1
|
Duarte LF, Carbone-Schellman J, Bueno SM, Kalergis AM, Riedel CA, González PA. Tackling cutaneous herpes simplex virus disease with topical immunomodulators-a call to action. Clin Microbiol Rev 2025; 38:e0014724. [PMID: 39982077 PMCID: PMC11917526 DOI: 10.1128/cmr.00147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
SUMMARYAntivirals play important roles in restricting viral diseases. Nevertheless, they act on a relatively limited number of viruses and occasionally display partial effectiveness in some tissues or against escape variants. Although vaccination remains the most cost-effective approach for preventing microbial diseases, developing prophylactic or therapeutic solutions for pathogens, such as herpes simplex viruses (HSVs), that effectively reduce their clinical manifestations in the skin has proven exceptionally challenging despite extensive research. Alternatively, a less explored approach for tackling HSV skin infection involves using topical immunomodulatory molecules to potentiate the host's innate antiviral immune responses. When applied directly to herpetic skin lesions where viral antigen is present, this strategy has the potential to elicit virus-specific adaptive immunity. Based on currently available data, we foresee substantial potential for this approach in addressing HSV skin infections, along with additional prospects to advance understanding of skin biology and apply relevant new findings to other dermatological conditions. However, due to the limited number of case studies evaluating this method and its safety profile, particularly in immunocompromised individuals and pregnant women, further research is crucial, especially to assess the effects of immunomodulators in these vulnerable populations. Here, we revisit and discuss the use of immunomodulatory molecules for potentiating the host immune response against HSV skin infection and call for action for increased research and clinical trials regarding the possible benefits of this latter strategy for treating HSV cutaneous disease and recurrences. We also revisit and discuss antivirals and vaccine candidates against HSVs.
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana – Universidad del Desarrollo, Santiago, Chile
| | - Javier Carbone-Schellman
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Centro de Investigación para la Resilencia a Pandemias, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Owen EM, Jama M, Nahal B, Clarke E, Obasi A. 20 years of herpes simplex virus type 2 (HSV-2) research in low-income and middle-income countries: systematic evaluation of progress made in addressing WHO priorities for research in HSV-2/HIV interactions, HSV-2 control and mathematical modelling. BMJ Glob Health 2024; 9:e015167. [PMID: 38964882 PMCID: PMC11227757 DOI: 10.1136/bmjgh-2024-015167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Reviewing and updating research priorities is essential to assess progress and to ensure optimal allocation of financial and human resources in research. In 2001, WHO held a research priority setting workshop for herpes simplex virus type 2 (HSV-2) research in low-income and middle-income countries (LMICs). This study aimed to describe progress between 2000 and 2020 in three of the five key research priority areas outlined in the workshop: HSV-2/HIV interactions, HSV-2 control measures and HSV-2 mathematical modelling. The remaining priorities are addressed in a companion paper. METHOD A systematic literature search of MEDLINE, CINAHL, Global Health and Cochrane databases was carried out. Relevant primary research studies based in LMICs, written in English and published on 2000-2020 were included. Papers were screened by two independent reviewers, and suitable variables were selected for manual extraction from study texts. Data were organised into an Excel spreadsheet and analysed using IBM SPSS. RESULTS In total, 3214 discrete papers were identified, of which 180 were eligible for inclusion (HSV-2/HIV interactions, 98; control measures, 58; mathematical modelling, 24). Most studies were conducted in East Africa. The majority of the 2001 WHO HSV-2 research priorities were addressed at least in part. Overall, despite several studies describing a strong relationship between HSV-2 and the acquisition and transmission of HIV, HSV-2 control repeatedly demonstrated little effect on HIV shedding or transmission. Further, although mathematical modelling predicted that vaccines could significantly impact HSV-2 indicators, HSV-2 vaccine studies were few. Studies of antiviral resistance were also few. CONCLUSION Since 2000, LMIC HSV-2 research addressing its control, HIV interactions and mathematical modelling has largely addressed the priorities set in the 2001 WHO HSV-2 workshop. However, key knowledge gaps remain in vaccine research, antiviral cost-effectiveness, antiviral resistance and specific geographical areas.
Collapse
Affiliation(s)
- Ela Mair Owen
- Liverpool School of Tropical Medicine, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - Muna Jama
- Liverpool School of Tropical Medicine, Liverpool, UK
- International Rescue Committee, Mogadishu, Somalia
| | - Belinder Nahal
- University of Liverpool, Liverpool, UK
- London School of Hygiene & Tropical Medicine, London, UK
| | - Emily Clarke
- University of Liverpool, Liverpool, UK
- Axess Sexual Health, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Angela Obasi
- Liverpool School of Tropical Medicine, Liverpool, UK
- Axess Sexual Health, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
3
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
4
|
Preda M, Manolescu LSC, Chivu RD. Advances in Alpha Herpes Viruses Vaccines for Human. Vaccines (Basel) 2023; 11:1094. [PMID: 37376483 DOI: 10.3390/vaccines11061094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha herpes simplex viruses are an important public health problem affecting all age groups. It can produce from common cold sores and chicken pox to severe conditions like encephalitis or newborn mortality. Although all three subtypes of alpha herpes viruses have a similar structure, the produced pathology differs, and at the same time, the available prevention measures, such as vaccination. While there is an available and efficient vaccine for the varicella-zoster virus, for herpes simplex virus 1 and 2, after multiple approaches from trivalent subunit vaccine to next-generation live-attenuated virus vaccines and bioinformatic studies, there is still no vaccine available. Although there are multiple failed approaches in present studies, there are also a few promising attempts; for example, the trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus was able to protect guinea pigs against vaginal infection and proved to cross-protect against HSV-1. Another promising vaccine is the multivalent DNA vaccine, SL-V20, tested in a mouse model, which lowered the clinical signs of infection and produced efficient viral eradication against vaginal HSV-2. Promising approaches have emerged after the COVID-19 pandemic, and a possible nucleoside-modified mRNA vaccine could be the next step. All the approaches until now have not led to a successful vaccine that could be easy to administer and, at the same time, offer antibodies for a long period.
Collapse
Affiliation(s)
- Madalina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Research Department, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Virology, Institute of Virology "Stefan S. Nicolau", 030304 Bucharest, Romania
| | - Razvan Daniel Chivu
- Department of Public Health and Health Management, Faculty of Midwifery and Nursing, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Sharma D, Sharma S, Akojwar N, Dondulkar A, Yenorkar N, Pandita D, Prasad SK, Dhobi M. An Insight into Current Treatment Strategies, Their Limitations, and Ongoing Developments in Vaccine Technologies against Herpes Simplex Infections. Vaccines (Basel) 2023; 11:vaccines11020206. [PMID: 36851084 PMCID: PMC9966607 DOI: 10.3390/vaccines11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Herpes simplex virus (HSV) infection, the most prevalent viral infection that typically lasts for a lifetime, is associated with frequent outbreaks of oral and genital lesions. Oral herpes infection is mainly associated with HSV-1 through oral contact, while genital herpes originates due to HSV-2 and is categorized under sexually transmitted diseases. Immunocompromised patients and children are more prone to HSV infection. Over the years, various attempts have been made to find potential targets for the prevention of HSV infection. Despite the global distress caused by HSV infections, there are no licensed prophylactic and therapeutic vaccines available on the market against HSV. Nevertheless, there are numerous promising candidates in the pre-clinical and clinical stages of study. The present review gives an overview of two herpes viruses, their history, and life cycle, and different treatments adopted presently against HSV infections and their associated limitations. Majorly, the review covers the recent investigations being carried out globally regarding various vaccine strategies against oral and genital herpes virus infections, together with the recent and advanced nanotechnological approaches for vaccine development. Consequently, it gives an insight to researchers as well as people from the health sector about the challenges and upcoming solutions associated with treatment and vaccine development against HSV infections.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Supriya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
| | - Natasha Akojwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Ayusha Dondulkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Nikhil Yenorkar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Deepti Pandita
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, Government of NCT of Delhi, New Delhi 110017, India
- Correspondence: (D.P.); (S.K.P.); (M.D.)
| |
Collapse
|
6
|
Chentoufi AA, Dhanushkodi NR, Srivastava R, Prakash S, Coulon PGA, Zayou L, Vahed H, Chentoufi HA, Hormi-Carver KK, BenMohamed L. Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Front Immunol 2022; 13:849515. [PMID: 35547736 PMCID: PMC9082490 DOI: 10.3389/fimmu.2022.849515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A. Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, Limited Liability Company (LLC), University Lab Partners, Irvine, CA, United States
| | | | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
- Biomedical Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular Biology & Biochemistry, Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
7
|
Krishnan R, Stuart PM. Developments in Vaccination for Herpes Simplex Virus. Front Microbiol 2021; 12:798927. [PMID: 34950127 PMCID: PMC8691362 DOI: 10.3389/fmicb.2021.798927] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus (HSV) is an alpha herpes virus, with two subtypes: HSV-1 and HSV-2. HSV is one of the most prevalent sexually transmitted infections. It is the cause of severe neonatal infections and a leading cause of infectious blindness in the Western world. As of 2016, 13.2% of the global population ages 15-49 were existing with HSV-2 infection and 66.6% with HSV-1. This high prevalence of disease and the fact that resistance to current therapies is on the rise makes it imperative to develop and discover new methods of HSV prevention and management. Among the arsenal of therapies/treatments for this virus has been the development of a prophylactic or therapeutic vaccine to prevent the complications of HSV reactivation. Our current understanding of the immune responses involved in latency and reactivation provides a unique challenge to the development of vaccines. There are no approved vaccines currently available for either prophylaxis or therapy. However, there are various promising candidates in the pre-clinical and clinical phases of study. Vaccines are being developed with two broad focuses: preventative and therapeutic, some with a dual use as both immunotherapeutic and prophylactic. Within this article, we will review the current guidelines for the treatment of herpes simplex infections, our understanding of the immunological pathways involved, and novel vaccine candidates in development.
Collapse
Affiliation(s)
| | - Patrick M. Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Shohael AM, Moin AT, Chowdhury MAB, Riana SH, Ullah MA, Araf Y, Sarkar B. An Updated Overview of Herpes Simplex Virus-1 Infection: Insights from Origin to Mitigation Measures. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2021. [DOI: 10.29333/ejgm/10869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
10
|
Xu X, Zhang Y, Li Q. Characteristics of herpes simplex virus infection and pathogenesis suggest a strategy for vaccine development. Rev Med Virol 2019; 29:e2054. [PMID: 31197909 PMCID: PMC6771534 DOI: 10.1002/rmv.2054] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/03/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.
Collapse
Affiliation(s)
- Xingli Xu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical SciencesPeking Union Medical CollegeKunmingChina
| |
Collapse
|
11
|
Hanna E, Dany M, Abbas O, Kreidieh F, Kurban M. Updates on the use of vaccines in dermatological conditions. Indian J Dermatol Venereol Leprol 2018; 84:388-402. [PMID: 29794355 DOI: 10.4103/ijdvl.ijdvl_1036_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous vaccines are being actively developed for use in dermatologic diseases. Advances in the fields of immunotherapy, genetics and molecular medicine have allowed for the design of prophylactic and therapeutic vaccines with immense potential in managing infections and malignancies of the skin. This review addresses the different vaccines available for use in dermatological diseases and those under development for future potential use. The major limitation of our review is its complete reliance on published data. Our review is strictly limited to the availability of published research online through available databases. We do not cite any of the authors' previous publications nor have we conducted previous original research studies regarding vaccines in dermatology. Strength would have been added to our paper had we conducted original studies by our research team regarding the candidate vaccines delineated in the paper.
Collapse
Affiliation(s)
- Edith Hanna
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammed Dany
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Firas Kreidieh
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Department of Dermatology, Columbia University, New York, USA
| |
Collapse
|
12
|
Fan S, Xu X, Liao Y, Wang Y, Wang J, Feng M, Wang L, Zhang Y, He Z, Yang F, Fraser NW, Li Q. Attenuated Phenotype and Immunogenic Characteristics of a Mutated Herpes Simplex Virus 1 Strain in the Rhesus Macaque. Viruses 2018; 10:E234. [PMID: 29724057 PMCID: PMC5977227 DOI: 10.3390/v10050234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/28/2018] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus type 1(HSV-1) presents a conundrum to public health worldwide because of its specific pathogenicity and clinical features. Some experimental vaccines, such as the recombinant viral glycoproteins, exhibit the viral immunogenicity of a host-specific immune response, but none of these has achieved a valid epidemiological protective efficacy in the human population. In the present study, we constructed an attenuated HSV-1 strain M3 through the partial deletion of UL7, UL41, and the latency-associated transcript (LAT) using the CRISPR/Cas9 system. The mutant strain exhibited lowered infectivity and virulence in macaques. Neutralization testing and ELISpot detection of the specific T-cell responses confirmed the specific immunity induced by M3 immunization and this immunity defended against the challenges of the wild-type strain and restricted the entry of the wild-type strain into the trigeminal ganglion. These results in rhesus macaques demonstrated the potential of the attenuated vaccine for the prevention of HSV-1 in humans.
Collapse
Affiliation(s)
- Shengtao Fan
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Xingli Xu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Yongrong Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Jianbin Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Min Feng
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Ying Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
13
|
Stanfield BA, Rider PJF, Caskey J, Del Piero F, Kousoulas KG. Intramuscular vaccination of guinea pigs with the live-attenuated human herpes simplex vaccine VC2 stimulates a transcriptional profile of vaginal Th17 and regulatory Tr1 responses. Vaccine 2018; 36:2842-2849. [PMID: 29655629 DOI: 10.1016/j.vaccine.2018.03.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 12/31/2022]
Abstract
Herpes simplex virus is a common causative agent of oral and genital diseases. Novel vaccines and therapeutics are needed to combat herpes infections especially after the failure of subunit vaccines in human clinical trials. We have shown that the live-attenuated HSV-1 VC2 vaccine strain is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. The guinea pig represents the best small animal model of genital HSV-2 disease. Reported here, twenty-one female Hartley guinea pigs received intramuscular injection with either the VC2 vaccine, or equal volume of conditioned tissue culture media. Animals received 2 booster vaccinations at 21 day intervals following the initial vaccination. After vaccination, animals were challenged with the highly virulent HSV-2 (G) strain. Histologically, VC2 vaccinated animals had little to no apparent inflammation/disease following challenge. Unvaccinated animals developed moderate to severe erosive and ulcerative vaginitis. Quantitative reverse-transcriptase PCR analysis in VC2 vaccinated and challenged animals identified transcriptional signatures of Th17 and regulatory Tr1 cells associated with the inflammatory response primed by VC2 vaccination. Treatment of cultured human vaginal epithelial cells (VK2 cells) with a combination of IL-17A and IL-22 resulted in the significant induction of beta-defensin 3 expression. Further, treatment of VK2 cells with IL-17A, IL-22, IL-36 or beta-defensin 3 resulted in diminished HSV-2 replication. Overall, these results suggest that intramuscular vaccination with the live-attenuated vaccine VC2 primes a mucosal immune response predisposing the adaptive expression of transcripts associated with a Th17 response to challenge and these responses contribute to antiviral immunity.
Collapse
Affiliation(s)
- Brent A Stanfield
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Paul J F Rider
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - John Caskey
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G Kousoulas
- Department of Pathobiological Sciences and Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
14
|
Retamal-Díaz AR, Kalergis AM, Bueno SM, González PA. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4 + and CD8 + T Cells. Front Immunol 2017; 8:904. [PMID: 28848543 PMCID: PMC5553038 DOI: 10.3389/fimmu.2017.00904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.
Collapse
Affiliation(s)
- Angello R Retamal-Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Ma Y, Chen M, Jin H, Prabhakar BS, Valyi-Nagy T, He B. An Engineered Herpesvirus Activates Dendritic Cells and Induces Protective Immunity. Sci Rep 2017; 7:41461. [PMID: 28150813 PMCID: PMC5288694 DOI: 10.1038/srep41461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023] Open
Abstract
Herpes simplex viruses (HSV) are human pathogens that switch between lytic and latent infection. While attenuated HSV is explored for vaccine, the underlying event remains poorly defined. Here we report that recombinant HSV-1 with a mutation in the γ134.5 protein, a virulence factor, stimulates dendritic cell (DC) maturation which is dependent on TANK-binding kinase 1 (TBK1). When exposed to CD11+ DCs, the mutant virus that lacks the amino terminus of γ134.5 undergoes temporal replication without production of infectious virus. Mechanistically, this leads to sequential phosphorylation of interferon regulatory factor 3 (IRF3) and p65/RelA. In correlation, DCs up-regulate the expression of co-stimulatory molecules and cytokines. However, selective inhibition of TBK1 precludes phosphorylation of IRF3 and subsequent DC activation by the γ134.5 mutant. Herein, the γ134.5 mutant is immune-stimulatory and non-destructive to DCs. Remarkably, upon immunization the γ134.5 mutant induces protection against lethal challenge by the wild type virus, indicative of its vaccine potential. Furthermore, CD11+ DCs primed by the γ134.5 mutant in vivo mediate protection upon adoptive transfer. These results suggest that activation of TBK1 by engineered HSV is crucial for DC maturation, which may contribute to protective immunity.
Collapse
Affiliation(s)
- Yijie Ma
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Min Chen
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Institute of Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Huali Jin
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Tibor Valyi-Nagy
- Department of Pathology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bin He
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
16
|
Abstract
Herpes simplex virus (HSV) causes significant morbidity on the human population through such clinical syndromes as cold sores, genital herpes, herpes stromal keratitis, and encephalitis. Attempts to generate efficacious vaccines to date have failed. We have recently described the use of a conditionally replication-competent HSV-1 vector to immunize mice against a lethal challenge of HSV-1. The unique feature of this vaccine vector is that its replication is tightly controlled and can only occur in the presence of local heat and the presence of a small molecule inducer (an antiprogestin). This gives it the safety advantage of a replication-defective vaccine vector as well as the advantage of a replication-competent vector in that it is able to stimulate innate and adaptive aspects of the immune response in a natural context that a replication-defective vector cannot. In this chapter we provide a brief overview of HSV vaccines followed by the methodology used to propagate and utilize replication-conditional HSV vectors as vaccines.
Collapse
|
17
|
Johnston C, Gottlieb SL, Wald A. Status of vaccine research and development of vaccines for herpes simplex virus. Vaccine 2016; 34:2948-2952. [PMID: 26973067 DOI: 10.1016/j.vaccine.2015.12.076] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/23/2015] [Indexed: 11/27/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and -2 (HSV-2) are highly prevalent global pathogens which commonly cause recurrent oral and genital ulcerations. Less common but more serious complications include meningitis, encephalitis, neonatal infection, and keratitis. HSV-2 infection is a significant driver of the HIV epidemic, increasing the risk of HIV acquisition 3 fold. As current control strategies for genital HSV-2 infection, including antiviral therapy and condom use, are only partially effective, vaccines will be required to reduce infection. Both preventive and therapeutic vaccines for HSV-2 are being pursued and are in various stages of development. We will provide an overview of efforts to develop HSV-2 vaccines, including a discussion of the clinical need for an HSV vaccine, and status of research and development with an emphasis on recent insights from trials of vaccine candidates in clinical testing. In addition, we will touch upon aspects of HSV vaccine development relevant to low and middle income countries.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Anna Wald
- Department of Medicine, Seattle, WA, USA; Laboratory Medicine, University of Washington, Seattle, WA, USA; Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
18
|
A Herpes Simplex Virus 2 (HSV-2) gD Mutant Impaired for Neural Tropism Is Superior to an HSV-2 gD Subunit Vaccine To Protect Animals from Challenge with HSV-2. J Virol 2015; 90:562-74. [PMID: 26559846 DOI: 10.1128/jvi.01845-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED A recent phase 3 trial with soluble herpes simplex virus 2 (HSV-2) glycoprotein D (gD2t) in adjuvant failed to show protection against genital herpes. We postulated that live attenuated HSV-2 would provide more HSV antigens for induction of virus-specific antibodies and cellular immunity than would gD2t. We previously reported an HSV-2 mutant, HSV2-gD27, in which the nectin-1 binding domain of gD2 is altered so that the virus is impaired for infecting neural cells, but not epithelial cells, in vitro and is impaired for infecting dorsal root ganglia in mice (K. Wang, J. D. Kappel, C. Canders, W. F. Davila, D. Sayre, M. Chavez, L. Pesnicak, and J. I. Cohen, J Virol 86:12891-12902, 2012, doi:10.1128/JVI.01055-12). Here we report that the mutations in HSV2-gD27 were stable when the virus was passaged in cell culture and during acute infection of mice. HSV2-gD27 was attenuated in mice when it was inoculated onto the cornea, intramuscularly (i.m.), intravaginally, and intracranially. Vaccination of mice i.m. with HSV2-gD27 provided better inhibition of challenge virus replication in the vagina than when the virus was used to vaccinate mice intranasally or subcutaneously. Comparison of i.m. vaccinations with HSV2-gD27 versus gD2t in adjuvant showed that HSV2-gD27 induced larger reductions of challenge virus replication in the vagina and reduced latent viral loads in dorsal root ganglia but induced lower serum neutralizing antibody titers than those obtained with gD2t in adjuvant. Taken together, our data indicate that a live attenuated HSV-2 vaccine impaired for infection of neurons provides better protection from vaginal challenge with HSV-2 than that obtained with a subunit vaccine, despite inducing lower titers of HSV-2 neutralizing antibodies in the serum. IMPORTANCE Genital herpes simplex is one of the most prevalent sexually transmitted diseases. Though HSV-2 disease is usually mild, it can be life threatening in neonates and immunocompromised persons. In addition, genital herpes increases the frequency of HIV infection and transmission. HSV-2 maintains a latent infection in sensory neurons and cannot be cleared with antiviral drugs. The virus frequently reactivates, resulting in virus shedding in the genital area, which serves as a source for transmission. A prophylactic vaccine is needed to prevent disease and to control the spread of the virus. Previous human trials of subunit vaccines have been unsuccessful. Here we report the results of vaccinating mice with a new type of live attenuated HSV-2 vaccine that is impaired for infection of neurons and provides better protection of mice than that obtained with a subunit vaccine. The strategy of altering the cell tropism of a virus is a new approach for a live attenuated vaccine.
Collapse
|
19
|
Stanfield B, Kousoulas KG. Herpes Simplex Vaccines: Prospects of Live-attenuated HSV Vaccines to Combat Genital and Ocular infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015; 2:125-136. [PMID: 27114893 DOI: 10.1007/s40588-015-0020-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) and its closely related type-2 (HSV-2) viruses cause important clinical manifestations in humans including acute ocular disease and genital infections. These viruses establish latency in the trigeminal ganglionic and dorsal root neurons, respectively. Both viruses are widespread among humans and can frequently reactivate from latency causing disease. Currently, there are no vaccines available against herpes simplex viral infections. However, a number of promising vaccine approaches are being explored in pre-clinical investigations with few progressing to early phase clinical trials. Consensus research findings suggest that robust humoral and cellular immune responses may partially control the frequency of reactivation episodes and reduce clinical symptoms. Live-attenuated viral vaccines have long been considered as a viable option for generating robust and protective immune responses against viral pathogens. Varicella zoster virus (VZV) belongs to the same alphaherpesvirus subfamily with herpes simplex viruses. A live-attenuated VZV vaccine has been extensively used in a prophylactic and therapeutic approach to combat primary and recurrent VZV infection indicating that a similar vaccine approach may be feasible for HSVs. In this review, we summarize pre-clinical approaches to HSV vaccine development and current efforts to test certain vaccine approaches in human clinical trials. Also, we discuss the potential advantages of using a safe, live-attenuated HSV-1 vaccine strain to protect against both HSV-1 and HSV-2 infections.
Collapse
Affiliation(s)
- Brent Stanfield
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin Gus Kousoulas
- Division of Biotechnology & Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
20
|
Abstract
The successful human papillomavirus and hepatitis B virus subunit vaccines contain single viral proteins that represent 22 and 12%, respectively, of the antigens encoded by these tiny viruses. The herpes simplex virus 2 (HSV-2) genome is >20 times larger. Thus, a single protein subunit represents 1% of HSV-2's total antigenic breadth. Antigenic breadth may explain why HSV-2 glycoprotein subunit vaccines have failed in clinical trials, and why live HSV-2 vaccines that express 99% of HSV-2's proteome may be more effective. I review the mounting evidence that live HSV-2 vaccines offer a greater opportunity to stop the spread of genital herpes, and I consider the unfounded 'safety concerns' that have kept live HSV-2 vaccines out of U.S. clinical trials for 25 years.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| |
Collapse
|
21
|
Stanfield BA, Stahl J, Chouljenko VN, Subramanian R, Charles AS, Saied AA, Walker JD, Kousoulas KG. A single intramuscular vaccination of mice with the HSV-1 VC2 virus with mutations in the glycoprotein K and the membrane protein UL20 confers full protection against lethal intravaginal challenge with virulent HSV-1 and HSV-2 strains. PLoS One 2014; 9:e109890. [PMID: 25350288 PMCID: PMC4211657 DOI: 10.1371/journal.pone.0109890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/11/2014] [Indexed: 01/01/2023] Open
Abstract
Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutant virus lacking expression of the viral glycoprotein K (gK), which prevents the virus from entering into distal axons of ganglionic neurons, conferred significant protection against either virulent HSV-1(McKrae) or HSV-2(G) intravaginal challenge in mice. Specifically, 90% of the mice were protected against HSV-1(McKrae) challenge, while 70% of the mice were protected against HSV-2(G) challenge. We constructed the recombinant virus VC2 that contains specific mutations in gK and the membrane protein UL20 preventing virus entry into axonal compartments of neurons, while allowing efficient replication in cell culture, unlike the gK-null virus, which has a major defect in virus replication and spread. Intramuscular injection of mice with 107 VC2 plaque forming units did not cause any significant clinical disease in mice. A single intramuscular immunization with the VC2 virus protected 100% of mice against lethal intravaginal challenge with either HSV-1(McKrae) or HSV-2(G) viruses. Importantly, vaccination with VC2 produced robust cross protective humoral and cellular immunity that fully protected vaccinated mice against lethal disease. Quantitative PCR did not detect any viral DNA in ganglionic tissues of vaccinated mice, while unvaccinated mice contained high levels of viral DNA. The VC2 virus may serve as an efficient vaccine against both HSV-1 and HSV-2 infections, as well as a safe vector for the production of vaccines against other viral and bacterial pathogens.
Collapse
Affiliation(s)
- Brent A. Stanfield
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jacque Stahl
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ramesh Subramanian
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Anu-Susan Charles
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Ahmad A. Saied
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jason D. Walker
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
22
|
Vaccination with a HSV-2 UL24 mutant induces a protective immune response in murine and guinea pig vaginal infection models. Vaccine 2014; 32:1398-406. [PMID: 24462481 DOI: 10.1016/j.vaccine.2013.10.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 09/25/2013] [Accepted: 10/24/2013] [Indexed: 11/21/2022]
Abstract
The rational design and development of genetically attenuated HSV-2 mutant viruses represent an attractive approach for developing both prophylactic and therapeutic vaccines for genital herpes. Previously, HSV-2 UL24 was shown to be a virulence determinant in both murine and guinea pig vaginal infection models. An UL24-βgluc insertion mutant produced syncytial plaques and replicated to nearly wild type levels in tissue culture, but induced little or no pathological effects in recipient mice or guinea pigs following vaginal infection. Here we report that immunization of mice or guinea pigs with high or low doses of UL24-βgluc elicited a highly protective immune response. UL24-βgluc immunization via the vaginal or intramuscular routes was demonstrated to protect mice from a lethal vaginal challenge with wild type HSV-2. Moreover, antigen re-stimulated splenic lymphocytes harvested from immunized mice exhibited both HSV-2 specific CTL activity and IFN-γ expression. Humoral anti-HSV-2 responses in serum were Th1-polarized (IgG2a>IgG1) and contained high-titer anti-HSV-2 neutralizing activity. Guinea pigs vaccinated subcutaneously with UL24-βgluc or the more virulent parental strain (186) were challenged with a heterologous HSV-2 strain (MS). Acute disease scores were nearly indistinguishable in guinea pigs immunized with either virus. Recurrent disease scores were reduced in UL24-βgluc immunized animals but not to the same extent as those immunized with strain 186. In addition, challenge virus was not detected in 75% of guinea pigs subcutaneously immunized with UL24-βgluc. In conclusion, disruption of the UL24 gene is a prime target for the development of a genetically attenuated live HSV-2 vaccine.
Collapse
|
23
|
Single dose of glycoprotein K (gK)-deleted HSV-1 live-attenuated virus protects mice against lethal vaginal challenge with HSV-1 and HSV-2 and induces lasting T cell memory immune responses. Virol J 2013; 10:317. [PMID: 24165088 PMCID: PMC3826548 DOI: 10.1186/1743-422x-10-317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/30/2013] [Indexed: 11/11/2022] Open
Abstract
Background Herpes simplex virus type-1(HSV-1) and HSV-2 are important human pathogens that cause significant ocular and urogenital complications, respectively. We have previously shown that HSV-1 virions lacking glycoprotein K (gK) are unable to enter into neurons via synaptic axonal membranes and be transported in either retrograde or anterograde manner. Here, we tested the ability of HSV-1 (F) gK-null to protect against lethal challenge with either highly virulent ocular HSV-1 (McKrae strain), or genital HSV-2 (G strain). The gK-null virus vaccine efficiently protected mice against lethal vaginal infection with either HSV-1(McKrae) or HSV-2 (G). Results Female mice were immunized via a single intramuscular injection with 106 PFU of the gK-null virus. Immunized mice were treated with Depo-Provera fourteen days after vaccination and were challenged via the vaginal route one week later. Ninety percent of mice vaccinated with the gK-null virus survived HSV-1 (McKrae) challenge, while 70% of these mice survived after HSV-2 (G) challenge. Moreover, all vaccinated mice exhibited substantially reduced disease symptoms irrespective of HSV-1 or HSV-2 challenge as compared to the mock vaccinated challenge group. T-cell memory immune responses to specific glycoprotein B (gB) and glycoprotein D (gD) peptide epitopes were detectable at 7 months post vaccination. Conclusions These results suggest that the highly attenuated, non-neurotropic gK-null virus may be used as an effective vaccine to protect against both virulent HSV-1 and HSV-2 genital infections and induce lasting immune responses.
Collapse
|
24
|
Johnston C, Koelle DM, Wald A. Current status and prospects for development of an HSV vaccine. Vaccine 2013; 32:1553-60. [PMID: 24016811 DOI: 10.1016/j.vaccine.2013.08.066] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/05/2013] [Accepted: 08/17/2013] [Indexed: 12/24/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) infects 530million people, is the leading cause of genital ulcer disease, and increases the risk of HIV-1 acquisition. Although several candidate vaccines have been promising in animal models, prophylactic and therapeutic vaccines have not been effective in clinical trials thus far. Null results from the most recent prophylactic glycoprotein D2 subunit vaccine trial suggest that we must reevaluate our approach to HSV-2 vaccine development. We discuss HSV-2 pathogenesis, immunity, and vaccine efforts to date, as well as the current pipeline of candidate vaccines and design of trials to evaluate new vaccine constructs.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Global Health, University of Washington, Seattle, WA, United States; Benaroya Research Institute, Seattle, WA, United States
| | - Anna Wald
- Department of Medicine, University of Washington, Seattle, WA, United States; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States; Department of Laboratory Medicine, University of Washington, Seattle, WA, United States; Department of Epidemiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2. PLoS One 2013; 8:e65523. [PMID: 23755244 PMCID: PMC3675040 DOI: 10.1371/journal.pone.0065523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/29/2013] [Indexed: 12/27/2022] Open
Abstract
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2's 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2's antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0− viruses (0Δ254, 0Δ810, 0ΔRING, or 0ΔNLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ∼500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.
Collapse
|
26
|
Theaflavin-3,3'-digallate and lactic acid combinations reduce herpes simplex virus infectivity. Antimicrob Agents Chemother 2013; 57:3806-14. [PMID: 23716050 DOI: 10.1128/aac.00659-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The present study examined the efficacy of using multiple mechanisms as part of a topical microbicide to inactivate herpes simplex virus (HSV) by combining theaflavin-3,3'-digallate (TF-3) and lactic acid (LA) over the pH range of 4.0 to 5.7 to mimic conditions in the female reproductive tract. Six clinical isolates of HSV-2 and two clinical isolates of HSV-1 were almost completely inactivated when TF-3 (100 μM) was present with LA over the pH range of 4.5 to 5.7, whereas four additional HSV-1 clinical isolates required TF-3 concentrations of 250 to 500 μM for comparable virus titer reduction. LA (1%) alone at pH 4.0 reduced the titers of laboratory and clinical isolates of HSV-1 and HSV-2 by ≥ 5 log10, but most LA-dependent antiviral activity was lost at a pH of ≥ 4.5. When HSV-1 and HSV-2 were incubated at pH 4.0 without LA virus titers were not reduced. At pH 4.0, HSV-1 and HSV-2 titers were reduced 5 log(10) in 20 min by LA alone. TF-3 reduced HSV-2 titers by 5 log10 in 20 to 30 min at pH 4.5, whereas HSV-1 required 60 min for comparable inactivation. Mixtures of TF-3 and LA stored at 37 °C for 1 month at pH 4.0 to 5.7 maintained antiviral activity. Semen, but not cervical vaginal fluid, decreased LA-dependent antiviral activity at pH 4.0, but adding TF-3 to the mixture reduced HSV titers by 4 to 5 log10. These results indicate that a combination microbicide containing TF-3 and LA could reduce HSV transmission.
Collapse
|
27
|
Roth K, Ferreira VH, Kaushic C. HSV-2 vaccine: current state and insights into development of a vaccine that targets genital mucosal protection. Microb Pathog 2012; 58:45-54. [PMID: 23159485 DOI: 10.1016/j.micpath.2012.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/19/2022]
Abstract
HSV-2 is one of the most prevalent sexually transmitted infections that result in significant morbidity and financial burden on health systems around the world. Recurrent and asymptomatic re-activation accompanied by viral shedding is common among sero-positive individuals, leading to relatively high efficiency of transmission. Prophylactic HSV-2 vaccines are the best and cheapest option to address the problems associated with HSV-2 infections globally. However, despite persistent efforts, the search for an efficacious vaccine for HSV-2 remains elusive. In this review, the current state of HSV-2 vaccines and the outcome of past human trials are examined. Furthermore, we discuss the evidence and strategies from experimental mouse models that have been successful in inducing protective immunity in the genital tract against HSV-2, following immunization. Future vaccination strategies that focus on induction of robust mucosal immunity in the genital tract may hold the key for a successful vaccine against HSV-2.
Collapse
Affiliation(s)
- Kristy Roth
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote Center for Learning and Discovery, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
28
|
Immunogenicity and efficacy of intramuscular replication-defective and subunit vaccines against herpes simplex virus type 2 in the mouse genital model. PLoS One 2012; 7:e46714. [PMID: 23071620 PMCID: PMC3469653 DOI: 10.1371/journal.pone.0046714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/03/2012] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs. Here we show that ACAM529 given via the intramuscular route affords significantly greater immunogenicity and protection in comparison with subcutaneous administration in the mouse vaginal HSV-2 challenge model. Further, we describe a side-by-side comparison of intramuscular ACAM529 with a gD vaccine across a range of challenge virus doses. While differences in protection against death are not significant, ACAM529 protects significantly better against mucosal infection, reducing peak challenge virus shedding at the highest challenge dose by over 500-fold versus 5-fold for gD. Over 27% (11/40) of ACAM529-immunized animals were protected from viral shedding while 2.5% (1/40) were protected by the gD vaccine. Similarly, 35% (7/20) of mice vaccinated with ACAM529 were protected from infection of their dorsal root ganglia while none of the gD-vaccinated mice were protected. These results indicate that measuring infection of the vaginal mucosa and of dorsal root ganglia over a range of challenge doses is more sensitive than evaluating survival at a single challenge dose as a means of directly comparing vaccine efficacy in the mouse vaginal challenge model. The data also support further investigation of ACAM529 for prophylaxis in human subjects.
Collapse
|
29
|
Dervillez X, Gottimukkala C, Kabbara KW, Nguyen C, Badakhshan T, Kim SM, Nesburn AB, Wechsler SL, Benmohamed L. Future of an "Asymptomatic" T-cell Epitope-Based Therapeutic Herpes Simplex Vaccine. Future Virol 2012; 7:371-378. [PMID: 22701511 DOI: 10.2217/fvl.12.22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Considering the limited success of the recent herpes clinical vaccine trial [1], new vaccine strategies are needed. Infections with herpes simplex virus type 1 and type 2 (HSV-1 & HSV-2) in the majority of men and women are usually asymptomatic and results in lifelong viral latency in neurons of sensory ganglia (SG). However, in a minority of men and women HSV spontaneous reactivation can cause recurrent disease (i.e., symptomatic individuals). Our recent findings show that T cells from symptomatic and asymptomatic men and women (i.e. those with and without recurrences, respectively) recognize different herpes epitopes. This finding breaks new ground and opens new doors to assess a new vaccine strategy: mucosal immunization with HSV-1 & HSV-2 epitopes that induce strong in vitro CD4 and CD8 T cell responses from PBMC derived from asymptomatic men and women (designated here as "asymptomatic" protective epitopes") could boost local and systemic "natural" protective immunity, induced by wild-type infection. Here we highlight the rationale and the future of our emerging "asymptomatic" T cell epitope-based mucosal vaccine strategy to decrease recurrent herpetic disease.
Collapse
Affiliation(s)
- Xavier Dervillez
- Laboratory of Cellular and Molecular Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chung E, Sen J. The ongoing pursuit of a prophylactic HSV vaccine. Rev Med Virol 2012; 22:285-300. [PMID: 22396215 DOI: 10.1002/rmv.1709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 12/27/2022]
Abstract
HSV is among the most common human pathogens in the world. It is known to cause painful, persistent skin lesions, while also being the most common cause of fatal non-epidemic encephalitis as well as the leading cause of corneal blindness. The development of prophylactic vaccines could substantially reduce global health problems associated with HSV. So far, HSV vaccine strategies have shown noticeable efficacy in early development during preclinical phases but remained unsuccessful or unproven in human trials. New understanding of how the immune system mounts a defence against HSV offers practical strategies for vaccine development. A number of promising vaccine candidates are currently awaiting clinical development or already undergoing clinical testing. Therefore, this is a suitable time to assess the progress of HSV vaccine development and consider existing challenges and future improvements needed to achieve an effective prophylactic HSV vaccine.
Collapse
Affiliation(s)
- Erin Chung
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.
| | | |
Collapse
|
31
|
Live attenuated herpes simplex virus 2 glycoprotein E deletion mutant as a vaccine candidate defective in neuronal spread. J Virol 2012; 86:4586-98. [PMID: 22318147 DOI: 10.1128/jvi.07203-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A herpes simplex virus 2 (HSV-2) glycoprotein E deletion mutant (gE2-del virus) was evaluated as a replication-competent, attenuated live virus vaccine candidate. The gE2-del virus is defective in epithelial cell-to-axon spread and in anterograde transport from the neuron cell body to the axon terminus. In BALB/c and SCID mice, the gE2-del virus caused no death or disease after vaginal, intravascular, or intramuscular inoculation and was 5 orders of magnitude less virulent than wild-type virus when inoculated directly into the brain. No infectious gE2-del virus was recovered from dorsal root ganglia (DRG) after multiple routes of inoculation; however, gE2-del DNA was detected by PCR in lumbosacral DRG at a low copy number in some mice. Importantly, no recurrent vaginal shedding of gE2-del DNA was detected in immunized guinea pigs. Intramuscular immunization outperformed subcutaneous immunization in all parameters evaluated, although individual differences were not significant, and two intramuscular immunizations were more protective than one. Immunized animals had reduced vaginal disease, vaginal titers, DRG infection, recurrent genital lesions, and recurrent vaginal shedding of HSV-2 DNA; however, protection was incomplete. A combined modality immunization using live virus and HSV-2 glycoprotein C and D subunit antigens in guinea pigs did not totally eliminate recurrent lesions or recurrent vaginal shedding of HSV-2 DNA. The gE2-del virus used as an immunotherapeutic vaccine in previously HSV-2-infected guinea pigs greatly reduced the frequency of recurrent genital lesions. Therefore, the gE2-del virus is safe, other than when injected at high titer into the brain, and is efficacious as a prophylactic and immunotherapeutic vaccine.
Collapse
|
32
|
Abstract
Herpes simplex virus type 2 (HSV-2) is one of the most prevalent sexually transmitted infections worldwide. In addition to recurrent genital ulcers, HSV-2 causes neonatal herpes, and it is associated with a 3-fold increased risk for HIV acquisition. Although many HSV-2 vaccines have been studied in animal models, few have reached clinical trials, and those that have been tested in humans were not consistently effective. Here, we review HSV-2 pathogenesis, with a focus on novel understanding of mucosal immunobiology of HSV-2, and vaccine efforts to date, in an attempt to stimulate thinking about future directions for development of effective prophylactic and therapeutic HSV-2 vaccines.
Collapse
Affiliation(s)
- Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
33
|
Activation of NF-κB in CD8+ dendritic cells Ex Vivo by the γ134.5 null mutant correlates with immunity against herpes simplex virus 1. J Virol 2011; 86:1059-68. [PMID: 22072757 DOI: 10.1128/jvi.06202-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The γ(1)34.5 protein of herpes simplex viruses (HSV) is essential for virulence. Accordingly, an HSV mutant lacking γ(1)34.5 is attenuated in vivo. Despite its vaccine potential, the mechanism by which the γ(1)34.5 null mutant triggers protective immunity is unknown. In this report we show that vaccination with the γ(1)34.5 null mutant protects against lethal challenge from wild-type virus via IκB kinase in dendritic cells (DCs), which sense virus-associated molecular patterns. Unlike mock-treated DCs, DCs primed with the γ(1)34.5 null mutant ex vivo mediate resistance to wild-type HSV after adoptive transfer into naïve mice. Furthermore, the γ(1)34.5 null mutant activates IκB kinase, which facilitates p65/RelA phosphorylation and nuclear translocation, resulting in DC maturation. While unable to produce infectious virus in DCs, this mutant virus expresses early and late genes. In its abortive infection, the γ(1)34.5 null mutant induces protective immunity more effectively in CD8(+) DCs than in CD8(-) DCs. This is mirrored by a higher level of interleukin-6 (IL-6) and IL-12 secretion by CD8(+) DCs than CD8(-) DCs. Remarkably, inhibition of p65/RelA phosphorylation or nuclear translocation in CD8(+) DCs disrupts protective immunity. These results suggest that engagement of the γ(1)34.5 null mutant with CD8(+) DCs elicits innate immunity to activate NF-κB, which translates into protective immunity.
Collapse
|
34
|
Prichard MN, Kern ER, Hartline CB, Lanier ER, Quenelle DC. CMX001 potentiates the efficacy of acyclovir in herpes simplex virus infections. Antimicrob Agents Chemother 2011; 55:4728-34. [PMID: 21788472 PMCID: PMC3186990 DOI: 10.1128/aac.00545-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/14/2011] [Indexed: 12/18/2022] Open
Abstract
Although acyclovir (ACV) has proven to be of value in the therapy of certain herpes simplex virus (HSV) infections, there is a need for more effective therapies, particularly for serious infections in neonates and immunocompromised individuals, where resistance to this drug can be problematic. CMX001 is an orally bioavailable lipid conjugate of cidofovir that is substantially less nephrotoxic than the parent drug and has excellent antiviral activity against all the human herpesviruses. This compound retains full antiviral activity against ACV-resistant laboratory and clinical isolates. The combined efficacy of CMX001 and ACV was evaluated in a new real-time PCR combination assay, which demonstrated that the combination synergistically inhibited the replication of HSV in cell culture. This was also confirmed in murine models of HSV infection, where the combined therapy with these two drugs synergistically reduced mortality. These results suggest that CMX001 may be effective in the treatment of ACV-resistant HSV infections and as an adjunct therapy in individuals with suboptimal responses to ACV.
Collapse
Affiliation(s)
- Mark N Prichard
- University of Alabama at Birmingham, Department of Pediatrics, 128 Children's Harbor Building, 1600 6th Avenue South, Birmingham, AL 35233-1711, USA.
| | | | | | | | | |
Collapse
|
35
|
Umene K, Fukumaki Y. DNA genome of spontaneously occurring deletion mutants of herpes simplex virus type 1 lacking one copy of the inverted repeat sequences of the L component. Arch Virol 2011; 156:1305-15. [DOI: 10.1007/s00705-011-0983-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/14/2011] [Indexed: 11/28/2022]
|
36
|
Halford WP, Püschel R, Gershburg E, Wilber A, Gershburg S, Rakowski B. A live-attenuated HSV-2 ICP0 virus elicits 10 to 100 times greater protection against genital herpes than a glycoprotein D subunit vaccine. PLoS One 2011; 6:e17748. [PMID: 21412438 PMCID: PMC3055896 DOI: 10.1371/journal.pone.0017748] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
37
|
Halford WP, Püschel R, Rakowski B. Herpes simplex virus 2 ICP0 mutant viruses are avirulent and immunogenic: implications for a genital herpes vaccine. PLoS One 2010; 5:e12251. [PMID: 20808928 PMCID: PMC2923193 DOI: 10.1371/journal.pone.0012251] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 07/24/2010] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) ICP0(-) mutants are interferon-sensitive, avirulent, and elicit protective immunity against HSV-1 (Virol J, 2006, 3:44). If an ICP0(-) mutant of herpes simplex virus 2 (HSV-2) exhibited similar properties, such a virus might be used to vaccinate against genital herpes. The current study was initiated to explore this possibility. Several HSV-2 ICP0(-) mutant viruses were constructed and evaluated in terms of three parameters: i. interferon-sensitivity; ii. virulence in mice; and iii. capacity to elicit protective immunity against HSV-2. One ICP0(-) mutant virus in particular, HSV-2 0DeltaNLS, achieved an optimal balance between avirulence and immunogenicity. HSV-2 0DeltaNLS was interferon-sensitive in cultured cells. HSV-2 0DeltaNLS replicated to low levels in the eyes of inoculated mice, but was rapidly repressed by an innate, Stat 1-dependent host immune response. HSV-2 0DeltaNLS failed to spread from sites of inoculation, and hence produced only inapparent infections. Mice inoculated with HSV-2 0DeltaNLS consistently mounted an HSV-specific IgG antibody response, and were consistently protected against lethal challenge with wild-type HSV-2. Based on their avirulence and immunogenicity, we propose that HSV-2 ICP0(-) mutant viruses merit consideration for their potential to prevent the spread of HSV-2 and genital herpes.
Collapse
Affiliation(s)
- William P Halford
- Department of Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America.
| | | | | |
Collapse
|
38
|
Marconi P, Argnani R, Epstein AL, Manservigi R. HSV as a vector in vaccine development and gene therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 655:118-44. [PMID: 20047039 DOI: 10.1007/978-1-4419-1132-2_10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), major human pathogen whose lifestyle is based on a long-term dual interaction with the infected host characterized by the existence of lytic and latent infections, has allowed the development of potential vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous system, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases and targeted infection of specific tissues or organs. Three different classes of vectors can be derived from HSV-1: replication-competent attenuated vectors, replication-incompetent recombinant vectors and defective helper-dependent vectors known as amplicons. This chapter highlights the current knowledge concerning design, construction and recent applications, as well as the potential and current limitations of the three different classes of HSV-1-based vectors.
Collapse
Affiliation(s)
- Peggy Marconi
- Department of Experimental and Diagnostic Medicine-Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44100, Italy.
| | | | | | | |
Collapse
|
39
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
40
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
41
|
Huilan Y, Cui Z, Jianyong F, Lei G, Wei Q. Construction of, and T-helper (Th)1/Th2 immune responses to, a herpes simplex virus type 2 glycoprotein D-cytotoxic T-lymphocyte epitope DNA vaccine. Clin Exp Dermatol 2009; 35:537-42. [DOI: 10.1111/j.1365-2230.2009.03673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Lu Z, Brans R, Akhrameyeva NV, Murakami N, Xu X, Yao F. High-level expression of glycoprotein D by a dominant-negative HSV-1 virus augments its efficacy as a vaccine against HSV-1 infection. J Invest Dermatol 2009; 129:1174-84. [PMID: 19005489 PMCID: PMC2669847 DOI: 10.1038/jid.2008.349] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using the T-REx (Invitrogen, Carlsbad, CA) gene switch technology, we previously generated a dominant-negative herpes simplex virus (HSV)-1 recombinant, CJ83193, capable of inhibiting its own replication as well as that of wild-type HSV-1 and HSV-2. It has been further demonstrated that CJ83193 is an effective vaccine against HSV-1 infection in a mouse ocular model. To ensure its safety and augment its efficacy, we generated an improved CJ83193-like HSV-1 recombinant, CJ9-gD, which contains a deletion in an HSV-1 essential gene and encodes an extra copy of gene-encoding glycoprotein D (gD) driven by the tetO-bearing human cytomegalovirus major immediate-early promoter. Unlike CJ83193, which exhibits limited plaque-forming capability in Vero cells and expresses little gD in infected cells, CJ9-gD is completely replication defective, yields high-level expression of gD following infection, and cannot establish detectable infection in mouse trigeminal ganglia following intranasal and ocular inoculation. Mice immunized with CJ9-gD produced 3.5-fold higher HSV-1 neutralizing antibody titer than CJ83193-immunized mice, and were completely protected from herpetic ocular disease following corneal challenge with wild-type HSV-1. Moreover, immunization of mice with CJ9-gD elicited a strong HSV-1-specific T-cell response and led to an 80% reduction in latent infection by challenge wild-type HSV-1 compared with the mock-immunized control.
Collapse
Affiliation(s)
- Zheming Lu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
43
|
Quenelle DC, Collins DJ, Rice TL, Prichard MN, Marciani DJ, Kern ER. Effect of an immune enhancer, GPI-0100, on vaccination with live attenuated herpes simplex virus (HSV) type 2 or glycoprotein D on genital HSV-2 infections of guinea pigs. Antiviral Res 2008; 80:223-4. [PMID: 18573279 DOI: 10.1016/j.antiviral.2008.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 05/27/2008] [Indexed: 10/21/2022]
Abstract
These studies were performed to determine the effect of AD-472, an attenuated human herpes simplex virus (HSV) type 2 or HSV-2 glycoprotein D (gD) when combined with an adjuvant, GPI-0100, a semi-synthetic Quillaja Saponin analog in a genital HSV-2 infection in guinea pigs. While animals immunized with either vaccine had reduced clinical disease, GPI-0100 only improved the efficacy of gD and did not affect the efficacy of the live vaccine. Neither vaccine had any therapeutic effect if administered 24 h after viral infection.
Collapse
Affiliation(s)
- Debra C Quenelle
- University of Alabama at Birmingham, Department of Pediatrics, Birmingham, AL 35233-1711, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Immunization with a dominant-negative recombinant HSV type 1 protects against HSV-1 skin disease in guinea pigs. J Invest Dermatol 2008; 128:2825-32. [PMID: 18496565 DOI: 10.1038/jid.2008.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CJ9-gD belongs to a new class of replication-defective recombinant herpes simplex viruses (HSVs) type 1 that can function in trans to prevent the replication of wild-type HSV in co-infected cells. Furthermore, CJ9-gD cannot establish latent infection in vivo and it expresses high levels of the major HSV-1 antigen glycoprotein D immediately following infection. In this study we show that guinea pigs immunized with CJ9-gD developed at least 9,600-fold higher titers of HSV-1-specific neutralization antibodies than mock-immunized controls. After challenge with wild-type HSV-1, all 10 mock-immunized guinea pigs developed multiple skin lesions with an average of 53.3 lesions per animal, whereas only 2 minor lesions were found in 1 of 10 CJ9-gD-immunized animals, representing a 267-fold reduction on the incidence of primary herpetic skin lesions in immunized animals. Quantitative PCR analysis revealed that the amount and frequency of wild-type HSV-1 viral DNA present in dorsal root ganglia of immunized animals was significantly lower than that in mock-immunized controls. Collectively, we demonstrate that vaccination with CJ9-gD elicits strong and protective immune responses against primary HSV-1 skin disease and reduces the extent of latent infection by challenge virus.
Collapse
|
45
|
Rupp R, Bernstein DI. The potential impact of a prophylactic herpes simplex vaccine. Expert Opin Emerg Drugs 2008; 13:41-52. [DOI: 10.1517/14728214.13.1.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Natuk RJ, Cooper D, Guo M, Calderon P, Wright KJ, Nasar F, Witko S, Pawlyk D, Lee M, DeStefano J, Tummolo D, Abramovitz AS, Gangolli S, Kalyan N, Clarke DK, Hendry RM, Eldridge JH, Udem SA, Kowalski J. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4+ Th1 immune responses and are protective in mouse and guinea pig models of vaginal challenge. J Virol 2006; 80:4447-57. [PMID: 16611905 PMCID: PMC1472036 DOI: 10.1128/jvi.80.9.4447-4457.2006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice.
Collapse
Affiliation(s)
- Robert J Natuk
- Department of Vaccines Discovery Research, Wyeth Research, 401 N. Middletown Rd., Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|