1
|
Casey RM, Najjengo MS, Lubega I, Sekiziyivu AB, Twinomuhwezi-Oyet E, Nakato WN, Sciarratta CN, Chu SY, Doshi RH, Kambugu A, Gidudu JF. Adverse events following immunization (AEFI) with fractional one-fifth and one-half doses of yellow fever vaccine compared to full dose in children 9-23 months old in Uganda, 2019-2020 - Preliminary report. Vaccine 2024; 42:126197. [PMID: 39153293 PMCID: PMC11741117 DOI: 10.1016/j.vaccine.2024.126197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND In 2016, the World Health Organization recommended that a fractional dose of yellow fever (YF) vaccine could be used in persons 2 years of age or older in response to an emergency that resulted in a global shortage of available YF vaccine. However, this recommendation did not extend to the youngest age group licensed for YF vaccine because there were no published data on the use or safety of fractional dose YF vaccination in children aged 9-23 months. We conducted a single-blind randomized controlled trial, comparing the immunogenicity and safety of fractional one-fifth and one-half doses of Bio-Manguinhos 17DD YF vaccine with full dose in children aged 9-23 months old in Uganda. In this paper, we present the interim analysis on safety. METHODS Children aged 9-23 months presenting for routine well-child services were recruited for inclusion at one of three study sites. We collected data during March 26, 2019-August 31, 2020, on all adverse events following immunization (AEFI) during active surveillance for 28 days post-vaccination using multiple collection tools including a diary card with an objective measurement of fever. An independent team from the Uganda national AEFI Committee investigated and classified serious AEFI (SAE) according to Brighton Collaboration Criteria. RESULTS Among 1053 enrolled children, 672 (64%) were reported to have a non-serious AEFI (NSAE) and 17 (2%) were reported to have a SAE. The most common AEFI were diarrhoea, fever, and rash, each reported by 355 (34%), 338 (33%), and 188 (18%) participants, respectively. Among 17 participants with SAE, eight were reported to have had seizures and five were hospitalised for seizures or other causes (respiratory symptoms, gastrointestinal illness, malaria). Four SAEs (deaths) occurred >28 days after vaccination. There were no reported cases of pre-specified or vaccine-related SAEs. We observed no significant difference in frequency or severity of adverse events among the study groups. CONCLUSIONS Using comprehensive active surveillance monitoring, we did not identify any unexpected safety concerns among children aged <2 years receiving YF vaccination, including with the fractional doses. Although we identified a high number of both serious and non-serious AEFI, none were determined to be causally related to YF vaccination. These results provide evidence for the safety of fractional dose YF vaccination among children aged 9-23 months.
Collapse
Affiliation(s)
- Rebecca M Casey
- Centers for Diseases Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | | | | | | - Susan Y Chu
- Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Reena H Doshi
- Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | | | - Jane F Gidudu
- Centers for Diseases Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
2
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
3
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
4
|
Halstead SB. Is Dengue Vaccine Protection Possible? Clin Infect Dis 2021; 74:156-160. [PMID: 33788926 DOI: 10.1093/cid/ciab282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
In tropical and subtropical countries four dengue viruses (DENV) produce mild disease and a potentially fatal vascular permeability syndrome. Unique antigenic and biological properties of DENVs contribute to vaccine development delays. Three tissue culture-based tetravalent candidate dengue vaccines have advanced to phase 3 clinical testing. Sanofi-Pasteur's chimeric yellow fever tetravalent dengue vaccine, Dengvaxia, licensed in 19 dengue-endemic countries, Europe and USA, partially protects seropositives but sensitizes some seronegatives to breakthrough severe hospitalized dengue. During two years of phase 3, Takeda's TAK 003, a chimeric DENV 2 tetravalent vaccine, protected against DENV 2 but was less protective against other DENVs. In seronegative adults, one dose of a tetravalent non-structural deletion mutant vaccine developed by US NIAID protected seronegative humans against challenge with DENVs 2 and 3. This vaccine is in late phase 3. This experience suggests nearly-whole DENV genomes are required to achieve balanced and sustained protective immunity.
Collapse
|
5
|
Tian Y, Grifoni A, Sette A, Weiskopf D. Human T Cell Response to Dengue Virus Infection. Front Immunol 2019; 10:2125. [PMID: 31552052 PMCID: PMC6737489 DOI: 10.3389/fimmu.2019.02125] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
DENV is a major public health problem worldwide, thus underlining the overall significance of the proposed Program. The four dengue virus (DENV) serotypes (1-4) cause the most common mosquito-borne viral disease of humans, with 3 billion people at risk for infection and up to 100 million cases each year, most often affecting children. The protective role of T cells during viral infection is well-established. Generally, CD8 T cells can control viral infection through several mechanisms, including direct cytotoxicity, and production of pro-inflammatory cytokines such as IFN-γ and TNF-α. Similarly, CD4 T cells are thought to control viral infection through multiple mechanisms, including enhancement of B and CD8 T cell responses, production of inflammatory and anti-viral cytokines, cytotoxicity, and promotion of memory responses. To probe the phenotype of virus-specific T cells, epitopes derived from viral sequences need to be known. Here we discuss the identification of CD4 and CD8 T cell epitopes derived from DENV and how these epitopes have been used by researchers to interrogate the phenotype and function of DENV-specific T cell populations.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
6
|
Halstead SB, Dans LF. Dengue infection and advances in dengue vaccines for children. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:734-741. [PMID: 31378686 DOI: 10.1016/s2352-4642(19)30205-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022]
Abstract
Dengue viruses are endemic in most tropical and subtropical countries where they produce disease ranging from a mild fever to a severe, potentially fatal vascular permeability syndrome. We reviewed the status of development and testing in children of three vaccines designed to protect against the four dengue viruses. The first dengue virus vaccine, Dengvaxia, now licensed in 20 endemic countries, the EU and the USA, provides protection against severe dengue in seropositive individuals but increases the risk for naive recipients to develop severe dengue and to be hospitalised. We discuss mechanisms and implications of shortcomings of the licensed vaccine and describe the structure and attributes of two other dengue virus vaccines. Based upon human dengue challenge studies, one of these vaccines promises to deliver solid, long-lasting immunity after a single dose. Because dengue virus infections are ubiquitous in residents and visitors to tropical countries, in the absence of a protective vaccine paediatricians should recognise the early signs and clinical presentation of severe dengue, understand its pathophysiology and appropriate management.
Collapse
Affiliation(s)
- Scott B Halstead
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Leonila F Dans
- Departments of Pediatrics and Clinical Epidemiology, College of Medicine, University of the Philippines, Manila, Philippines
| |
Collapse
|
7
|
Ahmad Z, Poh CL. The Conserved Molecular Determinants of Virulence in Dengue Virus. Int J Med Sci 2019; 16:355-365. [PMID: 30911269 PMCID: PMC6428985 DOI: 10.7150/ijms.29938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue virus belongs to the Flaviviridae family which also includes viruses such as the Zika, West Nile and yellow fever virus. Dengue virus generally causes mild disease, however, more severe forms of the dengue virus infection, dengue haemorrhagic fever (DHF) and dengue haemorrhagic fever with shock syndrome (DSS) can also occur, resulting in multiple organ failure and even death, especially in children. The only dengue vaccine available in the market, CYD-TDV offers limited coverage for vaccinees from 9-45 years of age and is only recommended for individuals with prior dengue exposure. A number of mutations that were shown to attenuate virulence of dengue virus in vitro and/or in vivo have been identified in the literature. The mutations which fall within the conserved regions of all four dengue serotypes are discussed. This review hopes to provide information leading to the construction of a live attenuated dengue vaccine that is suitable for all ages, irrespective of the infecting dengue serotype and prior dengue exposure.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Halstead SB. Which Dengue Vaccine Approach Is the Most Promising, and Should We Be Concerned about Enhanced Disease after Vaccination? There Is Only One True Winner. Cold Spring Harb Perspect Biol 2018; 10:a030700. [PMID: 28716893 PMCID: PMC5983193 DOI: 10.1101/cshperspect.a030700] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The scientific community now possesses information obtained directly from human beings that makes it possible to understand why breakthrough-enhanced dengue virus (DENV) infections occurred in children receiving Sanofi Pasteur's Dengvaxia tetravalent live attenuated vaccine and to predict the possibility of breakthrough-enhanced DENV infections following immunization with two other tetravalent live attenuated vaccines now in phase III testing. Based upon recent research, Dengvaxia, lacking DENV nonstructural protein antigens, did not protect seronegatives because it failed to raise a competent T-cell response and/or antibodies to NS1. It is also possible that chimeric structure does not present the correct virion conformation permitting the development of protective neutralizing antibodies. A premonitory signal shared by the Sanofi Pasteur and the Takeda vaccines was the failure of fully immunized subhuman primates to prevent low-level viremia and/or anamnestic antibody responses to live DENV challenge. The vaccine developed by the National Institute of Allergy and Infectious Diseases (National Institutes of Health [NIH]) has met virtually all of the goals needed to demonstrate preclinical efficacy and safety for humans. Each monovalent vaccine was comprehensively studied for reactogenicity and immunogenicity in human volunteers. Protective immunity in subjects receiving tetravalent candidate vaccines was evidenced by the fact that when vaccinated subjects were given further doses of vaccine or different strains of DENV the result was "solid immunity," a nonviremic and nonanamnestic immune response.
Collapse
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20817
| |
Collapse
|
9
|
Abstract
Dengue is widespread throughout the tropics and local spatial variation in dengue virus transmission is strongly influenced by rainfall, temperature, urbanization and distribution of the principal mosquito vector Aedes aegypti. Currently, endemic dengue virus transmission is reported in the Eastern Mediterranean, American, South-East Asian, Western Pacific and African regions, whereas sporadic local transmission has been reported in Europe and the United States as the result of virus introduction to areas where Ae. aegypti and Aedes albopictus, a secondary vector, occur. The global burden of the disease is not well known, but its epidemiological patterns are alarming for both human health and the global economy. Dengue has been identified as a disease of the future owing to trends toward increased urbanization, scarce water supplies and, possibly, environmental change. According to the WHO, dengue control is technically feasible with coordinated international technical and financial support for national programmes. This Primer provides a general overview on dengue, covering epidemiology, control, disease mechanisms, diagnosis, treatment and research priorities.
Collapse
Affiliation(s)
- Maria G Guzman
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Duane J Gubler
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Alienys Izquierdo
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Eric Martinez
- Institute of Tropical Medicine 'Pedro Kouri', PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Autopista Novia del Mediodia, Km 6 1/2, Havana 11400, Cuba
| | - Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Muturi-Kioi V, Lewis D, Launay O, Leroux-Roels G, Anemona A, Loulergue P, Bodinham CL, Aerssens A, Groth N, Saul A, Podda A. Neutropenia as an Adverse Event following Vaccination: Results from Randomized Clinical Trials in Healthy Adults and Systematic Review. PLoS One 2016; 11:e0157385. [PMID: 27490698 PMCID: PMC4974007 DOI: 10.1371/journal.pone.0157385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the context of early vaccine trials aimed at evaluating the safety profile of novel vaccines, abnormal haematological values, such as neutropenia, are often reported. It is therefore important to evaluate how these trials should be planned not to miss potentially important safety signals, but also to understand the implications and the clinical relevance. METHODOLOGY We report and discuss the results from five clinical trials (two with a new Shigella vaccine in the early stage of clinical development and three with licensed vaccines) where the absolute neutrophil counts (ANC) were evaluated before and after vaccination. Additionally, we have performed a systematic review of the literature on cases of neutropenia reported during vaccine trials to discuss our results in a more general context. PRINCIPAL FINDINGS Both in our clinical trials and in the literature review, several cases of neutropenia have been reported, in the first two weeks after vaccination. However, neutropenia was generally transient and had a benign clinical outcome, after vaccination with either multiple novel candidates or well-known licensed vaccines. Additionally, the vaccine recipients with neutropenia frequently had lower baseline ANC than non-neutropenic vaccinees. In many instances neutropenia occurred in subjects of African descent, known to have lower ANC compared to western populations. CONCLUSIONS It is important to include ANC and other haematological tests in early vaccine trials to identify potential safety signals. Post-vaccination neutropenia is not uncommon, generally transient and clinically benign, but many vaccine trials do not have a sampling schedule that allows its detection. Given ethnic variability in the level of circulating neutrophils, normal ranges taking into account ethnicity should be used for determination of trial inclusion/exclusion criteria and classification of neutropenia related adverse events. TRIAL REGISTRATION ClinicalTrials.gov NCT02017899, NCT02034500, NCT01771367, NCT01765413, NCT02523287.
Collapse
Affiliation(s)
| | - David Lewis
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Odile Launay
- Université Paris Descartes, Sorbonne Paris cité, and Inserm CIC 1417, F-CRIN I-Reivac, Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | | | | | - Pierre Loulergue
- Université Paris Descartes, Sorbonne Paris cité, and Inserm CIC 1417, F-CRIN I-Reivac, Assistance Publique Hôpitaux de Paris, CIC Cochin-Pasteur, Paris, France
| | - Caroline L. Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | | | | | - Allan Saul
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Audino Podda
- Novartis Vaccines Institute for Global Health, Siena, Italy
| |
Collapse
|
11
|
Liu Y, Liu J, Cheng G. Vaccines and immunization strategies for dengue prevention. Emerg Microbes Infect 2016; 5:e77. [PMID: 27436365 PMCID: PMC5141265 DOI: 10.1038/emi.2016.74] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/20/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023]
Abstract
Dengue is currently the most significant arboviral disease afflicting tropical and sub-tropical countries worldwide. Dengue vaccines, such as the multivalent attenuated, chimeric, DNA and inactivated vaccines, have been developed to prevent dengue infection in humans, and they function predominantly by stimulating immune responses against the dengue virus (DENV) envelope (E) and nonstructural-1 proteins (NS1). Of these vaccines, a live attenuated chimeric tetravalent DENV vaccine developed by Sanofi Pasteur has been licensed in several countries. However, this vaccine renders only partial protection against the DENV2 infection and is associated with an unexplained increased incidence of hospitalization for severe dengue disease among children younger than nine years old. In addition to the virus-based vaccines, several mosquito-based dengue immunization strategies have been developed to interrupt the vector competence and effectively reduce the number of infected mosquito vectors, thus controlling the transmission of DENV in nature. Here we summarize the recent progress in the development of dengue vaccines and novel immunization strategies and propose some prospective vaccine strategies for disease prevention in the future.
Collapse
Affiliation(s)
- Yang Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jianying Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Goh KCM, Tang CK, Norton DC, Gan ES, Tan HC, Sun B, Syenina A, Yousuf A, Ong XM, Kamaraj US, Cheung YB, Gubler DJ, Davidson A, St John AL, Sessions OM, Ooi EE. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci Rep 2016; 6:26100. [PMID: 27185466 PMCID: PMC4868997 DOI: 10.1038/srep26100] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/27/2016] [Indexed: 12/12/2022] Open
Abstract
The development of live viral vaccines relies on empirically derived phenotypic criteria, especially small plaque sizes, to indicate attenuation. However, while some candidate vaccines successfully translated into licensed applications, others have failed safety trials, placing vaccine development on a hit-or-miss trajectory. We examined the determinants of small plaque phenotype in two dengue virus (DENV) vaccine candidates, DENV-3 PGMK30FRhL3, which produced acute febrile illness in vaccine recipients, and DENV-2 PDK53, which has a good clinical safety profile. The reasons behind the failure of PGMK30FRhL3 during phase 1 clinical trial, despite meeting the empirically derived criteria of attenuation, have never been systematically investigated. Using in vitro, in vivo and functional genomics approaches, we examined infections by the vaccine and wild-type DENVs, in order to ascertain the different determinants of plaque size. We show that PGMK30FRhL3 produces small plaques on BHK-21 cells due to its slow in vitro growth rate. In contrast, PDK53 replicates rapidly, but is unable to evade antiviral responses that constrain its spread hence also giving rise to small plaques. Therefore, at least two different molecular mechanisms govern the plaque phenotype; determining which mechanism operates to constrain plaque size may be more informative on the safety of live-attenuated vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Sun
- Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Ayesa Syenina
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | - Xin Mei Ong
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | | | | | | | | | | | - Eng Eong Ooi
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
13
|
Guy B, Lang J, Saville M, Jackson N. Vaccination Against Dengue: Challenges and Current Developments. Annu Rev Med 2016; 67:387-404. [DOI: 10.1146/annurev-med-091014-090848] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bruno Guy
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Jean Lang
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | - Melanie Saville
- Research and Development, Sanofi Pasteur, 69007 Lyon, France;
| | | |
Collapse
|
14
|
Piccini LE, Castilla V, Damonte EB. Dengue-3 Virus Entry into Vero Cells: Role of Clathrin-Mediated Endocytosis in the Outcome of Infection. PLoS One 2015; 10:e0140824. [PMID: 26469784 PMCID: PMC4607419 DOI: 10.1371/journal.pone.0140824] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
The endocytic uptake and intracellular trafficking for penetration of DENV-3 strain H-87 into Vero cells was analyzed by using several biochemical inhibitors and dominant negative mutants of cellular proteins. The results presented show that the infective entry of DENV-3 into Vero cells occurs through a non-classical endocytosis pathway dependent on low pH and dynamin, but non-mediated by clathrin. After uptake, DENV-3 transits through early endosomes to reach Rab 7-regulated late endosomes, and according with the half-time for ammonium chloride resistance viral nucleocapsid is released into the cytosol approximately at 12 min post-infection. Furthermore, the influence of the clathrin pathway in DENV-3 infective entry in other mammalian cell lines of human origin, such as A549, HepG2 and U937 cells, was evaluated demonstrating that variable entry pathways are employed depending on the host cell. Results show for the first time the simultaneous coexistence of infective and non -infective routes for DENV entry into the host cell, depending on the usage of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Luana E. Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Islam R, Salahuddin M, Ayubi MS, Hossain T, Majumder A, Taylor-Robinson AW, Mahmud-Al-Rafat A. Dengue epidemiology and pathogenesis: images of the future viewed through a mirror of the past. Virol Sin 2015; 30:326-43. [PMID: 26494479 PMCID: PMC8200867 DOI: 10.1007/s12250-015-3624-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/07/2015] [Indexed: 12/18/2022] Open
Abstract
Every year, millions of individuals throughout the world are seriously affected by dengue virus. The unavailability of a vaccine and of anti-viral drugs has made this mosquito-borne disease a serious health concern. Not only does dengue cause fatalities but it also has a profoundly negative economic impact. In recent decades, extensive research has been performed on epidemiology, vector biology, life cycle, pathogenesis, vaccine development and prevention. Although dengue research is still not at a stage to suggest definite hopes of a cure, encouraging significant advances have provided remarkable progress in the fight against infection. Recent developments indicate that both anti-viral drug and vaccine research should be pursued, in parallel with vector control programs.
Collapse
Affiliation(s)
- Rashedul Islam
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Mohammed Salahuddin
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Salahuddin Ayubi
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Tahmina Hossain
- Bio-Resources Technology and Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Apurba Majumder
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh
| | - Andrew W Taylor-Robinson
- School of Medical & Applied Sciences, Central Queensland University, Rockhampton, 4701, Australia
| | - Abdullah Mahmud-Al-Rafat
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, 9100, Bangladesh.
- Research and Development (R&D) Department, Incepta Vaccine Limited, Zirabo, Savar, Dhaka, 1341, Bangladesh.
| |
Collapse
|
16
|
Dayan GH, Galán-Herrera JF, Forrat R, Zambrano B, Bouckenooghe A, Harenberg A, Guy B, Lang J. Assessment of bivalent and tetravalent dengue vaccine formulations in flavivirus-naïve adults in Mexico. Hum Vaccin Immunother 2015; 10:2853-63. [PMID: 25483647 PMCID: PMC5443102 DOI: 10.4161/21645515.2014.972131] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several ChimeriVax-Dengue (CYD)-based vaccination strategies were investigated as potential alternatives to vaccination with tetravalent CYD vaccine (CYD-TDV) in this phase IIa trial conducted in 2008–9 in 150 healthy adults. Participants were randomized and vaccinated on D0 and D105 (± 15 days). One group received bivalent CYD vaccine against serotypes 1 and 3 (CYD-1;3) on day 0 and CYD-2;4 on day 105 (±15 days). Two groups received an injection at each timepoint of a tetravalent blend of CYD-1;3;4 and a VERO cell derived, live attenuated vaccine against serotype 2 (VDV-2), or the reference CYD-TDV. A fourth group received Japanese encephalitis (JE) vaccine on days -14, -7 and 0, followed by CYD-TDV on day 105. Viraemia was infrequent in all groups. CYD-4 viraemia was most frequent after tetravalent vaccination, while CYD-3 viraemia was most frequent after the first bivalent vaccination. Immunogenicity as assessed by 50% plaque reduction neutralisation test on D28 was comparable after the first injection of either tetravalent vaccine, and increased after the second injection, particularly with the blended CYD-1;3;4/ VDV-2 vaccine. In the bivalent vaccine group, immune response against serotype 3 was highest and the second injection elicited a low immune response against CYD 2 and 4. Immune responses after the first injection of CYD-TDV in the JE-primed group were in general higher than after the first injection in the other groups. All tested regimens were well tolerated without marked differences between groups. Bivalent vaccination showed no advantage in terms of immunogenicity. Clinical trial registration number: NCT00740155
Collapse
Key Words
- ADE, antibody-dependent enhancement
- AE, adverse event
- ALT, aspartate aminotransferase
- AST, alanine aminotransferase
- CBA, cytometric bead array
- CI, confidence interval
- CPK, creatine phosphokinase
- CYD-TDV, CYD tetravalent dengue vaccine
- GMT, geometric mean titres
- ICS, intracellular cytokine staining
- IFN, interferon
- JE, Japanese encephalitis
- Japanese encephalitis
- LLOQ, lower limit of quantitation
- MOI, multiplicity of infection
- MedDRA, medical dictionary for regulatory activities
- PBMC, peripheral blood mononuclear cells
- PFU, plaque forming unit
- PRNT, plaque reduction neutralization test
- RT-PCR, reverse transcriptase-polymerase chain reaction
- TCID, tissue culture infectious dose
- VDV, vero-cell adapted attenuated dengue vaccine
- YF, yellow fever
- dengue
- flavivirus
- immunogenicity
- safety
- vaccine
Collapse
Affiliation(s)
- Gustavo H Dayan
- a Research and Development Department ; Sanofi Pasteur ; Swiftwater , PA USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Dengue is the most prevalent mosquito-borne viral disease worldwide. Yet, there are no vaccines or specific antivirals available to prevent or treat the disease. Several dengue vaccines are currently in clinical or preclinical stages. The most advanced vaccine is the chimeric tetravalent CYD-TDV vaccine of Sanofi Pasteur. This vaccine has recently cleared Phase III, and efficacy results have been published. Excellent tetravalent seroconversion was seen, yet the protective efficacy against infection was surprisingly low. Here, we will describe the complicating factors involved in the generation of a safe and efficacious dengue vaccine. Furthermore, we will discuss the human antibody responses during infection, including the epitopes targeted in humans. Also, we will discuss the current understanding of the assays used to evaluate antibody response. We hope this review will aid future dengue vaccine development as well as fundamental research related to the phenomenon of antibody-dependent enhancement of dengue virus infection.
Collapse
Affiliation(s)
- Jacky Flipse
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Castilla V, Piccini LE, Damonte EB. Dengue virus entry and trafficking: perspectives as antiviral target for prevention and therapy. Future Virol 2015. [DOI: 10.2217/fvl.15.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT Dengue virus (DENV) is the etiological agent of the most important human viral infection transmitted by mosquitoes in the world. In spite of the serious health threat that dengue represents, at present there are no vaccine or antiviral agents available and treatment of patients consists of supportive therapy. This review will focus on the process of DENV entry into the host cell as a potential target for antiviral therapy. The recent advances in the knowledge of viral and cellular molecules and mechanisms involved in binding, internalization and trafficking of DENV into the host cell until virion uncoating are discussed, together with an overview of the strategies and compounds evaluated for development of antiviral agents targeted to DENV entry.
Collapse
Affiliation(s)
- Viviana Castilla
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Luana E Piccini
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, 1428 Buenos Aires, Argentina
| |
Collapse
|
19
|
Chawla S, Sahoo SS, Singh I, Verma M, Gupta V, Kumari S. Dengue vaccine: Come let's fight the menace. Hum Vaccin Immunother 2015; 11:474-6. [DOI: 10.4161/21645515.2014.981077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Ghosh A, Dar L. Dengue vaccines: Challenges, development, current status and prospects. Indian J Med Microbiol 2015; 33:3-15. [DOI: 10.4103/0255-0857.148369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Wei J, Chen H, An J. Recent progress in dengue vaccine development. Virol Sin 2014; 29:353-63. [PMID: 25547681 PMCID: PMC8206420 DOI: 10.1007/s12250-014-3542-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022] Open
Abstract
Dengue virus (DENV) has four distinct serotypes. DENV infection can result in classic dengue fever and life-threatening dengue hemorrhagic fever/dengue shock syndrome. In recent decades, DENV infection has become an important public health concern in epidemic-prone areas. Vaccination is the most effective measure to prevent and control viral infections. However, several challenges impede the development of effective DENV vaccines, such as the lack of suitable animal models and the antibody-dependent enhancement phenomenon. Although no licensed DENV vaccine is available, significant progress has been made. This review summarizes candidate DENV vaccines from recent investigations.
Collapse
Affiliation(s)
- Jianchun Wei
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Hui Chen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| |
Collapse
|
22
|
Abstract
Dengue virus (DENV) is a significant cause of morbidity and mortality in tropical and subtropical regions, causing hundreds of millions of infections each year. Infections range from asymptomatic to a self-limited febrile illness, dengue fever (DF), to the life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The expanding of the habitat of DENV-transmitting mosquitoes has resulted in dramatic increases in the number of cases over the past 50 years, and recent outbreaks have occurred in the United States. Developing a dengue vaccine is a global health priority. DENV vaccine development is challenging due to the existence of four serotypes of the virus (DENV1-4), which a vaccine must protect against. Additionally, the adaptive immune response to DENV may be both protective and pathogenic upon subsequent infection, and the precise features of protective versus pathogenic immune responses to DENV are unknown, complicating vaccine development. Numerous vaccine candidates, including live attenuated, inactivated, recombinant subunit, DNA, and viral vectored vaccines, are in various stages of clinical development, from preclinical to phase 3. This review will discuss the adaptive immune response to DENV, dengue vaccine challenges, animal models used to test dengue vaccine candidates, and historical and current dengue vaccine approaches.
Collapse
Affiliation(s)
- Lauren E Yauch
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Sujan Shresta
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
23
|
Acosta EG, Piccini LE, Talarico LB, Castilla V, Damonte EB. Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells. Virus Res 2014; 184:39-43. [DOI: 10.1016/j.virusres.2014.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/24/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
|
24
|
Abstract
Dengue is an expanding public health problem in the tropics and subtropical areas. Millions of people, most from resource-constrained countries, seek treatment every year for dengue-related disease. Despite more than 70 years of effort, a safe and efficacious vaccine remains unavailable. Antidengue antiviral drugs also do not exist despite attempts to develop or repurpose drug compounds. Gaps in the knowledge of dengue immunology, absence of a validated animal or human model of disease, and suboptimal assay platforms to measure immune responses following infection or experimental vaccination are obstacles to drug and vaccine development efforts. The limited success of one vaccine candidate in a recent clinical endpoint efficacy trial challenges commonly held beliefs regarding potential correlates of protection. If a dengue vaccine is to become a reality in the near term, vaccine developers should expand development pathway explorations beyond those typically required to demonstrate safety and efficacy.
Collapse
|
25
|
Humanized HLA-DR4 mice fed with the protozoan pathogen of oysters Perkinsus marinus (Dermo) do not develop noticeable pathology but elicit systemic immunity. PLoS One 2014; 9:e87435. [PMID: 24498105 PMCID: PMC3909113 DOI: 10.1371/journal.pone.0087435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 12/23/2013] [Indexed: 12/02/2022] Open
Abstract
Perkinsus marinus (Phylum Perkinsozoa) is a marine protozoan parasite responsible for “Dermo” disease in oysters, which has caused extensive damage to the shellfish industry and estuarine environment. The infection prevalence has been estimated in some areas to be as high as 100%, often causing death of infected oysters within 1–2 years post-infection. Human consumption of the parasites via infected oysters is thus likely to occur, but to our knowledge the effect of oral consumption of P. marinus has not been investigated in humans or other mammals. To address the question we used humanized mice expressing HLA-DR4 molecules and lacking expression of mouse MHC-class II molecules (DR4.EA0) in such a way that CD4 T cell responses are solely restricted by the human HLA-DR4 molecule. The DR4.EA0 mice did not develop diarrhea or any detectable pathology in the gastrointestinal tract or lungs following single or repeated feedings with live P. marinus parasites. Furthermore, lymphocyte populations in the gut associated lymphoid tissue and spleen were unaltered in the parasite-fed mice ruling out local or systemic inflammation. Notably, naïve DR4.EA0 mice had antibodies (IgM and IgG) reacting against P. marinus parasites whereas parasite specific T cell responses were undetectable. Feeding with P. marinus boosted the antibody responses and stimulated specific cellular (IFNγ) immunity to the oyster parasite. Our data indicate the ability of P. marinus parasites to induce systemic immunity in DR4.EA0 mice without causing noticeable pathology, and support rationale grounds for using genetically engineered P. marinus as a new oral vaccine platform to induce systemic immunity against infectious agents.
Collapse
|
26
|
Thisyakorn U, Thisyakorn C. Latest developments and future directions in dengue vaccines. THERAPEUTIC ADVANCES IN VACCINES 2014; 2:3-9. [PMID: 24757522 PMCID: PMC3991153 DOI: 10.1177/2051013613507862] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dengue is a mosquito-borne disease which is currently an expanding global health problem. The disease is caused by four closely related viruses, the dengue virus. There are no specific dengue therapeutics and prevention is currently limited to vector control measures. Development of an effective tetravalent dengue vaccine would therefore represent a major advance in the control of the disease and is considered a high public health priority. While a licensed dengue vaccine is not yet available, the scope and intensity of dengue vaccine development has increased dramatically in the last decade. The uniqueness of the dengue viruses and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on chimeric yellow fever dengue virus, has progressed to phase III efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA and purified inactivated vaccine candidates, are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and virus-like particle-based vaccines, are under evaluation in preclinical studies.
Collapse
Affiliation(s)
- Usa Thisyakorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, 1873 Rama IV Road, Bangkok 10330, Thailand
| | - Chule Thisyakorn
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Martínez-Betancur V, Marín-Villa M, Martínez-Gutierrez M. Infection of epithelial cells with dengue virus promotes the expression of proteins favoring the replication of certain viral strains. J Med Virol 2013; 86:1448-58. [PMID: 24374781 DOI: 10.1002/jmv.23857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2013] [Indexed: 11/12/2022]
Abstract
Dengue virus (DENV) is the causative agent of dengue and severe dengue. To understand better the dengue virus-host interaction, it is important to determine how the expression of cellular proteins is modified due to infection. Therefore, a comparison of protein expression was conducted in Vero cells infected with two different DENV strains, both serotype 2: DENV-2/NG (associated with dengue) and DENV-2/16681 (associated with severe dengue). The viability of the infected cells was determined, and neither strain induced cell death at 48 hr. In addition, the viral genomes and infectious viral particles were quantified, and the genome of the DENV-2/16681 strain was determined to have a higher replication rate compared with the DENV-2/NG strain. Finally, the proteins from infected and uninfected cultures were separated using two-dimensional gel electrophoresis, and the differentially expressed proteins were identified by mass spectrometry. Compared with the uninfected controls, the DENV-2/NG- and DENV-2/16681-infected cultures had five and six differentially expressed proteins, respectively. The most important results were observed when the infected cultures were compared to each other (DENV-2/NG vs. DENV-2/16681), and 18 differentially expressed proteins were identified. Based on their cellular functions, many of these proteins were linked to the increase in the replication efficiency of DENV. Among the proteins were calreticulin, acetyl coenzyme A, acetyl transferase, and fatty acid-binding protein. It was concluded that the infection of Vero cells with DENV-2/NG or DENV-2/16681 differentially modifies the expression of certain proteins, which can, in turn, facilitate infection.
Collapse
Affiliation(s)
- Viviana Martínez-Betancur
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Universidad de Antioquia, Medellin, Colombia
| | | | | |
Collapse
|
28
|
Nascimento EJM, Mailliard RB, Khan AM, Sidney J, Sette A, Guzman N, Paulaitis M, de Melo AB, Cordeiro MT, Gil LVG, Lemonnier F, Rinaldo C, August JT, Marques ETA. Identification of conserved and HLA promiscuous DENV3 T-cell epitopes. PLoS Negl Trop Dis 2013; 7:e2497. [PMID: 24130917 PMCID: PMC3794980 DOI: 10.1371/journal.pntd.0002497] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
Anti-dengue T-cell responses have been implicated in both protection and immunopathology. However, most of the T-cell studies for dengue include few epitopes, with limited knowledge of their inter-serotype variation and the breadth of their human leukocyte antigen (HLA) affinity. In order to expand our knowledge of HLA-restricted dengue epitopes, we screened T-cell responses against 477 overlapping peptides derived from structural and non-structural proteins of the dengue virus serotype 3 (DENV3) by use of HLA class I and II transgenic mice (TgM): A2, A24, B7, DR2, DR3 and DR4. TgM were inoculated with peptides pools and the T-cell immunogenic peptides were identified by ELISPOT. Nine HLA class I and 97 HLA class II novel DENV3 epitopes were identified based on immunogenicity in TgM and their HLA affinity was further confirmed by binding assays analysis. A subset of these epitopes activated memory T-cells from DENV3 immune volunteers and was also capable of priming naïve T-cells, ex vivo, from dengue IgG negative individuals. Analysis of inter- and intra-serotype variation of such an epitope (A02-restricted) allowed us to identify altered peptide ligands not only in DENV3 but also in other DENV serotypes. These studies also characterized the HLA promiscuity of 23 HLA class II epitopes bearing highly conserved sequences, six of which could bind to more than 10 different HLA molecules representing a large percentage of the global population. These epitope data are invaluable to investigate the role of T-cells in dengue immunity/pathogenesis and vaccine design. Although there is an increased recognition of the role of T-cells in both dengue pathogenesis and protection, comprehensive analysis of T-cell activation during dengue infection is hampered by the small repertoire of known human dengue T-cell epitopes. Although dengue serotype 3 (DENV3) is responsible for numerous outbreaks worldwide, most of the known epitopes are from studies of dengue 2 serotype (DENV2). In this study, we identified novel DENV3 T-cell epitopes in HLA transgenic mice that were confirmed by HLA binding assays. A subset of these epitopes activated memory T-cells from subjects who were dengue IgG positive and primed naïve T-cells from dengue IgG negative individuals. Notably, some of HLA class II epitopes bearing highly conserved regions common to all four dengue serotypes could bind to multiple HLAs. We postulate that these highly conserved and HLA promiscuous T-helper epitopes can be important components of a dengue tetravalent vaccine.
Collapse
Affiliation(s)
- Eduardo J. M. Nascimento
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (EJMN); , (ETAM)
| | - Robbie B. Mailliard
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Asif M. Khan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Perdana University Graduate School of Medicine, Serdang, Selangor Darul Ehsan, Malaysia
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Nicole Guzman
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Michael Paulaitis
- Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio, United States of America
| | - Andréa Barbosa de Melo
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Marli T. Cordeiro
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | - Laura V. G. Gil
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | - Charles Rinaldo
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ernesto T. A. Marques
- Department of Infectious Disease and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Virology and Experimental Therapy, CPqAM/FIOCRUZ, Recife, Pernambuco, Brazil
- * E-mail: (EJMN); , (ETAM)
| |
Collapse
|
29
|
Identifying protective dengue vaccines: Guide to mastering an empirical process. Vaccine 2013; 31:4501-7. [DOI: 10.1016/j.vaccine.2013.06.079] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/17/2013] [Accepted: 06/26/2013] [Indexed: 11/21/2022]
|
30
|
Wan SW, Lin CF, Wang S, Chen YH, Yeh TM, Liu HS, Anderson R, Lin YS. Current progress in dengue vaccines. J Biomed Sci 2013; 20:37. [PMID: 23758699 PMCID: PMC3686670 DOI: 10.1186/1423-0127-20-37] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/13/2013] [Indexed: 01/23/2023] Open
Abstract
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.
Collapse
Affiliation(s)
- Shu-Wen Wan
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 2012; 87:2693-706. [PMID: 23255803 DOI: 10.1128/jvi.02675-12] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4(+) and CD8(+) T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4(+) and 21 are CD8(+) T cell epitopes. We observe that whereas CD8(+) T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4(+) epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4(+) T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4(+) and CD8(+) T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.
Collapse
|
32
|
Abstract
The endemic area for dengue fever extends over 60 countries, and approximately 2.5 billion people are at risk of infection. The incidence of dengue has multiplied many times over the last five decades at an alarming rate. In the endemic areas, waves of infection occur in epidemics, with thousands of individuals affected, creating a huge burden on the limited resources of a country's health care system. While the illness passes off as a simple febrile episode in many, a few have a severe illness marked by hypovolemic shock and bleeding. Iatrogenic fluid overload in the management may further complicate the picture. In this severe form dengue can be fatal. Tackling the burden of dengue is impeded by several issues, including a lack of understanding about the exact pathophysiology of the infection, inability to successfully control the vector population, lack of specific therapy against the virus, and the technical difficulties in developing a vaccine. This review provides an overview on the epidemiology, natural history, management strategies, and future directions for research on dengue, including the potential for development of a vaccine.
Collapse
Affiliation(s)
- Senaka Rajapakse
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | | | | |
Collapse
|
33
|
Winkelmann ER, Widman DG, Xia J, Ishikawa T, Miller-Kittrell M, Nelson MH, Bourne N, Scholle F, Mason PW, Milligan GN. Intrinsic adjuvanting of a novel single-cycle flavivirus vaccine in the absence of type I interferon receptor signaling. Vaccine 2012; 30:1465-75. [PMID: 22226862 DOI: 10.1016/j.vaccine.2011.12.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 12/08/2011] [Accepted: 12/21/2011] [Indexed: 12/21/2022]
Abstract
Type I interferons (IFNs) are critical for controlling pathogenic virus infections and can enhance immune responses. Hence their impact on the effectiveness of live-attenuated vaccines involves a balance between limiting viral antigen expression and enhancing the development of adaptive immune responses. We examined the influence of type I IFNs on these parameters following immunization with RepliVAX WN, a single-cycle flavivirus vaccine (SCFV) against West Nile virus (WNV) disease. RepliVAX WN-immunized mice produced IFN-α and displayed increased IFN-stimulated gene transcription in draining lymph nodes (LN). SCFV gene expression was over 100 fold-higher on days 1-3 post-infection in type I IFN receptor knockout mice (IFNAR(-/-)) compared to wild-type (wt) mice indicating a profound IFN-mediated suppression of SCFV gene expression in the wt animals. IFNAR(-/-) mice produced nearly equivalent levels of WNV-specific serum IgG and WNV-specific CD4(+) T cell responses compared to wt mice. However, significantly higher numbers of WNV-specific CD8(+) T cells were produced by IFNAR(-/-) mice and a significantly greater percentage of these T cells from IFNAR(-/-) mice produced only IFN-γ following antigen-specific re-stimulation. This altered cytokine expression was not associated with increased antigen load suggesting the loss of type I IFN receptor signaling was responsible for the altered quality of the CD8(+) effector T cell response. Together, these results indicate that although type I IFN is not essential for the intrinsic adjuvanting of RepliVAX WN, it plays a role in shaping the cytokine secretion profiles of CD8(+) effector T cells elicited by this SCFV.
Collapse
|
34
|
Qiao M, Shaw D, Forrat R, Wartel-Tram A, Lang J. Priming effect of dengue and yellow fever vaccination on the immunogenicity, infectivity, and safety of a tetravalent dengue vaccine in humans. Am J Trop Med Hyg 2011; 85:724-31. [PMID: 21976579 DOI: 10.4269/ajtmh.2011.10-0436] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A dengue vaccine effective against all four serotypes is urgently needed. However, safety and immunogenicity could be affected by prior exposure to flaviviruses. This open, controlled, phase IIa study was conducted in 35 healthy adults who had received monovalent, live attenuated Vero cell-derived dengue vaccine against dengue virus 1 (VDV1) or 2 (VDV2) or yellow fever (YF) vaccine 1 year before or who were flavivirus-naïve. All participants received one subcutaneous injection of tetravalent dengue vaccine (TDV) and were followed for 180 days. Previous vaccination did not increase reactogenicity, laboratory abnormalities, or incidence of vaccine viremia, but it did increase the neutralizing antibody response to dengue virus that persisted at day 180. There was no increase in YF antibodies in participants previously immunized with YF vaccine. Prior exposure to YF or monovalent dengue vaccines had no adverse effects on the safety or incidence of viremia associated with this TDV, but it increased immunogenicity.
Collapse
Affiliation(s)
- Ming Qiao
- Microbiology and Infectious Diseases, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | | | |
Collapse
|
35
|
From research to phase III: Preclinical, industrial and clinical development of the Sanofi Pasteur tetravalent dengue vaccine. Vaccine 2011; 29:7229-41. [DOI: 10.1016/j.vaccine.2011.06.094] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/16/2011] [Accepted: 06/24/2011] [Indexed: 02/06/2023]
|
36
|
Coller BAG, Clements DE. Dengue vaccines: progress and challenges. Curr Opin Immunol 2011; 23:391-8. [PMID: 21514129 DOI: 10.1016/j.coi.2011.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
With several dengue vaccine candidates progressing through clinical trials, several options for controlling this disease appear feasible. This would represent a major achievement and reflect decades of research and development activities. The challenges associated with the limited understanding of protective responses and those factors which determine disease severity remain, but with prospective studies ongoing in various dengue endemic areas and the initiation of dengue vaccine efficacy trials, immune responses are being evaluated in the context of protection and severe disease and these studies are highly likely to provide additional insights.
Collapse
Affiliation(s)
- Beth-Ann G Coller
- Vaccines Research, WP17-2131, Merck and Company, 770 Sumneytown Pike, P.O. Box 4, West Point, PA 19486, United States.
| | | |
Collapse
|
37
|
Thomas SJ. The necessity and quandaries of dengue vaccine development. J Infect Dis 2011; 203:299-303. [PMID: 21208919 PMCID: PMC3071120 DOI: 10.1093/infdis/jiq060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 11/13/2022] Open
|
38
|
Kou Z, Lim JY, Beltramello M, Quinn M, Chen H, Liu SN, Martnez-Sobrido L, Diamond MS, Schlesinger JJ, de Silva A, Sallusto F, Jin X. Human antibodies against dengue enhance dengue viral infectivity without suppressing type I interferon secretion in primary human monocytes. Virology 2011; 410:240-7. [DOI: 10.1016/j.virol.2010.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/04/2010] [Accepted: 11/06/2010] [Indexed: 11/17/2022]
|
39
|
Balas C, Kennel A, Deauvieau F, Sodoyer R, Arnaud-Barbe N, Lang J, Guy B. Different innate signatures induced in human monocyte-derived dendritic cells by wild-type dengue 3 virus, attenuated but reactogenic dengue 3 vaccine virus, or attenuated nonreactogenic dengue 1-4 vaccine virus strains. J Infect Dis 2011; 203:103-8. [PMID: 21148502 PMCID: PMC3086443 DOI: 10.1093/infdis/jiq022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/01/2010] [Indexed: 11/15/2022] Open
Abstract
DNA microarrays were used to assess the innate gene signature in human myeloid dendritic cells infected with chimeric dengue 1-4 vaccines, a wild-type dengue 3 virus, or a classically attenuated serotype 3 vaccine shown to be reactogenic in humans. We observed a very reproducible signature for each of the 4 chimeric dengue vaccines, involving stimulation of type I interferon and associated genes, together with genes encoding chemokines and other mediators involved in the initiation of adaptive responses. In contrast, wild-typeDEN3 virus induced a predominantly inflammatory profile, while the reactogenic attenuated serotype 3 vaccine appeared to induce a blunted response.
Collapse
Affiliation(s)
- Claire Balas
- Research and Development, Sanofi Pasteur, 69280, Marcy l'Étoile, France
| | - Audrey Kennel
- Research and Development, Sanofi Pasteur, 69280, Marcy l'Étoile, France
| | | | - Regis Sodoyer
- Research and Development, Sanofi Pasteur, 69280, Marcy l'Étoile, France
| | | | - Jean Lang
- Research and Development, Sanofi Pasteur, 69280, Marcy l'Étoile, France
| | - Bruno Guy
- Research and Development, Sanofi Pasteur, 69280, Marcy l'Étoile, France
| |
Collapse
|
40
|
|
41
|
Jin X, Block OT, Rose R, Schlesinger J. Dengue vaccine development and dengue viral neutralization and enhancement assays. Antivir Ther 2009; 14:739-49. [PMID: 19812436 DOI: 10.3851/imp1288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Dengue fever is a major tropical infectious disease that affects 50-100 million people each year. Its complications, namely dengue haemorrhagic fever and dengue shock syndrome, disproportionately afflict children and young adults. The primary goal of several vaccines now in development is to elicit protective neutralizing antibody responses; however, the exact definition of such responses remain unclear. Here, we review briefly the historical aspects of dengue vaccine development and current candidate dengue vaccines, and discuss various laboratory assays for gauging the neutralizing antibody responses to infection or vaccination, or both. We conclude that modification of current neutralization assays is required to improve the correlation between neutralization end point determinations and protection against secondary heterotypic dengue infections.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | | | | | | |
Collapse
|
42
|
Thomas SJ, Hombach J, Barrett A. Scientific consultation on cell mediated immunity (CMI) in dengue and dengue vaccine development. Vaccine 2008; 27:355-68. [PMID: 19022321 DOI: 10.1016/j.vaccine.2008.10.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
Dengue is a re-emerging arboviral disease of great public health importance. Limited understanding of protective immune responses against dengue has hampered advancement of dengue vaccine candidates. Demonstrating an immunological correlate of protection has been limited to associating quantitative neutralizing antibody titers with clinical outcomes following infection. There have been a number of studies investigating the role of cell mediated immunity (CMI) in natural infections and these have demonstrated roles in both virus clearance and potentiating disease. Vaccine developers have extended the exploratory study of CMI in natural infection to the study of dengue vaccine recipients. Primary infections and monovalent vaccine administration generates dengue type-specific T-cell responses. Secondary infection, vaccination of flavivirus primed individuals, or administration of multivalent vaccine candidates results in broad, cross-reactive T-cell responses, similar to the broadening of antibody patterns. However, the precise function of CMI in protection or disease pathology remains ill-defined and, at present, there is no evidence to suggest that CMI can be utilized as a correlate of protection. Nonetheless, the study of CMI in natural infection and following vaccine administration should continue in an attempt to improve the understanding of dengue immunopathology, vaccine candidate immunogenicity, and potential correlates of protection.
Collapse
Affiliation(s)
- Stephen J Thomas
- Department of Virology, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok 10400, Thailand.
| | | | | |
Collapse
|
43
|
Cell-mediated immunity induced by chimeric tetravalent dengue vaccine in naive or flavivirus-primed subjects. Vaccine 2008; 26:5712-21. [PMID: 18762226 DOI: 10.1016/j.vaccine.2008.08.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/11/2008] [Accepted: 08/11/2008] [Indexed: 11/24/2022]
Abstract
Three independent, phase 1 clinical trials were conducted in Australia and in USA to assess the safety and immunogenicity of sanofi pasteur dengue vaccine candidates. In this context, Dengue 1-4 and Yellow Fever 17D-204 (YF 17D)-specific CD4 and CD8 cellular responses induced by tetravalent chimeric dengue vaccines (CYD) were analyzed in flavivirus-naive or flavivirus-immune patients. Tetravalent CYD vaccine did not trigger detectable changes in serum pro-inflammatory cytokines, whatever the vaccinees immune status, while inducing significant YF 17D NS3-specific CD8 responses and dengue serotype-specific T helper responses. These responses were dominated by serotype 4 in naive individuals, but a booster vaccination (dose #2) performed 4 months following dose #1 broadened serotype-specific responses. A similar, broader response was seen after primary tetravalent immunization in subjects with pre-existing dengue 1 or 2 immunity caused by prior monovalent live-attenuated dengue vaccination. In all three trials, the profile of induced response was similar, whatever the subjects' immune status, i.e. an absence of Th2 response, and an IFN-gamma/TNF-alpha ratio dominated by IFN-gamma, for both CD4 and CD8 responses. Our results also showed an absence of cross-reactivity between YF 17D or Dengue NS3-specific CD8 responses, and allowed the identification of 3 new CD8 epitopes in the YF 17D NS3 antigen. These data are consistent with the previously demonstrated excellent safety of these dengue vaccines in flavivirus-naive and primed individuals.
Collapse
|
44
|
Jin X. Cellular and molecular basis of antibody-dependent enhancement in human dengue pathogenesis. Future Virol 2008. [DOI: 10.2217/17460794.3.4.343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dengue fever is gaining increased attention as a major global health problem. It occurs annually in 50–100 million people in more than 100 countries, and places half a million people at risk of life-threatening diseases: dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS). The pathogenic mechanisms causing DHF/DSS are not clearly understood. This article reviews cellular and molecular mechanisms that might be responsible for the initiation of the pathogenic processes, including hypotheses for DHF/DSS, dengue-permissive target cells, putative dengue receptors, neutralizing and enhancing antibodies to dengue virus, mechanisms of vascular plasma leakage, innate immune response in dengue infection and antibody-dependent enhancement of dengue infection. While reviewing the literature, the article also gives the author’s opinion on perceived areas of importance for future research in human dengue pathogenesis.
Collapse
Affiliation(s)
- Xia Jin
- Department of Medicine, Infectious Diseases Division, University of Rochester Medical Center, 601 Elmwood Avenue, Box 689, Room 3-5103, Rochester, NY 14642, USA
| |
Collapse
|
45
|
Guy B, Almond JW. Towards a dengue vaccine: Progress to date and remaining challenges. Comp Immunol Microbiol Infect Dis 2008; 31:239-52. [PMID: 17889365 DOI: 10.1016/j.cimid.2007.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/30/2022]
Abstract
The increased incidence and extended geographical reach of Dengue virus over the past two decades have made the development of an effective vaccine an international urgency. Various strategies are being pursued, including live, vectored and killed/recombinant preparations. For all approaches, the challenge is to induce a broad durable immune response against all four serotypes of Dengue virus simultaneously whilst avoiding the possible exacerbation of risk of developing the severe forms of disease through incomplete or modified responses. This review presents the current state of knowledge and discusses the challenges of further clinical development.
Collapse
Affiliation(s)
- Bruno Guy
- Sanofi pasteur, 1541 Avenue Marcel Merieux, 69280 Marcy L'Etoile, France
| | | |
Collapse
|
46
|
Bernardo L, Hermida L, Martin J, Alvarez M, Prado I, López C, Martínez R, Rodríguez-Roche R, Zulueta A, Lazo L, Rosario D, Guillén G, Guzmán MG. Anamnestic antibody response after viral challenge in monkeys immunized with dengue 2 recombinant fusion proteins. Arch Virol 2008; 153:849-54. [PMID: 18299795 DOI: 10.1007/s00705-008-0050-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/14/2007] [Indexed: 12/30/2022]
Abstract
The suitability of dengue 2 envelope domain III recombinant fusion proteins [(fusion (PD5) and insertion (PD3) variants)] for inducing functional antibodies and a protective immune response in nonhuman primates has been reported. However, the evaluation of the antibody response after immunization did not correlate with the protection data as measured by viremia detection. Here, we characterized the anamnestic immune response after viral challenge in monkeys immunized with the dengue 2 recombinant proteins in an attempt to define correlates of protection useful for vaccine studies. Monkeys immunized with PD5 (most protected group) exhibited an earlier increase in the anti-DENV-2 IgM response after challenge compared to control animals. Hemagglutination-inhibiting (HAI) antibodies were increased significantly earlier in PD5-immunized animals compared to those immunized with PD3. The fully protected monkeys showed the earliest HAI antibody response. These results underline the usefulness of the anamnestic antibody response for supporting protection data. The induction of an early HAI and IgM antibody response after challenge suggest a protective role against dengue virus (DENV) infection in monkeys, supporting their use as correlates of protection in vaccine studies.
Collapse
Affiliation(s)
- Lidice Bernardo
- PAHO/WHO Collaborating Center for Viral Diseases, Department of Virology, Pedro Kourí Tropical Medicine Institute IPK, Autopista Novia del Mediodía, km 6 1/2, PO Box 601, Marianao 13, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol 2007; 5:518-28. [PMID: 17558424 DOI: 10.1038/nrmicro1690] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of cases of severe dengue disease continues to grow in endemic areas of southeast Asia, Central and South America, and other subtropical regions. Children bear the greatest burden of disease, and the development of an effective vaccine remains a global public health priority. A tetravalent vaccine is urgently needed and must be effective against all four dengue virus serotypes, be cost-effective and provide long-term protection. In this Review we discuss the unique immunological concerns in dengue virus vaccine development and the current prospects for the development of an acceptable vaccine, a goal that is likely to be reached in the near future.
Collapse
Affiliation(s)
- Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
49
|
Abstract
The spread of dengue virus (DV) via its Aedes mosquito vector throughout most of the tropics has led to a worldwide resurgence of epidemic dengue, including dengue hemorrhagic fever. For the first time in 60 years, the pipeline of dengue vaccines looks promising. Strains of each of the 4 DV serotypes, attenuated by passage in tissue culture or by recombinant DNA technology, have been formulated into tetravalent vaccines and have entered successful phase 1 and 2 clinical trials in the United States and Southeast Asia. Antibody-dependent enhancement of wild-type DV infections by the vaccine represents a unique safety issue, which is under investigation. The Pediatric Dengue Vaccine Initiative (funded by the Bill and Melinda Gates Foundation), the World Health Organization, industry, the US military, and governments of tropical countries are collaborating to accelerate dengue vaccine development and phase 3 vaccine efficacy trials in countries where dengue is endemic. A protective tetravalent vaccine must be licensed soon if dengue is to be brought under control.
Collapse
Affiliation(s)
- Robert Edelman
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
50
|
White LJ, Parsons MM, Whitmore AC, Williams BM, de Silva A, Johnston RE. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 2007; 81:10329-39. [PMID: 17652394 PMCID: PMC2045445 DOI: 10.1128/jvi.00512-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate pediatric dengue virus (DENV) vaccine based on nonpropagating Venezuelan equine encephalitis virus replicon particles (VRP) was tested for immunogenicity and protective efficacy in weanling mice in the presence and absence of potentially interfering maternal antibodies. A gene cassette encoding envelope proteins prM and E from mouse-adapted DENV type 2 (DENV2) strain NGC was cloned into a VEE replicon vector and packaged into VRP, which programmed proper in vitro expression and processing of DENV2 envelope proteins upon infection of Vero cells. Primary immunization of 3-week-old weanling BALB/c mice in the footpad with DENV2 VRP resulted in high levels of DENV-specific serum immunoglobulin G antibodies and significant titers of neutralizing antibodies in all vaccinates. A booster immunization 12 weeks after the prime immunization resulted in increased neutralizing antibodies that were sustained for at least 30 weeks. Immunization at a range of doses of DENV2 VRP protected mice from an otherwise-lethal intracranial DENV2 challenge. To model vaccination in the presence of maternal antibodies, weanling pups born to DENV2-immune or DENV2-naïve dams were immunized with either DENV2 VRP or live DENV2 given peripherally. The DENV2 VRP vaccine induced neutralizing-antibody responses in young mice regardless of the maternal immune status. In contrast, live-DENV2 vaccination performed poorly in the presence of preexisting anti-DENV2 antibodies. This study demonstrates the feasibility of a VRP vaccine approach as an early-life DENV vaccine in populations with high levels of circulating DENV antibodies and suggests the utility of VRP-based vaccines in other instances where maternal antibodies make early vaccination problematic.
Collapse
Affiliation(s)
- Laura J White
- Carolina Vaccine Institute, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB 7292, 99 Manning Drive, 9029 Burnett-Womack, Chapel Hill, NC 27599-7292, USA.
| | | | | | | | | | | |
Collapse
|