1
|
Zhang MH, Scotland BL, Jiao Y, Slaby EM, Truong N, Cottingham AL, Stephanie G, Szeto GL, Pearson RM. Lipid-Polymer Hybrid Nanoparticles Utilize B Cells and Dendritic Cells to Elicit Distinct Antigen-Specific CD4 + and CD8 + T Cell Responses. ACS APPLIED BIO MATERIALS 2024; 7:4818-4830. [PMID: 37219857 PMCID: PMC10665545 DOI: 10.1021/acsabm.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antigen-presenting cells (APCs) are widely studied for treating immune-mediated diseases, and dendritic cells (DCs) are potent APCs that uptake and present antigens (Ags). However, DCs face several challenges that hinder their clinical translation due to their inability to control Ag dosing and low abundance in peripheral blood. B cells are a potential alternative to DCs, but their poor nonspecific Ag uptake capabilities compromise controllable priming of T cells. Here, we developed phospholipid-conjugated Ags (L-Ags) and lipid-polymer hybrid nanoparticles (L/P-Ag NPs) as delivery platforms to expand the range of accessible APCs for use in T cell priming. These delivery platforms were evaluated using DCs, CD40-activated B cells, and resting B cells to understand the impacts of various Ag delivery mechanisms for generation of Ag-specific T cell responses. L-Ag delivery (termed depoting) of MHC class I- and II-restricted Ags successfully loaded all APC types in a tunable manner and primed both Ag-specific CD8+ and CD4+ T cells, respectively. Incorporating L-Ags and polymer-conjugated Ags (P-Ag) into NPs can direct Ags to different uptake pathways to engineer the dynamics of presentation and shape T cell responses. DCs were capable of processing and presenting Ag delivered from both L- and P-Ag NPs, yet B cells could only utilize Ag delivered from L-Ag NPs, which led to differential cytokine secretion profiles in coculture studies. Altogether, we show that L-Ags and P-Ags can be rationally paired within a single NP to leverage distinct delivery mechanisms to access multiple Ag processing pathways in two APC types, offering a modular delivery platform for engineering Ag-specific immunotherapies.
Collapse
Affiliation(s)
- Michael H. Zhang
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Co-first authors
| | - Brianna L. Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- Co-first authors
| | - Yun Jiao
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Emily M. Slaby
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Andrea L. Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Georgina Stephanie
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD 21250
- Allen Institute for Immunology, Seattle, WA 98109
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
2
|
Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, Westermann J. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2021; 1:1537-1545. [PMID: 23264900 PMCID: PMC3525609 DOI: 10.4161/onci.22563] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu+ syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong TH1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.
Collapse
Affiliation(s)
- Tam Nguyen-Hoai
- Deptartment of Hematology, Oncology, and Tumor Immunology Charité; University Medicine Berlin; Campus Berlin-Buch, Campus Benjamin Franklin and Campus Virchow-Klinikum; Berlin, Germany ; Max Delbrück Center for Molecular Medicine; Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
In vivo electroporation enhances vaccine-mediated therapeutic control of human papilloma virus-associated tumors by the activation of multifunctional and effector memory CD8 + T cells. Vaccine 2017; 35:7240-7249. [PMID: 29174677 DOI: 10.1016/j.vaccine.2017.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
In vivo electroporation (EP) has reignited the clinical interest on DNA vaccines as immunotherapeutic approaches to control different types of cancer. EP has been associated with increased immune response potency, but its capacity in influencing immunomodulation remains unclear. Here we evaluated the impact of in vivo EP on the induction of cellular immune responses and therapeutic effects of a DNA vaccine targeting human papillomavirus-induced tumors. Our results demonstrate that association of EP with the conventional intramuscular administration route promoted a more efficient activation of multifunctional and effector memory CD8+ T cells with enhanced cytotoxic activity. Furthermore, EP increased tumor infiltration of CD8+ T cells and avoided tumor recurrences. Finally, our results demonstrated that EP promotes local migration of antigen presenting cells that enhances with vaccine co-delivery. Altogether the present evidences shed further light on the in vivo electroporation action and its impact on the immunogenicity of DNA vaccines.
Collapse
|
4
|
Provinciali M, Barucca A, Orlando F, Pierpaoli E. Booster immunizations with DNA plasmids encoding HER-2/neu prevent spontaneous mammary cancer in HER-2/neu transgenic mice over life span. Sci Rep 2017; 7:3078. [PMID: 28596550 PMCID: PMC5465096 DOI: 10.1038/s41598-017-03286-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 12/03/2022] Open
Abstract
Cancer vaccines are less effective at old than at young age because of immunosenescence. Besides, in preliminary observations we showed that the immunization with HER-2/neu DNA plasmid in transgenic young mice (standard immunization, SI) delays but not abrogate spontaneous mammary tumours progressively appearing during aging. In this study we evaluated whether booster immunizations (BI) of HER-2/neu transgenic mice with HER-2/neu DNA plasmids every 6 (ECD6), 3 (ECD3), or 1.5 (ECD1.5) months after SI induce a protective immunity that could be maintained over life span. The long term BI significantly improved the effect of SI increasing the number of tumour free mice at 110 weeks of age from 13% (SI) to 58% (BI). Both the number and the volume of tumour masses were reduced in BI than in SI groups. The protective effect of BI was associated with increased antibody production with isotype switching to IgG2a, augmented CD4 T cells, and increased in vivo cytotoxicity of HER-2/neu specific cytotoxic T lymphocytes, mainly in ECD1.5 and ECD3 groups. The transfer of sera from ECD1.5 mice to untreated HER-2/neu mice highly protected against tumour development than sera from SI mice. We conclude that BI induce a protective immunity effective over life span.
Collapse
Affiliation(s)
- Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy.
| | - Alessandra Barucca
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Fiorenza Orlando
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| | - Elisa Pierpaoli
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS-INRCA, Ancona, Italy
| |
Collapse
|
5
|
Intradermal DNA Electroporation Induces Cellular and Humoral Immune Response and Confers Protection against HER2/neu Tumor. J Immunol Res 2015; 2015:159145. [PMID: 26247038 PMCID: PMC4515534 DOI: 10.1155/2015/159145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 11/29/2022] Open
Abstract
Skin represents an attractive target for DNA vaccine delivery because of its natural richness in APCs, whose targeting may potentiate the effect of vaccination. Nevertheless, intramuscular electroporation is the most common delivery method for ECTM vaccination. In this study we assessed whether intradermal administration could deliver the vaccine into different cell types and we analyzed the evolution of tissue infiltrate elicited by the vaccination protocol. Intradermal electroporation (EP) vaccination resulted in transfection of different skin layers, as well as mononuclear cells. Additionally, we observed a marked recruitment of reactive infiltrates mainly 6–24 hours after treatment and inflammatory cells included CD11c+.
Moreover, we tested the efficacy of intradermal vaccination against Her2/neu antigen in cellular and humoral response induction and consequent protection from a Her2/neu tumor challenge in Her2/neu nontolerant and tolerant mice. A significant delay in transplantable tumor onset was observed in both BALB/c (p ≤ 0,0003) and BALB-neuT mice (p = 0,003). Moreover, BALB-neuT mice displayed slow tumor growth as compared to control group (p < 0,0016). In addition, while in vivo cytotoxic response was observed only in BALB/c mice, a significant antibody response was achieved in both mouse models. Our results identify intradermal EP vaccination as a promising method for delivering Her2/neu DNA vaccine.
Collapse
|
6
|
Tapping the Potential of DNA Delivery with Electroporation for Cancer Immunotherapy. Curr Top Microbiol Immunol 2015; 405:55-78. [PMID: 25682101 DOI: 10.1007/82_2015_431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is a worldwide leading cause of death, and current conventional therapies are limited. The search for alternative preventive or therapeutic solutions is critical if we are going to improve outcomes for patients. The potential for DNA vaccines in the treatment and prevention of cancer has gained great momentum since initial findings almost 2 decades ago that revealed that genetically engineered DNA can elicit an immune response. The combination of adjuvants and an effective delivery method such as electroporation is overcoming past setbacks for naked plasmid DNA (pDNA) as a potential preventive or therapeutic approach to cancer in large animals and humans. In this chapter, we aim to focus on the novel advances in recent years for DNA cancer vaccines, current preclinical data, and the importance of adjuvants and electroporation with emphasis on prostate, melanoma, and cervical cancer.
Collapse
|
7
|
Daemi A, Bolhassani A, Rafati S, Zahedifard F, Hosseinzadeh S, Doustdari F. Different domains of glycoprotein 96 influence HPV16 E7 DNA vaccine potency via electroporation mediated delivery in tumor mice model. Immunol Lett 2012; 148:117-25. [PMID: 23085605 DOI: 10.1016/j.imlet.2012.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 11/26/2022]
Abstract
DNA vaccines have emerged as a promising approach for generating antigen-specific immunotherapy. However, due to their low immunogenicity, there is a need to enhance DNA-based vaccine potency. Two main strategies to increase DNA-based vaccine potency are the employment of immuno-adjuvants such as heat shock proteins (HSPs) and a method of improving the delivery of naked plasmid DNA by electroporation. In the current study, we evaluated the effects of linkage of human papillomavirus (HPV) type 16 E7 as a model antigen to N-terminal and C-terminal of glycoprotein 96 (NT-/CT-gp96) on the potency of E7-specific immunity generated by DNA vaccines. We found that subcutaneous DNA injection with E7-CT (gp96) followed by electroporation generates the significant E7-specific IFN-γ immune responses as well as the best protective effects in vaccinated mice as compared to E7 or E7-NT (gp96) DNA vaccines. Therefore, our data indicate that subcutaneous administration of E7 DNA linked to CT (gp96) fragment followed by electroporation can significantly enhance the potency of DNA vaccines. Indeed, the structural domains of immuno-chaperones show the potential of generating effective immune responses against different clinical disorders such as cancer. Altogether, our results show that comparable regions of gp96 (N-/C-terminal fragments of gp96) may have qualitatively different immunological effects in vaccine design.
Collapse
Affiliation(s)
- Amin Daemi
- Molecular Immunology and Vaccine Research Lab., Pasteur Institute of Iran, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
8
|
Provinciali M, Barucca A, Pierpaoli E, Orlando F, Pierpaoli S, Smorlesi A. In vivo electroporation restores the low effectiveness of DNA vaccination against HER-2/neu in aging. Cancer Immunol Immunother 2012; 61:363-71. [PMID: 21922332 PMCID: PMC11028531 DOI: 10.1007/s00262-011-1107-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Experimental evidence has been provided that cancer vaccines are less effective at older age than in young adults. In this study, we evaluated the possibility to recover the low effectiveness of DNA immunization against HER-2/neu increasing plasmid uptake by cells from old mice through electroporation with the aim to enhance the activation of specific immune responses. Young and old Balb/c mice received two immunizations with a pCMV-ECDTM DNA plasmid using plasmid intramuscular injection followed by electroporation (IM + E) or plasmid intramuscular injection alone (IM), and successively, they were challenged with syngeneic HER-2/neu overexpressing TUBO cells. Young mice were completely protected whereas less than 60% protection was observed in old mice after IM immunization. IM + E immunization completely protected old mice against a TUBO cell challenge. The protection was associated with increased transgene expression in the site of immunization and with the induction of both humoral and cell-mediated immunity in old mice. We conclude that the effectiveness of anticancer DNA vaccination in old ages may be improved increasing plasmid uptake and transgene expression through electroporation, suggesting the relevant role of the first steps of the immunization process in the success of cancer vaccines at older age.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/immunology
- Electroporation/methods
- Female
- Gene Expression Regulation, Neoplastic
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Injections, Intramuscular
- Male
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Plasmids/administration & dosage
- Plasmids/genetics
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Time Factors
- Treatment Outcome
- Vaccination/methods
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, INRCA-IRCCS, Via Birarelli 8, 60121, Ancona, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009; 27:5450-9. [PMID: 19622402 PMCID: PMC2745985 DOI: 10.1016/j.vaccine.2009.07.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 11/15/2022]
Abstract
DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination--conventional intramuscular injection, electroporation-mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery--in the ability to generate antigen-specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin's role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials.
Collapse
Affiliation(s)
- Simon R. Best
- Department of Otolaryngology/Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Chi-Mou Juang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University, Taipei, Taiwan
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, California, USA
| | - John R. Saunders
- Department of Otolaryngology/Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Sara I. Pai
- Department of Otolaryngology/Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ni J, Nolte B, Arnold A, Fournier P, Schirrmacher V. Targeting anti-tumor DNA vaccines to dendritic cells via a short CD11c promoter sequence. Vaccine 2009; 27:5480-7. [PMID: 19616491 DOI: 10.1016/j.vaccine.2009.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 04/03/2009] [Accepted: 07/01/2009] [Indexed: 01/19/2023]
|
11
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Vlahopoulos S, Gritzapis AD, Perez SA, Cacoullos N, Papamichail M, Baxevanis CN. Mannose addition by yeast Pichia Pastoris on recombinant HER-2 protein inhibits recognition by the monoclonal antibody herceptin. Vaccine 2009; 27:4704-8. [PMID: 19520203 DOI: 10.1016/j.vaccine.2009.05.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 05/11/2009] [Accepted: 05/21/2009] [Indexed: 01/11/2023]
Abstract
We report here the generation of a full-length, highly glycosylated HER-2 oncoprotein using yeast strain, Pichia Pastoris. Upon treatment of secreted HER-2 with alpha-mannosidase, reactivity with the monoclonal antibody Herceptin is significantly increased. This phenomenon is due to glycosylation via mannose of the full-length HER-2 protein that extends over the antigenic epitope, which is recognized by Herceptin. The extensive glycosylation of HER-2 in Pichia Pastoris significantly increases its recognition and uptake by dendritic cells, which could be associated with increased vaccine performance.
Collapse
|
13
|
Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine 2008; 26:2100-10. [PMID: 18378365 PMCID: PMC2790191 DOI: 10.1016/j.vaccine.2008.02.033] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/08/2008] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
Immunogenicity of DNA vaccines varies significantly due to many factors including the inherent immunogenicity of the protein antigen encoded in the DNA vaccine, the optimal immune responses that can be achieved in different animal models and in humans with different genetic backgrounds and, to a great degree, the delivery methods used to administer the DNA vaccines. Based on published results, only the gene gun-mediated delivery approach has been able to elicit protective levels of immune responses in healthy, adult volunteers by DNA immunization alone without the use of another vaccine modality as a boost. Recent results from animal studies suggest that electroporation is also effective in eliciting high level immune responses. However, there have been no reports to identify the similarities and differences between these two leading physical delivery methods for DNA vaccines against infectious disease targets. In the current study, we compared the relative immunogenicity of a DNA vaccine expressing a hemagglutinin (HA) antigen from an H5N1 influenza virus in two animal models (rabbit and mouse) when delivered by either intramuscular needle immunization (IM), gene gun (GG) or electroporation (EP). HA-specific antibody, T cell and B cell responses were analyzed. Our results indicate that, overall, both the GG and EP methods are more immunogenic than the IM method. However, EP and IM stimulated a Th-1 type antibody response and the antibody response to GG was Th-2 dominated. These findings provide important information for the further selection and optimization of DNA vaccine delivery methods for human applications.
Collapse
Affiliation(s)
- Shixia Wang
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Chunghua Zhang
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
| | - Lu Zhang
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
| | - Jun Li
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
| | - Zuhu Huang
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
| | - Shan Lu
- Jiangsu Province Key Laboratory in Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- China-US Vaccine Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China 210029
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
14
|
Smorlesi A, Papalini F, Pierpaoli S, Provinciali M. HER2/neu DNA vaccination for breast tumors. Methods Mol Biol 2008; 423:473-485. [PMID: 18370223 DOI: 10.1007/978-1-59745-194-9_37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Several studies of DNA vaccination against HER2/neu showed the effectiveness of immunization protocols in models of transplantable or spontaneous tumors. The DNA delivery system plays a crucial role in the success of DNA vaccination. In particular, our studies of DNA vaccination against HER2/neu tumor antigen showed that intramuscular injection of the vaccine followed by electroporation elicits an optimal protection against the development of spontaneous HER2/neu- tumors occurring in transgenic mice.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/blood
- Cell Line, Tumor
- Cytokines/metabolism
- Electrochemotherapy/methods
- Female
- Genes, erbB-2
- Immunity, Cellular
- Injections, Intramuscular
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Transgenic
- Plasmids/administration & dosage
- Plasmids/genetics
- Rats
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
Collapse
|
15
|
Weide B, Garbe C, Rammensee HG, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol Lett 2008; 115:33-42. [DOI: 10.1016/j.imlet.2007.09.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 09/25/2007] [Accepted: 09/30/2007] [Indexed: 10/22/2022]
|
16
|
Luxembourg A, Evans CF, Hannaman D. Electroporation-based DNA immunisation: translation to the clinic. Expert Opin Biol Ther 2007; 7:1647-64. [DOI: 10.1517/14712598.7.11.1647] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Vandermeulen G, Staes E, Vanderhaeghen ML, Bureau MF, Scherman D, Préat V. Optimisation of intradermal DNA electrotransfer for immunisation. J Control Release 2007; 124:81-7. [PMID: 17854939 DOI: 10.1016/j.jconrel.2007.08.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 08/01/2007] [Accepted: 08/14/2007] [Indexed: 10/22/2022]
Abstract
The development of DNA vaccines requires appropriate delivery technologies. Electrotransfer is one of the most efficient methods of non-viral gene transfer. In the present study, intradermal DNA electrotransfer was first optimised. Strong effects of the injection method and the dose of DNA on luciferase expression were demonstrated. Pre-treatments were evaluated to enhance DNA diffusion in the skin but neither hyaluronidase injection nor iontophoresis improved efficiency of intradermal DNA electrotransfer. Then, DNA immunisation with a weakly immunogenic model antigen, luciferase, was investigated. After intradermal injection of the plasmid encoding luciferase, electrotransfer (HV 700 V/cm 100 micros, LV 200 V/cm 400 ms) was required to induce immune response. The response was Th1-shifted compared to immunisation with the luciferase recombinant protein. Finally, DNA electrotransfer in the skin, the muscle or the ear pinna was compared. Muscle DNA electrotransfer resulted in the highest luciferase expression and the best IgG response. Nevertheless electrotransfer into the skin, the muscle and the ear pinna all resulted in IFN-gamma secretion by luciferase-stimulated splenocytes suggesting that an efficient Th1 response was induced in all case.
Collapse
Affiliation(s)
- Gaëlle Vandermeulen
- Université catholique de Louvain, Unité de pharmacie galénique, Avenue Emmanuel Mounier, 73 UCL, 7320, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Luckay A, Sidhu MK, Kjeken R, Megati S, Chong SY, Roopchand V, Garcia-Hand D, Abdullah R, Braun R, Montefiori DC, Rosati M, Felber BK, Pavlakis GN, Mathiesen I, Israel ZR, Eldridge JH, Egan MA. Effect of plasmid DNA vaccine design and in vivo electroporation on the resulting vaccine-specific immune responses in rhesus macaques. J Virol 2007; 81:5257-69. [PMID: 17329330 PMCID: PMC1900241 DOI: 10.1128/jvi.00055-07] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/20/2007] [Indexed: 12/13/2022] Open
Abstract
Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log(10) increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Amara Luckay
- Wyeth Vaccines Research, 401 N. Middletown Rd., Bldg. 180/216-10, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Vaccination with DNA is one of the most promising novel immunization techniques against a variety of pathogens and tumors, for which conventional vaccination regimens have failed. DNA vaccines are able to stimulate both arms of the immune system simultaneously, without carrying the safety risks associated with live vaccines, therefore representing not only an alternative to conventional vaccines but also significant progress in the prevention and treatment of fatal diseases and infections. However, translation of the excellent results achieved in small animals to similar success in primates or large animals has so far proved to be a major hurdle. Moreover, biosafety issues, such as the removal of antibiotic resistance genes present in plasmid DNA used for vaccination, remain to be addressed adequately. This review describes strategies to improve the design and production of conventional plasmid DNA, including an overview of safety and regulatory issues. It further focuses on novel systems for the optimization of plasmid DNA and the development of diverse plasmid DNA delivery systems for vaccination purposes.
Collapse
Affiliation(s)
- Wolfgang Jechlinger
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A- 1210, Vienna, Austria.
| |
Collapse
|
20
|
Tu CF, Lin CC, Chen MC, Ko TM, Lin CM, Wang YC, Lai MD. Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine 2007; 25:719-28. [PMID: 16962215 DOI: 10.1016/j.vaccine.2006.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 12/28/2022]
Abstract
We examined the therapeutic efficacy of xenogenic human N'-terminal neu DNA vaccine and autologous mouse N'-terminal neu DNA vaccine on MBT-2 tumor cells in C3H mice. Intramuscular injection of xenogenic and autologous neu DNA vaccines produced comparable therapeutic efficacies. Mouse and human N'-neu DNA vaccine induced tumor infiltration of CD8(+) T cells, while the human vaccine was less effective at stimulating natural killer cells. Depletion of CD8(+) T cells abolished the therapeutic efficacy of both types of DNA vaccines. On the other hand, xenogenic neu DNA vaccine showed significantly better therapeutic efficacy than autologous DNA vaccine with gene gun immunization. Increased infiltration of CD8(+) T cells was correlated with enhanced therapeutic efficacy in the human N'-neu group of mice. Therefore, intramuscular injection can enhance the therapeutic efficacy of autologous neu DNA vaccine.
Collapse
Affiliation(s)
- Cheng-Fen Tu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|