1
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
2
|
Zhou AC, Wagar LE, Wortzman ME, Watts TH. Intrinsic 4-1BB signals are indispensable for the establishment of an influenza-specific tissue-resident memory CD8 T-cell population in the lung. Mucosal Immunol 2017; 10:1294-1309. [PMID: 28051085 DOI: 10.1038/mi.2016.124] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023]
Abstract
The induction of long-lived heterotypic T-cell protection against influenza virus remains elusive, despite the conservation of T-cell epitopes. T-cell protection against influenza is critically dependent on lung-resident memory T cells (Trm). Here we show that intranasal administration of 4-1BBL along with influenza nucleoprotein in a replication-defective adenovirus vector to influenza pre-immune mice induces a remarkably stable circulating effector memory CD8 T-cell population characterized by higher IL-7Rα expression than control-boosted T cells, as well as a substantial lung parenchymal CD69+ CD8 Trm population, including both CD103+ and CD103- cells. These T-cell responses persist to greater than 200 days post-boost and protect against lethal influenza challenge in aged (year old) mice. The expansion of the nucleoprotein-specific CD8 Trm population during boosting involves recruitment of circulating antigen-specific cells and is critically dependent on local rather than systemic administration of 4-1BBL as well as on 4-1BB on the CD8 T cells. Moreover, during primary influenza infection of mixed bone marrow chimeras, 4-1BB-deficient T cells fail to contribute to the lung-resident Trm population. These findings establish both endogenous and supraphysiological 4-1BBL as a critical regulator of lung-resident memory CD8 T cells during influenza infection.
Collapse
Affiliation(s)
- A C Zhou
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - L E Wagar
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - M E Wortzman
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - T H Watts
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Macdonald DC, Hotblack A, Akbar S, Britton G, Collins MK, Rosenberg WC. 4-1BB ligand activates bystander dendritic cells to enhance immunization in trans. THE JOURNAL OF IMMUNOLOGY 2014; 193:5056-64. [PMID: 25305314 DOI: 10.4049/jimmunol.1301723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expression of the costimulatory receptor 4-1BB is induced by TCR recognition of Ag, whereas 4-1BB ligand (4-1BBL) is highly expressed on activated APC. 4-1BB signaling is particularly important for survival of activated and memory CD8(+) T cells. We wished to test whether coexpression of Ag and 4-1BBL by dendritic cells (DC) would be an effective vaccine strategy. Therefore, we constructed lentiviral vectors (LV) coexpressing 4-1BBL and influenza nucleoprotein (NP). Following s.c. immunization of mice, which targets DC, we found superior CD8(+) T cell responses against NP and protection from influenza when 4-1BBL was expressed. However, functionally superior CD8(+) T cell responses were obtained when two LV were coinjected: one expressing 4-1BBL and the other expressing NP. This surprising result suggested that 4-1BBL is more effective when expressed in trans, acting on adjacent DC. Therefore, we investigated the effect of LV expression of 4-1BBL in mouse DC cultures and observed induced maturation of bystander, untransduced cells. Maturation was blocked by anti-4-1BBL Ab, required cell-cell contact, and did not require the cytoplasmic signaling domain of 4-1BBL. Greater maturation of untransduced cells could be explained by LV expression of 4-1BBL, causing downregulation of 4-1BB. These data suggest that coexpression of 4-1BBL and Ag by vaccine vectors that target DC may not be an optimal strategy. However, 4-1BBL LV immunization activates significant numbers of bystander DC in the draining lymph nodes. Therefore, transactivation by 4-1BBL/4-1BB interaction following DC-DC contact may play a role in the immune response to infection or vaccination.
Collapse
Affiliation(s)
- Douglas C Macdonald
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Alastair Hotblack
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Saniath Akbar
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Gary Britton
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom
| | - Mary K Collins
- Division of Infection and Immunity, University College London, London WC1E 6BT, United Kingdom; National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertsfordshire EN6 3QG, United Kingdom; and
| | - William C Rosenberg
- Division of Medicine, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
Jackson RJ, Worley M, Trivedi S, Ranasinghe C. Novel HIV IL-4R antagonist vaccine strategy can induce both high avidity CD8 T and B cell immunity with greater protective efficacy. Vaccine 2014; 32:5703-14. [PMID: 25151041 DOI: 10.1016/j.vaccine.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 12/18/2022]
Abstract
We have established that the efficacy of a heterologous poxvirus vectored HIV vaccine, fowlpox virus (FPV)-HIV gag/pol prime followed by attenuated vaccinia virus (VV)-HIV gag/pol booster immunisation, is strongly influenced by the cytokine milieu at the priming vaccination site, with endogenous IL-13 detrimental to the quality of the HIV specific CD8+ T cell response induced. We have now developed a novel HIV vaccine that co-expresses a C-terminal deletion mutant of the mouse IL-4, deleted for the essential tyrosine (Y119) required for signalling. In our vaccine system, the mutant IL-4C118 can bind to IL-4 type I and II receptors with high affinity, and transiently prevent the signalling of both IL-4 and IL-13 at the vaccination site. When this IL-4C118 adjuvanted vaccine was used in an intranasal rFPV/intramuscular rVV prime-boost immunisation strategy, greatly enhanced mucosal/systemic HIV specific CD8+ T cells with higher functional avidity, expressing IFN-γ, TNF-α and IL-2 and greater protective efficacy were detected. Surprisingly, the IL-4C118 adjuvanted vaccines also induced robust long-lived HIV gag-specific serum antibody responses, specifically IgG1 and IgG2a. The p55-gag IgG2a responses induced were of a higher magnitude relative to the IL-13Rα2 adjuvant vaccine. More interestingly, our recently tested IL-13Rα2 adjuvanted vaccine which only inhibited IL-13 activity, even though induced excellent high avidity HIV-specific CD8+ T cells, had a detrimental impact on the induction of gag-specific IgG2a antibody immunity. Our observations suggest that (i) IL-4 cell-signalling in the absence of IL-13 retarded gag-specific antibody isotype class switching, or (ii) IL-13Rα2 signalling was involved in inducing good gag-specific B cell immunity. Thus, we believe our novel IL-4R antagonist adjuvant strategy offers great promise not only for HIV-1 vaccines, but also against a range of chronic infections where sustained high quality mucosal and systemic T and B cell immunity are required for protection.
Collapse
Affiliation(s)
- Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Matthew Worley
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Shubhanshi Trivedi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
5
|
Spencer AJ, Furze J, Honeycutt JD, Calvert A, Saurya S, Colloca S, Wyllie DH, Gilbert SC, Bregu M, Cottingham MG, Hill AVS. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques. PLoS One 2014; 9:e105520. [PMID: 25140889 PMCID: PMC4139357 DOI: 10.1371/journal.pone.0105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expression of 4-1BBL, together with our model antigen TIP, was shown to increase the frequency of murine antigen-specific IFN-γ secreting CD8(+) T cells in three vector platforms examined. Enhancement of the response was not limited by co-expression with the antigen, as an increase in CD8(+) immunogenicity was also observed by co-administration of two vectors each expressing only the antigen or adjuvant. However, when this regimen was tested in non-human primates using a clinical malaria vaccine candidate, no adjuvant effect of 4-1BBL was observed limiting its potential use as a single adjuvant for translation into a clinical vaccine.
Collapse
Affiliation(s)
| | - Julie Furze
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Alice Calvert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Saroj Saurya
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David H. Wyllie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Migena Bregu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
6
|
Ranasinghe C, Ramshaw IA. Genetic heterologous prime–boost vaccination strategies for improved systemic and mucosal immunity. Expert Rev Vaccines 2014; 8:1171-81. [DOI: 10.1586/erv.09.86] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
TNF and TNF receptor superfamily members in HIV infection: new cellular targets for therapy? Mediators Inflamm 2013; 2013:484378. [PMID: 24453421 PMCID: PMC3880767 DOI: 10.1155/2013/484378] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/24/2013] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor (TNF) and TNF receptors (TNFR) superfamily members are engaged in diverse cellular phenomena such as cellular proliferation, morphogenesis, apoptosis, inflammation, and immune regulation. Their role in regulating viral infections has been well documented. Viruses have evolved with numerous strategies to interfere with TNF-mediated signaling indicating the importance of TNF and TNFR superfamily in viral pathogenesis. Recent research reports suggest that TNF and TNFRs play an important role in the pathogenesis of HIV. TNFR signaling modulates HIV replication and HIV proteins interfere with TNF/TNFR pathways. Since immune activation and inflammation are the hallmark of HIV infection, the use of TNF inhibitors can have significant impact on HIV disease progression. In this review, we will describe how HIV infection is modulated by signaling mediated through members of TNF and TNFR superfamily and in turn how these latter could be targeted by HIV proteins. Finally, we will discuss the emerging therapeutics options based on modulation of TNF activity that could ultimately lead to the cure of HIV-infected patients.
Collapse
|
8
|
Unique IL-13Rα2-based HIV-1 vaccine strategy to enhance mucosal immunity, CD8(+) T-cell avidity and protective immunity. Mucosal Immunol 2013; 6:1068-80. [PMID: 23403475 DOI: 10.1038/mi.2013.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/18/2012] [Indexed: 02/04/2023]
Abstract
We have established that mucosal immunization can generate high-avidity human immunodeficiency virus (HIV)-specific CD8(+) T cells compared with systemic immunization, and interleukin (IL)-13 is detrimental to the functional avidity of these T cells. We have now constructed two unique recombinant HIV-1 vaccines that co-express soluble or membrane-bound forms of the IL-13 receptor α2 (IL-13Rα2), which can "transiently" block IL-13 activity at the vaccination site causing wild-type animals to behave similar to an IL-13 KO animal. Following intranasal/intramuscular prime-boost immunization, these IL-13Rα2-adjuvanted vaccines have shown to induce (i) enhanced HIV-specific CD8(+) T cells with higher functional avidity, with broader cytokine/chemokine profiles and greater protective immunity using a surrogate mucosal HIV-1 challenge, and also (ii) excellent multifunctional mucosal CD8(+) T-cell responses, in the lung, genito-rectal nodes (GN), and Peyer's patch (PP). Data revealed that intranasal delivery of these IL-13Rα2-adjuvanted HIV vaccines recruited large numbers of unique antigen-presenting cell subsets to the lung mucosae, ultimately promoting the induction of high-avidity CD8(+) T cells. We believe our novel IL-13R cytokine trap vaccine strategy offers great promise for not only HIV-1, but also as a platform technology against range of chronic infections that require strong sustained high-avidity mucosal/systemic immunity for protection.
Collapse
|
9
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
10
|
Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555-67. [DOI: 10.1002/eji.201243071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven; CT; USA
| | | |
Collapse
|
11
|
Zhao Y, Tahiliani V, Salek-Ardakani S, Croft M. Targeting 4-1BB (CD137) to enhance CD8 T cell responses with poxviruses and viral antigens. Front Immunol 2012; 3:332. [PMID: 23162550 PMCID: PMC3492829 DOI: 10.3389/fimmu.2012.00332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 10/19/2012] [Indexed: 11/13/2022] Open
Abstract
Attenuated vaccinia virus (VACV) vectors are considered prime vaccine candidates for use in immunotherapy of infectious disease. In spite of this, recent data show that the level of attenuation may hamper the efficient generation of protective CD8 T cells. This suggests that additional adjuvant-like activities may need to be combined with attenuated VACV for optimal vaccination. Stimulatory reagents to the TNFR family molecule 4-1BB (CD137) may represent such an adjuvant for vaccination. Previous murine studies have found that 4-1BB can participate in optimal priming of effector and memory CD8 T cells in response to several virus infections, and concordantly direct stimulation of 4-1BB with agonist reagents effectively boosts the CD8 T cell response against those viruses. In contrast, we recently reported that 4-1BB plays no role in the response to a virulent strain of VACV, questioning whether agonists of 4-1BB will be useful adjuvants for vaccination with VACV vectors. Here we show that agonist anti-4-1BB strongly enhanced the primary viral-specific effector CD8 T cell response during infection with live virulent VACV and attenuated VACV, and during immunization with VACV peptides given in IFA. However, accumulation of memory CD8 T cells was enhanced only following infection with virulent VACV or with peptide vaccination, but not with attenuated VACV, correlating in part with more transient expression of 4-1BB on CD8 T cells with attenuated virus. Our data therefore suggest that 4-1BB may be a promising candidate for targeting as an adjuvant for short-term enhancement of CD8 T cell responses with VACV vaccine strategies, but additional receptors may need to be engaged with 4-1BB to allow long-term CD8 T cell immunity with attenuated VACV vectors.
Collapse
Affiliation(s)
- Yuan Zhao
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology La Jolla, CA, USA
| | | | | | | |
Collapse
|
12
|
Xi Y, Day SL, Jackson RJ, Ranasinghe C. Role of novel type I interferon epsilon in viral infection and mucosal immunity. Mucosal Immunol 2012; 5:610-22. [PMID: 22617838 PMCID: PMC3481022 DOI: 10.1038/mi.2012.35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 04/03/2012] [Indexed: 02/04/2023]
Abstract
Intranasal infection with vaccinia virus co-expressing interferon epsilon (VV-HIV-IFN-ε) was used to evaluate the role of IFN-ε in mucosal immunity. VV-HIV- IFN-ε infection induced a rapid VV clearance in lung that correlated with (i) an elevated lung VV-specific CD8(+)CD107a(+)IFN-γ(+) population expressing activation markers CD69/CD103, (ii) enhanced lymphocyte recruitment to lung alveoli with reduced inflammation, and (iii) an heightened functional/cytotoxic CD8(+)CD4(+) T-cell subset (CD3(hi)CCR7(hi)CD62L(lo)) in lung lymph nodes. These responses were different to that observed with intranasal VV-HA-IFN-α(4) or VV-HA-IFN-β infections. When IFN-ε was used in an intranasal/intramuscular heterologous HIV prime-boost immunization, elevated HIV-specific effector, but not memory CD8(+)T cells responses, were observed in spleen, genito-rectal nodes, and Peyer's patch. Homing marker α4β7 and CCR9 analysis indicated that unlike other type I IFNs, IFN-ε could promote migration of antigen-specific CD8(+)T cells to the gut. Our results indicate that IFN-ε has a unique role in the mucosae and most likely can be used to control local lung and/or gut infections (i.e., microbicide) such as tuberculosis, HIV-1, or sexually transmitted diseases.
Collapse
Affiliation(s)
- Yang Xi
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Ronald J Jackson
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Charani Ranasinghe
- Molecular Mucosal Vaccine Immunology Group, Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
|
14
|
Bassett JD, Swift SL, Bramson JL. Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines 2012; 10:1307-19. [PMID: 21919620 DOI: 10.1586/erv.11.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation of adenoviral antigens. Although we are beginning to learn more about the factors that control the maintenance and functionality of memory CD8(+) T cells, we do not yet fully understand what comprises a protective CD8(+) T-cell response. Results from upcoming Phase II clinical trials will be important for determining whether rHuAd5 T-cell vaccines are effective in humans and should help identify correlates of CD8(+) T-cell protection.
Collapse
Affiliation(s)
- Jennifer D Bassett
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Room MDCL-5071, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | |
Collapse
|
15
|
Lee SW, Croft M. 4-1BB as a therapeutic target for human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:120-9. [PMID: 19760070 DOI: 10.1007/978-0-387-89520-8_8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
4-1BB (CD137) is being thought of as an attractive target for immunotherapy of many human immune diseases based on encouraging results with 4-1BB agonistic antibody treatment in mouse models of cancer, autoimmune disease, asthma and additionally as a means to improve vaccination. In this review, we will summarize the results of basic research on 4-1BB and 4-1BB immunotherapy of disease and provide some potential mechanistic insights into the many stimulatory and regulatory functions of 4-1BB.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Molecular Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California, 92037, USA
| | | |
Collapse
|
16
|
Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010; 30:205-18. [PMID: 20377415 PMCID: PMC3001890 DOI: 10.1089/jir.2010.0026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD8 memory T cells can play a critical role in protection against repeated exposure to infectious agents such as viruses, yet can also contribute to the immunopathology associated with these pathogens. Understanding the mechanisms that control effective memory responses has important ramifications for vaccine design and in the management of adverse immune reactions. Recent studies have implicated several members of the tumor necrosis factor receptor (TNFR) family as key stimulatory and inhibitory molecules involved in the regulation of CD8 T cells. In this review, we discuss their control of the generation, persistence, and reactivation of CD8 T cells during virus infection.
Collapse
Affiliation(s)
- Shahram Salek-Ardakani
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | |
Collapse
|
17
|
Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine 2009; 28:1300-9. [PMID: 19944789 DOI: 10.1016/j.vaccine.2009.11.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/21/2022]
Abstract
Plasmid DNA immunizations induce low levels but a broad spectrum of cellular and humoral immune responses. Here, we investigate the potential of co-stimulation through 4-1BB as an adjuvant for a HIV-1 DNA vaccine in mice. We designed plasmid DNAs expressing either the membrane bound or soluble form of 4-1BBL, and compared with the agonistic anti-4-1BB Ab for their ability to adjuvant the Gag DNA vaccine. Both, anti-4-1BB agonistic Ab as well as 4-1BBL DNA enhanced the Gag-specific cellular immune responses. However, in complete contrast to the agonistic Ab that suppressed humoral immunity to Gag, 4-1BBL DNA adjuvanted vaccines enhanced Gag-specific IgG responses. Importantly, the expression of Gag and 4-1BBL from the same plasmid was critical for the adjuvant activity. Collectively, our data suggest that for a HIV-1 vaccine where both antigen-specific cellular and humoral immunity are desirable, 4-1BBL expressed by a DNA vaccine is a superior adjuvant than anti-4-1BB agonistic Ab.
Collapse
|
18
|
Kassu A, D’Souza M, O'Connor BP, Kelly-McKnight E, Akkina R, Fontenot AP, Palmer BE. Decreased 4-1BB expression on HIV-specific CD4+ T cells is associated with sustained viral replication and reduced IL-2 production. Clin Immunol 2009; 132:234-45. [PMID: 19406689 PMCID: PMC2761838 DOI: 10.1016/j.clim.2009.03.531] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 11/29/2022]
Abstract
CD4+ T cell dysfunction in subjects with chronic HIV infection is in part due to an imbalance of costimulatory and coinhibitory receptors. We report that virus-specific CD4+ T cells expressing 4-1BB (CD137) or OX40 (CD134) produced more IL-2 than cells lacking these costimulatory receptors (P<0.05) and that 4-1BB was expressed at a lower level on HIV- than CMV-specific IFN-gamma and IL-2 producing CD4+ T cells (P<0.0001 and P<0.01, respectively). Suppression of viral replication with antiretroviral therapy was associated with increased 4-1BB expression on HIV- and CMV-specific IL-2 producing CD4+ T cells (P<0.05 and P<0.01, respectively) and the percentage of IL-2 producing HIV-specific CD4+ T cells that expressed 4-1BB was inversely correlated with HIV plasma viral load (r=-0.75, P=0.007). These findings indicate that the loss of 4-1BB on HIV-specific CD4+ T cells is associated with viral replication and that it may contribute to reduced IL-2 production observed during chronic infection.
Collapse
Affiliation(s)
- Afework Kassu
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Michelle D’Souza
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Brian P. O'Connor
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Elizabeth Kelly-McKnight
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew P. Fontenot
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| | - Brent E. Palmer
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Box B164, 12700 E 19 Ave, Aurora, CO 80045, USA
| |
Collapse
|
19
|
Ye JX, Zhang YT, Zhang XG, Ren DM, Chen WC. Recombinant attenuated Salmonella harboring 4-1BB ligand gene enhances cellular immunity. Vaccine 2009; 27:1717-23. [PMID: 19187795 DOI: 10.1016/j.vaccine.2009.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To transfect antigen presenting cells (APCs) with 4-1BB ligand DNA by attenuated Salmonella enterica serovar Typhimurium in vivo, and to observe the effects of ectogenous 4-1BBL on the immune functions of infected rats. METHODS Attenuated Salmonella typhimurium (vaccine strain) carrying plasmids pIRES2-EGFP-4-1BBL was constructed and used to infect HepG2 hepatoma cells. The expression of reporter gene, green fluorescent protein (GFP) and rat 4-1BBL in the transfected cells was detected by double-immunofluorescence staining. Rats were fed with the recombinant bacteria intragastrically on three occasions in 2 weeks, and were then sacrificed. The transcription and expression of GFP and 4-1BBL genes in splenocytes were measured by RT-PCR and flow cytometry. The phenotypes of T cells in peripheral blood and splenocytes were determined by flow cytometry. The content of IFN-gamma in the cultural supernatant of splenocytes stimulated by PHA was measured by ELISA. RESULTS The recombinant bacteria harboring 4-1BBL had the same invasive abilities as the original bacteria, and it was able to deliver exogenous genes into HepG2 cells, where the GFP and 4-1BBL were successfully expressed. There were significant upregulations of CD3(+)CD8(+) T cells (P=0.018) and CD3(+)CD25(+) T cells (P=0.019) in the peripheral blood cells as well as CD3(+)CD8(+) T cells (P=0.022), and CD3(+)CD25(+) T cells (P=0.008) in splenocytes of the infected rats. The rats had more 4-1BBL expression detected in the spleen. IFN-gamma released by PHA-stimulated splenocytes increased significantly by the recombinant bacteria as compared with controls (P=0.002). CONCLUSION Salmonella serovar Typhimurium containing 4-1BBL can transfect target genes into antigen presenting cells in vivo, and the expression of exogenous 4-1BBL enhances cellular immunity markedly.
Collapse
Affiliation(s)
- Jian-Xin Ye
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Key Laboratory of Clinical Immunology of Jiangsu Province, Suzhou 215006, China
| | | | | | | | | |
Collapse
|
20
|
Liu J, Yu Q, Stone GW, Yue FY, Ngai N, Jones RB, Kornbluth RS, Ostrowski MA. CD40L expressed from the canarypox vector, ALVAC, can boost immunogenicity of HIV-1 canarypox vaccine in mice and enhance the in vitro expansion of viral specific CD8+ T cell memory responses from HIV-1-infected and HIV-1-uninfected individuals. Vaccine 2008; 26:4062-72. [PMID: 18562053 PMCID: PMC3060027 DOI: 10.1016/j.vaccine.2008.05.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/05/2008] [Accepted: 05/08/2008] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) canarypox vaccines are safe but poorly immunogenic. CD40 ligand (CD40L), a member of the tumor necrosis factor superfamily (TNFSF), is a pivotal costimulatory molecule for immune responses. To explore whether CD40L can be used as an adjuvant for HIV-1 canarypox vaccine, we constructed recombinant canarypox viruses expressing CD40L. Co-immunization of mice with CD40L expressing canarypox and the canarypox vaccine expressing HIV-1 proteins, vCP1452, augmented HIV-1 specific cytotoxic T lymphocyte (CTL) responses in terms of frequency, polyfunctionality and interleukin (IL)-7 receptor alpha chain (IL-7Ralpha, CD127) expression. In addition, CD40L expressed from canarypox virus could significantly augment CD4+ T cell responses against HIV-1 in mice. CD40L expressed from canarypox virus matured human monocyte-derived dendritic cells (MDDCs) in a tumor necrosis factor-alpha (TNF-alpha) independent manner, which underwent less apoptosis, and could expand ex vivo Epstein-Barr virus (EBV)-specific CTL responses from healthy human individuals and ex vivo HIV-1-specific CTL responses from HIV-1-infected individuals in the presence or absence of CD4+ T cells. Taken together, our results suggest that CD40L incorporation into poxvirus vectors could be used as a strategy to enhance their immunogenicity.
Collapse
Affiliation(s)
- Jun Liu
- Clinical Sciences Division, University of Toronto
| | - Qigui Yu
- Clinical Sciences Division, University of Toronto
| | | | - Feng Yun Yue
- Clinical Sciences Division, University of Toronto
| | | | | | | | | |
Collapse
|
21
|
Day SL, Ramshaw IA, Ramsay AJ, Ranasinghe C. Differential effects of the type I interferons alpha4, beta, and epsilon on antiviral activity and vaccine efficacy. THE JOURNAL OF IMMUNOLOGY 2008; 180:7158-66. [PMID: 18490714 DOI: 10.4049/jimmunol.180.11.7158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The type I IFNs exert a range of activities that include antiviral, antiproliferative, and immunomodulatory effects. To study this further, we have constructed recombinant vaccinia viruses expressing HIV or hemagglutinin (HA) Ags along with murine type I IFNs, IFN-alpha(4) (HA-VV-IFN-alpha(4)), IFN-beta (HA-VV-IFN-beta), or IFN-epsilon (HIV-VV-IFN-epsilon), a recently discovered member of this family. Our aims were to characterize IFN-epsilon functionality as a type I IFN and also to study the biological properties of these factors toward the development of safer and more effective vector-based vaccines. HIV-VV-IFN-epsilon and HA-VV-IFN-beta grew to lower titers than did their parental controls in murine cell lines. In vivo, however, HIV-VV-IFN-epsilon growth was not attenuated, while IFN-beta demonstrated potent local antiviral activity with no replication of HA-VV-IFN-beta detected. Flow cytofluorometric analysis of B lymphocytes incubated with virally encoded IFN-epsilon showed up-regulation of activation markers CD69 and CD86, while RT-PCR of IFN-epsilon-treated cells revealed that gene expression levels of antiviral proteins were elevated, indicating the induction of an antiviral state. The use of these constructs in a poxvirus prime-boost immunization regime led to robust humoral and cellular immune responses against the encoded Ags, despite the lack of replication in the case of HA-VV-IFN-beta. Thus, coexpression of these factors may be beneficial in the design of safer vector-based vaccines. Our data also indicate that while IFN-epsilon exhibits certain biological traits similar to other type I IFNs, it may also have a specific role in mucosal immune regulation that is quite distinct.
Collapse
Affiliation(s)
- Stephanie L Day
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | | | |
Collapse
|
22
|
Wang C, Wen T, Routy JP, Bernard NF, Sekaly RP, Watts TH. 4-1BBL induces TNF receptor-associated factor 1-dependent Bim modulation in human T cells and is a critical component in the costimulation-dependent rescue of functionally impaired HIV-specific CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2008; 179:8252-63. [PMID: 18056369 DOI: 10.4049/jimmunol.179.12.8252] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During chronic infection, HIV-specific CD8 T cells exhibit progressive signs of functional impairment, attributed to persistent antigenic stimulation, up-regulation of the inhibitory receptor PD-1, and declining T cell help. Strategies that directly improve CD8 T cell function offer the potential of restoring immune control of HIV. Although PD-1 expression has been identified as a cause of functional impairment in HIV, in this study, PD-1 expression was observed on only a subfraction of HIV-specific CD8 T cells in a subfraction of donors, whereas HIV-specific CTL from all donors exhibited a limited repertoire of effector functions. CD137L (4-1BBL) is emerging as an important stimulator of antiviral CD8 T cell responses. Regardless of the PD-1 status of the donors, here we show that 4-1BBL, when combined with CD80 or CD70, expands a population of Ag-specific CD8 T cells expressing multiple markers of effector function, from the functionally impaired starting population. In contrast, CD70 in combination with CD80 was insufficient for these effects and the related TNF family ligand, LIGHT, had negligible activity. The unique contribution of 4-1BBL correlated with down-regulation of the proapoptotic molecule Bim in activated CD8 T cells. Decreasing the level of TNFR-associated factor 1 in T cells using small interfering RNA resulted in increased levels of Bim in the 4-1BBL-stimulated T cells. Thus, costimulation via 4-1BBL leads to TNFR-associated factor 1-dependent Bim down-modulation in T cells, resulting in increased T cell expansion. These studies identify 4-1BBL as a critical component in therapeutic strategies aimed at improving CD8 T cell function.
Collapse
Affiliation(s)
- Chao Wang
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Zhang B, Maris CH, Foell J, Whitmire J, Niu L, Song J, Kwon BS, Vella AT, Ahmed R, Jacob J, Mittler RS. Immune suppression or enhancement by CD137 T cell costimulation during acute viral infection is time dependent. J Clin Invest 2007; 117:3029-41. [PMID: 17853940 PMCID: PMC1974869 DOI: 10.1172/jci32426] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 06/27/2007] [Indexed: 12/19/2022] Open
Abstract
CD137 is expressed on activated T cells and ligands to this costimulatory molecule have clinical potential for amplifying CD8 T cell immunity to tumors and viruses, while suppressing CD4 autoimmune T cell responses. To understand the basis for this dichotomy in T cell function, CD4 and CD8 antiviral immunity was measured in lymphocytic choriomeningitis virus (LCMV) Armstrong- or A/PR8/34 influenza-infected mice injected with anti-CD137 mAbs. We found that the timing of administration of anti-CD137 mAbs profoundly altered the nature of the antiviral immune response during acute infection. Antiviral immunity progressed normally for the first 72 hours when the mAb was administered early in infection before undergoing complete collapse by day 8 postinfection. Anti-CD137-injected LCMV-infected mice became tolerant to, and persistently infected with, LCMV Armstrong. Elevated levels of IL-10 early in the response was key to the loss of CD4(+) T cells, whereas CD8(+) T cell deletion was dependent on a prolonged TNF-alpha response, IL-10, and upregulation of Fas. Blocking IL-10 function rescued CD4 antiviral immunity but not CD8(+) T cell deletion. Anti-CD137 treatment given beyond 72 hours after infection significantly enhanced antiviral immunity. Mice treated with anti-CD137 mAb 1 day before infection with A/PR8/34 virus experienced 80% mortality compared with 40% mortality of controls. When treatment was delayed until day 1 postinfection, 100% of the infected mice survived. These data show that anti-CD137 mAbs can induce T cell activation-induced cell death or enhance antiviral immunity depending on the timing of treatment, which may be important for vaccine development.
Collapse
Affiliation(s)
- Benyue Zhang
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Charles H. Maris
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Juergen Foell
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason Whitmire
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Liguo Niu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jing Song
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Byoung S. Kwon
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anthony T. Vella
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Joshy Jacob
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Robert S. Mittler
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA.
Department of Hematology and Oncology, Martin Luther University, Halle-Wittenberg, Germany.
Department of Immunology, The Scripps Research Institute, La Jolla, California, USA.
Department of Interdisciplinary Oncology and Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea.
Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
24
|
Rollman E, Smith MZ, Brooks AG, Purcell DFJ, Zuber B, Ramshaw IA, Kent SJ. Killing kinetics of simian immunodeficiency virus-specific CD8+ T cells: implications for HIV vaccine strategies. THE JOURNAL OF IMMUNOLOGY 2007; 179:4571-9. [PMID: 17878354 DOI: 10.4049/jimmunol.179.7.4571] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both the magnitude and function of vaccine-induced HIV-specific CD8+ CTLs are likely to be important in the outcome of infection. We hypothesized that rapid cytolysis by CTLs may facilitate control of viral challenge. Release kinetics of the cytolytic effector molecules granzyme B and perforin, as well as the expression of the degranulation marker CD107a and IFN-gamma were simultaneously studied in SIV Gag(164-172) KP9-specific CD8+ T cells from Mane-A*10+ pigtail macaques. Macaques were vaccinated with either prime-boost poxvirus vector vaccines or live-attenuated SIV vaccines. Prime-boost vaccination induced Gag-specific CTLs capable of only slow (after 3 h) production of IFN-gamma and with limited (<5%) degranulation and granzyme B release. Vaccination with live-attenuated SIV resulted in a rapid cytolytic profile of SIV-specific CTLs with rapid (<0.5 h) and robust (>50% of tetramer-positive CD8+ T cells) degranulation and granzyme B release. The cytolytic phenotype following live-attenuated SIV vaccinations were similar to that associated with the partial resolution of viremia following SIV(mac251) challenge of prime-boost-vaccinated macaques, albeit with less IFN-gamma expression. High proportions of KP9-specific T cells expressed the costimulatory molecule CD28 when they exhibited a rapid cytolytic phenotype. The delayed cytolytic phenotype exhibited by standard vector-based vaccine-induced CTLs may limit the ability of T cell-based HIV vaccines to rapidly control acute infection following a pathogenic lentiviral exposure.
Collapse
Affiliation(s)
- Erik Rollman
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Ranasinghe C, Turner SJ, McArthur C, Sutherland DB, Kim JH, Doherty PC, Ramshaw IA. Mucosal HIV-1 Pox Virus Prime-Boost Immunization Induces High-Avidity CD8+ T Cells with Regime-Dependent Cytokine/Granzyme B Profiles. THE JOURNAL OF IMMUNOLOGY 2007; 178:2370-9. [PMID: 17277143 DOI: 10.4049/jimmunol.178.4.2370] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The quality of virus-specific CD8(+) CTL immune responses generated by mucosal and systemic poxvirus prime-boost vaccines were evaluated in terms of T cell avidity and single-cell analysis of effector gene expression. Intranasal (I.N.) immunization regimes generated higher avidity CTL responses specific for HIV K(d)Gag(197-205) (amino acid sequence AMQMLKETI; H-2K(d) binding) compared with i.m. immunization regime. Single-cell RT-PCR of K(d)Gag(197-205)-specific mucosal and systemic CTL revealed that the cytokine and granzyme B expression profiles were dependent on both the route and time after immunization. The I.N./i.m.-immunized group elicited elevated number of CTL-expressing granzyme B mRNA from the genitomucosal sites compared with the i.m./i.m. regime. Interestingly, CTL generated after both I.N. or i.m. immunization demonstrated expression of Th2 cytokine IL-4 mRNA that was constitutively expressed over time, although lower numbers were observed after I.N./I.N. immunization. Results suggest that after immunization, Ag-specific CTL expression of IL-4 may be an inherent property of the highly evolved poxvirus vectors. Current observations indicate that the quality of CTL immunity generated after immunization can be influenced by the inherent property of vaccine vectors and route of vaccine delivery. A greater understanding of these factors will be crucial for the development of effective vaccines in the future.
Collapse
Affiliation(s)
- Charani Ranasinghe
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Harrison JM, Bertram EM, Ramshaw IA. Exploiting 4-1BB Costimulation for Enhancing Antiviral Vaccination. Viral Immunol 2006; 19:593-601. [PMID: 17201654 DOI: 10.1089/vim.2006.19.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
4-1BB, a member of the tumor necrosis factor receptor (TNFR) superfamily, is emerging as an important costimulatory molecule, particularly in the regulation of CD8(+) T cell responses. Costimulation through 4-1BB, such as by utilizing agonistic anti-4-1BB monoclonal antibodies, has been well studied in various tumor models. However, 4-1BB is also an important regulator of antiviral CD8(+) T cell responses. This review summarizes these findings and describes how 4-1BB is beginning to be exploited in terms of boosting antiviral vaccine responses.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|