1
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhou L, Wang Q, Shen J, Li Y, Zhang H, Zhang X, Yang S, Jiang Z, Wang M, Li J, Wang Y, Liu H, Zhou Z. Metabolic engineering of glycolysis in Escherichia coli for efficient production of patchoulol and τ-cadinol. BIORESOURCE TECHNOLOGY 2024; 391:130004. [PMID: 37952591 DOI: 10.1016/j.biortech.2023.130004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Glucose metabolism suppresses the microbial synthesis of sesquiterpenes with a syndrome of "too much of a good thing can be bad". Here, patchoulol production in Escherichia coli was increased 2.02 times by engineering patchoulol synthase to obtain an initial strain. Knocking out the synthetic pathway for cyclic adenosine monophosphate relieved glucose repression and improved patchoulol titer and yield by 27.7 % and 43.1 %, respectively. A glycolysis regulation device mediated by pyruvate sensing was constructed which effectively alleviated overflow metabolism in a high-glucose environment with 10.2 % greater patchoulol titer in strain 070QA. Without fine-tuning the glucose-feeding rate, patchoulol titer further increased to 1675.1 mg/L in a 5-L bioreactor experiment, which was the highest level reported in E. coli. Using strain 070QA as a chassis, the τ-cadinol titer reached 15.2 g/L, representing the first report for microbial production of τ-cadinol. These findings will aid in the industrial production of sesquiterpene.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Qin Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jiawen Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yunyan Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Xinrui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Shiyi Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Ziyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Mengxuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Jun Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Yuxi Wang
- Food Micro-manufacturing Engineering and Safety Research Laboratory, Department of Food Science and Nutrition, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China
| | - Haili Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, People's Republic of China.
| |
Collapse
|
3
|
Yi Y, Gong J, Shi K, Mei J, Ying G, Wu S. Isolation of antibody by polymer microspheres embedded with E. coli displaying IgG-binding domain. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123825. [PMID: 37639993 DOI: 10.1016/j.jchromb.2023.123825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023]
Abstract
Antibody purification is an important aspect of quality and cost control in the production process of antibody drugs. In this study, modified E. coli was embedded into polymer microspheres (polyvinyl alcohol/alginate) for antibody separation and the IgG binding domain was displayed on the surface of E. coli. The results showed that ZZ protein (Fc binding domain of the antibody) was successfully displayed on the surface of E. coli and was embedded in polyvinyl alcohol/alginate microspheres. In addition, it has excellent specific adsorption capacity for antibodies, with a maximum adsorption capacity of 35.74 mg/g (wet microspheres). Through the adsorption isotherm and adsorption kinetics simulation, the adsorption of IgG on the microsphere matrix conforms to the Langmuir model and follows the pseudo-first-order kinetic equation. The microsphere matrix can undergo saturation adsorption at pH 7.2 and desorption at around pH 3.0. Desorption characteristics are consistent with those of rProtein A Sepharose FF®. After five cycles of the adsorption-desorption processes, the IgG adsorption capacity remains above 80%. Using polymer microspheres to separate antibodies from mouse ascites, the antibody purity reached 86.7% and the yield was 83.5%. These results provide an alternative to protein A matrix with low-cost, fast preparation and moderate efficiency.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junpeng Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Kefan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shujiang Wu
- Biotest Biotech Co., Ltd, Hangzhou 310014, China.
| |
Collapse
|
4
|
Chen JP, Gong JS, Su C, Li H, Xu ZH, Shi JS. Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 2023; 78:99-114. [PMID: 37244368 DOI: 10.1016/j.ymben.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| |
Collapse
|
5
|
Ni W, Wang Z, Zheng A, Zhao Y. Preparation and self-cleavage of fusion soluble farnesyl diphosphate synthase in E. coli. Prep Biochem Biotechnol 2023; 53:988-994. [PMID: 36639146 DOI: 10.1080/10826068.2022.2164591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Farnesyl diphosphate synthase (FPPS) is a crucial protein in terpenoid production. However, its industrial application is limited owing to its low solubility in Escherichia coli. In this study, we focused on ispA encoding FPPS and designed a fusion expression system to reduce inclusion body (IB) formation. Among the chosen fusion tags, the GB1-domain (GB1) exhibited the highest ability to solubilize the recombinant protein. Increased rare tRNA abundance not only improved the GB1-FPPS yield but also increased its soluble level. A "one-step" method for the acquisition of soluble FPPS was also considered. By combining GB1-FPPS expression and Tobacco Etch Virus protease (TEVp) cleavage in vivo, a controllable GB1-FPPS "self-cleavage" system was constructed. Overall, this study provides an efficient approach for obtaining soluble forms of FPPS, which show great potential for use in the soluble expression of other homologous diphosphate synthase.
Collapse
Affiliation(s)
- Wenfeng Ni
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Zixuan Wang
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Aifang Zheng
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| | - Ying Zhao
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui Province, Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration in Anhui Province, College of Life Sciences, Anqing Normal University, Anqing, Anhui, China
| |
Collapse
|
6
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
7
|
SrnR from Streptomyces griseus is a nickel-binding transcriptional activator. J Biol Inorg Chem 2019; 25:187-198. [PMID: 31853648 DOI: 10.1007/s00775-019-01751-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 01/24/2023]
Abstract
Nickel ions are crucial components for the catalysis of biological reactions in prokaryotic organisms. As an uncontrolled nickel trafficking is toxic for living organisms, nickel-dependent bacteria have developed tightly regulated strategies to maintain the correct intracellular metal ion quota. These mechanisms require transcriptional regulator proteins that respond to nickel concentration, activating or repressing the expression of specific proteins related to Ni(II) metabolism. In Streptomyces griseus, a Gram-positive bacterium used for antibiotic production, SgSrnR and SgSrnQ regulate the nickel-dependent antagonistic expression of two superoxide dismutase (SOD) enzymes, a Ni-SOD and a FeZn-SOD. According to a previously proposed model, SgSrnR and SgSrnQ form a protein complex in which SgSrnR works as repressor, binding directly to the promoter of the gene coding for FeZn-SOD, while SgSrnQ is the Ni(II)-dependent co-repressor. The present work focuses on the determination of the biophysical and functional properties of SgSrnR. The protein was heterologously expressed and purified from Escherichia coli. The structural and metal-binding analysis, carried out by circular dichroism, light scattering, fluorescence and isothermal titration calorimetry, showed that the protein is a well-structured homodimer, able to bind nickel with moderate affinity. DNase I footprinting and β-galactosidase gene reporter assays revealed that apo-SgSrnR is able to bind its DNA operator and activates a transcriptional response. The structural and functional properties of this protein are discussed relatively to its role as a Ni(II)-dependent sensor.
Collapse
|
8
|
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Applied Sciences, Dundalk Institute of Technology, Dundalk, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
9
|
Kim HJ, Ahn KY, Bae KD, Lee J, Sim SJ, Lee J. Adjuvant effect of B domain of staphyloccocal protein A displayed on the surface of hepatitis B virus capsid. Biotechnol Bioeng 2015. [DOI: 10.1002/bit.25716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hyun Jin Kim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Keum-Young Ahn
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Kyung Dong Bae
- Berna Biotech Korea Corp.; Incheon Yeonsu-gu Republic of Korea
| | - Jiyun Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering; Korea University, Anam-Dong 5-1; Seongbuk-Gu, Seoul 136-713; Seoul Sungbuk-Ku Republic of Korea
| |
Collapse
|
10
|
Edwin A, Grundström C, Wai SN, Öhman A, Stier G, Sauer-Eriksson AE. Domain isolation, expression, purification and proteolytic activity of the metalloprotease PrtV from Vibrio cholerae. Protein Expr Purif 2014; 96:39-47. [DOI: 10.1016/j.pep.2014.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
|
11
|
Expression and purification of SfaX(II), a protein involved in regulating adhesion and motility genes in extraintestinal pathogenic Escherichia coli. Protein Expr Purif 2012; 86:127-34. [PMID: 23022032 DOI: 10.1016/j.pep.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022]
Abstract
Pathogenic Escherichia coli strains commonly harbor genes involved in formation of fimbriae, such as the sfa(II) fimbrial gene cluster found in uropathogenic and newborn meningitis isolates. The sfaX(II) gene, located at the distal end of the sfa(II) operon, was recently shown to play a role in controlling virulence-related gene expression in extraintestinal pathogenic E. coli (ExPEC). Until now, detailed characterization of the SfaX(II) protein has been hampered by difficulties in obtaining large quantities of soluble protein. By a rational modeling approach, we engineered a Cys70Ser mutation, which successfully improved solubility of the protein. Here, we present the expression, purification, and initial characterization of the recombinant SfaX(IIC70S) mutant. The protein was produced in E. coli BL21 (DE3) cells grown in autoinduction culture media. The plasmid vector harbored DNA encoding the SfaX(IIC70S) protein N-terminally fused with a six histidine (H6) sequence followed by a ZZ tag (a derivative of the Staphylococcus protein A) (H6-ZZ tag). The H6-ZZ tag was cleaved off with Tobacco Etch Virus (TEV) protease and the 166 amino acid full-length homo-dimeric protein was purified using affinity and size-exclusion chromatography. Electrophoretic mobility gel shift assays and atomic force microscopy demonstrated that the protein possesses DNA-binding properties, suggesting that the transcriptional regulatory activity of SfaX(II) can be mediated via direct binding to DNA.
Collapse
|
12
|
Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun 2011; 2:599. [PMID: 22186895 PMCID: PMC3247843 DOI: 10.1038/ncomms1608] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/23/2011] [Indexed: 01/03/2023] Open
Abstract
Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency-but only in the presence of H435-IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435-IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435-IgG3 to be a candidate for monoclonal antibody therapies.
Collapse
|
13
|
Bal SM, Slütter B, Jiskoot W, Bouwstra JA. Small is beautiful: N-trimethyl chitosan–ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 2011; 29:4025-32. [DOI: 10.1016/j.vaccine.2011.03.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 03/02/2011] [Accepted: 03/12/2011] [Indexed: 11/27/2022]
|
14
|
Walls D, Loughran ST. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 2011; 681:151-175. [PMID: 20978965 DOI: 10.1007/978-1-60761-913-0_9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| | | |
Collapse
|
15
|
Sakamoto T, Sawamoto S, Tanaka T, Fukuda H, Kondo A. Enzyme-Mediated Site-Specific Antibody−Protein Modification Using a ZZ Domain as a Linker. Bioconjug Chem 2010; 21:2227-33. [DOI: 10.1021/bc100206z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takayuki Sakamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shiori Sawamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideki Fukuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Francis DM, Page R. Strategies to optimize protein expression in E. coli. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2010; Chapter 5:5.24.1-5.24.29. [PMID: 20814932 PMCID: PMC7162232 DOI: 10.1002/0471140864.ps0524s61] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recombinant protein expression in Escherichia coli (E. coli) is simple, fast, inexpensive, and robust, with the expressed protein comprising up to 50 percent of the total cellular protein. However, it also has disadvantages. For example, the rapidity of bacterial protein expression often results in unfolded/misfolded proteins, especially for heterologous proteins that require longer times and/or molecular chaperones to fold correctly. In addition, the highly reductive environment of the bacterial cytosol and the inability of E. coli to perform several eukaryotic post-translational modifications results in the insoluble expression of proteins that require these modifications for folding and activity. Fortunately, multiple, novel reagents and techniques have been developed that allow for the efficient, soluble production of a diverse range of heterologous proteins in E. coli. This overview describes variables at each stage of a protein expression experiment that can influence solubility and offers a summary of strategies used to optimize soluble expression in E. coli.
Collapse
|
17
|
Ge X, Kitten T, Munro CL, Conrad DH, Xu P. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis. PLoS One 2010; 5:e11666. [PMID: 20668678 PMCID: PMC2909906 DOI: 10.1371/journal.pone.0011666] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 06/21/2010] [Indexed: 02/04/2023] Open
Abstract
Background Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. Methods and Findings We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. Conclusions The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.
Collapse
Affiliation(s)
- Xiuchun Ge
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Todd Kitten
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Cindy L. Munro
- Department of Adult Health Nursing, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel H. Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Inouye S, Sahara Y. Soluble protein expression in E. coli cells using IgG-binding domain of protein A as a solubilizing partner in the cold induced system. Biochem Biophys Res Commun 2008; 376:448-53. [DOI: 10.1016/j.bbrc.2008.08.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
19
|
Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 2006; 17:353-8. [PMID: 16781139 DOI: 10.1016/j.copbio.2006.06.003] [Citation(s) in RCA: 410] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/05/2006] [Accepted: 06/07/2006] [Indexed: 01/07/2023]
Abstract
The soluble expression of heterologous proteins in Escherichia coli remains a serious bottleneck in protein production. Although alteration of expression conditions can sometimes solve the problem, the best available tools to date have been fusion tags that enhance the solubility of expressed proteins. However, a systematic analysis of the utility of these solubility fusions has been difficult, and it appears that many proteins react differently to the presence of different solubility tags. The advent of high-throughput structural genomics programs and advances in cloning and expression technology afford us a new way to compare the effectiveness of solubility tags. This data should allow us to better predict the effectiveness of tags currently in use, and might also provide the information needed to identify new fusion tags.
Collapse
Affiliation(s)
- Dominic Esposito
- Protein Expression Laboratory, Research Technology Program, SAIC-Frederick, Inc, NCI-Frederick, Frederick, MD 21702, USA
| | | |
Collapse
|
20
|
Benita Y, Wise MJ, Lok MC, Humphery-Smith I, Oosting RS. Analysis of high throughput protein expression in Escherichia coli. Mol Cell Proteomics 2006; 5:1567-80. [PMID: 16822774 DOI: 10.1074/mcp.m600140-mcp200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability to efficiently produce hundreds of proteins in parallel is the most basic requirement of many aspects of proteomics. Overcoming the technical and financial barriers associated with high throughput protein production is essential for the development of an experimental platform to query and browse the protein content of a cell (e.g. protein and antibody arrays). Proteins are inherently different one from another in their physicochemical properties; therefore, no single protocol can be expected to successfully express most of the proteins. Instead of optimizing a protocol to express a specific protein, we used sequence analysis tools to estimate the probability of a specific protein to be expressed successfully using a given protocol, thereby avoiding a priori proteins with a low success probability. A set of 547 proteins, to be used for antibody production and selection, was expressed in Escherichia coli using a high throughput protein production pipeline. Protein properties derived from sequence alone were correlated to successful expression, and general guidelines are given to increase the efficiency of similar pipelines. A second set of 68 proteins was expressed to investigate the link between successful protein expression and inclusion body formation. More proteins were expressed in inclusion bodies; however, the formation of inclusion bodies was not a requirement for successful expression.
Collapse
Affiliation(s)
- Yair Benita
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|