/cvi.00112-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chimeric protein that relies on the T-cell epitopes of antigen 85B (Ag85B) and the 6-kDa early secreted antigen target (ESAT-6) has been demonstrated to augment the Th1 immune response. In this study, we developed a recombinant Mycobacterium bovis BCG (rBCG) strain that secretes the chimeric protein of Ag85B and ESAT-6 (rBCG-A(N)-E-A(C)). Immunization with this rBCG strain induced stronger antigen-specific gamma interferon (IFN-gamma) activities, as determined by an enzyme-linked immunospot assay, and higher levels of antigen-specific CD4(+) and CD8(+) T-cell responses than those in the control groups immunized with either rBCG expressing the Ag85B-ESAT-6 fusion protein (rBCG-A-E) or BCG. Likewise, rBCG-A(N)-E-A(C) significantly increased the level of production of the major Th1 cytokines IFN-gamma and tumor necrosis factor alpha in splenocyte cultures to levels comparable to those elicited by control BCG. Moreover, the antigen-specific immunoglobulin 2c (IgG2c)/IgG1 ratio for mice immunized with rBCG-A(N)-E-A(C) was also much higher than the ratios for the other immunized groups. Together, these results indicate that this rBCG-A(N)-E-A(C) strain enhances the Th1 cell-mediated response and may serve as a potential vaccine against M. tuberculosis.
Collapse
|
23
|
Qie YQ, Wang JL, Liu W, Shen H, Chen JZ, Zhu BD, Xu Y, Zhang XL, Wang HH. More vaccine efficacy studies on the recombinant Bacille Calmette-Guerin co-expressing Ag85B, Mpt64 and Mtb8.4. Scand J Immunol 2009; 69:342-50. [PMID: 19284499 DOI: 10.1111/j.1365-3083.2009.02231.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The immunogenicity of the recombinant Bacille Calmette-Guerin: rBCG-Ag85B-Mpt64(190-198)-Mtb8.4 (rBCG-AMM) was evaluated in our previous study. This paper compares the protective efficacy of rBCG-AMM, rBCG-A which overexpresses Ag85B and BCG in C57BL/6 mice. There was no significant difference in proliferation characteristics among rBCG-AMM, rBCG-A and BCG. The growth characteristics of rBCG-AMM in host tissue were identical to control BCG, suggesting the improved protective efficacy was directly related to the expression of the Ag85B-Mpt64(190-198)-Mtb8.4 fusion protein. The protective experiment demonstrated that rBCG-AMM could confer similar or even better protective efficacy against Mycobacterium tuberculosis infection compared with BCG or rBCG-A as evaluated by bacterial organ loads, lung histopathology and net weight gain or loss. The results suggested that the recombinant BCG: rBCG-Ag85B-Mpt64(190-198)-Mtb8.4 is a potential vaccine candidate for further study.
Collapse
Affiliation(s)
- Y Q Qie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang JL, Qie YQ, Zhu BD, Zhang HM, Xu Y, Wang QZ, Chen JZ, Liu W, Wang HH. Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice. Med Microbiol Immunol 2009; 198:5-11. [PMID: 18491134 DOI: 10.1007/s00430-008-0098-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Indexed: 11/25/2022]
Abstract
Antigen 85B (Ag85B) is an important immunodominant antigen of Mycobacterium tuberculosis, and is a very promising vaccine candidate molecule. Rv3425 is a member of the subgroup 3 of the PPE family, which does not exist in all BCG strains. In this study we constructed a new rBCG which included this united gene (Ag85B-Rv3425). The level of antigen-stimulated T cells expressing IFN-gamma was significantly higher in the C57BL/6 mice vaccinated with rBCG::Ag85B-Rv3425 than with BCG. In addition, the sera from mice immunized with rBCG::Ag85B-Rv3425 revealed an increase in the specific immunoglobulin G titers than that from mice immunized with BCG. Antigen specific IgG subclass analysis showed that rBCG::Ag85B-Rv3425 tended to facilitate IgG2a production, suggesting enhancement of predominant Th1 response which in turn may facilitate increased production of protective IFN-gamma. These results suggested that this rBCG::Ag85B-Rv3425 could be a strong vaccine candidate for further study.
Collapse
Affiliation(s)
- Jiu ling Wang
- Institute of Genetics, Fudan University, 200433, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Badell E, Nicolle F, Clark S, Majlessi L, Boudou F, Martino A, Castello-Branco L, Leclerc C, Lewis DJM, Marsh PD, Gicquel B, Winter N. Protection against tuberculosis induced by oral prime with Mycobacterium bovis BCG and intranasal subunit boost based on the vaccine candidate Ag85B-ESAT-6 does not correlate with circulating IFN-gamma producing T-cells. Vaccine 2008; 27:28-37. [PMID: 18977269 DOI: 10.1016/j.vaccine.2008.10.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/15/2008] [Accepted: 10/14/2008] [Indexed: 12/17/2022]
Abstract
The potent IFN-gamma inducing fusion antigen Ag85B-ESAT-6 (85B6) is a lead subunit candidate to improve current vaccination against Mycobacterium tuberculosis (Mtb). The recombinant M. bovis BCG strain Myc3504 was constructed to secrete 85B6. It was based on commercial BCG strain Moreau Rio de Janeiro (BCG(MoWT)) which remains available for human oral administration. Myc 3504 induced higher levels of 85B6-specific IFN-gamma circulating T-cells as compared to BCG(MoWT). A novel needle-free mucosal immunization regimen combining oral prime with Myc3504 or BCG(MoWT) with intranasal boost with LTK-63-adjuvanted 85B6 was compared to subcutaneous prime-boost immunization. Strikingly whereas parenteral immunization induced sustained levels of 85B6-specific IFN-gamma secretion by circulating T-cells, mucosal regimens induced barely detectable IFN-gamma. Despite this, mice and guinea pigs immunized with the mucosal regimens were as efficiently protected against aerosol Mtb challenge as parenterally immunized animals. After Mtb challenge, anti-ESAT-6 IFN-gamma responses sharply increased in non-vaccinated mice as a hallmark of infection. Parenterally immunized mice that controlled Mtb infection, displayed anti-ESAT-6 IFN-gamma responses as high as non-immunized infected mice, compromising the possible use of ESAT-6 as a diagnostic tool. Interestingly, in mucosally immunized mice that were equally protected, post-challenge ESAT-6-specific IFN-gamma T-cell response remained low.
Collapse
Affiliation(s)
- Edgar Badell
- Institut Pasteur, Unité de Génétique Mycobactérienne, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med Genomics 2008; 1:18. [PMID: 18505592 PMCID: PMC2442614 DOI: 10.1186/1755-8794-1-18] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 05/28/2008] [Indexed: 12/19/2022] Open
Abstract
Background Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection. Methods A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied. Results Cross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens. Conclusion The comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.
Collapse
Affiliation(s)
- Anat Zvi
- Israel Institute for Biological Research, Ness Ziona 74100, Israel.
| | | | | | | | | |
Collapse
|
27
|
Kalra M, Grover A, Mehta N, Singh J, Kaur J, Sable SB, Behera D, Sharma P, Verma I, Khuller GK. Supplementation with RD antigens enhances the protective efficacy of BCG in tuberculous mice. Clin Immunol 2007; 125:173-83. [PMID: 17766185 DOI: 10.1016/j.clim.2007.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/14/2007] [Accepted: 07/17/2007] [Indexed: 01/05/2023]
Abstract
Different combinations of ESAT-6, CFP-10, CFP-21, MPT-64, encoded by RD1 and RD2 of Mycobacterium tuberculosis were evaluated on the basis of antigenicity in PPD positive TB contacts and immunogenicity in C57BL/6J mice immunized with the combination of all four RD antigens. The peripheral blood mononuclear cells of TB contacts showed maximum recognition in response to the combination of ESAT-6+MPT-64 in terms of predominant lymphoproliferation, IFN-gamma levels and the number of responders. On the contrary, the combination of ESAT-6+CFP-21+MPT-64 was found to be most immunogenic based on both T-cell and antibody responses in immunized mice. Prophylactic potential of the selected combinations was assessed as supplementation vaccines to BCG against intravenous challenge with M. tuberculosis in mice. BCG supplementation with the selected combinations resulted in significantly greater protection as compared to BCG alone against experimental tuberculosis and thus appears to be a promising approach to enhance the protective efficacy of the existing vaccine.
Collapse
Affiliation(s)
- Mamta Kalra
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu Y, Zhu B, Wang Q, Chen J, Qie Y, Wang J, Wang H, Wang B, Wang H. Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection againstMycobacterium tuberculosisin C57BL/6 mice. ACTA ACUST UNITED AC 2007; 51:480-7. [DOI: 10.1111/j.1574-695x.2007.00322.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Palma C, Iona E, Giannoni F, Pardini M, Brunori L, Orefici G, Fattorini L, Cassone A. The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1immune response in mice. Cell Microbiol 2007; 9:1455-65. [PMID: 17250590 DOI: 10.1111/j.1462-5822.2007.00884.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression.
Collapse
Affiliation(s)
- Carla Palma
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dietrich J, Billeskov R, Doherty TM, Andersen P. Synergistic effect of bacillus calmette guerin and a tuberculosis subunit vaccine in cationic liposomes: increased immunogenicity and protection. THE JOURNAL OF IMMUNOLOGY 2007; 178:3721-30. [PMID: 17339470 DOI: 10.4049/jimmunol.178.6.3721] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present work, we evaluated a new TB vaccine approach based on a combination of the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine and a subunit vaccine consisting of the proteins Ag85B and ESAT-6. We demonstrate that in addition to its vaccine efficacy BCG is an immune modulator that can potentiate a Th1 immune response better than the well-known adjuvant mono phosphoryl lipid A, leading to enhanced recognition of the subunit vaccine Ag85B-ESAT-6. Importantly, adding a vehicle to the vaccine, such as the cationic liposome dimethyl dioctadecyl ammonium bromide (DDA), significantly increased the potentiating effect of BCG. This synergistic effect between BCG and Ag85B-ESAT-6/liposome required drainage to the same lymph node of all vaccine components but did not require direct mixing of the components and was therefore also observed when BCG and Ag85B-ESAT-6/liposome were given as separate injections at sites draining to the same lymph node. The resulting optimized vaccine protocol consisting of BCG and subunit in liposomes (injected side by side) followed by boosting with the subunit in conventional adjuvant resulted in an impressive increase in the protective efficacy of up to 7-fold compared with BCG alone and 3-fold compared with unaugmented BCG boosted by the subunit vaccine. Thus, these studies suggest an immunization strategy where a novel TB subunit vaccine is administered as part of the child vaccination program together with BCG in neonates and followed by subunit boosting.
Collapse
Affiliation(s)
- Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
31
|
Dietrich J, Lundberg CV, Andersen P. TB vaccine strategies--what is needed to solve a complex problem? Tuberculosis (Edinb) 2007; 86:163-8. [PMID: 16678489 DOI: 10.1016/j.tube.2006.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/20/2006] [Indexed: 11/30/2022]
Abstract
An estimated 2 billion people are latently infected with Mycobacterium tuberculosis, the majority of which are already BCG vaccinated and repeatedly sensitized to mycobacterial strains from the environment. To be successful in the high endemic regions, any future TB vaccine strategy will have to be tailored in accordance with the resulting complexity of the TB infection and anti-mycobacterial immune response. In this review we will discuss some of the most advanced attempts to address this challenge.
Collapse
Affiliation(s)
- Jes Dietrich
- Department of Infectious Disease Immunology, Statens Serum Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
32
|
Shi C, Wang X, Zhang H, Xu Z, Li Y, Yuan L. Immune responses and protective efficacy induced by 85B antigen and early secreted antigenic target-6 kDa antigen fusion protein secreted by recombinant bacille Calmette-Guérin. Acta Biochim Biophys Sin (Shanghai) 2007; 39:290-6. [PMID: 17417685 DOI: 10.1111/j.1745-7270.2007.00281.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In an attempt to improve immune responses and protective efficacy, we constructed two recombinant bacille Calmette-Guérin (rBCG) strains expressing an 85B antigen (Ag85B) and early secreted antigenic target-6 kDa antigen (ESAT6) of Mycobacterium tuberculosis (MTB) fusion protein. Both rBCG strains have the same protein insertion but in a different order (Ag85B-ESAT6 and ESAT6-Ag85B). The cultured supernatant of rBCG strains and the sera from the mice immunized with the fusion protein Ag85B-ESAT6 or ESAT6-Ag85B formed a band with a fraction size of 37 kDa, equalivalent to the sum of Ag85B and ESAT6. Six weeks after BALB/c mice were immunized with BCG or rBCG, spleen lymphocytes showed significant proliferation in response to culture filtrate protein of MTB. Compared with the BCG group, mice vaccinated with rBCG elicited a high level increase of immunoglobulin G antibodies to culture filtrate protein in the serum. The gamma-interferon levels in the lymphocyte culture medium supernatants increased remarkably in the rBCG1 group, significantly higher than that of the BCG immunized group (p<0.05). Four weeks after vaccination, mice were infected with M. tuberculosis H37Rv and a dramatic reduction in the numbers of MTB colony forming units in the spleens and lungs was observed in the two rBCG immunization groups. Although these rBCG strains were more immunogenic, their protective effect was comparable to the classical BCG strain, and there were no significant differences between two rBCG groups (p>0.05).
Collapse
Affiliation(s)
- Changhong Shi
- Laboratory Animal Research Center, Fourth Military Medical University, Xi'an 710033, China.
| | | | | | | | | | | |
Collapse
|
33
|
Scandurra GM, Ryan AA, Pinto R, Britton WJ, Triccas JA. Contribution of L-alanine dehydrogenase to in vivo persistence and protective efficacy of the BCG vaccine. Microbiol Immunol 2007; 50:805-10. [PMID: 17053316 DOI: 10.1111/j.1348-0421.2006.tb03856.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The tuberculosis (TB) vaccine strain Mycobacterium bovis BCG is unable to utilise alanine and this deficiency is thought to inhibit the growth of the vaccine in vivo and limit vaccine efficacy. In this report we demonstrate that L-alanine catabolism can be conferred on BCG by introduction of the gene encoding L-alanine dehydrogenase (Ald) of Mycobacterium tuberculosis. Restoration of Ald activity did not change the in vivo growth of BCG in macrophages or mice, and protection against aerosol M. tuberculosis infection was not altered by addition of ald to the BCG vaccine. These results demonstrate that the inability to utilise L-alanine is not a contributing factor to the attenuated phenotype of BCG and does not influence the protective efficacy of the vaccine against TB.
Collapse
Affiliation(s)
- Gabriella M Scandurra
- Centenary Institute of Cancer Medicine and Cell Biology, Newtown, NSW 2042, Australia
| | | | | | | | | |
Collapse
|
34
|
Xu Y, Wang B, Chen J, Wang Q, Zhu B, Shen H, Qie Y, Wang J, Wang H. Chimaeric Protein Improved Immunogenicity Compared with Fusion Protein of Ag85B and ESAT-6 Antigens of Mycobacterium tuberculosis. Scand J Immunol 2006; 64:476-81. [PMID: 17032239 DOI: 10.1111/j.1365-3083.2006.01812.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Antigen 85B (Ag85B) and ESAT-6 are important immunodominant antigens of Mycobacterium tuberculosis, and both are very promising vaccine candidate molecules. In this study, we relied on the T-cell epitopes of Ag85B and ESAT-6 to design a chimaeric protein by inserting ESAT-6 into Ag85B from the amino acids 167-182. We found the ratio of IgG2b/IgG1 and the secretion of interferon (IFN)-gamma in the mice vaccinated with the new protein with adjuvant MPL and TDM were higher than the mice immunized with fusion protein Ag85B-ESAT-6, which have been reported and could induce levels of protective immunity similar to BCG in the mouse model of tuberculosis (TB) infection. These results suggest that the chimaeric protein Ag85B(N)-ESAT-6-Ag85B(C) is a strong candidate for further study and the T-cell epitopes of the antigens should be considered when we design the subunit vaccine.
Collapse
Affiliation(s)
- Y Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ryan AA, Spratt JM, Britton WJ, Triccas JA. Secretion of functional monocyte chemotactic protein 3 by recombinant Mycobacterium bovis BCG attenuates vaccine virulence and maintains protective efficacy against M. tuberculosis infection. Infect Immun 2006; 75:523-6. [PMID: 17074853 PMCID: PMC1828426 DOI: 10.1128/iai.00897-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A strain of Mycobacterium bovis BCG that secretes high levels of functional murine monocyte chemotactic protein 3 (BCG(MCP-3)) was developed. Mice vaccinated with BCG(MCP-3) displayed increased lymphocyte migration in vivo and augmented antigen-specific T-cell responses compared to mice vaccinated with BCG alone. The level of protection afforded by BCG(MCP-3) was equivalent to that with control BCG; however, immunodeficient mice infected with BCG(MCP-3) survived significantly longer than mice infected with the control BCG strain. Therefore, BCG(MCP-3) may be a safer alternative than conventional BCG for vaccination of immunocompromised individuals.
Collapse
Affiliation(s)
- Anthony A Ryan
- Mycobacterial Research Group, Centenary Institute of Cancer Medicine and Cell Biology, Locked Bag No. 6, Newtown, NSW 2042, Australia
| | | | | | | |
Collapse
|