1
|
Liu W, Li Y, Li X, Wang F, Qi R, Zhu T, Li J. Pooled Analysis of the Effect of Pre-Existing Ad5 Neutralizing Antibodies on the Immunogenicity of Adenovirus Type 5 Vector-Based COVID-19 Vaccine from Eight Clinical Trials. Vaccines (Basel) 2025; 13:333. [PMID: 40266233 PMCID: PMC11945733 DOI: 10.3390/vaccines13030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Background: Pre-existing adenovirus immunity restricts the utilization of adenovirus-vectored vaccines. The current study aims to conduct a pooled analysis of eight clinical trials to evaluate the influence of pre-existing Ad5 neutralizing antibodies on immunogenicity of Ad5-nCoV. Methods: The primary outcome indicator of this pooled analysis is the geometric mean titers (GMTs) of live SARS-CoV-2 NAbs against the wild-type strain on day 28 post-vaccination. Participants were divided into two cohorts: an adolescent cohort comprising individuals aged 6-17 years and an adult cohort with individuals aged 18 years and older. Within each cohort, individuals were further categorized into three subgroups based on their Ad5-nCoV vaccination schedules: one subgroup received a single intramuscular dose as the primary regimen (Ad5-IM-prime), another received an intramuscular dose as the heterologous prime-boost regimen (Ad5-IM-boost), and the last subgroup received an aerosolized dose as the heterologous prime-boost regimen (Ad5-IH-boost). Results: A total of 3512 participants were included in this pooled analysis. In the Ad5-IM-prime subgroup, there were 1001 adolescents and 1450 adults; in the Ad5-IM-boost subgroup, there were 65 adolescents and 396 adults; and in the Ad5-IH-boost subgroup, there were 207 adolescents and 393 adults. In the adult cohort, the GMTs of NAbs against wild-type SARS-CoV-2 on day 28 post-vaccination for the Ad5-IM-prime, Ad5-IM-boost, and Ad5-IH-boost subgroups were 35.6 (95% CI: 32.0, 39.7), 358.3 (95% CI: 267.6, 479.6), and 2414.1 (95% CI: 2006.9, 2904.0), respectively, with negative (less than 1:12) pre-existing NAb titers compared to 10.7 (95% CI: 9.1, 12.6), 116.9 (95% CI: 84.9, 161.1), and 762.7 (95% CI: 596.2, 975.8), respectively, with high (greater than 1:1000) pre-existing NAb titers. A similar trend was observed in the adolescent cohort, where pre-existing immunity was found to reduce the peak of live SARS-CoV-2 Nabs post-vaccination. Conclusions: Regardless of whether Ad5-nCoV is administered as a primary vaccination regimen or as a heterologous prime-boost strategy, a negative impact on immunogenicity can still be observed in the presence of high pre-existing immunity. However, when primary immunization is achieved with inactivated COVID-19 vaccines, aerosol inhalation can significantly enhance the immunogenicity of Ad5-nCoV compared to intramuscular injections of Ad5-nCoV as a booster.
Collapse
Affiliation(s)
- Wenqing Liu
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Yuqing Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Xiaolong Li
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Feiyu Wang
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Runjie Qi
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin 300457, China; (X.L.); (F.W.)
| | - Jingxin Li
- School of Public Health, National Vaccine Innovation Platform, Nanjing Medical University, Nanjing 211166, China; (W.L.); (Y.L.); (R.Q.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Provincial Academy of Preventive Medicine, Nanjing 210009, China
| |
Collapse
|
2
|
Park A, Lee JY. Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses. J Microbiol 2024; 62:491-509. [PMID: 39037484 DOI: 10.1007/s12275-024-00159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Collapse
Affiliation(s)
- Anyeseu Park
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea
| | - Jeong Yoon Lee
- The Laboratory of Viromics and Evolution, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan, 54531, Republic of Korea.
| |
Collapse
|
3
|
Göttig L, Schreiner S. E4orf1: The triple agent of adenovirus - Unraveling its roles in oncogenesis, infectious obesity and immune responses in virus replication and vector therapy. Tumour Virus Res 2024; 17:200277. [PMID: 38428735 PMCID: PMC10937242 DOI: 10.1016/j.tvr.2024.200277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
Human Adenoviruses (HAdV) are nearly ubiquitous pathogens comprising numerous sub-types that infect various tissues and organs. Among many encoded proteins that facilitate viral replication and subversion of host cellular processes, the viral E4orf1 protein has emerged as an intriguing yet under-investigated player in the complex interplay between the virus and its host. E4orf1 has gained attention as a metabolism activator and oncogenic agent, while recent research is showing that E4orf1 may play a more important role in modulating cellular pathways such as PI3K-Akt-mTOR, Ras, the immune response and further HAdV replication stages than previously anticipated. In this review, we aim to explore the structure, molecular mechanisms, and biological functions of E4orf1, shedding light on its potentially multifaceted roles during HAdV infection, including metabolic diseases and oncogenesis. Furthermore, we discuss the role of functional E4orf1 in biotechnological applications such as Adenovirus (AdV) vaccine vectors and oncolytic AdV. By dissecting the intricate relationships between HAdV types and E4orf1 proteins, this review provides valuable insights into viral pathogenesis and points to promising areas of future research.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover, Germany; Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Hou C, Ni R, Zhao L, Tian M, Long X, Lei C, Wang H, Yang X. Recombinant chimpanzee adenovirus expressing spike protein protects chickens against infectious bronchitis virus. Int J Biol Macromol 2024; 255:128105. [PMID: 37981286 DOI: 10.1016/j.ijbiomac.2023.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Infectious bronchitis (IB) is an acute and highly contagious disease caused by avian infectious bronchitis virus (IBV), resulting in significant economic losses in the global poultry industry. In this study, we utilized a replication-incompetent adenovirus vector derived from chimpanzees for the first time to express the S gene of IBV. The adenovirus was successfully rescued and demonstrated convenient production, good growth performance, and stability on HEK293 A cells. Morphologically, the recombinant adenovirus (named PAD-S) appeared normal under transmission electron microscopy, and efficient expression of the exogenous gene was confirmed through immunofluorescence analysis and immunoblotting. Administration of PAD-S via ocular and nasal routes induced a strong immune response in the chicken population, as evidenced by specific antibody and cytokine measurements. PAD-S was unable to replicate within chickens and showed low pre-existing immunity, demonstrating high safety and environmental friendliness. The robust immune response triggered by PAD-S immunization effectively suppressed viral replication in various tissues, alleviating clinical symptoms and tissue damage, thus providing complete protection against viral challenges in the chicken population. In conclusion, this study successfully developed an IBV candidate vaccine strain that possesses biosafety, high protective efficacy, and ease of production.
Collapse
Affiliation(s)
- Chengyao Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ruiqi Ni
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lijun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Mingyue Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuelin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xin Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Sayedahmed EE, Elshafie NO, Zhang G, Mohammed SI, Sambhara S, Mittal SK. Enhancement of mucosal innate and adaptive immunity following intranasal immunization of mice with a bovine adenoviral vector. Front Immunol 2023; 14:1305937. [PMID: 38077380 PMCID: PMC10702558 DOI: 10.3389/fimmu.2023.1305937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1β, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1β, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Nelly O. Elshafie
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Sulma I. Mohammed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Diseases, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
6
|
Adenovirus DNA Polymerase Loses Fidelity on a Stretch of Eleven Homocytidines during Pre-GMP Vaccine Preparation. Vaccines (Basel) 2022; 10:vaccines10060960. [PMID: 35746566 PMCID: PMC9227658 DOI: 10.3390/vaccines10060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
In this study, we invented and construct novel candidate HIV-1 vaccines. Through genetic and protein engineering, we unknowingly constructed an HIV-1-derived transgene with a homopolymeric run of 11 cytidines, which was inserted into an adenovirus vaccine vector. Here, we describe the virus rescue, three rounds of clonal purification and preparation of good manufacturing practise (GMP) starting material assessed for genetic stability in five additional virus passages. Throughout these steps, quality control assays indicated the presence of the transgene in the virus genome, expression of the correct transgene product and immunogenicity in mice. However, DNA sequencing of the transgene revealed additional cytidines inserted into the original 11-cytidine region, and the GMP manufacture had to be aborted. Subsequent analyses indicated that as little as 1/25th of the virus dose used for confirmation of protein expression (106 cells at a multiplicity of infection of 10) and murine immunogenicity (108 infectious units per animal) met the quality acceptance criteria. Similar frameshifts in the expressed proteins were reproduced in a one-reaction in vitro transcription/translation employing phage T7 polymerase and E. coli ribosomes. Thus, the most likely mechanism for addition of extra cytidines into the ChAdOx1.tHIVconsv6 genome is that the adenovirus DNA polymerase lost its fidelity on a stretch of 11 cytidines, which informs future adenovirus vaccine designs.
Collapse
|
7
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
8
|
Elkashif A, Alhashimi M, Sayedahmed EE, Sambhara S, Mittal SK. Adenoviral vector-based platforms for developing effective vaccines to combat respiratory viral infections. Clin Transl Immunology 2021; 10:e1345. [PMID: 34667600 PMCID: PMC8510854 DOI: 10.1002/cti2.1345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Since the development of the first vaccine against smallpox over two centuries ago, vaccination strategies have been at the forefront of significantly impacting the incidences of infectious diseases globally. However, the increase in the human population, deforestation and climate change, and the rise in worldwide travel have favored the emergence of new viruses with the potential to cause pandemics. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is a cruel reminder of the impact of novel pathogens and the suboptimal capabilities of conventional vaccines. Therefore, there is an urgent need to develop new vaccine strategies that allow the production of billions of doses in a short duration and are broadly protective against emerging and re-emerging infectious diseases. Extensive knowledge of the molecular biology and immunology of adenoviruses (Ad) has favored Ad vectors as platforms for vaccine design. The Ad-based vaccine platform represents an attractive strategy as it induces robust humoral and cell-mediated immune responses and can meet the global demand in a pandemic situation. This review describes the status of Ad vector-based vaccines in preclinical and clinical studies for current and emerging respiratory viruses, particularly coronaviruses, influenza viruses and respiratory syncytial viruses.
Collapse
Affiliation(s)
- Ahmed Elkashif
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Marwa Alhashimi
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | - Ekramy E Sayedahmed
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| | | | - Suresh K Mittal
- Department of Comparative PathobiologyPurdue Institute for Inflammation, Immunology and Infectious Disease, and Purdue University Center for Cancer ResearchCollege of Veterinary MedicinePurdue UniversityWest LafayetteINUSA
| |
Collapse
|
9
|
Daian e Silva DSDO, da Fonseca FG. The Rise of Vectored Vaccines: A Legacy of the COVID-19 Global Crisis. Vaccines (Basel) 2021; 9:1101. [PMID: 34696209 PMCID: PMC8538930 DOI: 10.3390/vaccines9101101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic represents a milestone in vaccine research and development in a global context. A worldwide effort, as never seen before, involved scientists from all over the world in favor of the fast, accurate and precise construction and testing of immunogens against the new coronavirus, SARS-CoV-2. Among all the vaccine strategies put into play for study and validation, those based on recombinant viral vectors gained special attention due to their effectiveness, ease of production and the amplitude of the triggered immune responses. Some of these new vaccines have already been approved for emergency/full use, while others are still in pre- and clinical trials. In this article we will highlight what is behind adeno-associated vectors, such as those presented by the immunogens ChaAdOx1, Sputnik, Convidecia (CanSino, Tianjin, China), and Janssen (Johnson & Johnson, New Jersey, EUA), in addition to other promising platforms such as Vaccinia virus MVA, influenza virus, and measles virus, among others.
Collapse
Affiliation(s)
- Danielle Soares de Oliveira Daian e Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Flávio Guimarães da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- CT Vacinas, BH-TEC Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil
| |
Collapse
|
10
|
A potential bat adenovirus-based oncolytic virus targeting canine cancers. Sci Rep 2021; 11:16706. [PMID: 34408176 PMCID: PMC8373906 DOI: 10.1038/s41598-021-96101-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/28/2021] [Indexed: 12/17/2022] Open
Abstract
Although a canine adenovirus (CAdV)-based oncolytic virus (OV) candidate targeting canine tumors has been reported, its oncolytic effect could be attenuated by CAdV vaccine-induced neutralizing antibodies in dog patients. To circumvent this issue, we focused on the bat adenovirus (BtAdV) strain, which was previously isolated from healthy microbats. We previously showed that this virus replicated efficiently in canine cell lines and did not serologically cross-react with CAdVs, suggesting that it may offer the possibility of an OV candidate for canine tumors. Here, we tested the growth properties and cytotoxicity of the BtAdV Mm32 strain in a panel of canine tumor cells and found that its characteristics were equivalent to those of CAdVs. To produce an Mm32 construct with enhanced tumor specificity, we established a novel reverse genetics system for BtAdV based on bacterial artificial chromosomes, and generated a recombinant virus, Mm32-E1Ap + cTERTp, by inserting a tumor-specific canine telomerase reverse transcriptase promoter into its E1A regulatory region. The growth and cytotoxicity of this recombinant were superior to those of wild-type Mm32 in canine tumor cells, unlike in normal canine cells. These data suggest that Mm32-E1Ap + cTERTp could be a promising OV for alternative canine cancer therapies.
Collapse
|
11
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
12
|
Almuqrin A, Davidson AD, Williamson MK, Lewis PA, Heesom KJ, Morris S, Gilbert SC, Matthews DA. SARS-CoV-2 vaccine ChAdOx1 nCoV-19 infection of human cell lines reveals low levels of viral backbone gene transcription alongside very high levels of SARS-CoV-2 S glycoprotein gene transcription. Genome Med 2021; 13:43. [PMID: 33722288 PMCID: PMC7958140 DOI: 10.1186/s13073-021-00859-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND ChAdOx1 nCoV-19 is a recombinant adenovirus vaccine against SARS-CoV-2 that has passed phase III clinical trials and is now in use across the globe. Although replication-defective in normal cells, 28 kbp of adenovirus genes is delivered to the cell nucleus alongside the SARS-CoV-2 S glycoprotein gene. METHODS We used direct RNA sequencing to analyse transcript expression from the ChAdOx1 nCoV-19 genome in human MRC-5 and A549 cell lines that are non-permissive for vector replication alongside the replication permissive cell line, HEK293. In addition, we used quantitative proteomics to study over time the proteome and phosphoproteome of A549 and MRC5 cells infected with the ChAdOx1 nCoV-19 vaccine. RESULTS The expected SARS-CoV-2 S coding transcript dominated in all cell lines. We also detected rare S transcripts with aberrant splice patterns or polyadenylation site usage. Adenovirus vector transcripts were almost absent in MRC-5 cells, but in A549 cells, there was a broader repertoire of adenoviral gene expression at very low levels. Proteomically, in addition to S glycoprotein, we detected multiple adenovirus proteins in A549 cells compared to just one in MRC5 cells. CONCLUSIONS Overall, the ChAdOx1 nCoV-19 vaccine's transcriptomic and proteomic repertoire in cell culture is as expected. The combined transcriptomic and proteomics approaches provide a detailed insight into the behaviour of this important class of vaccine using state-of-the-art techniques and illustrate the potential of this technique to inform future viral vaccine vector design.
Collapse
Affiliation(s)
- Abdulaziz Almuqrin
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Maia Kavanagh Williamson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Philip A Lewis
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Susan Morris
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Sarah C Gilbert
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
13
|
Zhao X, Tikoo SK. Nuclear and Nucleolar Localization of Bovine Adenovirus-3 Protein V. Front Microbiol 2021; 11:579593. [PMID: 33488533 PMCID: PMC7815533 DOI: 10.3389/fmicb.2020.579593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/03/2020] [Indexed: 02/01/2023] Open
Abstract
The L2 region of bovine adenovirus-3 (BAdV-3) encodes a Mastadenovirus genus-specific protein, designated as pV, which is important for the production of progeny viruses. Here, we demonstrate that BAdV-3 pV, expressed as 55 kDa protein, localizes to the nucleus and specifically targets nucleolus of the infected cells. Analysis of deletion mutants of pV suggested that amino acids 81–120, 190–210, and 380–389 act as multiple nuclear localization signals (NLS), which also appear to serve as the binding sites for importin α-3 protein, a member of the importin α/β nuclear import receptor pathway. Moreover, pV amino acids 21–50 and 380–389 appear to act as nucleolar localization signals (NoLs). Interestingly, amino acids 380–389 appear to act both as NLS and as NoLS. The presence of NoLS is essential for the production of infectious progeny virions, as deletion of both NoLs are lethal for the production of infectious BAdV-3. Analysis of mutant BAV.pVd1d3 (isolated in pV completing CRL cells) containing deletion/mutation of both NoLS in non-complementing CRL cells not only revealed the altered intracellular localization of mutant pV but also reduced the expression of some late proteins. However, it does not appear to affect the incorporation of viral proteins, including mutant pV, in BAV.pVd1d3 virions. Further analysis of CsCl purified BAV.pVd1d3 suggested the presence of thermo-labile virions with disrupted capsids, which appear to affect the infectivity of the progeny virions. Our results suggest that pV contains overlapping and non-overlapping NoLS/NLS. Moreover, the presence of both NoLS appear essential for the production of stable and infectious progeny BAV.pVd1d3 virions.
Collapse
Affiliation(s)
- Xin Zhao
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.,Vaccinology and Imuunothepapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
14
|
Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 Vaccine Frontrunners and Their Nanotechnology Design. ACS NANO 2020; 14:12522-12537. [PMID: 33034449 PMCID: PMC7553041 DOI: 10.1021/acsnano.0c07197] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Abstract
Humanity is experiencing a catastrophic pandemic. SARS-CoV-2 has spread globally to cause significant morbidity and mortality, and there still remain unknowns about the biology and pathology of the virus. Even with testing, tracing, and social distancing, many countries are struggling to contain SARS-CoV-2. COVID-19 will only be suppressible when herd immunity develops, either because of an effective vaccine or if the population has been infected and is resistant to reinfection. There is virtually no chance of a return to pre-COVID-19 societal behavior until there is an effective vaccine. Concerted efforts by physicians, academic laboratories, and companies around the world have improved detection and treatment and made promising early steps, developing many vaccine candidates at a pace that has been unmatched for prior diseases. As of August 11, 2020, 28 of these companies have advanced into clinical trials with Moderna, CanSino, the University of Oxford, BioNTech, Sinovac, Sinopharm, Anhui Zhifei Longcom, Inovio, Novavax, Vaxine, Zydus Cadila, Institute of Medical Biology, and the Gamaleya Research Institute having moved beyond their initial safety and immunogenicity studies. This review analyzes these frontrunners in the vaccine development space and delves into their posted results while highlighting the role of the nanotechnologies applied by all the vaccine developers.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Veronique Beiss
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
| | - Steven N. Fiering
- Geisel School of Medicine, Dartmouth
College, Hanover, New Hampshire 03755, United
States
- Norris Cotton Cancer Center,
Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766,
United States
| | - Nicole F. Steinmetz
- Department of Bioengineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of NanoEngineering, University
of California San Diego, La Jolla, California 92093, United
States
- Department of Radiology, University of
California San Diego, La Jolla, California 92093, United
States
- Moores Cancer Center, University of California
San Diego, La Jolla, California 92093, United
States
- Center for Nano-ImmunoEngineering,
University of California San Diego, La Jolla, California
92093, United States
| |
Collapse
|
15
|
Sayedahmed EE, Mittal SK. A potential approach for assessing the quality of human and nonhuman adenoviral vector preparations. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:314-318. [PMID: 33012981 PMCID: PMC7491003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Various types of human and nonhuman adenoviral (AdV) vectors are being used as gene delivery vectors in preclinical and clinical investigations. The objective of this study was to determine the ratio between the 2 best assays that would effectively address the variability in the titration of various AdV vectors in different cell lines and help obtain consistent results in preclinical and clinical studies using different AdV vectors. Here, we compared plaque-forming units, tissue culture infectious dose 50, focus-forming units (FFU), virus particle (VP) count, and genome copy number (GCN) of purified preparations of human AdV type C5, bovine AdV type 3, and porcine AdV type 3 to determine a correlation between infectious and noninfectious virus particles. Our results suggest that a VP:FFU or a VP:GCN ratio could accurately reflect the quality of an AdV preparation and could serve as an indicator to control batch-to-batch variability.
Collapse
Affiliation(s)
- Ekramy E Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
16
|
Brown S, Brown T, Cederna PS, Rohrich RJ. The Race for a COVID-19 Vaccine: Current Trials, Novel Technologies, and Future Directions. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 8:e3206. [PMID: 33173705 PMCID: PMC7647601 DOI: 10.1097/gox.0000000000003206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has presented a major threat to public health worldwide alongside unprecedented global economic and social implications. In the absence of a "gold standard" treatment, the rapid development of a safe and effective vaccine is considered the most promising way to control the pandemic. In recent years, traditional vaccine technologies have seemed insufficient to provide global protection against the rapid spread of emerging pandemics. Therefore, the establishment of novel approaches that are independent of whole pathogen cultivation, cost-effective, and able to be rapidly developed and produced on a large scale are of paramount importance for global health. This article summarizes the current efforts to develop a COVID-19 vaccine, including the ongoing and future anticipated clinical trials. We also provide plastic and reconstructive surgeons with insight into the novel technologies currently utilized for COVID-19 vaccine development, focusing on the very promising viral-vector-based and gene-based vaccine technologies. Each platform has its own advantages and disadvantages related to its efficacy and ability to induce certain immune responses, manufacturing capacity, and safety for human use. Once the fundamental key challenges have been addressed for viral-vector-based and gene-based vaccines, these novel technologies may become helpful in winning the fight against COVID-19 and transforming the future of health care.
Collapse
Affiliation(s)
- Stav Brown
- From the Sackler School of Medicine at Tel Aviv University, Tel Aviv, Israel
| | - Tal Brown
- From the Sackler School of Medicine at Tel Aviv University, Tel Aviv, Israel
| | - Paul S. Cederna
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Mich
- Section of Plastic Surgery, University of Michigan, Ann Arbor, Mich
| | | |
Collapse
|
17
|
Establishment of a Simple and Efficient Reverse Genetics System for Canine Adenoviruses Using Bacterial Artificial Chromosomes. Viruses 2020; 12:v12070767. [PMID: 32708703 PMCID: PMC7412426 DOI: 10.3390/v12070767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Canine adenoviruses (CAdVs) are divided into pathotypes CAdV1 and CAdV2, which cause infectious hepatitis and laryngotracheitis in canid animals, respectively. They can be the backbones of viral vectors that could be applied in recombinant vaccines or for gene transfer in dogs and in serologically naïve humans. Although conventional plasmid-based reverse genetics systems can be used to construct CAdV vectors, their large genome size creates technical difficulties in gene cloning and manipulation. In this study, we established an improved reverse genetics system for CAdVs using bacterial artificial chromosomes (BACs), in which genetic modifications can be efficiently and simply made through BAC recombineering. To validate the utility of this system, we used it to generate CAdV2 with the early region 1 gene deleted. This mutant was robustly generated and attenuated in cell culture. The results suggest that our established BAC-based reverse genetics system for CAdVs would be a useful and powerful tool for basic and advanced practical studies with these viruses.
Collapse
|
18
|
Woldemariam T, Wang W, Said A, Tikoo SK. Regions of bovine adenovirus-3 IVa2 involved in nuclear/nucleolar localization and interaction with pV. Virology 2020; 546:25-37. [PMID: 32452415 DOI: 10.1016/j.virol.2020.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Bovine adenovirus-3 (BAdV-3) is a non enveloped, icosahedral DNA virus containing a genome of 34446 bps. The intermediate region of BAdV-3 encodes pIX and IVa2 proteins. Here, we report the characterization of BAdV-3 IVa2. Anti-IVa2 serum detected a 50 kDa protein at 24-48 h post infection in BAdV-3 infected cells. The IVa2 localizes to nucleus and nucleolus of BAdV-3 infected cells. Analysis of mutant IVa2 demonstrated that amino acids 1-25 and 373-448 are required for nuclear and nucleolar localization of IVa2, respectively. The nuclear import of IVa2 utilize importin α -1 of importin nuclear import pathway. Although deletion/substitution of amino acids 4-18 is sufficient to abrogate the nuclear localization of IVa2, amino acids 1-25 are required for nuclear localization of a cytoplasmic protein. Furthermore, we demonstrate that amino acids 1-25 and 120-140 of IVa2 interact with importin α-1 and pV proteins, respectively in BAdV-3 infected cells.
Collapse
Affiliation(s)
- Tekeleselassie Woldemariam
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Veterinary Microbiology, WCVM, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wenxiu Wang
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Shandong Binzhou Animal Science & Veterinary Medicine Academy, 256600, Binzhou, Shandong, China
| | - Abdelrahman Said
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Suresh K Tikoo
- VIDO-InterVac, University of Saskatchewan, SK, Canada; Veterinary Microbiology, WCVM, University of Saskatchewan, Saskatoon, SK, Canada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
19
|
Weaver EA. Dose Effects of Recombinant Adenovirus Immunization in Rodents. Vaccines (Basel) 2019; 7:vaccines7040144. [PMID: 31658786 PMCID: PMC6963634 DOI: 10.3390/vaccines7040144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022] Open
Abstract
Recombinant adenovirus type 5 (rAd) has been used as a vaccine platform against many infectious diseases and has been shown to be an effective vaccine vector. The dose of the vaccine varies significantly from study to study, making it very difficult to compare immune responses and vaccine efficacy. This study determined the immune correlates induced by serial dilutions of rAd vaccines delivered intramuscularly (IM) and intranasally (IN) to mice and rats. When immunized IM, mice had substantially higher antibody responses at the higher vaccine doses, whereas, the IN immunized mice showed a lower response to the higher rAd vaccine doses. Rats did not show dose-dependent antibody responses to increasing vaccine doses. The IM immunized mice and rats also showed significant dose-dependent T cell responses to the rAd vaccine. However, the T cell immunity plateaued in both mice and rats at 109 and 1010 vp/animal, respectively. Additionally, the highest dose of vaccine in mice and rats did not improve the T cell responses. A final vaccine analysis using a lethal influenza virus challenge showed that despite the differences in the immune responses observed in the mice, the mice had very similar patterns of protection. This indicates that rAd vaccines induced dose-dependent immune responses, especially in IM immunized animals, and that immune correlates are not as predictive of protection as initially thought.
Collapse
Affiliation(s)
- Eric A Weaver
- School of Biological Sciences, Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
20
|
Abstract
Various adenovirus (AdV) vector systems have proven to be lucrative options for gene delivery. They can serve as potential vaccine candidates for prevention of several common infectious diseases and hold the promise for gene therapy, especially for cancer. Several AdV vector-based therapies are currently at various stages of clinical trials worldwide, which make an immense interest of both the clinicians and researchers. Since these vectors are easy to manipulate, have broad tropism, and have the capability to yield high titers, this delivery system has a wide range of applications for different clinical settings. This chapter emphasizes on some of the current usages of AdV vectors and their production methods.
Collapse
Affiliation(s)
- Ekramy E Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Rashmi Kumari
- Department of Comparative Pathobiology, Purdue Institute for Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue Institute for Inflammation, Immunology, and Infectious Disease, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
21
|
Goradel NH, Mohajel N, Malekshahi ZV, Jahangiri S, Najafi M, Farhood B, Mortezaee K, Negahdari B, Arashkia A. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J Cell Physiol 2018; 234:8636-8646. [PMID: 30515798 DOI: 10.1002/jcp.27850] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
Abstract
Cancer therapy using oncolytic viruses is an emerging area, in which viruses are engineered to selectively propagate in tumor tissues without affecting healthy cells. Because of the advantages that adenoviruses (Ads) have over other viruses, they are more considered. To achieve tumor selectivity, two main modifications on Ads genome have been applied: small deletions and insertion of tissue- or tumor-specific promoters. Despite oncolytic adenoviruses ability in tumor cell lysis and immune responses stimulation, to further increase their antitumor effects, genomic modifications have been carried out including insertion of checkpoint inhibitors and antigenic or immunostimulatory molecules into the adenovirus genome and combination with dendritic cells and chemotherapeutic agents. This study reviews oncolytic adenoviruses structures, their antitumor efficacy in combination with other therapeutic strategies, and finally challenges around this treatment approach.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Ren J, Zhang L, Cheng P, Zhang F, Liu Z, Tikoo SK, Chen R, Du E. Generation of infectious clone of bovine adenovirus type I expressing a visible marker gene. J Virol Methods 2018; 261:139-146. [PMID: 30176304 DOI: 10.1016/j.jviromet.2018.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/02/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Bovine adenovirus type 3 (BAdV3) has been widely used as a vector for vaccine research and development, whereas BAdV1 biology and BAdV1-based vectored vaccine have been less frequently reported. We aimed to construct an infectious BAdV1 clone and explore the functions of BAdV1 genes. METHODS First, the infectious clone of pUCBAdV1 containing the full-length BAdV1 DNA and the recombinant plasmid pUCBAV1-EYFP expressing the marker gene EYFP were constructed. Then, the recombinant viruses BAdV101 and rBAdV1-EYFP were rescued. The stability of the exogenous EYFP gene was analyzed by continuous passage, PCR, and western blotting. Finally, the virus neutralization titer of the rescued viruses was evaluated. RESULTS The infectious clones of pUCBAdV1 and pUCBAV1-EYFP were constructed and the recombinant viruses BAdV101 and rBAdV1-EYFP were rescued successfully. Moreover, the results showed that the EYFP gene could be expressed continuously. In addition, the replication of rBAdV1-EYFP was less efficient than that of the wild-type virus wtBAdV1 in vitro, while the efficacy of BAdV101 replication was almost the same as that of wtBAdV1. Furthermore, the neutralization test showed that the neutralization titer of rBAdV1-EYFP was consistent with that of wtBAdV1. CONCLUSION To our knowledge, the infectious genome of pUCBAV1-EYFP expressing a visible marker gene EYFP was constructed for the first time, and the finding forms a basis for the development of BAdV1-based efficient vectored vaccine.
Collapse
Affiliation(s)
- Jingjing Ren
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Peng Cheng
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Fan Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Zehui Liu
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K Tikoo
- VIDO-InteVac, University of Saskatchewan Saskatoon, Saskatchewan, Canada; Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rui Chen
- Shaanxi Novelever Bio-Technique Co. Ltd., China.
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China; Wuhan BioCom Pioneers Co. Ltd., China.
| |
Collapse
|
23
|
Longevity of adenovirus vector immunity in mice and its implications for vaccine efficacy. Vaccine 2018; 36:6744-6751. [PMID: 30266488 DOI: 10.1016/j.vaccine.2018.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/18/2022]
Abstract
There is a high incidence of adenovirus (AdV) infection in humans due to the presence of more than 60 types of human adenoviruses (HAdVs). The majority of individuals are exposed to one or more HAdV types early in their lives, leading to the development of AdV type-specific neutralizing antibodies. Similarly, immunization or gene therapy with AdV vectors leads to immune responses to the AdV vector. This 'vector immunity' is a concern for AdV vector-based applications for vaccines or gene therapy, especially when the repeated administration of a vector is required. The objective of this investigation was to establish whether AdV neutralizing antibody titers decline sufficiently in a year to permit annual vaccination with the same AdV vector. Naïve or human adenoviral vector group C, type 5 (HAdV-C5)-primed mice were mock-inoculated (with PBS) or inoculated i.m. with 108 PFU of either HAd-GFP [HAdV-C5 vector expressing the green fluorescent protein (GFP)] to mimic the conditions for the first inoculation with an AdV vector-based vaccine. At 1, 3, 6, and 10 months post-HAd-GFP inoculation, naïve- or HAdV-primed animals were vaccinated i.m. with 108 PFU of HAd-H5HA [HAdV-C5 vector expressing hemagglutinin (HA) of H5N1 influenza virus]. There was a significant continual decrease in vector immunity titers with time, thereby leading to significant continual increases in the levels of HA-specific humoral and cell-mediated immune responses. In addition, significant improvement in protection efficacy against challenge with an antigenically heterologous H5N1 virus was observed in HAdV-primed animals at 6 months and onwards. These results indicate that the annual immunization with the same AdV vector may be effective due to a significant decline in vector immunity.
Collapse
|
24
|
A Bovine Adenoviral Vector-Based H5N1 Influenza -Vaccine Provides Enhanced Immunogenicity and Protection at a Significantly Low Dose. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 10:210-222. [PMID: 30101154 PMCID: PMC6082999 DOI: 10.1016/j.omtm.2018.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/26/2022]
Abstract
Several human and nonhuman adenovirus (AdV) vectors including bovine AdV type 3 (BAdV-3) were developed as gene delivery vectors to supplement and/or elude human AdV (HAdV)-specific neutralizing antibodies (vector immunity). Here we evaluated the vaccine immunogenicity and efficacy of BAdV-3 vector (BAd-H5HA) expressing hemagglutinin (HA) of a H5N1 influenza virus in a dose escalation study in mice with the intranasal (IN) or intramuscular (IM) route of inoculation in comparison with the HAdV type C5 (HAdV-C5) vector (HAd-H5HA) expressing HA of a H5N1 influenza virus. Dose-related increases in the immune responses were clearly noticeable. A single IM inoculation with BAd-H5HA resulted in enhanced cellular immune responses compared with that of HAd-H5HA and conferred complete protection following challenge with a heterologous H5N1 virus at the dose of 3 × 107 plaque-forming units (PFUs), whereas a significant amount of influenza virus was detected in the lungs of mice immunized with 1 × 108 PFUs of HAd-H5HA. Similarly, compared with that of HAd-H5HA, a single IN inoculation with BAd-H5HA produced significantly enhanced humoral (HA-specific immunoglobulin [IgG] and its subclasses, as well as HA-specific IgA) and cellular immune responses, and conferred complete protection following challenge with a heterologous H5N1 virus. Complete protection with BAd-H5HA was observed with the lowest vaccine dose (1 × 106 PFUs), but similar protection with HAd-H5HA was observed at the highest vaccine dose (1 × 108 PFUs). These results suggest that at least 30-fold dose sparing can be achieved with BAd-H5HA vector compared with HAd-H5HA vaccine vector.
Collapse
|
25
|
Pei Y, Krell PJ, Nagy É. Generation and characterization of a fowl adenovirus 9 dual-site expression vector. J Biotechnol 2018; 266:102-110. [PMID: 29269248 DOI: 10.1016/j.jbiotec.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022]
Abstract
Fowl adenoviruses (FAdVs) are widely considered as excellent platforms for vaccine development and gene therapy. We improved on our right-end partial TR-2 deleted or a left-end 2.3 kb deleted vectors by developing a single, dual-site delivery vector. We demonstrated that, in addition to ORF11, the right end ORF17 is also dispensable. To further improve the capacity and flexibility of the FAdV-9 based vector system, we generated an infectious recombinant FAdV-9 dual-site expression clone lacking 1.9 kb of the left end and replaced with mCherry under the control of a native promoter, and 3.6 kb of the right-end replaced with an EGFP expression cassette. Five intermediate FAdmid clones were successfully constructed: a) pFAdV-9Δ0-2RED (mCherry replacing the left end 2.2 kb ORF0 to 2); b) pFAdV-9RED (mCherry replacing the left end 1.9 kb ORF1 to 2); c) pFAdV-9Δ17 (deletion of ORF17 and 393 bp downstream untranslated region); d) pFAdV-9GFP (EGFP expression cassette replacing the right end 3.6 kb) and e) pFAdV-9Dual (both mCherry in the left end and the EGFP expression cassette in the right end of our vector). Our novel FAdV-9 dual-site vaccine vector, produced infectious virus and expressed either one or both mCherry and EGFP.
Collapse
Affiliation(s)
- Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Peter J Krell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Éva Nagy
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
26
|
Tu L, Zhou P, Li L, Li X, Hu R, Jia K, Sun L, Yuan Z, Li S. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines. Oncotarget 2017; 8:98084-98093. [PMID: 29228675 PMCID: PMC5716715 DOI: 10.18632/oncotarget.21104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 12/02/2022] Open
Abstract
Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.
Collapse
Affiliation(s)
- Liqing Tu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lutao Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Xiuzhen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Renjun Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Kun Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Lingshuang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China
- Guangdong Provincial Pet Engineering Technology Research Center, Guangzhou, Guangdong Province 510642, People's Republic of China
| |
Collapse
|
27
|
Jiang Q, Yu Z, Liu JS, Kong DS, Guo DC, Quan CS, Li BT, Hu XL, Qu L. Recombinant canine adenovirus type 2 expressing rabbit hemorrhagic disease virus VP60 protein provided protection against RHD in rabbits. Vet Microbiol 2017; 213:15-20. [PMID: 29291998 DOI: 10.1016/j.vetmic.2017.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Rabbit hemorrhagic disease virus (RHDV) is responsible for rabbit hemorrhagic disease (RHD), which is an acute, lethal and highly contagious disease in both wild and domestic rabbits. Although current vaccines are highly effective for controlling RHD, they are derived from infected rabbit livers and their use is thus associated with safety and animal-welfare concerns. In this study, we generated a recombinant lentogenic canine adenovirus type 2 (CAV2) vector expressing the RHDV vp60 gene, named rCAV2-VP60. rCAV2-VP60 expressed VP60 protein in Madin-Darby canine kidney cells as demonstrated by western blot and immunofluorescence assay. Polymerase chain reaction confirmed that the vp60 gene was successfully inserted into rCAV2-VP60 and was still detectable after 20 passages, indicating its stable genetic character. We evaluated the feasibility of rCAV2-VP60 as a live-virus-vectored RHD vaccine in rabbits. rCAV2-VP60 significantly induced specific antibodies to RHDV and provided effective protection against RHDV lethal challenge. These results suggest that rCAV2 expressing RHDV VP60 could be a safe and efficient candidate vaccine against RHDV in rabbits.
Collapse
Affiliation(s)
- Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Zuo Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Jia-Sen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - De-Sheng Kong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Dong-Chun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Chuan-Song Quan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Bo-Tao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Xiao-Liang Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, Heilongjiang 150069, PR China.
| |
Collapse
|
28
|
Hassan AO, Amen O, Sayedahmed EE, Vemula SV, Amoah S, York I, Gangappa S, Sambhara S, Mittal SK. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. PLoS One 2017; 12:e0186244. [PMID: 29023601 PMCID: PMC5638338 DOI: 10.1371/journal.pone.0186244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
The emergence of H5, H7, and H9 avian influenza virus subtypes in humans reveals their pandemic potential. Although human-to-human transmission has been limited, the genetic reassortment of the avian and human/porcine influenza viruses or mutations in some of the genes resulting in virus replication in the upper respiratory tract of humans could generate novel pandemic influenza viruses. Current vaccines do not provide cross protection against antigenically distinct strains of the H5, H7, and H9 influenza viruses. Therefore, newer vaccine approaches are needed to overcome these potential threats. We developed an egg-independent, adenovirus vector-based, multi-epitope (ME) vaccine approach using the relatively conserved immunogenic domains of the H5N1 influenza virus [M2 ectodomain (M2e), hemagglutinin (HA) fusion domain (HFD), T-cell epitope of nucleoprotein (TNP). and HA α-helix domain (HαD)]. Our ME vaccine induced humoral and cell-mediated immune responses and caused a significant reduction in the viral loads in the lungs of vaccinated mice that were challenged with antigenically distinct H5, H7, or H9 avian influenza viruses. These results suggest that our ME vaccine approach provided broad protection against the avian influenza viruses. Further improvement of this vaccine will lead to a pre-pandemic vaccine that may lower morbidity, hinder transmission, and prevent mortality in a pandemic situation before a strain-matched vaccine becomes available.
Collapse
Affiliation(s)
- Ahmed O. Hassan
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Omar Amen
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- Poultry Diseases Department, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Sai V. Vemula
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
| | - Samuel Amoah
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Ian York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Shivaprakash Gangappa
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Suryaprakash Sambhara
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail: (SKM); (SS)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology and Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States of America
- * E-mail: (SKM); (SS)
| |
Collapse
|
29
|
Zhang W, Ehrhardt A. Getting genetic access to natural adenovirus genomes to explore vector diversity. Virus Genes 2017; 53:675-683. [PMID: 28711987 DOI: 10.1007/s11262-017-1487-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023]
Abstract
Recombinant vectors based on the human adenovirus type 5 (HAdV5) have been developed and extensively used in preclinical and clinical studies for over 30 years. However, certain restrictions of HAdV5-based vectors have limited their clinical applications because they are rather inefficient in specifically transducing cells of therapeutic interest that lack the coxsackievirus and adenovirus receptor (CAR). Moreover, enhanced vector-associated toxicity and widespread preexisting immunity have been shown to significantly hamper the effectiveness of HAdV-5-mediated gene transfer. However, evolution of adenoviruses in the natural host is driving the generation of novel types with altered virulence, enhanced transmission, and altered tissue tropism. As a consequence, an increasing number of alternative adenovirus types were identified, which may represent a valuable resource for the development of novel vector types. Thus, researchers are focusing on the other naturally occurring adenovirus types, which are structurally similar but functionally different from HAdV5. To this end, several strategies have been devised for getting genetic access to adenovirus genomes, resulting in a new panel of adenoviral vectors. Importantly, these vectors were shown to have a host range different from HAdV5 and to escape the anti-HAdV5 immune response, thus underlining the great potential of this approach. In summary, this review provides a state-of-the-art overview of one essential step in adenoviral vector development.
Collapse
Affiliation(s)
- Wenli Zhang
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany
| | - Anja Ehrhardt
- Department of Human Medicine, Faculty of Health, Institute of Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58453, Witten, Germany.
| |
Collapse
|
30
|
Lauer KB, Borrow R, Blanchard TJ. Multivalent and Multipathogen Viral Vector Vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:e00298-16. [PMID: 27535837 PMCID: PMC5216423 DOI: 10.1128/cvi.00298-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presentation and delivery of antigens are crucial for inducing immunity and, desirably, lifelong protection. Recombinant viral vectors-proven safe and successful in veterinary vaccine applications-are ideal shuttles to deliver foreign proteins to induce an immune response with protective antibody levels by mimicking natural infection. Some examples of viral vectors are adenoviruses, measles virus, or poxviruses. The required attributes to qualify as a vaccine vector are as follows: stable insertion of coding sequences into the genome, induction of a protective immune response, a proven safety record, and the potential for large-scale production. The need to develop new vaccines for infectious diseases, increase vaccine accessibility, reduce health costs, and simplify overloaded immunization schedules has driven the idea to combine antigens from the same or various pathogens. To protect effectively, some vaccines require multiple antigens of one pathogen or different pathogen serotypes/serogroups in combination (multivalent or polyvalent vaccines). Future multivalent vaccine candidates are likely to be required for complex diseases like malaria and HIV. Other novel strategies propose an antigen combination of different pathogens to protect against several diseases at once (multidisease or multipathogen vaccines).
Collapse
Affiliation(s)
- Katharina B Lauer
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- University of Cambridge, Department of Pathology, Cambridge, United Kingdom
| | - Ray Borrow
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Thomas J Blanchard
- University of Manchester, Institute of Inflammation and Repair, Manchester, United Kingdom
- Consultant in Infectious Diseases and Tropical Medicine, Royal Liverpool Hospital, Liverpool, United Kingdom
| |
Collapse
|
31
|
Embregts CWE, Forlenza M. Oral vaccination of fish: Lessons from humans and veterinary species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:118-37. [PMID: 27018298 DOI: 10.1016/j.dci.2016.03.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/17/2016] [Indexed: 05/08/2023]
Abstract
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species.
Collapse
Affiliation(s)
- Carmen W E Embregts
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
32
|
Human Adenovirus Serotype 3 Vector Packaged by a Rare Serotype 14 Hexon. PLoS One 2016; 11:e0156984. [PMID: 27328032 PMCID: PMC4915686 DOI: 10.1371/journal.pone.0156984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/23/2016] [Indexed: 11/19/2022] Open
Abstract
Recombinant adenovirus serotype 3 (rAd3), which infects cells through the receptor desmoglein 2 (DSG2), has been investigated as a vector for gene therapy or vaccination. However, pre-existing anti-vector immunity may limit the practical application of rAd3. In this study, we investigated the seroprevalence and neutralizing antibody (NAb) titers to Ad3 and alternate serotypes in normal healthy adults in southern China. Sera samples had a high seroprevalence (80.00%) against Ad3 and Ad7 (85.83%), compared with Ad14 (22.50%). Furthermore, 19.17% and 25.83% of samples had high-titer neutralizing antibodies to Ad3 and Ad7, respectively, compared with 3.33% against Ad14. We constructed a chimeric adenovirus, rAd3H14, designed to evade anti-vector immunity by replacing the enhanced green fluorescent protein (EGFP)-expressing hexon of the rAd3EGFP vector with a hexon from Ad14. The chimeric vector rAd3H14 was not neutralized in vitro efficiently by Ad3 NAbs using sera from mice and normal healthy human volunteers. Furthermore, in contrast to the unmodified vector rAd3EGFP, rAd3H14 induced robust antibody responses against EGFP in mice with high levels of pre-existing anti-Ad3 immunity. In conclusion, the chimeric vector rAd3H14 may be a useful alternative vector in adult populations with a high prevalence of Ad3 NAbs.
Collapse
|
33
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Many nonhuman adenoviruses (AdVs) of simian, bovine, porcine, canine, ovine, murine, and fowl origin are being developed as gene delivery systems for recombinant vaccines and gene therapy applications. In addition to circumventing preexisting human AdV (HAdV) immunity, nonhuman AdV vectors utilize coxsackievirus-adenovirus receptor or other receptors for vector internalization, thereby expanding the range of cell types that can be targeted. Nonhuman AdV vectors also provide excellent platforms for veterinary vaccines. A specific nonhuman AdV vector when used in its species of origin could provide an excellent animal model for evaluating the vector efficacy and pathogenesis. These vectors are useful in prime–boost approaches with other AdV vectors or with other gene delivery systems including DNA immunization and viral or bacterial vectors. When multiple vector inoculations are required, nonhuman AdV vectors could supplement HAdV or other viral vectors.
Collapse
|
35
|
Loustalot F, Creyssels S, Salinas S, Benkõ M, Harrach B, Mennechet FJD, Kremer EJ. [Is there a risk of zoonotic disease due to adenoviruses?]. Med Sci (Paris) 2015; 31:1102-8. [PMID: 26672663 DOI: 10.1051/medsci/20153112013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Every year brings another round of zoonotic viral infections. Usually they fall under the radar, but the occasional lethal epidemic brings another scare to the public and new urgency to the medical community. The types of these viruses (DNA vs. RNA genomes, enveloped vs. proteinaceous) as well as the preceding host(s) vary. Over the last 20 years, bats have been identified as an enigmatic carrier for several pathogens that have jumped the species barrier and infected humans. Factors that favour the emergence of zoonotic pathogens include the increasing overlap of the human and animal habitats, cultural activities, and the host reservoir. In this context, we asked whether bat and/or nonhuman primate adenoviruses are a risk for human health.
Collapse
Affiliation(s)
- Fabien Loustalot
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France - Université de Montpellier, Montpellier, France
| | - Sophie Creyssels
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France - Université de Montpellier, Montpellier, France
| | - Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France - Université de Montpellier, Montpellier, France
| | - Mária Benkõ
- Institute for Veterinary Medical Research, Center for Agricultural Research, Hungarian academy of sciences, H-1581 Budapest, Hongrie
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Center for Agricultural Research, Hungarian academy of sciences, H-1581 Budapest, Hongrie
| | - Franck J D Mennechet
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France - Université de Montpellier, Montpellier, France
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France - Université de Montpellier, Montpellier, France
| |
Collapse
|
36
|
Development of Novel Adenoviral Vectors to Overcome Challenges Observed With HAdV-5-based Constructs. Mol Ther 2015; 24:6-16. [PMID: 26478249 PMCID: PMC4754553 DOI: 10.1038/mt.2015.194] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/07/2015] [Indexed: 12/23/2022] Open
Abstract
Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in preclinical models and clinical trials over the past two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread preexisting immunity have been shown to significantly impede the effectiveness of HAdV-5–mediated gene transfer. It is therefore that the in-depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes.
Collapse
|
37
|
Fausther-Bovendo H, Kobinger GP. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important? Hum Vaccin Immunother 2015; 10:2875-84. [PMID: 25483662 PMCID: PMC5443060 DOI: 10.4161/hv.29594] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pre-existing immunity against human adenovirus (HAd) serotype 5 derived vector in the human population is widespread, thus hampering its clinical use. Various components of the immune system, including neutralizing antibodies (nAbs), Ad specific T cells and type I IFN activated NK cells, contribute to dampening the efficacy of Ad vectors in individuals with pre-existing Ad immunity. In order to circumvent pre-existing immunity to adenovirus, numerous strategies, such as developing alternative Ad serotypes, varying immunization routes and utilizing prime-boost regimens, are under pre-clinical or clinical phases of development. However, these strategies mainly focus on one arm of pre-existing immunity. Selection of alternative serotypes has been largely driven by the absence in the human population of nAbs against them with little attention paid to cross-reactive Ad specific T cells. Conversely, varying the route of immunization appears to mainly rely on avoiding Ad specific tissue-resident T cells. Finally, prime-boost regimens do not actually circumvent pre-existing immunity but instead generate immune responses of sufficient magnitude to confer protection despite pre-existing immunity. Combining the above strategies and thus taking into account all components regulating pre-existing Ad immunity will help further improve the development of Ad vectors for animal and human use.
Collapse
|
38
|
Balint JP, Gabitzsch ES, Rice A, Latchman Y, Xu Y, Messerschmidt GL, Chaudhry A, Morse MA, Jones FR. Extended evaluation of a phase 1/2 trial on dosing, safety, immunogenicity, and overall survival after immunizations with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine in late-stage colorectal cancer. Cancer Immunol Immunother 2015; 64:977-87. [PMID: 25956394 PMCID: PMC4506904 DOI: 10.1007/s00262-015-1706-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/25/2015] [Indexed: 01/20/2023]
Abstract
A phase 1/2 clinical trial evaluating dosing, safety, immunogenicity, and overall survival on metastatic colorectal cancer (mCRC) patients after immunotherapy with an advanced-generation Ad5 [E1-, E2b-]-CEA(6D) vaccine was performed. We report our extended observations on long-term overall survival and further immune analyses on a subset of treated patients including assessment of cytolytic T cell responses, T regulatory (Treg) to T effector (Teff) cell ratios, flow cytometry on peripheral blood mononuclear cells (PBMCs), and determination of HLA-A2 status. An overall survival of 20 % (median survival 11 months) was observed during long-term follow-up, and no long-term adverse effects were reported. Cytolytic T cell responses increased after immunizations, and cell-mediated immune (CMI) responses were induced whether or not patients were HLA-A2 positive or Ad5 immune. PBMC samples from a small subset of patients were available for follow-up immune analyses. It was observed that the levels of carcinoembryonic antigen (CEA)-specific CMI activity decreased from their peak values during follow-up in five patients analyzed. Preliminary results revealed that activated CD4+ and CD8+ T cells were detected in a post-immunization sample exhibiting high CMI activity. Treg to Teff cell ratios were assessed, and samples from three of five patients exhibited a decrease in Treg to Teff cell ratio during the treatment protocol. Based upon the favorable safety and immunogenicity data obtained, we plan to perform an extensive immunologic and survival analysis on mCRC patients to be enrolled in a randomized/controlled clinical trial that investigates Ad5 [E1-, E2b-]-CEA(6D) as a single agent with booster immunizations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
39
|
Zhang P, Du E, Ma J, Wang W, Zhang L, Tikoo SK, Yang Z. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression. PLoS One 2015; 10:e0127958. [PMID: 26011074 PMCID: PMC4444375 DOI: 10.1371/journal.pone.0127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (ZY); (SKT)
| | - Zengqi Yang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
- * E-mail: (ZY); (SKT)
| |
Collapse
|
40
|
Lin Q, Zhou M, Xu Z, Khanniche A, Shen H, Wang C. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes. J Biotechnol 2015; 196-197:20-6. [DOI: 10.1016/j.jbiotec.2015.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/26/2014] [Accepted: 01/07/2015] [Indexed: 11/16/2022]
|
41
|
Yu Z, Jiang Q, Liu J, Guo D, Quan C, Li B, Qu L. A simplified system for generating recombinant E3-deleted canine adenovirus-2. Plasmid 2014; 77:1-6. [PMID: 25450764 DOI: 10.1016/j.plasmid.2014.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 11/15/2022]
Abstract
Canine adenovirus type 2 (CAV-2) has been used extensively as a vector for studying gene therapy and vaccine applications. We describe a simple strategy for generating a replication-competent recombinant CAV-2 using a backbone vector and a shuttle vector. The backbone plasmid containing the full-length CAV-2 genome was constructed by homologous recombination in Escherichia coli strain BJ5183. The shuttle plasmid, which has a deletion of 1478 bp in the nonessential E3 viral genome region, was generated by subcloning a fusion fragment containing the flanking sequences of the CAV-2 E3 region and expression cassette sequences from pcDNA3.1(+) into modified pUC18. To determine system effectiveness, a gene for enhanced green fluorescent protein (EGFP) was inserted into the shuttle plasmid and cloned into the backbone plasmid using two unique NruI and SalI sites. Transfection of Madin-Darby canine kidney (MDCK) cells with the recombinant adenovirus genome containing the EGFP expression cassette resulted in infectious viral particles. This strategy provides a solid foundation for developing candidate vaccines using CAV-2 as a delivery vector.
Collapse
Affiliation(s)
- Zuo Yu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qian Jiang
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiasen Liu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dongchun Guo
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuansong Quan
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Botao Li
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liandong Qu
- Zoonosis of Natural Foci, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
42
|
Sharma A, Wendland R, Sung B, Wu W, Grunwald T, Worgall S. Maternal immunization with chimpanzee adenovirus expressing RSV fusion protein protects against neonatal RSV pulmonary infection. Vaccine 2014; 32:5761-8. [PMID: 25171847 PMCID: PMC4713013 DOI: 10.1016/j.vaccine.2014.08.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 12/31/2022]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease with high morbidity and mortality in young infants and children. Despite numerous efforts, a licensed vaccine against RSV remains elusive. Since young infants form the primary target group of RSV disease, maternal immunization to boost the protection in neonates is an attractive strategy. In this study we tested the efficacy of maternal immunization with a chimpanzee adenovirus expressing codon-optimized RSV fusion protein (AdC7-Fsyn) to protect infants against RSV infection. Single intranasal immunization of mice by AdC7-Fsyn induced robust anti-RSV systemic and mucosal immunity that protected against RSV without causing vaccine-enhanced RSV disease. RSV humoral immunity was transferred to pups born to immunized mothers that provided protection against RSV. Immunization with AdC7-Fsyn was effective even in the presence of Ad5 preimmunity. The maternally derived immunity was durable with the half-life of 14.63 days that reduced the viral replication up to 15 weeks of age. Notably, the passively immunized mice could be actively re-immunized with AdC7-Fsyn to boost and extend the protection. This substantiates maternal immunization with an AdC7-based vaccine expressing RSV F as feasible approach to protect against RSV early in life.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Rebecca Wendland
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Biin Sung
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Wenzhu Wu
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Worgall
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, United States; Department of Pediatrics, Weill Cornell Medical College, New York, NY, United States.
| |
Collapse
|
43
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|
44
|
Virus-vectored influenza virus vaccines. Viruses 2014; 6:3055-79. [PMID: 25105278 PMCID: PMC4147686 DOI: 10.3390/v6083055] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/28/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines.
Collapse
|
45
|
Tsunekuni R, Hikono H, Saito T. Evaluation of avian paramyxovirus serotypes 2 to 10 as vaccine vectors in chickens previously immunized against Newcastle disease virus. Vet Immunol Immunopathol 2014; 160:184-91. [DOI: 10.1016/j.vetimm.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/26/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
46
|
Savoia D. New perspectives in the management of Pseudomonas aeruginosa infections. Future Microbiol 2014; 9:917-28. [DOI: 10.2217/fmb.14.42] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT: Infections with Pseudomonas aeruginosa are a major health problem, especially for immune-compromised and cystic fibrosis patients, owing to the particular drug resistance of the microorganism. The aim of this review is to provide recent insights into strategies under investigation for prevention and therapy of these infections. In this survey, the approach directed against bacterial biofilm formation and quorum-sensing systems was focused, along with the evaluation of the treatment with bacteriophages. New interesting, developmental studies and clinical trials to prevent or treat infections due to this opportunistic pathogen are based on active and passive immunotherapy. Some monoclonal antibodies and different vaccines against this microorganism have been developed in the last few decades, even though to date none of them have obtained market authorization.
Collapse
|
47
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
48
|
Cheng L, Huang X, Li X, Xiong W, Sun W, Yang C, Zhang K, Wang Y, Liu H, Huang X, Ji G, Sun F, Zheng C, Zhu P. Cryo-EM structures of two bovine adenovirus type 3 intermediates. Virology 2014; 450-451:174-81. [PMID: 24503080 DOI: 10.1016/j.virol.2013.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/04/2013] [Accepted: 12/10/2013] [Indexed: 01/28/2023]
Abstract
Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure represents a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level.
Collapse
Affiliation(s)
- Lingpeng Cheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxing Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Xiong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072, China
| | - Wei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chongwen Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongrong Liu
- College of Physics and Information Science, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaojun Huang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Ji
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan, Hubei 430072, China.
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
49
|
Krause A, Whu WZ, Qiu J, Wafadari D, Hackett NR, Sharma A, Crystal RG, Worgall S. RGD capsid modification enhances mucosal protective immunity of a non-human primate adenovirus vector expressing Pseudomonas aeruginosa OprF. Clin Exp Immunol 2013; 173:230-41. [PMID: 23607394 DOI: 10.1111/cei.12101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/16/2022] Open
Abstract
Replication-deficient adenoviral (Ad) vectors of non-human serotypes can serve as Ad vaccine platforms to circumvent pre-existing anti-human Ad immunity. We found previously that, in addition to that feature, a non-human primate-based AdC7 vector expressing outer membrane protein F of P. aeruginosa (AdC7OprF) was more potent in inducing lung mucosal and protective immunity compared to a human Ad5-based vector. In this study we analysed if genetic modification of the AdC7 fibre to display an integrin-binding arginine-glycine-aspartic acid (RGD) sequence can further enhance lung mucosal immunogenicity of AdC7OprF. Intratracheal immunization of mice with either AdC7OprF.RGD or AdC7OprF induced robust serum levels of anti-OprF immunoglobulin (Ig)G up to 12 weeks that were higher compared to immunization with the human vectors Ad5OprF or Ad5OprF.RGD. OprF-specific cellular responses in lung T cells isolated from mice immunized with AdC7OprF.RGD and AdC7OprF were similar for T helper type 1 (Th1) [interferon (IFN)-γ in CD8(+) and interleukin (IL)-12 in CD4(+)], Th2 (IL-4, IL-5 and IL-13 in CD4(+)) and Th17 (IL-17 in CD4(+)). Interestingly, AdC7OprF.RGD induced more robust protective immunity against pulmonary infection with P. aeruginosa compared to AdC7OprF or the control Ad5 vectors. The enhanced protective immunity induced by AdC7OprF.RGD was maintained in the absence of alveolar macrophages (AM) or CD1d natural killer T cells. Together, the data suggest that addition of RGD to the fibre of an AdC7-based vaccine is useful to enhance its mucosal protective immunogenicity.
Collapse
Affiliation(s)
- A Krause
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Clemente T, Dominguez M, Vieira N, Rodrigues M, Amarante-Mendes G. In vivo assessment of specific cytotoxic T lymphocyte killing. Methods 2013; 61:105-9. [DOI: 10.1016/j.ymeth.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/18/2013] [Accepted: 02/11/2013] [Indexed: 10/27/2022] Open
|