1
|
da Silva H, Juniastuti, Amin M, Soares J, Soares M, Malik H, Ximenes A, Bela M, Fernandes B. Genotypes, subtypes, and genetic variability of hepatitis B virus from blood donors in Timor-Leste. Arch Virol 2025; 170:119. [PMID: 40310552 DOI: 10.1007/s00705-025-06305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025]
Abstract
Timor-Leste experiences high hepatitis B endemicity; however, information about hepatitis B virus (HBV) variants in Timor-Leste is still limited. In this study, we determined genotypes and subtypes and identified mutations in the surface (S), polymerase (P), basal core promoter (BCP), precore (PC), and core (C) genes of HBV isolates from blood donors in Timor-Leste. Sera were examined using serological tests and PCR sequencing. Out of 127 sera tested, 38 (30%) were positive for the hepatitis B S antigen (HBsAg). Thirty-eight sequences of the S and P genes, 22 sequences of the BCP and PC regions, and 23 sequences of C genes were determined and analyzed. The most common genotype/subtype was C/adrq+, followed by B/ayw1, B/adw2, and C/adw2. Several mutations in the S protein that are associated with vaccine escape were identified in samples of genotype C (I110L, S113T, T126I, T143S, Y161F) and B (K122R), some of which might have been from vaccinated individuals. None of the healthy carriers had taken anti-HBV drugs, but one was infected with a virus with a mutation in the P gene associated with anti-HBV drug resistance (Y141F). The mutations A1762T and G1764A in BCP were detected in 18.1-22.7% of the samples. In the PC region, the mutation C1858T was the most frequent, followed by G1896A and G1899A. In the C gene, 13 mutations (P5T, T67N, E77Q, P79Q/A, E83D, V91T, I97L/F, L116I, and P130I/P/T) associated with severe liver disease were identified. Viruses obtained from four healthy carriers who were later found to have died of hepatocellular carcinoma also showed those mutations. In conclusion, among blood donors in Timor-Leste, HBV genotype/subtype C/adrq+ and several mutations in the S and C genes were prevalent. Routine implementation of a national immunization program and monitoring of disease progression in healthy carriers should be considered.
Collapse
Affiliation(s)
- Hendriketa da Silva
- Postdoctoral Fellowship Program, Universitas Airlangga, Surabaya, Indonesia
- Postgraduation and Research Program, Faculty of Medicine and Health Sciences, Universidade Nacional Timor-Loro sae, Dili, Timor-Leste
| | - Juniastuti
- Department of Medical Microbiology, School of Medicine, Universitas Airlangga, Jl. Mayjen. Prof. Dr. Moestopo 47, Surabaya, East Java, 60131, Indonesia.
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.
| | - Mochamad Amin
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | | | - Miguel Soares
- Hospital Nacional Guido Valadares, Dili, Timor-Leste
| | - Hitler Malik
- Hospital Nacional Guido Valadares, Dili, Timor-Leste
| | | | - Maria Bela
- Hospital Nacional Guido Valadares, Dili, Timor-Leste
| | | |
Collapse
|
2
|
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative Proteomic Analysis of Huh7 Cells Transfected with Sub-Saharan African Hepatitis B Virus (Sub)genotypes Reveals Potential Oncogenic Factors. Viruses 2024; 16:1052. [PMID: 39066215 PMCID: PMC11281506 DOI: 10.3390/v16071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
In sub-Saharan Africa (SSA), the (sub)genotypes A1, D3, and E of the hepatitis B virus (HBV) prevail. Individuals infected with subgenotype A1 have a 4.5-fold increased risk of HCC compared to those infected with other (sub)genotypes. The effect of (sub)genotypes on protein expression and host signalling has not been studied. Mass spectrometry was used to analyse the proteome of Huh7 cells transfected with replication-competent clones. Proteomic analysis revealed significantly differentially expressed proteins between SSA (sub)genotypes. Different (sub)genotypes have the propensity to dysregulate specific host signalling pathways. Subgenotype A1 resulted in dysregulation within the Ras pathway. Ras-associated protein, RhoC, was significantly upregulated in cells transfected with subgenotype A1 compared to those transfected with other (sub)genotypes, on both a proteomic (>1.5-fold) and mRNA level (p < 0.05). Two of the main cellular signalling pathways involving RHOC, MAPK and PI3K/Akt/mTOR, regulate cell growth, motility, and survival. Downstream signalling products of these pathways have been shown to increase MMP2 and MMP9 expression. An extracellular MMP2 and MMP9 ELISA revealed a non-significant increase in MMP2 and MMP9 in the cells transfected with A1 compared to the other (sub)genotypes (p < 0.05). The upregulated Ras-associated proteins have been implicated as oncoproteins in various cancers and could contribute to the increased hepatocarcinogenic potential of A1.
Collapse
Affiliation(s)
- Kiyasha Padarath
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| | - Aurélie Deroubaix
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
- Life Sciences Imaging Facility, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Previn Naicker
- Future Production Chemicals, Council for Scientific and Industrial Research, Pretoria 0184, South Africa;
| | - Stoyan Stoychev
- ReSyn Biosciences, Johannesburg 2000, South Africa;
- Evosep Biosystems, 5230 Odense, Denmark
| | - Anna Kramvis
- Hepatitis Virus Diversity Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Science, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa (A.D.)
| |
Collapse
|
3
|
Anderson M, Mangogola T, Phinius BB, Mpebe G, Aimakhu CO, Choga WT, Phakedi B, Bhebhe LN, Ditshwanelo D, Baruti K, Mpofu-Dobo L, Othusitse L, Ratsoma T, Gaolathe T, Makhema J, Shapiro R, Lockman S, Moyo S, Gaseitsiwe S. Hepatitis B Virus Prevalence among HIV-Uninfected People Living in Rural and Peri-Urban Areas in Botswana. Microorganisms 2024; 12:1207. [PMID: 38930589 PMCID: PMC11205512 DOI: 10.3390/microorganisms12061207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: we determined the prevalence of the hepatitis B virus (HBV) amongst people without human immunodeficiency virus (HIV) in rural and peri-urban areas in Botswana. (2) Methods: We screened for the hepatitis B surface antigen (HBsAg) from archived plasma samples of people without HIV (n = 2135) randomly selected from the Botswana Combination Prevention Program (BCPP) (2013-2018). We sequenced 415 bp of the surface region using BigDye sequencing chemistry. (3) Results: The median age of participants was 31 (IQR: 24-46) and 64% (1360/2135) were female. HBV prevalence was 4.0% (86/2135) [95% CI: 3.3-4.9]) and ranged between 0-9.2%. Older participants (>35 years) had increased odds of HBV positivity (OR: 1.94; 95% CI: [1.32-2.86]; p = 0.001). Thirteen samples were sequenced and seven (53.8%) were genotype A, three (23.1%) were genotype D and genotype E each. Clinically significant mutations were identified in the surface region, but no classic drug resistance mutations were identified. (4) Conclusions: We report an HBV prevalence of 4.0% (95% CI 3.3-4.9) among people without HIV in rural and peri-urban communities in Botswana with varying rates in different communities. A comprehensive national HBV program is required in Botswana to guide HBV prevention, testing and management.
Collapse
Affiliation(s)
- Motswedi Anderson
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Africa Health Research Institute, Durban 4013, South Africa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Thabo Mangogola
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Pan-African University (Life and Earth Sciences Institute), University of Ibadan, Ibadan 200132, Nigeria;
| | - Bonolo B. Phinius
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Gorata Mpebe
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Christopher O. Aimakhu
- Pan-African University (Life and Earth Sciences Institute), University of Ibadan, Ibadan 200132, Nigeria;
| | - Wonderful T. Choga
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Basetsana Phakedi
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
| | - Lynnette N. Bhebhe
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
| | - Doreen Ditshwanelo
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
| | - Kabo Baruti
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Linda Mpofu-Dobo
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Lebogang Othusitse
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
| | - Tsholofelo Ratsoma
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Tendani Gaolathe
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Faculty of Medicine, University of Botswana, Private Bag UB 0022, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roger Shapiro
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Sikhulile Moyo
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Medical Virology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Simani Gaseitsiwe
- Botswana Harvard Health Partnership, Private Bag BO320, Gaborone, Botswana; (M.A.); (T.M.); (B.B.P.); (G.M.); (W.T.C.); (B.P.); (L.N.B.); (D.D.); (K.B.); (L.M.-D.); (L.O.); (T.R.); (T.G.); (J.M.); (R.S.); (S.L.); (S.M.)
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
4
|
Cremer J, van Heiningen F, Veldhuijzen I, Benschop K. Characterization of Hepatitis B virus based complete genome analysis improves molecular surveillance and enables identification of a recombinant C/D strain in the Netherlands. Heliyon 2023; 9:e22358. [PMID: 38058647 PMCID: PMC10695994 DOI: 10.1016/j.heliyon.2023.e22358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023] Open
Abstract
Hepatitis B Virus (HBV) is classified into 10 HBV genotypes (A-J) based a >7.5 % divergence within the complete genome or a >4 % divergence in the S-gene. In addition, recombinant strains with common breakpoints at the gene boundaries of the preS1/preS2/S- and preC/C-gene are often identified. Analysis of HBV based on the complete genome is essential for public health surveillance as it provides higher genetic resolution to conduct accurate characterization and phylogenetic analysis of circulating strains and identify possible recombinants. Currently two separate assays are used for HBV-surveillance; the S-gene for typing, and due to the higher genetic variation, the C-gene to gain insight in transmission patterns. The aim of the study was to develop a complete genome PCR-assay and evaluate the characterization and circulation of HBV strains through the use of the S-gene, C-gene and complete genome. For this HBV positive samples collected in the period 2017 through 2019 were selected. Analysis of the complete genome showed that complete genome analysis portrays a high genetic resolution that provided accurate characterization and analysis of the different circulating types in the Netherlands and enabled identification and characterization of a recombinant CD strain.
Collapse
Affiliation(s)
- Jeroen Cremer
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Francoise van Heiningen
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Irene Veldhuijzen
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kimberley Benschop
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
5
|
Fernandes da Silva C, Keeshan A, Cooper C. Hepatitis B virus genotypes influence clinical outcomes: A review. CANADIAN LIVER JOURNAL 2023; 6:347-352. [PMID: 38020195 PMCID: PMC10652982 DOI: 10.3138/canlivj-2023-0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2023] [Indexed: 12/01/2023]
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus that affects approximately 296 million people worldwide. A crucial step to HBV replication is the transcription of its infectious DNA from its viral RNA intermediate. The production of the RNA intermediate hinges on reverse transcription, and therefore the lack of proofreading in that process commonly yields mutants and has led to nine well-described genotypes (A-I) and over 30 known sub-genotypes of the virus. The influence of genotype on HBV infection outcomes, which include fibrosis progression, cirrhosis, and hepatocellular carcinoma (HCC), remain uncertain. This review aims to analyze the influence of HBV genotype on the risk of development of these outcomes. The response to current and future HBV therapies is considered. Further study of larger and more diverse samples will hopefully resolve outstanding uncertainties.
Collapse
Affiliation(s)
| | - Alexa Keeshan
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Curtis Cooper
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Toyé RM, Loureiro CL, Jaspe RC, Zoulim F, Pujol FH, Chemin I. The Hepatitis B Virus Genotypes E to J: The Overlooked Genotypes. Microorganisms 2023; 11:1908. [PMID: 37630468 PMCID: PMC10459053 DOI: 10.3390/microorganisms11081908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hepatitis B virus (HBV) genotypes E to J are understudied genotypes. Genotype E is found almost exclusively in West Africa. Genotypes F and H are found in America and are rare in other parts of the world. The distribution of genotype G is not completely known. Genotypes I and J are found in Asia and probably result from recombination events with other genotypes. The number of reported sequences for HBV genotypes E to J is small compared to other genotypes, which could impact phylogenetic and pairwise distance analyses. Genotype F is the most divergent of the HBV genotypes and is subdivided into six subgenotypes F1 to F6. Genotype E may be a recent genotype circulating almost exclusively in sub-Saharan Africa. Genotype J is a putative genotype originating from a single Japanese patient. The paucity of data from sub-Saharan Africa and Latin America is due to the under-representation of these regions in clinical and research cohorts. The purpose of this review is to highlight the need for further research on HBV genotypes E to J, which appear to be overlooked genotypes.
Collapse
Affiliation(s)
- Rayana Maryse Toyé
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Carmen Luisa Loureiro
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Rossana Celeste Jaspe
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
| | - Fabien Zoulim
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| | - Flor Helene Pujol
- Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular (CMBC), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas 1020A, Venezuela; (C.L.L.); (R.C.J.)
- Collégium de Lyon, Institut d’Etudes Avancées, Université Lyon 2, 69007 Lyon, France
| | - Isabelle Chemin
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1052, Centre de Recherche en Cancérologie de Lyon (CRCL), 151 Cours Albert Thomas, 69003 Lyon, France; (R.M.T.); (F.Z.)
| |
Collapse
|
7
|
Kafeero HM, Ndagire D, Ocama P, Kato CD, Wampande E, Walusansa A, Kajumbula H, Kateete D, Ssenku JE, Sendagire H. Mapping hepatitis B virus genotypes on the African continent from 1997 to 2021: a systematic review with meta-analysis. Sci Rep 2023; 13:5723. [PMID: 37029173 PMCID: PMC10082212 DOI: 10.1038/s41598-023-32865-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Hepatitis B virus (HBV) has ten genotypes (A-J) and over 40 sub-genotypes based on the divergence of ≥ 8% and 4 to < 8% in the complete genome respectively. These genotypes and sub-genotypes influence the disease prognosis, response to therapy and route of viral transmission. Besides, infection with mixed genotypes and recombinant genotypes has also been reported. This study aimed at mapping the de novo genotypes and correlate them with the immigration trends in order to inform future research on the underlying reasons for the relative distribution of HBV genotypes from a large sample size pooled from many primary studies. Data was extracted from 59 full research articles obtained from Scopus, PubMed, EMBASE, Willy library, African Journal Online (AJOL) and Google Scholar. Studies that investigated the genotypes, sub-genotypes, mixed genotypes and recombinant were included. The Z-test and regression were used for the analysis. The study protocol is registered with PROSPERO under the registration number CRD42022300220. Overall, genotype E had the highest pooled prevalence significantly higher than all the other genotypes (P < 0.001). By region, genotype A posted the highest pooled prevalence in eastern and southern Africa, E in west Africa and D in north Africa (P < 0.0001). Regarding the emerging genotypes B and C on the African continent, genotype B was significantly higher in south Africa than C (P < 0.001). In contrast, genotype C was significantly higher in east Africa than west Africa (P < 0.0001). The A1 and D/E were the most diverse sub-genotypes and genotype mixtures respectively. Finally, we observed a general progressive decrease in the prevalence of predominant genotypes but a progressive increase in the less dominant by region. Historical and recent continental and intercontinental migrations can provide a plausible explanation for the HBV genotype distribution pattern on the African continent.
Collapse
Affiliation(s)
- Hussein Mukasa Kafeero
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda.
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda.
| | - Dorothy Ndagire
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Ponsiano Ocama
- Department of Medicine, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Charles Drago Kato
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Eddie Wampande
- Department of Biomolecular Resources and Biolab Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Abdul Walusansa
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - David Kateete
- Department of Molecular Biology and Immunology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Jamilu E Ssenku
- Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P. O Box 7062, Kampala, Uganda
- Department of Medical Microbiology, Habib Medical School, Faculty of Health Sciences, Islamic University in Uganda, P. O Box 7689, Kampala, Uganda
| |
Collapse
|
8
|
Zaiets I, Gunewardena S, Menne S, Weinman SA, Gudima SO. Sera of Individuals Chronically Infected with Hepatitis B Virus (HBV) Contain Diverse RNA Types Produced by HBV Replication or Derived from Integrated HBV DNA. J Virol 2023; 97:e0195022. [PMID: 36877036 PMCID: PMC10062156 DOI: 10.1128/jvi.01950-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
This study aimed to better characterize the repertoire of serum hepatitis B virus (HBV) RNAs during chronic HBV infection in humans, which remains understudied. Using reverse transcription-PCR (RT-PCR), real-time quantitative PCR (RT-qPCR), RNA-sequencing, and immunoprecipitation, we found that (i) >50% of serum samples bore different amounts of HBV replication-derived RNAs (rd-RNAs); (ii) a few samples contained RNAs transcribed from integrated HBV DNA, including 5'-HBV-human-3' RNAs (integrant-derived RNAs [id-RNAs]) and 5'-human-HBV-3' transcripts, as a minority of serum HBV RNAs; (iii) spliced HBV RNAs were abundant in <50% of analyzed samples; (iv) most serum rd-RNAs were polyadenylated via conventional HBV polyadenylation signal; (v) pregenomic RNA (pgRNA) was the major component of the pool of serum RNAs; (vi) the area of HBV positions 1531 to 1739 had very high RNA read coverage and thus should be used as a target for detecting serum HBV RNAs; (vii) the vast majority of rd-RNAs and pgRNA were associated with HBV virions but not with unenveloped capsids, exosomes, classic microvesicles, or apoptotic vesicles and bodies; (viii) considerable rd-RNAs presence in the circulating immune complexes was found in a few samples; and (ix) serum relaxed circular DNA (rcDNA) and rd-RNAs should be quantified simultaneously to evaluate HBV replication status and efficacy of anti-HBV therapy with nucleos(t)ide analogs. In summary, sera contain various HBV RNA types of different origin, which are likely secreted via different mechanisms. In addition, since we previously showed that id-RNAs were abundant or predominant HBV RNAs in many of liver and hepatocellular carcinoma tissues as compared to rd-RNAs, there is likely a mechanism favoring the egress of replication-derived RNAs. IMPORTANCE The presence of integrant-derived RNAs (id-RNAs) and 5'-human-HBV-3' transcripts derived from integrated hepatitis B virus (HBV) DNA in sera was demonstrated for the first time. Thus, sera of individuals chronically infected with HBV contained both replication-derived and integrant-transcribed HBV RNAs. The majority of serum HBV RNAs were the transcripts produced by HBV genome replication, which were associated with HBV virions and not with other types of extracellular vesicles. These and other above-mentioned findings advanced our understanding of the HBV life cycle. In addition, the study suggested a promising target area on the HBV genome to increase sensitivity of the detection of serum HBV RNAs and supported the idea that simultaneous detection of replication-derived RNAs (rd-RNAs) and relaxed circular DNA (rcDNA) in serum provides more adequate evaluation of (i) the HBV genome replication status and (ii) the durability and efficiency of the therapy with anti-HBV nucleos(t)ide analogs, which could be useful for improvement of the diagnostics and treatment of HBV-infected individuals.
Collapse
Affiliation(s)
- Igor Zaiets
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Steven A. Weinman
- Department of Internal Medicine, Division of Gastroenterology, Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
9
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
10
|
Seroprevalence of Hepatitis B Virus and Hepatitis C Virus Infections Among People with Severe Mental Illness in Tehran, Iran. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-126696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: High-risk behaviors in people with severe mental illnesses, such drug injection by shared equipment and unprotected sex, expose them to the risk of blood-borne infections such as hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Objectives: This study aimed to determine the prevalence of HBV and HCV serum markers in people with severe mental illnesses in Tehran, Iran. Methods: In this cross-sectional study, people with mental illnesses, such as schizophrenia, bipolar disorder, and depression, were studied. The participants were recruited using a non-random convenience sampling method from Roozbeh and Razi hospitals in Tehran between December 2019 and March 2020. Blood samples were evaluated for HCV-Ab, HBs Ag, HBs Ab, and HBc Ab using an enzyme immunoassay technique. Results: A total of 257 participants were recruited for this study; their mean age was 35.77 years, and 70.0% of whom were male. Bipolar disorder (40.5%) and schizophrenia (35.8%) were the most frequent severe mental disorders in the participants. The prevalence of HBV and HCV seromarkers was as follows: HBs Ag: 0.3% (95% CI: 0.0 - 2.0%), HBc Ab: 7.3% (95% CI: 4.6 - 11.3%), HBs Ab: 18.7% (95% CI: 14.1 - 24.0%), and HCV Ab: 3.1% (95% CI: 1.3 - 6.9%). In logistic regression analysis, tattooing (OR = 4.94, 95% CI: 1.73 - 14.13) and age (OR= 1.06, 95% CI: 1.01 - 1.11) were associated with HBV infection (HBc Ab positivity), and only tattooing (OR= 6.33, 95% CI: 1.19 - 33.80) was significantly associated with exposure to HCV. Conclusions: The results of this study showed that the prevalence of HBsAg positivity in people with severe mental illness was not higher than that in the general population of Iran; however, HCV Ab positivity was more prevalent in people with severe mental illness than in the general population of Iran. Preventive, diagnostic, and therapeutic interventions for HCV infection are needed in this population in Iran.
Collapse
|
11
|
Maepa MB, Ely A, Kramvis A, Bloom K, Naidoo K, Simani OE, Maponga TG, Arbuthnot P. Hepatitis B Virus Research in South Africa. Viruses 2022; 14:v14091939. [PMID: 36146747 PMCID: PMC9503375 DOI: 10.3390/v14091939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Despite being vaccine-preventable, hepatitis B virus (HBV) infection remains the seventh leading cause of mortality in the world. In South Africa (SA), over 1.9 million people are chronically infected with HBV, and 70% of all Black chronic carriers are infected with HBV subgenotype A1. The virus remains a significant burden on public health in SA despite the introduction of an infant immunization program implemented in 1995 and the availability of effective treatment for chronic HBV infection. In addition, the high prevalence of HIV infection amplifies HBV replication, predisposes patients to chronicity, and complicates management of the infection. HBV research has made significant progress leading to better understanding of HBV epidemiology and management challenges in the SA context. This has led to recent revision of the national HBV infection management guidelines. Research on developing new vaccines and therapies is underway and progress has been made with designing potentially curative gene therapies against HBV. This review summarizes research carried out in SA on HBV molecular biology, epidemiology, treatment, and vaccination strategies.
Collapse
Affiliation(s)
- Mohube B. Maepa
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- Correspondence:
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Anna Kramvis
- Hepatitis Diversity Research Unit, Department of Internal Medicine, Faculty of Health Sciences, School of Clinical Medicine, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Kubendran Naidoo
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
- National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Omphile E. Simani
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Tongai G. Maponga
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7602, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, Infectious Diseases and Oncology Research Institute (IDORI), University of the Witwatersrand, Johannesburg 2000, South Africa
| |
Collapse
|
12
|
Ahmed Z, Shetty A, Victor DW, Kodali S. Viral hepatitis: A narrative review of hepatitis A–E. World J Meta-Anal 2022; 10:99-121. [DOI: 10.13105/wjma.v10.i3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis continues to be a major health concern leading to hepatic decompensation ranging from acute hepatitis to cirrhosis and hepatocellular carcinoma. The hepatic and extrahepatic manifestations are not only debilitating but also associated with a significant economic burden. Over the last two decades, the field of virology has made significant breakthroughs leading to a better understanding of the pathophysiology of viral hepatitis, which in turn has led to new therapeutic options. The advent of direct-acting antiviral agents changed the landscape of hepatitis C virus (HCV) therapy, and new drugs are in the pipeline for chronic hepatitis B virus (HBV) treatment. There has also been a significant emphasis on screening and surveillance programs, widespread availability of vaccines, and linkage of care. Despite these efforts, significant gaps persist in care, and there is a pressing need for increased collaboration and teamwork across the globe to achieve a reduction of disease burden and elimination of HBV and HCV.
Collapse
Affiliation(s)
- Zunirah Ahmed
- Division of Gastroenterology and Hepatology, Underwood Center for Digestive Disorders, Houston Methodist Hospital, Houston, TX 77030, United States
| | - Akshay Shetty
- Department of Gastroenterology and Hepatology, University of California, Los Angeles, CA 90095, United States
| | - David W Victor
- Department of Hepatology, J C Walter Jr Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Weill Cornell Medical College, Houston, TX 77030, United States
| | - Sudha Kodali
- Department of Hepatology, J C Walter Jr Transplant Center, Sherrie and Alan Conover Center for Liver Disease and Transplantation, Weill Cornell Medical College, Houston, TX 77030, United States
| |
Collapse
|
13
|
Li T, Chen H, Sun L, Liu J. Dating the origin and dispersal of global hepatitis B virus genotype C in humans. Drug Discov Ther 2022; 16:85-92. [PMID: 35491234 DOI: 10.5582/ddt.2022.01030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hepatitis B virus genotype C (HBV/C) is one of the most prevalent HBV strains worldwide, especially in the Western Pacific and the South-East Asia. However, the origin and evolutionary timescale of HBV/C remains largely unresolved. We analyzed the evolutionary rate and molecular clock phylogeny of 101 full-genome HBV/C sequences sampled globally using a Bayesian Markov Chain Monte Carlo (MCMC) approach. We inferred the spatiotemporal dynamics of the HBV/C worldwide by the Bayesian Stochastic Search Variable Selection (BSSVS). We found that the estimated mean evolution rate of the HBV/C genotype full-genome was 4.32 × 10-5 subs/site/year (95% highest posterior density 3.02 × 10-6 - 8.97 × 10-5). Phylogeographic reconstruction was able to identify a single location for the origin of the global HBV/C in Australia around A.D. 715. The subgenotype C4 diverged earliest and mainly circulated in Australia, C1 mainly in Southeast Asia, C2 mainly in East Asia and C3 in Remote Oceania. The effective number of HBV infection presented a rapid exponential increase between the 1760s and 1860s followed by a maintained high level until now. Our study, for the first time, provides an estimated timescale for the HBV/C epidemic, and brings new insight to the dispersal of HBV/C in humans globally. Based on the continuous presence of a highly effective viral population, this study provides further evidence of the challenge from a population-based molecular level to eliminate HBV by 2030, and calls for a concerted effort from policy makers, health providers, and society in the globalized world.
Collapse
Affiliation(s)
- Tianze Li
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Chen
- Center for Disease Control and Prevention of Chinese People's Liberation Army, Beijing, China
| | - Liqin Sun
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Jiaye Liu
- School of Public Health, Shenzhen University Health Science Center, Shenzhen, China.,Expanded Program Immunization Division, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
| |
Collapse
|
14
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
15
|
In Vivo Modelling of Hepatitis B Virus Subgenotype A1 Replication Using Adeno-Associated Viral Vectors. Viruses 2021; 13:v13112247. [PMID: 34835053 PMCID: PMC8618177 DOI: 10.3390/v13112247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
The paucity of animal models that simulate the replication of the hepatitis B virus (HBV) is an impediment to advancing new anti-viral treatments. The work reported here employed recombinant adeno-associated viruses (AAVs) to model HBV subgenotype A1 and subgenotype D3 replication in vitro and in vivo. Infection with subgenotype A1 is endemic to parts of sub-Saharan Africa, and it is associated with a high risk of hepatocellular carcinoma. Recombinant AAV serotype 2 (AAV2) and 8 (AAV8) vectors bearing greater-than-genome-length sequences of HBV DNA from subgenotype A1 and D3, were produced. Transduced liver-derived cultured cells produced HBV surface antigen and core antigen. Administration of AAV8 carrying HBV subgenotype A1 genome (AAV8-A1) to mice resulted in the sustained production of HBV replication markers over a six-month period, without elevated inflammatory cytokines, expression of interferon response genes or alanine transaminase activity. Markers of replication were generally higher in animals treated with subgenotype D3 genome-bearing AAVs than in those receiving the subgenotype A1-genome-bearing vectors. To validate the use of the AAV8-A1 murine model for anti-HBV drug development, the efficacy of anti-HBV artificial primary-microRNAs was assessed. Significant silencing of HBV markers was observed over a 6-month period after administering AAVs. These data indicate that AAVs conveniently and safely recapitulate the replication of different HBV subgenotypes, and the vectors may be used to assess antivirals’ potency.
Collapse
|
16
|
Hayashi S, Nagaoka K, Tanaka Y. Blood-Based Biomarkers in Hepatitis B Virus-Related Hepatocellular Carcinoma, Including the Viral Genome and Glycosylated Proteins. Int J Mol Sci 2021; 22:11051. [PMID: 34681709 PMCID: PMC8540379 DOI: 10.3390/ijms222011051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) development and is a global public health issue. High performance biomarkers can aid the early detection of HCC development in HBV-infected individuals. In addition, advances in the understanding of the pathogenesis of HBV infection and in clinical laboratory techniques have enabled the establishment of disease-specific tests, prediction of the progression of liver diseases, including HCC, and auxiliary diagnosis of HCC, using blood-based methods instead of biopsies of liver or HCC tissues. Viral factors such as the HBV genotype, HBV genetic mutations, HBV DNA, and HBV-related antigens, as well as host factors, such as tumor-associated proteins and post-translational modifications, especially glycosylated proteins, can be blood-based, disease-specific biomarkers for HCC development in HBV-infected patients. In this review, we describe the clinical applications of viral biomarkers, including the HBV genome and glycosylated proteins, for patients at a risk of HBV-related HCC, based on their molecular mechanisms. In addition, we introduce promising biomarker candidates for practical use, including colony stimulating factor 1 receptor (CSF1R), extracellular vesicles, and cell-free, circulating tumor DNA. The clinical use of such surrogate markers may lead to a better understanding of the risk of disease progression and early detection of HCC in HBV-infected patients, thereby improving their prognosis.
Collapse
Affiliation(s)
| | | | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (S.H.); (K.N.)
| |
Collapse
|
17
|
Tsai TY, Huang MT, Sung PS, Peng CY, Tao MH, Yang HI, Chang WC, Yang AS, Yu CM, Lin YP, Bau CY, Huang CJ, Pan MH, Wu CY, Hsiao CD, Yeh YH, Duan S, Paulson JC, Hsieh SL. SIGLEC-3 (CD33) serves as an immune checkpoint receptor for HBV infection. J Clin Invest 2021; 131:e141965. [PMID: 34060491 DOI: 10.1172/jci141965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B (CHB) infection is rarely eradicated by current antiviral nucleos(t)ide analogues. We found that α2,6-biantennary sialoglycans of HBV surface antigen (HBsAg) bound human SIGLEC-3 (CD33) by IP and ELISA, and the binding affinity between SIGLEC-3 and α2,6-biantennary sialoglycans was determined by biolayer interferometry (equilibrium dissociation constant [KD]: 1.95 × 10-10 ± 0.21 × 10-10 M). Moreover, HBV activated SIGLEC-3 on myeloid cells and induced immunosuppression by stimulating immunoreceptor tyrosine-based inhibitory motif phosphorylation and SHP-1/-2 recruitment via α2,6-biantennary sialoglycans on HBsAg. An antagonistic anti-SIGLEC-3 mAb reversed this effect and enhanced cytokine production in response to TLR-7 agonist GS-9620 in PBMCs from CHB patients. Moreover, anti-SIGLEC-3 mAb alone was able to upregulate the expression of molecules involved in antigen presentation, such as CD80, CD86, CD40, MHC-I, MHC-II, and PD-L1 in CD14+ cells. Furthermore, SIGLEC-3 SNP rs12459419 C, which expressed a higher amount of SIGLEC-3, was associated with increased risk of hepatocellular carcinoma (HCC) in CHB patients (HR: 1.256, 95% CI: 1.027-1.535, P = 0.0266). Thus, blockade of SIGLEC-3 is a promising strategy to reactivate host immunity to HBV and lower the incidence of HCC in the CHB patient population.
Collapse
Affiliation(s)
- Tsung-Yu Tsai
- PhD Program for Translational Medicine, China Medical University and Academia Sinica, Taichung, Taiwan.,Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | | | - Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Mi-Hua Tao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ya-Ping Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Yu Bau
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hung Pan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Hung Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shiteng Duan
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Prevalence of hepatitis B virus genotypes among patients with liver disease in Eritrea. Sci Rep 2021; 11:11323. [PMID: 34059763 PMCID: PMC8166852 DOI: 10.1038/s41598-021-90836-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/17/2021] [Indexed: 01/15/2023] Open
Abstract
Eritrea is an East African multiethnic country with an intermediate endemicity for hepatitis B. Our aim was to establish the most prevalent genotypes of hepatitis B virus (HBV) among patients with liver disease. A total of 293 Eritrean patients with liver disease who were hepatitis B surface antigen (HBsAg) positive were enrolled. All sera were tested for liver transaminases, HBV DNA viral load, and hepatitis B seromarkers including HBsAg, anti-HBcAb (total), HBeAg, and anti-HBeAb. Those reactive for HBsAg and anti-HBc (total) were further tested for HBV genotyping. The median (interquartile range) of HBV DNA viral load and ALT levels were 3.47 (1.66) log IU/mL and 28 (15.3) IU/L, respectively. Using type-specific primer-based genotyping method, 122/293 (41.6%) could be genotyped. Irrespective of mode of occurrence, HBV genotype D (21.3%) was the predominant circulating genotype, followed by genotypes C (17.2%), E (15.6%), C/D (13.1%), and C/E (10.7%). Genotypes C/D/E (7.4%), A/D (4.9%), D/E (4.1%), A (2.5%), and B, A/E, B/E, and A/D/C (0.8%) were also present. HBV in Eritrea is comprised of a mixture of HBV genotypes. This is the first study of HBV genotyping among patients with liver disease in Eritrea.
Collapse
|
19
|
Olusola BA, Faneye AO, Oluwasemowo OO, Motayo BO, Adebayo S, Oludiran-Ayoade AE, Aleru B, George UE, Oragwa AO. Profiles of mutations in hepatitis B virus surface and polymerase genes isolated from treatment-naïve Nigerians infected with genotype E. J Med Microbiol 2021; 70. [PMID: 33704041 DOI: 10.1099/jmm.0.001338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Hepatitis B virus (HBV) infection is the leading cause of hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). HBV genotype E (HBV/E) is the predominant genotype in West Africa and has been linked epidemiologically with chronic and occult HBV infections as well as development of HCC. Mutations in the surface and polymerase genes of HBV have been associated with occult infection, drug resistance, vaccine escape, as well as HCC.Hypothesis/Gap Statement. There is limited data on the occurrence and patterns of mutations associated with occult infection, drug resistance, vaccine escape and HCC for HBV/E.Aim. This study characterized amino acid (aa) substitutions in the major hydrophilic (MHR) and reverse transcriptase (RT) regions of the surface and polymerase genes respectively of HBV sequences from a group of Nigerians with genotype E infection. The CpG islands of the PreC/C and PreS/S regions of these sequences were also described.Methodology. HBV surface and polymerase genes were detected using PCR techniques. Occurrence of new and previously described mutations in these genes were analysed using phylogenetic techniques.Results. Overall 13 HBV isolates were each sequenced for polymerase and surface genes mutations. Thirteen and nine PreS/S and PreC/C HBV genes respectively were analysed for CpG islands. Mutations in the MHR and a-determinants region of the S protein were discovered in eleven and nine of the 13 tested isolates respectively. These mutations were concomitant with aa changes in the RT functional domains of the isolates. Mutations associated with vaccine escape, occult infection and poor HCC prognosis were identified in HBV/E isolated in this study. Furthermore, all the isolates had at least one putative nucleotide analogue resistance mutations. Drug resistance mutations had the highest association with CpG islands.Conclusion. The results of this study contribute to further understanding of HBV variability in Nigeria and the West African region. This will aid the planning of adequate HBV immunization and treatment programmes for the countries in the region.
Collapse
Affiliation(s)
- Babatunde A Olusola
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedayo O Faneye
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Babatunde O Motayo
- Federal Medical Center, Abeokuta, Nigeria.,Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Sopeju Adebayo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomide E Oludiran-Ayoade
- Present address: Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.,Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bisola Aleru
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uwem E George
- Department of Biological Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Arthur O Oragwa
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Jos, Jos-Plateau State, Nigeria
| |
Collapse
|
20
|
Nishimura K, Yamana K, Fukushima S, Fujioka K, Miyabayashi H, Murabayashi M, Masunaga K, Okahashi A, Nagano N, Morioka I. Comparison of Two Hepatitis B Vaccination Strategies Targeting Vertical Transmission: A 10-Year Japanese Multicenter Prospective Cohort Study. Vaccines (Basel) 2021; 9:58. [PMID: 33477275 PMCID: PMC7830287 DOI: 10.3390/vaccines9010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
In 1985, a hepatitis B (HB) vaccination strategy against vertical HB virus transmission was introduced in Japan that recommended vaccination of infants at two, three, and five months of age (delayed strategy). This schedule was revised in 2013, recommending to vaccinate at birth and at 1 and 6 months of age (non-delayed strategy). We aimed to compare the vertical HB virus transmission rates and immunogenic responses between these two vaccination strategies. This Japanese multicenter prospective cohort study included 222 infants born between 2008 and 2017 to serum hepatitis B surface (HBs) antigen (HBsAg)-positive mothers. During the study period, 136 and 86 infants received delayed and non-delayed strategies, respectively. A positive vertical HB virus transmission was defined as a positive serum HBsAg status. Seropositive immunogenic response was defined as a serum anti-HBs titer of ≥10 mIU/mL. Post-vaccination serum HBsAg positivity rates did not differ significantly between the delayed (0/136 [0.0%, 95% confidence interval, 0.0-2.7%]) and non-delayed (2/86 [2.3%, 95% confidence interval, 0.3-8.1%]) strategy groups. Seropositive immunogenic response rates were 100.0% (136/136) and 97.7% (84/86), respectively. Although this study was under-powered to detect a statistically significant result, no vertical HB virus transmission was observed in the delayed strategy.
Collapse
Affiliation(s)
- Koji Nishimura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Keiji Yamana
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
- Department of Pediatrics, Kakogawa Central City Hospital, Kakogawa 6758611, Japan
| | - Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan; (K.Y.); (S.F.); (K.F.)
| | | | - Masao Murabayashi
- Department of Pediatrics, Numazu City Hospital, Numazu 4100302, Japan;
| | - Ken Masunaga
- Division of Neonatology, Tokyo Metropolitan Ohtsuka Hospital, Tokyo 1708476, Japan;
| | - Aya Okahashi
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Nobuhiko Nagano
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo 1738610, Japan; (K.N.); (A.O.); (N.N.)
| |
Collapse
|
21
|
Paraskevis D, Kostaki EG, Kramvis A, Magiorkinis G. Classification, Genetic Diversity and Global Distribution of Hepatitis C Virus (HCV) Genotypes and Subtypes. HEPATITIS C: EPIDEMIOLOGY, PREVENTION AND ELIMINATION 2021:55-69. [DOI: 10.1007/978-3-030-64649-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Husseini AA, Islam Saeed KM, Yurdcu E, Bozdayı AM. Molecular epidemiology of Hepatitis B virus, Hepatitis C virus, and Hepatitis D virus in general population of Afghanistan. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:658-666. [PMID: 33090103 DOI: 10.5152/tjg.2020.19169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS This study gives a clue about genotypes, subgenotypes and subtypes of HBV, HCV and HDV viruses in general population of Afghanistan. MATERIALS AND METHODS A total of 234 HBsAg, 44 anti-HCV and 5 Anti-Delta positive patients belong to 25-70 age group were obtained through a rapid screening test among 5898 residents of Afghanistan. After quantifying viral load, genotyping of 61 HBV, 29 HCV and 1 HDV samples were accomplished by sequencing of a segment of the HBV Pre S, HCV NS5B, and HDV Delta antigen regions respectively. Clinically important variants of the HBV polymerase gene, the "a" determinant of HBsAg, HCV NS5B and NS3 regions were assessed. RESULTS All HBV isolates were dispersed throughout the genotype D branch and ayw2 was the only subtypes found. The anti-HDV prevalence among HBsAg positive individuals was 2.2% and the single HDV sample, belonged to HDV genotype I. Analysis of HCV isolates revealed subtype HCV-1b in 75.86%, HCV-3a in 20.69% and HCV-3b in 3.44% patients. The observed mutant variants in the MHR of HBsAg were Y100 15%, Q101 5%, G102 15%, T115 45%, P120 5%, T131 5%. Likewise, S213T 10%, Q215P 5% and N248H 100% mutations were detected in the HBV polymerase region. C316N mutation was prevalent in 72.7% of HCV 1b participants. CONCLUSION Genotypic variation in Afghan patients is in line with the ones existing in neighboring countries and regions. HBV genotypes D1, subtype ayw2, HDV RNA type I, and HCV RNA genotype 1b are likely to be dominant in Afghan patients.
Collapse
Affiliation(s)
- Abbas Ali Husseini
- Institute of Hepatology, Ankara University School of Medicine, Ankara, Turkey
| | - Khwaja Mir Islam Saeed
- Grant and Service Contract Management Unit (GCMU), Ministry of Public Health, Kabul, Afghanistan
| | - Esra Yurdcu
- Institute of Hepatology, Ankara University School of Medicine, Ankara, Turkey
| | - A Mithat Bozdayı
- Institute of Hepatology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
23
|
Ingasia LAO, Kostaki EG, Paraskevis D, Kramvis A. Global and regional dispersal patterns of hepatitis B virus genotype E from and in Africa: A full-genome molecular analysis. PLoS One 2020; 15:e0240375. [PMID: 33031453 PMCID: PMC7544117 DOI: 10.1371/journal.pone.0240375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Description of the spatial characteristics of viral dispersal is important in understanding the history of infections. Nine hepatitis B virus (HBV) genotypes (A-I), and a putative 10th genotype (J), with distinct geographical distribution, are recognized. In sub-Saharan Africa (sub)-genotypes A1, D3 and E circulate, with E predominating in western Africa (WA), where HBV is hyperendemic. The low genetic diversity of genotype E (HBV/E) suggests its recent emergence. Our aim was to study the dispersal of HBV/E using full-length, non-redundant and non-recombinant sequences available in public databases. HBV/E was confirmed, and the phylogeny reconstruction performed using maximum likelihood (ML) with bootstrapping. Phylogeographic analysis was conducted by reconstruction of ancestral states using the criterion of parsimony on the estimated ML phylogeny. 46.5% of HBV/E sequences were found within monophyletic clusters. Country-wise analysis revealed the existence of 50 regional clusters. Sequences from WA were located close to the root of the tree, indicating this region as the most probable origin of the HBV/E epidemic and expanded to other geographical regions, within and outside of Africa. A localized dispersal was observed with sequences from Nigeria and Guinea as compared to other WA countries. Based on the sequences available in the databases, the phylogenetic results suggest that European strains originated primarily from WA whereas a majority of American strains originated in Western Central Africa. The differences in regional dispersal patterns of HBV/E suggest limited cross-border transmissions because of restricted population movements.
Collapse
Affiliation(s)
- Luicer Anne Olubayo Ingasia
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
24
|
Inoue T, Tanaka Y. Cross-Protection of Hepatitis B Vaccination among Different Genotypes. Vaccines (Basel) 2020; 8:456. [PMID: 32824318 PMCID: PMC7563454 DOI: 10.3390/vaccines8030456] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B (HB) vaccination is the most effective method for preventing HB virus (HBV) infection. Universal HB vaccination containing recombinant HB surface antigens (HBsAg) is recommended. Our data revealed that human monoclonal HB surface antibody (anti-HBs) from individuals inoculated with genotype C-based HB vaccine induced cross-protection against HBV genotype A infection. An in vitro infection model demonstrated anti-HBs-positive sera from individuals inoculated with genotype A- or C-based HB vaccine harbored polyclonal anti-HBs that could bind to non-vaccinated genotype HBV. However, because there were low titers of anti-HBs specific for HBsAg of non-vaccinated genotype, high anti-HBs titers would be required to prevent non-vaccinated genotype HBV infection. Clinically, the 2015 Centers for Disease Control and Prevention guidelines state that periodic monitoring of anti-HBs levels after routine HB vaccination is not needed and that booster doses of HB vaccine are not recommended. However, the American Red Cross suggests that HB-vaccine-induced immune memory might be limited; although HB vaccination can prevent clinical liver injury (hepatitis), subclinical HBV infections of non-vaccinated genotypes resulting in detectable HB core antibody could not be completely prevented. Therefore, monitoring anti-HBs levels after routine vaccination might be necessary for certain subjects in high-risk groups.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan;
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan;
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
25
|
Ye H, Teng J, Lin Z, Wang Y, Fu X. Analysis of HBsAg mutations in the 25 years after the implementation of the hepatitis B vaccination plan in China. Virus Genes 2020; 56:546-556. [PMID: 32542478 DOI: 10.1007/s11262-020-01773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022]
Abstract
Since 1992, China has promoted hepatitis B vaccination. Concurrently, during this period, increasing use of immunoglobulins and nucleoside analogues might have exerted selective pressure on the hepatitis B virus (HBV) S gene, driving mutations in the HBsAg and changed the subtype. Using the National Center for Biotechnology Information database, we obtained gene sequence information for HBV strains from China and analysed changes in HBsAg subtypes and substitution mutations in HBsAg in 5-year intervals over 25 years to identify potential challenges to the prevention and treatment of hepatitis B. Most HBV sequences from China were genotype C (1996/2833, 70.46%) or B (706/2833, 24.92%). During the implementation of hepatitis B vaccination (recombinant hepatitis B vaccine was subgenotype A2 and HBsAg subtype adw2), the proportion of subtypes ayw1 and adw3 in genotype B and ayw2 in genotype C increased over the programme period. The overall mutation rate in HBsAg tended to decrease for genotype B, whereas, for genotype C, the rate increased gradually and then decreased slightly. Moreover, the mutation rate at some HBsAg amino acid sites (such as sG145 of genotype B and sG130 and sK141 of genotype C) is gradually increasing. HBV strains with internal stop codons of HBsAg (e.g., sC69*) and additional N-glycosylation (e.g., sG130N) mutations should be studied extensively to prevent them from becoming dominant circulating strains. The development of HBV vaccines and antiviral immunoglobulins and use of antiviral drugs may require making corresponding changes.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China
| | - Jing Teng
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China
| | - Zhiyuan Lin
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China
| | - Xiaochun Fu
- Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, No. 1739 Xianyue Road, Xiamen, 361009, Fujian Province, China. .,Department of Clinical Laboratory, Women and Children's Hospital, School of Medicine, Xiamen University, No. 10 Zhenhai Road, Xiamen, 361003, Fujian Province, China.
| |
Collapse
|
26
|
McNaughton AL, Lourenço J, Bester PA, Mokaya J, Lumley SF, Obolski U, Forde D, Maponga TG, Katumba KR, Goedhals D, Gupta S, Seeley J, Newton R, Ocama P, Matthews PC. Hepatitis B virus seroepidemiology data for Africa: Modelling intervention strategies based on a systematic review and meta-analysis. PLoS Med 2020; 17:e1003068. [PMID: 32315297 PMCID: PMC7173646 DOI: 10.1371/journal.pmed.1003068] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND International Sustainable Development Goals (SDGs) for elimination of hepatitis B virus (HBV) infection set ambitious targets for 2030. In African populations, infant immunisation has been fundamental to reducing incident infections in children, but overall population prevalence of chronic hepatitis B (CHB) infection remains high. In high-prevalence populations, adult catch-up vaccination has sometimes been deployed, but an alternative Test and Treat (T&T) approach could be used as an intervention to interrupt transmission. Universal T&T has not been previously evaluated as a population intervention for HBV infection, despite high-profile data supporting its success with human immunodeficiency virus (HIV). METHODS AND FINDINGS We set out to investigate the relationship between prevalence of HBV infection and exposure in Africa, undertaking a systematic literature review in November 2019. We identified published seroepidemiology data representing the period 1995-2019 from PubMed and Web of Science, including studies of adults that reported prevalence of both hepatitis B surface antigen (HBsAg; prevalence of HBV infection) and antibody to hepatitis B core antigen (anti-HBc; prevalence of HBV exposure). We identified 96 studies representing 39 African countries, with a median cohort size of 370 participants and a median participant age of 34 years. Using weighted linear regression analysis, we found a strong relationship between the prevalence of infection (HBsAg) and exposure (anti-HBc) (R2 = 0.45, p < 0.001). Region-specific differences were present, with estimated CHB prevalence in Northern Africa typically 30% to 40% lower (p = 0.007) than in Southern Africa for statistically similar exposure rates, demonstrating the need for intervention strategies to be tailored to individual settings. We applied a previously published mathematical model to investigate the effect of interventions in a high-prevalence setting. The most marked and sustained impact was projected with a T&T strategy, with a predicted reduction of 33% prevalence by 20 years (95% CI 30%-37%) and 62% at 50 years (95% CI 57%-68%), followed by routine neonatal vaccination and prevention of mother to child transmission (PMTCT; at 100% coverage). In contrast, the impact of catch-up vaccination in adults had a negligible and transient effect on population prevalence. The study is constrained by gaps in the published data, such that we could not model the impact of antiviral therapy based on stratification by specific clinical criteria and our model framework does not include explicit age-specific or risk-group assumptions regarding force of transmission. CONCLUSIONS The unique data set collected in this study highlights how regional epidemiology data for HBV can provide insights into patterns of transmission, and it provides an evidence base for future quantitative research into the most effective local interventions. In combination with robust neonatal immunisation programmes, ongoing PMTCT efforts, and the vaccination of high-risk groups, diagnosing and treating HBV infection is likely to be of most impact in driving advances towards elimination targets at a population level.
Collapse
Affiliation(s)
- Anna L. McNaughton
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Phillip Armand Bester
- Division of Virology, University of the Free State and National Health Laboratory Service, Bloemfontein, South Africa
| | - Jolynne Mokaya
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Sheila F. Lumley
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Uri Obolski
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Donall Forde
- Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, Headington, Oxford, United Kingdom
| | - Tongai G. Maponga
- Division of Medical Virology, University of Stellenbosch, Faculty of Medicine and Health Sciences, Cape Town, South Africa
| | - Kenneth R. Katumba
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Dominique Goedhals
- Division of Virology, University of the Free State and National Health Laboratory Service, Bloemfontein, South Africa
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Faculty of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Robert Newton
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Health Sciences, University of York, York, United Kingdom
| | - Ponsiano Ocama
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Philippa C. Matthews
- Nuffield Department of Medicine, University of Oxford, Medawar Building for Pathogen Research, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
In Vitro Systems for Studying Different Genotypes/Sub-Genotypes of Hepatitis B Virus: Strengths and Limitations. Viruses 2020; 12:v12030353. [PMID: 32210021 PMCID: PMC7150782 DOI: 10.3390/v12030353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infects the liver resulting in end stage liver disease, cirrhosis, and hepatocellular carcinoma. Despite an effective vaccine, HBV poses a serious health problem globally, accounting for 257 million chronic carriers. Unique features of HBV, including its narrow virus-host range and its hepatocyte tropism, have led to major challenges in the development of suitable in vivo and in vitro model systems to recapitulate the HBV replication cycle and to test various antiviral strategies. Moreover, HBV is classified into at least nine genotypes and 35 sub-genotypes with distinct geographical distributions and prevalence, which have different natural histories of infection, clinical manifestation, and response to current antiviral agents. Here, we review various in vitro systems used to study the molecular biology of the different (sub)genotypes of HBV and their response to antiviral agents, and we discuss their strengths and limitations. Despite the advances made, no system is ideal for pan-genotypic HBV research or drug development and therefore further improvement is required. It is necessary to establish a centralized repository of HBV-related generated materials, which are readily accessible to HBV researchers, with international collaboration toward advancement and development of in vitro model systems for testing new HBV antivirals to ensure their pan-genotypic and/or customized activity.
Collapse
|
28
|
Peculiarities in the designations of hepatitis B virus genes, their products, and their antigenic specificities: a potential source of misunderstandings. Virus Genes 2020; 56:109-119. [PMID: 32026198 PMCID: PMC7093336 DOI: 10.1007/s11262-020-01733-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The nomenclature of the hepatitis B virus (HBV) genes and their products has developed stepwise, occasionally in an erratic way, creating many misunderstandings, especially among those who do not know the structure of HBV and its genome in detail. One of the most frequent misunderstandings, even presented in leading journals, is the designation of HBV “e”-antigen as envelope or early antigen. Another problem area are the so-called “pre” regions in the HBV genome present upstream of both the core and the surface genes of HBV, inadvertently suggesting that they may be a part of corresponding precursor proteins. Misnomers and misclassifications are frequent in defining the subgenotypes and serological subtypes of HBV. Even the well-established terminology for HBV surface (HBs) or HBV core (HBc) antigen deviates from the conventional virological nomenclature for viral envelopes or capsid proteins/antigens, respectively. Another matter of undesirable variability between publications is the numbering of the nucleotides and the graphical representation of genomic maps. This editorial briefly explains how the nomenclature evolved, what it really means, and suggests how it could be adapted to today’s knowledge.
Collapse
|
29
|
Oropeza CE, Tarnow G, Sridhar A, Taha TY, Shalaby RE, McLachlan A. The Regulation of HBV Transcription and Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:39-69. [PMID: 31741333 DOI: 10.1007/978-981-13-9151-4_3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed. An alternative approach to the development of antiviral therapeutics is to target cellular gene products that are critical to the viral life cycle. As transcription of the viral genome is an essential step in the viral life cycle, the selective inhibition of viral RNA synthesis is a possible approach for the development of additional therapeutic modalities that might be used in combination with currently available therapies. To address this possibility, a molecular understanding of the relationship between viral transcription and replication is required. The first step is to identify the transcription factors that are the most critical in controlling the levels of HBV RNA synthesis and to determine their in vivo role in viral biosynthesis. Mapping studies in cell culture utilizing reporter gene constructs permitted the identification of both ubiquitous and liver-enriched transcription factors capable of modulating transcription from the four HBV promoters. However, it was challenging to determine their relative importance for viral biosynthesis in the available human hepatoma replication systems. This technical limitation was addressed, in part, by the development of non-hepatoma HBV replication systems where viral biosynthesis was dependent on complementation with exogenously expressed transcription factors. These systems revealed the importance of specific nuclear receptors and hepatocyte nuclear factor 3 (HNF3)/forkhead box A (FoxA) transcription factors for HBV biosynthesis. Furthermore, using the HBV transgenic mouse model of chronic viral infection, the importance of various nuclear receptors and FoxA isoforms could be established in vivo. The availability of this combination of systems now permits a rational approach toward the development of selective host transcription factor inhibitors. This might permit the development of a new class of therapeutics to aid in the treatment and resolution of chronic HBV infections, which currently affects approximately 1 in 30 individuals worldwide and kills up to a million people annually.
Collapse
Affiliation(s)
- Claudia E Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abhayavarshini Sridhar
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taha Y Taha
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rasha E Shalaby
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Tanta University, Egypt, Egypt
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
30
|
Yin Y, He K, Wu B, Xu M, Du L, Liu W, Liao P, Liu Y, He M. A systematic genotype and subgenotype re-ranking of hepatitis B virus under a novel classification standard. Heliyon 2019; 5:e02556. [PMID: 31687483 PMCID: PMC6820102 DOI: 10.1016/j.heliyon.2019.e02556] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background and aim It is commonly noticed that chaotic and inefficient subgenotyping are universally used academically and clinically, a standardized HBV genotype/subgenotype classification criterion is urgently acquired. Sequence similarity, which was commonly used for the last three decades, should be upgraded by phylogenetic analysis in genotyping of recombinant-free HBV strains. Methods In this study, 4,429 HBV whole-genome sequences were employed to reconstruct the phylogeny of HBV using Bayesian inference. After excluding recombinant sequences, calculating partitioned evolutionary models, excluding recombinant sequences, reconstructing phylogenetic trees, and performing a correlation analysis of genetic distances, geographical distribution and serotypes, we systematically redefined the genotypes and subgenotypes of HBV. Results Compared to previous taxonomy, fourteen subgenotypes (A5-A7; B5-B9; C2-C4, C7; and D6-D7) were revised in the new standard. Now the HBV is divided into ten genotypes (A-J) and 24 subgenotypes (A1-A3; B1-B5; C1-C6; D1-D6; and F1-F4). Conclusion Our robust genotype/subgenotype new taxonomy has objectively re-molded the current shape of HBV classification. We believe that all future hepatitis B related researches or diagnosis will be benefited under the new HBV genotyping/subgenotyping standards.
Collapse
Affiliation(s)
- Yonghua Yin
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Kai He
- The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan
| | - Bingting Wu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei Liu
- College of Life Science & Technology, Southwest Minzu University, Chengdu 610225, China
| | - Pu Liao
- Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400013, China
| | - Yu Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| | - Miao He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China.,Sichuan Blood Safety and Blood Substitute International Science and Technology Cooperation Base, Chengdu 610052, China
| |
Collapse
|
31
|
Sumer U, Sayan M. Molecular Epidemiology of Hepatitis B Virus in Turkish Cypriot. Pol J Microbiol 2019; 68:449-456. [PMID: 31880889 PMCID: PMC7260636 DOI: 10.33073/pjm-2019-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022] Open
Abstract
There is an increased demand for molecular and epidemiological information regarding Hepatitis B Virus (HBV) infection as the disease severity depends on these specifications. We have aimed to analyze nucleos(t)ide analogues (NA) resistance and typical HBsAg escape mutations with the dispersion of HBV genotype/subgenotype/HBsAg serotypes on overlapping pol/S gene regions in the Turkish population. Samples were collected in Northern Cyprus. Reverse transcriptase (rt) region between 80–250 amino acids were amplified. Typical HBsAg escape mutations were determined as HBIg escape (6.48%), vaccine escape (8.34%), HBsAg misdiagnosis (9.25%), and immune escape mutations (8.34%). NAs resistances were determined as primary (2.78%), partial (2.78%), and compensatory mutations (26.85%) in overlapping pol/S gene region. The study patients were predominantly infected with HBV genotype D/D1 (98%). However, the predominant HBsAg serotype was ayw2 (99%). The most common NA resistance mutation was rtQ215H/P/S (16.67%), however, for S gene the misdiagnosis mutations were observed most frequently (9.25%). We can conclude that HBV D/D1 is the dominant strain and ayw2 is the dominant serotype in the Turkish Cypriot. Cyprus is an island located in the Eastern Mediterranean region, and it is, therefore, a key location for human trafficking and immigration; as a result of this reputation, it is necessary to analyze HBV phylogenetically for local dynamics, and our results indicate that treatment naïve population is prone to these pol/S gene mutations. However, if HBV strains were also analyzed among Greek Cypriots too, this would enable a complete island survey. With this work, we believe that we have enlightened this subject for further research.
Collapse
Affiliation(s)
- Unal Sumer
- Near East University, Faculty of Medicine, Department of Medical Microbiology , Nicosia , Northern Cyprus
| | - Murat Sayan
- Kocaeli University, Faculty of Medicine, Clinical Laboratory, PCR Unit , Kocaeli , Turkey ; Near East University, Research Centre of Experimental Health Sciences , Nicosia , Northern Cyprus
| |
Collapse
|
32
|
Hu X, Jiang J, Ni C, Xu Q, Ye S, Wu J, Ge F, Han Y, Mo Y, Huang D, Yang L. HBV Integration-mediated Cell Apoptosis in HepG2.2.15. J Cancer 2019; 10:4142-4150. [PMID: 31417659 PMCID: PMC6692610 DOI: 10.7150/jca.30493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/01/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the second leading cause of cancer deaths in the word. Hepatitis B virus (HBV) infection plays an important role in the development of HCC. However, the mechanisms by which HBV integration affects host cells remain poorly understood. HepG2.2.15 cell line is derived from HCC cell line HepG2 with stable transfection HBV expression. In this study, HepG2.2.15 cells showed decreased proliferation, G1 cell cycle arrest and increased apoptosis, when compared to HepG2 cells. HBV capture sequencing was conducted in both genome and transcriptome level, followed by RNA expression sequencing in HepG2.2.15. Here, CAMSAP2/CCDC12/DPP7/OR4F3 were found to be targets for HBV integration in both genome and transcriptome level, accompanied by alteration in their expression when compared to HepG2. Among these genes, DPP7 was the only one gene with HBV integration into its exon, meanwhile DPP7 expression level was also downregulated in HepG2.2.15 as compared to HepG2. Furthermore, DPP7 knockdown resulted in increased apoptosis through upregulation of the Bax/Bcl2 ratio in HepG2 cells. Our results suggest that HBV integration of DPP7 was involved in cell apoptosis.
Collapse
Affiliation(s)
- Xiaoge Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Jiahong Jiang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Chao Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Department of General surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Song Ye
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Secondary Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P. R. China
| | - Junjie Wu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Feimin Ge
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Yong Han
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Yinyuan Mo
- Department of Pharmacology/Toxicology and Cancer Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Department of General surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China.,Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
33
|
Revill PA, Penicaud C, Brechot C, Zoulim F. Meeting the Challenge of Eliminating Chronic Hepatitis B Infection. Genes (Basel) 2019; 10:genes10040260. [PMID: 30939846 PMCID: PMC6523454 DOI: 10.3390/genes10040260] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/14/2022] Open
Abstract
Over 257 million people live with chronic hepatitis B virus (HBV) infection and there is no known cure. The effective preventative vaccine has no impact on existing infection. Despite the existence of drugs which efficiently suppress viral replication, treatment is usually life-long and finite therapies that cure HBV infection are urgently required. However, even if such therapies were available today, it is unlikely they would reach all of those who need it most, due to chronic hepatitis B (CHB) being largely undiagnosed across the globe and to the dire need for health systems promoting access to therapy. Considerable challenges to developing and implementing an effective HBV cure remain. Nonetheless, important advances towards a cure are being made, both in the development of a multitude of new therapeutic agents currently undergoing clinical trials, and through the establishment of a new global initiative dedicated to an HBV cure, ICE-HBV, that is working together with existing organisations to fast-track an HBV cure available to all.
Collapse
Affiliation(s)
- Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
| | - Capucine Penicaud
- Directorate, Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
| | - Christian Brechot
- University of South Florida, Tampa, 33612, USA.
- Romark Laboratory, Tampa, 33607, USA.
- Global Virus Network, Baltimore; MD 21201-1009, USA.
| | - Fabien Zoulim
- INSERM Unit 1052-Cancer Research Center of Lyon, 69000 Lyon, France.
| |
Collapse
|
34
|
Matlou MK, Gaelejwe LR, Musyoki AM, Rakgole JN, Selabe SG, Amponsah-Dacosta E. A novel hepatitis B virus recombinant genotype D4/E identified in a South African population. Heliyon 2019; 5:e01477. [PMID: 31008405 PMCID: PMC6453802 DOI: 10.1016/j.heliyon.2019.e01477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genetic diversity is a characteristic trait of the hepatitis B virus (HBV) and has been associated with different clinical outcomes. In South Africa, HBV infection is a major public health concern. Most HBV infections are caused by genotype A strains. However rare cases of infection with HBV genotype D have been reported. The purpose of this study was to investigate the molecular characteristics of a rare HBV subgenotype D4 isolate. METHODS The full-length genome of isolate ZADGM6964 was amplified in a one-step polymerase chain reaction. The amplified product was purified and cloned into a pGEM®-T Easy Vector System to investigate the genetic diversity of the viral quasi-populations. The primary isolate and clones were then directly sequenced and analysed using an array of bioinformatics software. RESULTS Phylogenetic analysis showed that the primary isolate and cloned sequences formed a monophyletic cluster away from subgenotype D4 reference strains. Further recombination analysis revealed that isolate ZADGM6964 was in fact a D4/E recombinant strain with breakpoints identified within the X and overlapping pre-Core/Core open reading frames with a >70% bootstrap confidence level. The recombinant genotype D4/E was found to be unique from other D/E strains archived in the genetic database, GenBank. CONCLUSION This study represents the first ever report on the isolation and molecular characterization of an HBV D4/E recombinant strain in South Africa. The findings provide evidence of further HBV genetic diversity in South Africa than has been previously reported.
Collapse
Affiliation(s)
- Mmatsatsi K. Matlou
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
| | - Lucinda R. Gaelejwe
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
| | - Andrew M. Musyoki
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
- Department of Microbiological Pathology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - J. Nare Rakgole
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
| | - Selokela G. Selabe
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
| | - Edina Amponsah-Dacosta
- HIV and Hepatitis Research Unit, Department of Virology, Sefako Makgatho Health Sciences University and National Health Laboratory Services, Pretoria, South Africa
| |
Collapse
|
35
|
Successful Treatment of a South African Pediatric Case of Acute Liver Failure Caused by Perinatal Transmission of Hepatitis B. Pediatr Infect Dis J 2019; 38:e51-e53. [PMID: 29601455 DOI: 10.1097/inf.0000000000002054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the successful treatment of a South African infant with hepatitis B virus (HBV)-induced acute liver failure using lamivudine with no evidence of clinical resistance. Perinatal HBV transmission occurred despite timely HBV vaccination at 6, 10 and 14 weeks, as per South African vaccination schedule, highlighting the need to introduce the birth-dose HBV vaccine in South Africa.
Collapse
|
36
|
Bell TG, Yousif M, Kramvis A. CCT: a coordinate conversion tool for hepatitis B virus. S Afr J Infect Dis 2019. [DOI: 10.1080/23120053.2018.1558641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Trevor Graham Bell
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Mukhlid Yousif
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Current affiliation: Centre for HIV and STI: HIV Virology Section, National Institute for Communicable Diseases, National Health Laboratory Services; Department of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
37
|
Lin SYC, Magalis BR, Salemi M, Liu H. Origin and dissemination of hepatitis B virus genotype C in East Asia revealed by phylodynamic analysis and historical correlates. J Viral Hepat 2019; 26:145-154. [PMID: 30199591 PMCID: PMC7166934 DOI: 10.1111/jvh.13006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/13/2018] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus disease progression in East Asia is most frequently associated with genotype C (HBV/C). The increasing availability of HBV/C genetic sequences and detailed annotations provides an opportunity to investigate the epidemiological factors underlying its evolutionary history. In this study, the Bayesian phylogeography framework was used to investigate the origins and patterns in spatial dissemination of HBV/C by analyzing East Asian sequences obtained from 1992 to 2010. The most recent common ancestor of HBV/C was traced back to the early 1900s in China, where it eventually diverged into two major lineages during the 1930s-1960s that gave rise to distinct epidemic waves spreading exponentially to other East Asian countries and the USA. Demographic inference of viral effective population size over time indicated similar dynamics for both lineages, characterized by exponential growth since the early 1980s, followed by a significant bottleneck in 2003 and another increase after 2004. Although additional factors cannot be ruled out, we provide evidence to suggest this bottleneck was the result of limited human movement from/to China during the SARS outbreak in 2003. This is the first extensive evolutionary study of HBV/C in East Asia as well as the first to assess more realistic spatial ecological influences between co-circulating infectious diseases.
Collapse
Affiliation(s)
- Serena Y. C. Lin
- Hepatobiliary SectionDepartment of Internal MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
| | - Brittany Rife Magalis
- Department of BiologyCollege of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
- Institute for Genomics and Evolutionary MedicineTemple UniversityPhiladelphiaPennsylvania
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine College of MedicineUniversity of FloridaGainesvilleFlorida
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFlorida
| | - Hsin‐Fu Liu
- Department of Medical ResearchMackay Memorial HospitalTaipeiTaiwan
- Department of Bioscience and BiotechnologyNational Taiwan Ocean UniversityKeelungTaiwan
- Department of NursingNational Taipei University of Nursing and Health SciencesTaipeiTaiwan
| |
Collapse
|
38
|
Hudu SA, Niazlin MT, Nordin SA, Tan SS, Omar H, Shahar H, Mutalib NA, Sekawi Z. Genetic diversity of hepatitis B co-infection with hepatitis C, D and E viruses among Malaysian chronic hepatitis B patients. Afr Health Sci 2018; 18:1117-1133. [PMID: 30766578 PMCID: PMC6354894 DOI: 10.4314/ahs.v18i4.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis B virus co-infection with other strains of viral hepatitis is associated with increased risk of liver cirrhosis and hepatic decompensation. OBJECTIVES This is a prevalence study that assessed the genetic diversity of chronic hepatitis B patients and coinfection. METHODS Chronic hepatitis B patients enrolled in this study were tested for antibodies of other hepatitis viruses using ELISA kits. Patient clinical profiles were collected and partial genes of HBV, HCV, and HEV were amplified, sequenced, and analyzed using phylogenetic analysis. The associations between variables were determined using the chi-squared test. RESULTS Of the 82 patients recruited for this study, 53.7% were non-cirrhotic, 22.0% cirrhotic, 20.7% acute flare and 3.7% hepatocellular carcinoma. Majority (58%) of patients had a high level of ALT (≥34 U/L). Sequence analysis showed HBV (63.9%) belonged to genotype B, HEV belonged to genotype 4 while HCV belonged to genotype 3a and the genotypes were found to be significantly associated with the clinical stage of the patients (χ2=56.632; p<0.01). Similarly, Hepatitis B e antigen was also found to be significantly associated with the clinical stage of infection (χ2=51.952; p<0.01). CONCLUSION This study revealed that genetic diversity was found to have a significant impact on the severity of infection.
Collapse
Affiliation(s)
- Shuaibu Abdullahi Hudu
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, 840232 Sokoto State, Nigeria
| | - Mohd Taib Niazlin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| | - Syafinaz Amin Nordin
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| | - Soek Siam Tan
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Haniza Omar
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Hamiza Shahar
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Noor Aliza Mutalib
- Department of Hepatology, Selayang Hospital, Lebuh Selayang Batu Cave Selangor, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University Putra Malaysia
| |
Collapse
|
39
|
Liu Y, Song C, Ni H, Jiao W, Gan W, Dong X, Liu J, Zhu L, Zhai X, Hu Z, Li J. UBE2L3, a susceptibility gene that plays oncogenic role in hepatitis B-related hepatocellular carcinoma. J Viral Hepat 2018; 25:1363-1371. [PMID: 29969176 DOI: 10.1111/jvh.12963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022]
Abstract
Previously, we identified UBE2L3 as a susceptibility gene for chronic hepatitis B virus (HBV) infection through genome-wide association study. Here, we analysed the association between genetic variants of UBE2L3 and the susceptibility to HBV-related hepatocellular carcinoma (HCC) and further explored its role in HCC. This case-control study included 1344 subjects who cleared HBV, 1560 HBV carriers and 1057 HBV-related HCC patients. Two single nucleotide polymorphisms (SNPs) were genotyped, including rs2266959 and rs4821116. Logistic regression analysis was performed to compute the odds ratio (OR) and 95% confidence interval (CI). We further analysed the expression of UBE2L3 and its association with pathological features based on The Cancer Genome Atlas (TCGA) data and our tissue microarray. Proliferation and migration assays were performed in hepatoma cell lines with or without UBE2L3 knockdown. Further RNA-seq analysis was performed to explore the underlying oncogenic mechanism. The variant genotypes of rs4821116 in UBE2L3 were associated with decreased risk for HCC and chronic HBV infection. Moreover, based on both TCGA and our tissue microarray data, higher levels of UBE2L3 expression were correlated with higher tumour grade, advanced tumour stage and poor survival. In vitro analysis revealed that UBE2L3 may promote hepatocyte proliferation and migration. RNA-seq analysis showed that UBE2L3 was inversely correlated with CDKN2B, a negative regulator of cell cycle, and CLDN1, loss of which may promote cancer metastasis. In conclusion, UBE2L3 may also be a susceptibility gene in HBV-related HCC, and it may promote HCC proliferation and migration by negatively regulating CDKN2B and CLDN1.
Collapse
Affiliation(s)
- Yao Liu
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Ci Song
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hengli Ni
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Weijuan Jiao
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| | - Wenjuan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jibin Liu
- Department of Hepatobiliary Surgery, Nantong Tumor Hospital, Nantong, China
| | - Liguo Zhu
- Department of Infection Diseases, Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Xiangjun Zhai
- Department of Infection Diseases, Jiangsu Province Center for Disease Prevention and Control, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianming Li
- Department of Pathology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Kramvis A, Kostaki EG, Hatzakis A, Paraskevis D. Immunomodulatory Function of HBeAg Related to Short-Sighted Evolution, Transmissibility, and Clinical Manifestation of Hepatitis B Virus. Front Microbiol 2018; 9:2521. [PMID: 30405578 PMCID: PMC6207641 DOI: 10.3389/fmicb.2018.02521] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection, a global public health problem can be asymptomatic, acute or chronic and can lead to serious consequences of infection, including cirrhosis, and hepatocellular carcinoma. HBV, a partially double stranded DNA virus, belongs to the family Hepadnaviridae, and replicates via reverse transcription of an RNA intermediate. This reverse transcription is catalyzed by a virus-encoded polymerase that lacks proof reading ability, which leads to sequence heterogeneity. HBV is classified into nine genotypes and at least 35 subgenotypes, which may be characterized by distinct geographical distributions. This HBV diversification and distinct geographical distribution has been proposed to be the result of the co-expansion of HBV with modern humans, after their out-of-Africa migration. HBeAg is a non-particulate protein of HBV that has immunomodulatory properties as a tolerogen that allows the virus to establish HBV infection in vivo. During the natural course of infection, there is seroconversion from a HBeAg-positive phase to a HBeAg-negative, anti-HBe-positive phase. During this seroconversion, there is loss of tolerance to infection and immune escape-HBeAg-negative mutants can be selected in response to the host immune response. The different genotypes and, in some cases, subgenotypes develop different mutations that can affect HBeAg expression at the transcriptional, translational and post-translational levels. The ability to develop mutations, affecting HBeAg expression, can influence the length of the HBeAg-positive phase, which is important in determining both the mode of transmission and the clinical course of HBV infection. Thus, the different genotypes/subgenotypes have evolved in such a way that they exhibit different modes of transmission and clinical manifestation of infection. Loss of HBeAg may be a sign of short-sighted evolution because there is loss of tolerogenic ability of HBeAg and HBeAg-negative virions are less transmissible. Depending on their ability to lead to HBeAg seroconversion, the genotype/subgenotypes exhibit varying degrees of short-sighted evolution. The “arms race” between HBV and the immune response to HBeAg is multifaceted and its elucidation intricate, with transmissibility and persistence being important for the survival of the virus. We attempt to shed some light on this complex interplay between host and virus.
Collapse
Affiliation(s)
- Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Evangelia-Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Hatzakis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
41
|
Chen L, Shi Y, Yang W, Zhang Y, Xie Q, Li Y, Li X, Li J, Zhang Z. Differences in Cpg Island Distribution Between Subgenotypes of the Hepatitis B Virus Genotype. Med Sci Monit 2018; 24:6781-6794. [PMID: 30253420 PMCID: PMC6180904 DOI: 10.12659/msm.910049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/01/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) genotypes show genomic variations, resulting in different CpG islands in each HBV genotypes or subgenotype. This study aimed to establish reference sequences for each HBV subgenotype of A-H genotypes and to analyze the characteristics of the CpG islands. MATERIAL AND METHODS There were 3,037 retrieved whole-genome sequences of HBV genotypes A-H from GenBank, 28 subgenotype reference sequences were established for these genotypes. CpG islands of the subgenotype reference sequences were analyzed, and 939 strains were selected from the 3,037 genomic sequences. Differences in CpG islands between subgenotypes were compared using the chi-squared and non-parametric tests. RESULTS Of the 28 subgenotype reference sequences established, 11 subgenotype reference sequences lacked CpG island I, and only F4 contained a new CpG island. Of all selected strains, 48.35% (454/939) contained three traditional CpG islands I, II, and III (no new islands); 45.05% (423/939) lacked CpG island I; 38.98% (366/939) contained only CpG islands II and III; and 12.46% (117/939) contained new islands (genotypes A1, D7) (genotype G had no new islands). Strains with or without CpG island I, or new islands between subgenotypes of each HBV genotype were significantly different (P<0.05). Strains containing CpG islands I, II, and III and new islands among different subtypes in HBV genotypes A, C, and F were significantly different (P<0.05). CONCLUSIONS Different HBV genotypes and subgenotypes had characteristic CpG island patterns. Strains with or without CpG island I, or new islands among subgenotypes of each HBV genotype, were significantly different.
Collapse
Affiliation(s)
- Lin Chen
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yi Shi
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Wanrong Yang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yafei Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Qinxiu Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yunsong Li
- Department of General Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Xu Li
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, P.R. China
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|
42
|
Molecular Characterization of Near Full-Length Genomes of Hepatitis B Virus Isolated from Predominantly HIV Infected Individuals in Botswana. Genes (Basel) 2018; 9:genes9090453. [PMID: 30205537 PMCID: PMC6162474 DOI: 10.3390/genes9090453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization plans to eliminate hepatitis B and C Infections by 2030. Therefore, there is a need to study and understand hepatitis B virus (HBV) epidemiology and viral evolution further, including evaluating occult (HBsAg-negative) HBV infection (OBI), given that such infections are frequently undiagnosed and rarely treated. We aimed to molecularly characterize HBV genomes from 108 individuals co-infected with human immunodeficiency virus (HIV) and chronic hepatitis B (CHB) or OBI identified from previous HIV studies conducted in Botswana from 2009 to 2012. Full-length (3.2 kb) and nearly full-length (~3 kb) genomes were amplified by nested polymerase chain reaction (PCR). Sequences from OBI participants were compared to sequences from CHB participants and GenBank references to identify OBI-unique mutations. HBV genomes from 50 (25 CHB and 25 OBI) individuals were successfully genotyped. Among OBI participants, subgenotype A1 was identified in 12 (48%), D3 in 12 (48%), and E in 1 (4%). A similar genotype distribution was observed in CHB participants. Whole HBV genome sequences from Botswana, representing OBI and CHB, were compared for the first time. There were 43 OBI-unique mutations, of which 26 were novel. Future studies using larger sample sizes and functional analysis of OBI-unique mutations are warranted.
Collapse
|
43
|
Lou S, Taylor R, Pearce S, Kuhns M, Leary T. An ultra-sensitive Abbott ARCHITECT ® assay for the detection of hepatitis B virus surface antigen (HBsAg). J Clin Virol 2018; 105:18-25. [PMID: 29843004 DOI: 10.1016/j.jcv.2018.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Critical to the identification of HBV infection and the prevention of transfusion transmitted disease is the sensitive and accurate detection of Hepatitis B virus surface antigen (HBsAg). Improvements in HBsAg assay sensitivity approaching the performance of nucleic acid testing (NAT) are essential to further reduce the detection window for acute HBV infection in regions where NAT is not widely available. OBJECTIVES AND STUDY DESIGN An improved HBsAg assay on the fully-automated Abbott ARCHITECT® platform was developed to improve sensitivity, mutant and genotype detection. RESULTS The analytical sensitivity of the improved prototype assay is 5.2 mIU/ml, which is 3.86- to 14.54-fold more sensitive than comparator assays based on the WHO International Reference Standard. The enhanced sensitivity was also demonstrated with 27 HBV seroconversion panels, detecting more panel members (191 of 364) vs. the ARCHITECT® Qual I (144), Qual II (160) and PRISM® (148) HBsAg assays. Further, the assay detected 7 of 12 HBV DNA positive/HBsAg negative samples, and detected all evaluated mutants and genotypes with higher sensitivity than the comparator assays. The improvement in sensitivity did not diminish assay specificity, attaining 100% (95% CI, 99.97-100%) on 10,633 blood donors. CONCLUSIONS An Abbott ARCHITECT® HBsAg assay with clinical performance approaching that of mini-pool NAT (approximately 100 copies/ml was developed. The assay has superior HBsAg mutant and genotype detection and specificity, all of which are important for the diagnosis and management of HBV infection.
Collapse
Affiliation(s)
- Sheng Lou
- Diagnostics Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL,60064, USA.
| | - Russell Taylor
- Diagnostics Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL,60064, USA.
| | - Sandra Pearce
- Diagnostics Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL,60064, USA.
| | - Mary Kuhns
- Diagnostics Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL,60064, USA.
| | - Thomas Leary
- Diagnostics Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL,60064, USA.
| |
Collapse
|
44
|
Freitas N, Lukash T, Gunewardena S, Chappell B, Slagle BL, Gudima SO. Relative Abundance of Integrant-Derived Viral RNAs in Infected Tissues Harvested from Chronic Hepatitis B Virus Carriers. J Virol 2018; 92:e02221-17. [PMID: 29491161 PMCID: PMC5923063 DOI: 10.1128/jvi.02221-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/17/2018] [Indexed: 02/07/2023] Open
Abstract
Five matching sets of nonmalignant liver tissues and hepatocellular carcinoma (HCC) samples from individuals chronically infected with hepatitis B virus (HBV) were examined. The HBV genomic sequences were determined by using overlapping PCR amplicons covering the entire viral genome. Four pairs of tissues were infected with HBV genotype C, while one pair was infected with HBV genotype B. HBV replication markers were found in all tissues. In the majority of HCC samples, the levels of pregenomic/precore RNA (pgRNA) and covalently closed circular DNA (cccDNA) were lower than those in liver tissue counterparts. Regardless of the presence of HBV replication markers, (i) integrant-derived HBV RNAs (id-RNAs) were found in all tissues by reverse transcription-PCR (RT-PCR) analysis and were considerably abundant or predominant in 6/10 tissue samples (2 liver and 4 HCC samples), (ii) RNAs that were polyadenylated using the cryptic HBV polyadenylation signal and therefore could be produced by HBV replication or derived from integrated HBV DNA were found in 5/10 samples (3 liver and 2 HCC samples) and were considerably abundant species in 3/10 tissues (2 livers and 1 HCC), and (iii) cccDNA-transcribed RNAs polyadenylated near position 1931 were not abundant in 7/10 tissues (2 liver and 5 HCC samples) and were predominant in only two liver samples. Subsequent RNA sequencing analysis of selected liver/HCC samples also showed relative abundance of id-RNAs in most of the examined tissues. Our findings suggesting that id-RNAs could represent a significant source of HBV envelope proteins, which is independent of viral replication, are discussed in the context of the possible contribution of id-RNAs to the HBV life cycle.IMPORTANCE The relative abundance of integrant-derived HBV RNAs (id-RNAs) in chronically infected tissues suggest that id-RNAs coding for the envelope proteins may facilitate the production of a considerable fraction of surface antigens (HBsAg) in infected cells bearing HBV integrants. If the same cells support HBV replication, then a significant fraction of assembled HBV virions could bear id-RNA-derived HBsAg as a major component of their envelopes. Therefore, the infectivity of these HBV virions and their ability to facilitate virus cell-to-cell spread could be determined mainly by the properties of id-RNA-derived envelope proteins and not by the properties of replication-derived HBsAg. These interpretations suggest that id-RNAs may play a role in the maintenance of chronic HBV infection and therefore contribute to the HBV life cycle. Furthermore, the production of HBsAg from id-RNAs independently of viral replication may explain at least in part why treatment with interferon or nucleos(t)ides in most cases fails to achieve a loss of serum HBsAg.
Collapse
Affiliation(s)
- Natalia Freitas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tetyana Lukash
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Benjamin Chappell
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Betty L Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
45
|
Choi YM, Lee SY, Kim BJ. Naturally occurring hepatitis B virus reverse transcriptase mutations related to potential antiviral drug resistance and liver disease progression. World J Gastroenterol 2018; 24:1708-1724. [PMID: 29713126 PMCID: PMC5922991 DOI: 10.3748/wjg.v24.i16.1708] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023] Open
Abstract
The annual number of deaths caused by hepatitis B virus (HBV)-related disease, including cirrhosis and hepatocellular carcinoma (HCC), is estimated as 887000. The reported prevalence of HBV reverse transcriptase (RT) mutation prior to treatment is varied and the impact of preexisting mutations on the treatment of naïve patients remains controversial, and primarily depends on geographic factors, HBV genotypes, HBeAg serostatus, HBV viral loads, disease progression, intergenotypic recombination and co-infection with HIV. Different sensitivity of detection methodology used could also affect their prevalence results. Several genotype-dependent HBV RT positions that can affect the emergence of drug resistance have also been reported. Eight mutations in RT (rtL80I, rtD134N, rtN139K/T/H, rtY141F, rtM204I/V, rtF221Y, rtI224V, and rtM309K) are significantly associated with HCC progression. HBeAg-negative status, low viral load, and genotype C infection are significantly related to a higher frequency and prevalence of preexisting RT mutations. Preexisting mutations are most frequently found in the A-B interdomain of RT which overlaps with the HBsAg "a" determinant region, mutations of which can lead to simultaneous viral immune escape. In conclusion, the presence of baseline RT mutations can affect drug treatment outcomes and disease progression in HBV-infected populations via modulation of viral fitness and host-immune responses.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute and Cancer Research Institute, Seoul National University, College of Medicine, Seoul 110799, South Korea
| |
Collapse
|
46
|
Fauver JR, Weger-Lucarelli J, Fakoli LS, Bolay K, Bolay FK, Diclaro JW, Brackney DE, Foy BD, Stenglein MD, Ebel GD. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: A comparative study in West Africa. PLoS Negl Trop Dis 2018; 12:e0006348. [PMID: 29561834 PMCID: PMC5880402 DOI: 10.1371/journal.pntd.0006348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/02/2018] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
Background Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. Methodology/Principal findings We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. Conclusions/Significance This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens. Infectious diseases continue to be a burden on mankind, particularly in the developing countries of the tropics. Recognition of pathogen transmission in humans is a crucial step to thwarting epidemics of these pathogens. However, sampling human blood or tissue is invasive and logistically difficult. Xenosurveillance takes advantage of the blood-feeding behavior of mosquitoes to sample human blood for the presence of infectious disease agents. In this study, we aimed to compare xenosurveillance to a more traditional sampling method to assess the usefulness of this technique in field settings where it could potentially be beneficial. DNA and RNA next generation sequencing followed by an in-house bioinformatic pipeline identified viruses and parasites of human origin in blood collected by either mosquitoes or finger-stick. Xenosurveillance produces samples of comparable quality to finger-stick blood collections while alleviating many of the difficulties of direct human sampling. This study suggests xenosurveillance can be a complimentary strategy for infectious disease surveillance in low-resource areas.
Collapse
Affiliation(s)
- Joseph R. Fauver
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | | | - Kpehe Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | - Fatorma K. Bolay
- Liberian Institute for Biomedical Research, Charlesville, Liberia
| | | | - Doug E. Brackney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Brian D. Foy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mark D. Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Gregory D. Ebel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
47
|
Quoc NB, Phuong NDN, Chau NNB, Linh DTP. Closed tube loop-mediated isothermal amplification assay for rapid detection of hepatitis B virus in human blood. Heliyon 2018; 4:e00561. [PMID: 29560471 PMCID: PMC5857714 DOI: 10.1016/j.heliyon.2018.e00561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/23/2018] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Recently, many studies have demonstrated the significant advantages of loop-mediated isothermal amplification (LAMP) based methods over serological tests and PCR for rapid detection of microbial pathogens. Here, a rapid LAMP assay was developed to detect the hepatitis B virus (HBV) from DNA, and particularly, blood samples from infected patients using a commercially available master mix and portable real-time fluorometer. The final optimized fluorescence-based LAMP assay provided significant amplification time of less than 15 minutes compared with over 1 hour for PCR and an opened tube LAMP system described previously. Results indicated that fluorescence-based LAMP assay was more sensitive than PCR as a rapid, sensitive, efficient, and highly reliable approach for rapid detection of HBV.
Collapse
Affiliation(s)
- Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
- Corresponding author.
| | - Nguyen Doan Nguyen Phuong
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | | | - Do Thi Phuong Linh
- Specialized Medical Center, National Institute of Malariology, Parasitology and Entomology, Ho Chi Minh City, Vietnam
| |
Collapse
|
48
|
Deep sequencing of HBV pre-S region reveals high heterogeneity of HBV genotypes and associations of word pattern frequencies with HCC. PLoS Genet 2018; 14:e1007206. [PMID: 29474353 PMCID: PMC5841821 DOI: 10.1371/journal.pgen.1007206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 03/07/2018] [Accepted: 01/17/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a common problem in the world, especially in China. More than 60–80% of hepatocellular carcinoma (HCC) cases can be attributed to HBV infection in high HBV prevalent regions. Although traditional Sanger sequencing has been extensively used to investigate HBV sequences, NGS is becoming more commonly used. Further, it is unknown whether word pattern frequencies of HBV reads by Next Generation Sequencing (NGS) can be used to investigate HBV genotypes and predict HCC status. In this study, we used NGS to sequence the pre-S region of the HBV sequence of 94 HCC patients and 45 chronic HBV (CHB) infected individuals. Word pattern frequencies among the sequence data of all individuals were calculated and compared using the Manhattan distance. The individuals were grouped using principal coordinate analysis (PCoA) and hierarchical clustering. Word pattern frequencies were also used to build prediction models for HCC status using both K-nearest neighbors (KNN) and support vector machine (SVM). We showed the extremely high power of analyzing HBV sequences using word patterns. Our key findings include that the first principal coordinate of the PCoA analysis was highly associated with the fraction of genotype B (or C) sequences and the second principal coordinate was significantly associated with the probability of having HCC. Hierarchical clustering first groups the individuals according to their major genotypes followed by their HCC status. Using cross-validation, high area under the receiver operational characteristic curve (AUC) of around 0.88 for KNN and 0.92 for SVM were obtained. In the independent data set of 46 HCC patients and 31 CHB individuals, a good AUC score of 0.77 was obtained using SVM. It was further shown that 3000 reads for each individual can yield stable prediction results for SVM. Thus, another key finding is that word patterns can be used to predict HCC status with high accuracy. Therefore, our study shows clearly that word pattern frequencies of HBV sequences contain much information about the composition of different HBV genotypes and the HCC status of an individual. HBV infection can lead to many liver complications including hepatocellular carcinoma (HCC), one of the most common liver cancers in China. High-throughput sequencing technologies have recently been used to study the genotype sequence compositions of HBV infected individuals and to distinguish chronic HBV (CHB) infection from HCC. We used NGS to sequence the pre-S region of a large number of CHB and HCC individuals and designed novel word pattern based approaches to analyze the data. We have several surprising key findings. First, most HBV infected individuals contained mixtures of genotypes B and C sequences. Second, multi-dimensional scaling (MDS) analysis of the data showed that the first principal coordinate was closely associated with the fraction of genotype B (or C) sequences and the second principal coordinate was highly associated with the probability of HCC. Third, we also designed K-nearest neighbors (KNN) and support vector machine (SVM) based classifiers for CHB and HCC with high prediction accuracy. The results were validated in an independent data set.
Collapse
|
49
|
Ambachew H, Zheng M, Pappoe F, Shen J, Xu Y. Genotyping and sero-virological characterization of hepatitis B virus (HBV) in blood donors, Southern Ethiopia. PLoS One 2018; 13:e0193177. [PMID: 29462187 PMCID: PMC5819820 DOI: 10.1371/journal.pone.0193177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) prevalence is highest in Sub-Saharan Africa including Ethiopia. HBV genotypes have distinct geographic distributions and play a role in course of infection and treatment management. However, in Ethiopia there is paucity of information about distribution of HBV genotypes. This study was done to determine genotype, mutation and sero-virological profiles of HBV isolates in Southern Ethiopia. Cross-sectional, laboratory based study was conducted on 103HBsAg sero-positive samples from a total of 2,237 screened blood donors. HBV serological markers and biochemical assays were done. Serum viral load was measured using quantitative real-time PCR. Partial HBV S-gene was amplified with nested PCR and sequenced. Bioinformatics tools were utilized to determine genotypes, serotypes and mutations. Of 103 HBsAg reactive serum samples, 14.6% and 70.9% were sero-positive for HBeAg and HBeAb, respectively. Ninety-eight samples gave detectable viral load with a median of 3.46(2.62-4.82) log IU/ml. HBeAg sero-positive donors carried elevated levels of viral load. Eighty five isolates were successfully amplified, sequenced and genotyped into 58 (68.2%) genotype A (HBV/A) and 27 (31.8%) genotype D (HBV/D). HBV serotypes found were adw2 (74.1%), ayw2 (24.7%), and ayw3 (1.2%). In twenty-four (28.2%) samples mutations in the major hydrophilic region (MHR) were observed. Donors infected with HBV/A had higher viral load and more frequent MHR mutation than HBV/D infected donors. This study illustrated distribution of HBV genotype A and D among blood donors in southern Ethiopia. It also demonstrated occurrence HBV variants that may influence clinical aspects of HBV infection. The study contributes in narrowing the existing gap of HBV molecular study in Ethiopia.
Collapse
Affiliation(s)
- Henock Ambachew
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Faustina Pappoe
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jilong Shen
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Clinical Laboratory Diagnostics, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Immunology and Parasitology, Provincial Laboratory of Microbiology and Parasitology and the Key Laboratory of Zoonoses Anhui, Anhui Medical University, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
50
|
de Pina-Araujo IIM, Spitz N, Soares CC, Niel C, Lago BV, Gomes SA. Hepatitis B virus genotypes A1, A2 and E in Cape Verde: Unequal distribution through the islands and association with human flows. PLoS One 2018; 13:e0192595. [PMID: 29447232 PMCID: PMC5813952 DOI: 10.1371/journal.pone.0192595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/28/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) diversity has not been previously studied in Cape Verde. The archipelago was discovered in 1460 by Portuguese explorers, who brought African slaves to colonise the islands. In this study, we investigated the HBV characteristics from 183 HBsAg-positive Cape Verdean individuals. Phylogenetic analysis of the pre-S/S region and the full-length genomes revealed 54 isolates with HBV/A1 (57%), 21 with HBV/A2 (22%), 19 with HBV/E (20%), and one with HBV/D (1%). HBV genotypes and subgenotypes were unequally distributed through the islands. In São Vicente, the main northern island, most isolates (84%) belonged to the African-originated HBV/A1, with the remaining isolates belonging to HBV/A2, which is prevalent in Europe. Interestingly, the HBV/A1 isolates from São Vicente were closely related to Brazilian sequences into the Asian-American clade, which suggests the dissemination of common African ancestors through slave trade. In contrast, in Santiago and nearby southern islands, where a recent influx from different populations circulates, a higher diversity of HBV was observed: HBV/A1 (40%); HBV/E (32%); HBV/A2 (28%); and HBV/D (1%). HBV/E is a recent genotype disseminated in Africa that was absent in the era of the slave trade. African and European human flows at different times of the history may explain the HBV diversity in Cape Verde. The possible origin and specifics of each HBV genotype circulating in Cape Verde are discussed.
Collapse
Affiliation(s)
| | - Natalia Spitz
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Caroline C. Soares
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Christian Niel
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Barbara V. Lago
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), FIOCRUZ, Rio de Janeiro, Brazil
| | - Selma A. Gomes
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|