1
|
El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success-lessons learned and future prospects. Trop Med Health 2023; 51:29. [PMID: 37198702 DOI: 10.1186/s41182-023-00516-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND The world has made great strides towards beating malaria, although about half of the world population is still exposed to the risk of contracting malaria. Developing an effective malaria vaccine was a huge challenge for medical science. In 2021 the World Health Organization (WHO) approved the first malaria vaccine, RTS,S/AS01 vaccine (Mosquirix™), for widespread use. This review highlights the history of development, and the different approaches and types of malaria vaccines, and the literature to date. It covers the developmental stages of RTS,S/AS01 and recommends steps for its deployment. The review explores other potential vaccine candidates and their status, and suggests options for their further development. It also recommends future roles for vaccines in eradicating malaria. Questions remain on how RTS,S vaccine will work in widespread use and how it can best be utilized to benefit vulnerable communities. CONCLUSION Malaria vaccines have been in development for almost 60 years. The RTS,S/AS01 vaccine has now been approved, but cannot be a stand-alone solution. Development should continue on promising candidates such as R21, PfSPZ and P. vivax vaccines. Multi-component vaccines may be a useful addition to other malaria control techniques in achieving eradication of malaria.
Collapse
Affiliation(s)
- Amal A El-Moamly
- Department of Medical Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed A El-Sweify
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
2
|
Chandley P, Ranjan R, Kumar S, Rohatgi S. Host-parasite interactions during Plasmodium infection: Implications for immunotherapies. Front Immunol 2023; 13:1091961. [PMID: 36685595 PMCID: PMC9845897 DOI: 10.3389/fimmu.2022.1091961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Malaria is a global infectious disease that remains a leading cause of morbidity and mortality in the developing world. Multiple environmental and host and parasite factors govern the clinical outcomes of malaria. The host immune response against the Plasmodium parasite is heterogenous and stage-specific both in the human host and mosquito vector. The Plasmodium parasite virulence is predominantly associated with its ability to evade the host's immune response. Despite the availability of drug-based therapies, Plasmodium parasites can acquire drug resistance due to high antigenic variations and allelic polymorphisms. The lack of licensed vaccines against Plasmodium infection necessitates the development of effective, safe and successful therapeutics. To design an effective vaccine, it is important to study the immune evasion strategies and stage-specific Plasmodium proteins, which are targets of the host immune response. This review provides an overview of the host immune defense mechanisms and parasite immune evasion strategies during Plasmodium infection. Furthermore, we also summarize and discuss the current progress in various anti-malarial vaccine approaches, along with antibody-based therapy involving monoclonal antibodies, and research advancements in host-directed therapy, which can together open new avenues for developing novel immunotherapies against malaria infection and transmission.
Collapse
Affiliation(s)
- Pankaj Chandley
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Ravikant Ranjan
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Soma Rohatgi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India,*Correspondence: Soma Rohatgi,
| |
Collapse
|
3
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
4
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
5
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
6
|
Hamre KES, Ondigo BN, Hodges JS, Dutta S, Theisen M, Ayodo G, John CC. Antibody Correlates of Protection from Clinical Plasmodium falciparum Malaria in an Area of Low and Unstable Malaria Transmission. Am J Trop Med Hyg 2020; 103:2174-2182. [PMID: 33124533 DOI: 10.4269/ajtmh.18-0805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune correlates of protection against clinical malaria are difficult to ascertain in low-transmission areas because of the limited number of malaria cases. We collected blood samples from 5,753 individuals in a Kenyan highland area, ascertained malaria incidence in this population over the next 6 years, and then compared antibody responses to 11 Plasmodium falciparum vaccine candidate antigens in individuals who did versus did not develop clinical malaria in a nested case-control study (154 cases and 462 controls). Individuals were matched by age and village. Antigens tested included circumsporozoite protein (CSP), liver-stage antigen (LSA)-1, apical membrane antigen-1 FVO and 3D7 strains, erythrocyte-binding antigen-175, erythrocyte-binding protein-2, merozoite surface protein (MSP)-1 FVO and 3D7 strains, MSP-3, and glutamate-rich protein (GLURP) N-terminal non-repetitive (R0) and C-terminal repetitive (R2) regions. After adjustment for potential confounding factors, the presence of antibodies to LSA-1, GLURP-R2, or GLURP-R0 was associated with decreased odds of developing clinical malaria (odds ratio [OR], [95% CI] 0.56 [0.36-0.89], 0.56 [0.36-0.87], and 0.77 [0.43-1.02], respectively). Levels of antibodies to LSA-1, GLURP-R2, and CSP were associated with decreased odds of developing clinical malaria (OR [95% CI]; 0.61 [0.41-0.89], 0.60 [0.43-0.84], and 0.49 [0.24-0.99], for every 10-fold increase in antibody levels, respectively). The presence of antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 combined best-predicted protection from clinical malaria. Antibodies to CSP, GLURP-R0, GLURP-R2, and LSA-1 are associated with protection against clinical malaria in a low-transmission setting. Vaccines containing these antigens should be evaluated in low malaria transmission areas.
Collapse
Affiliation(s)
- Karen E S Hamre
- CDC Foundation, Atlanta, Georgia.,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota.,Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Bartholomew N Ondigo
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya
| | - James S Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota
| | - Sheetij Dutta
- Walter Reed Army Institute for Research, Silver Spring, Maryland
| | | | - George Ayodo
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya.,Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Chandy C John
- Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota.,Department of Biochemistry and Molecular Biology, Egerton University, Nakuru, Kenya.,Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, Indiana University, Indianapolis, Indiana
| |
Collapse
|
7
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
8
|
Quintana MDP, Ch’ng JH, Zandian A, Imam M, Hultenby K, Theisen M, Nilsson P, Qundos U, Moll K, Chan S, Wahlgren M. SURGE complex of Plasmodium falciparum in the rhoptry-neck (SURFIN4.2-RON4-GLURP) contributes to merozoite invasion. PLoS One 2018; 13:e0201669. [PMID: 30092030 PMCID: PMC6084945 DOI: 10.1371/journal.pone.0201669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Plasmodium falciparum invasion into red blood cells (RBCs) is a complex process engaging proteins on the merozoite surface and those contained and sequentially released from the apical organelles (micronemes and rhoptries). Fundamental to invasion is the formation of a moving junction (MJ), a region of close apposition of the merozoite and the RBC plasma membranes, through which the merozoite draws itself before settling into a newly formed parasitophorous vacuole (PV). SURFIN4.2 was identified at the surface of the parasitized RBCs (pRBCs) but was also found apically associated with the merozoite. Using antibodies against the N-terminus of the protein we show the presence of SURFIN4.2 in the neck of the rhoptries, its secretion into the PV and shedding into the culture supernatant upon schizont rupture. Using immunoprecipitation followed by mass spectrometry we describe here a novel protein complex we have named SURGE where SURFIN4.2 forms interacts with the rhoptry neck protein 4 (RON4) and the Glutamate Rich Protein (GLURP). The N-terminal cysteine-rich-domain (CRD) of SURFIN4.2 mediates binding to the RBC membrane and its interaction with RON4 suggests its involvement in the contact between the merozoite apex and the RBC at the MJ. Supporting this suggestion, we also found that polyclonal antibodies to the extracellular domain (including the CRD) of SURFIN4.2 partially inhibit merozoite invasion. We propose that the formation of the SURGE complex participates in the establishment of parasite infection within the PV and the RBCs.
Collapse
Affiliation(s)
- Maria del Pilar Quintana
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch’ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
- Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore
| | - Arash Zandian
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Maryam Imam
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Ulrika Qundos
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, KTH-Royal Institutet of Technology, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
10
|
Botwe AK, Asante KP, Adjei G, Assafuah S, Dosoo D, Owusu-Agyei S. Dynamics in multiplicity of Plasmodium falciparum infection among children with asymptomatic malaria in central Ghana. BMC Genet 2017; 18:67. [PMID: 28716086 PMCID: PMC5514501 DOI: 10.1186/s12863-017-0536-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Background The determinants of malaria parasite virulence is not entirely known, but the outcome of malaria infection (asymptomatic or symptomatic) has been associated with carriage of distinct parasite genotypes. Alleles considered important for erythrocyte invasion and selected as candidate targets for malaria vaccine development are increasingly being shown to have distinct characteristics in infection outcomes. Any unique/distinct patterns or alleles linked to infection outcome should be reproducible for a given malaria-cohort regardless of location, time or intervention. This study compared merozoite surface protein 2 (MSP2) genotypes from children with asymptomatic malaria at same geographical location, from two time periods. Results As the prevalence and incidence of malaria (measured for other studies) significantly reduced between 2004 (time point one) and 2009 (time point two), MSP2 multiplicity of infections (MOI) also reduced significantly from 2.3 at time point (TP) one to 1.9 at TP two. IC/3D7 genotypes out-numbered FC27 genotypes at both time points. At TP2 however, FC27 allele diversity was more than the IC/3D7 allele diversity. A decrease in the IC/3D7:FC27 genotype proportions from 2:1 at TP1 to 1:1 at TP2, seemed to be driven mainly by a decrease in carriage of IC/3D7 alleles. MOI was higher in the dry season than in the subsequent wet season, but the decrease was not significant at TP2. Conclusion MSP2 MOI was higher in the dry season than in the subsequent wet season, while the carriage of IC/3D7 alleles decreased over this time period. It may be that decreases in transmission are related specifically to the IC/3D7 allelic family. The influence of transmission on MSP2 allele diversity needs to be clearly deciphered in studies which should include the use of sensitive methods for the detection of polymorphic parasite markers for both symptomatic and asymptomatic malaria. Such studies will enable better understanding of associations between allelic variants, MOI, transmission, malaria infection and disease.
Collapse
Affiliation(s)
- Akua Kyerewaa Botwe
- Ghana Health Service. Health Research Unit, Kintampo Health Research Centre. MOH/GHS, P.O.Box 200, College of Health Street, Kintampo, Brong Ahafo, Ghana. .,Department of Medicine, Solna, Karolinska Institutet, Stockholm, 17176, Sverige, Sweden.
| | - Kwaku Poku Asante
- Ghana Health Service. Health Research Unit, Kintampo Health Research Centre. MOH/GHS, P.O.Box 200, College of Health Street, Kintampo, Brong Ahafo, Ghana
| | - George Adjei
- Ghana Health Service. Health Research Unit, Kintampo Health Research Centre. MOH/GHS, P.O.Box 200, College of Health Street, Kintampo, Brong Ahafo, Ghana
| | - Samuel Assafuah
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - David Dosoo
- Ghana Health Service. Health Research Unit, Kintampo Health Research Centre. MOH/GHS, P.O.Box 200, College of Health Street, Kintampo, Brong Ahafo, Ghana
| | - Seth Owusu-Agyei
- Ghana Health Service. Health Research Unit, Kintampo Health Research Centre. MOH/GHS, P.O.Box 200, College of Health Street, Kintampo, Brong Ahafo, Ghana
| |
Collapse
|
11
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
12
|
Ateba-Ngoa U, Jones S, Zinsou JF, Honkpehedji J, Adegnika AA, Agobe JCD, Massinga-Loembe M, Mordmüller B, Bousema T, Yazdanbakhsh M. Associations Between Helminth Infections, Plasmodium falciparum Parasite Carriage and Antibody Responses to Sexual and Asexual Stage Malarial Antigens. Am J Trop Med Hyg 2016; 95:394-400. [PMID: 27273645 DOI: 10.4269/ajtmh.15-0703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/28/2015] [Indexed: 12/28/2022] Open
Abstract
Infections with helminths and Plasmodium spp. overlap in their geographical distribution. It has been postulated that helminth infections may influence malarial transmission by altering Plasmodium falciparum gametocytogenesis. This cross-sectional study assessed the effect of helminth infections on P. falciparum gametocyte carriage and on humoral immune responses to sexual stage antigens in Gabon. Schistosoma haematobium and filarial infections as well as P. falciparum asexual forms and gametocyte carriage were determined. The antibody responses measured were to sexual (Pfs230, Pfs48/45) and asexual P. falciparum antigens (AMA1, MSP1, and GLURP). A total of 287 subjects were included. The prevalence of microscopically detectable P. falciparum asexual parasites was higher in S. haematobium-infected subjects in comparison to their uninfected counterparts (47% versus 26%, P = 0.003), but this was not different when filarial infections were considered. Plasmodium falciparum gametocyte carriage was similar between Schistosoma- or filaria-infected and uninfected subjects. We observed a significant decrease of Pfs48/45 immunoglobulin G titer in S. haematobium-infected subjects (P = 0.037), whereas no difference was seen for Pfs230 antibody titer, nor for antibodies to AMA1, MSP1, or GLURP. Our findings suggest an effect of S. haematobium on antibody responses to some P. falciparum gametocyte antigens that may have consequences for transmission-blocking immunity.
Collapse
Affiliation(s)
- Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands. Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon.
| | - Sophie Jones
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jeannot Fréjus Zinsou
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Josiane Honkpehedji
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ayola Akim Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands. Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jean-Claude Dejon Agobe
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Marguerite Massinga-Loembe
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany. Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom. Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
13
|
Mbengue B, Kpodji P, Sylla Niang M, Varela ML, Thiam A, Sow A, Ndiaye K, Aidara M, Thiam F, Ndiaye R, Diop G, Nguer CM, Perraut R, Dièye A. [Profiles of IgG responses against CSP, GLURP and LSA-3NR2 in urban malaria (Dakar): relations with haemoglobin levels and parasite densities]. BULLETIN DE LA SOCIETE DE PATHOLOGIE EXOTIQUE (1990) 2016; 109:91-98. [PMID: 27100862 DOI: 10.1007/s13149-016-0485-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Malaria remains a major health problem in sub- Saharan African countries despite substantial decreases in morbidity and mortality due to sustained control programs. Vaccines candidates were mainly tested in rural endemic setting; however increasing proportion of the population is living in urban area. Evaluation of the qualitative or quantitative immune responses to key targets of anti-Plasmodium immunity requires further investigation in urban area. In a cohort of 144 patients with mild malaria living in Dakar, we analyzed IgG responses against target antigens of P. falciparum: CSP, LSA-3NR2 and GLURP by ELISA. A mean age of 15 yrs (4-65 yrs) was found and patients were separated in 59 adults (<15yrs) and 85 children (≤15 yrs). Parasites densities (0,01-15%) did not differ between the two age groups. In contrast, haemoglobin levels appeared lower in children (4.5-16.6 g/dl) (p<0.01). For the immune results, the most recognized antigens were GLURP and CSP compared to LSA-3NR2. Levels of IgG against these antigens were significantly different between the two age groups and they were positively correlated (rho = 0.32; p<0.001). In addition, levels of IgG anti-GLURP were associated with low parasitemia (≤1%) and absence of anemia (≥11g/dl), particularly in adults (p<0.001). In a multiple regression analysis, no significant relationship was found between parasite densities and IgG responses against all the tested antigens. Our study shows the implication of IgG anti-GLURP in humoral immune response against the parasite. The present work contributes to determine IgG levels that can be used as relevant immunologic biomarkers in urban clinical malaria.
Collapse
Affiliation(s)
- B Mbengue
- Service d'immunologie FMPO, Université Cheikh Anta Diop, Dakar, Sénégal.
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal.
| | - P Kpodji
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - M Sylla Niang
- Service d'immunologie FMPO, Université Cheikh Anta Diop, Dakar, Sénégal
| | - M L Varela
- Unité d'immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Thiam
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Sow
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - K Ndiaye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - M Aidara
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - F Thiam
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - R Ndiaye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - G Diop
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| | - C M Nguer
- Département génie chimique et biologie appliquée, ESP, Université Cheikh Anta Diop, Dakar, Sénégal
| | - R Perraut
- Unité d'immunologie, Institut Pasteur de Dakar, Dakar, Sénégal
| | - A Dièye
- Unité d'immunogénétique, Institut Pasteur de Dakar, Dakar, Sénégal
| |
Collapse
|
14
|
Favuzza P, Blaser S, Dreyer AM, Riccio G, Tamborrini M, Thoma R, Matile H, Pluschke G. Generation of Plasmodium falciparum parasite-inhibitory antibodies by immunization with recombinantly-expressed CyRPA. Malar J 2016; 15:161. [PMID: 26979066 PMCID: PMC4791974 DOI: 10.1186/s12936-016-1213-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/05/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The pathogenesis of malaria is primarily associated with blood-stage infection and there is strong evidence that antibodies specific for parasite blood-stage antigens can control parasitaemia. This provides a strong rationale for incorporation of asexual blood-stage antigen components into an effective multivalent malaria subunit vaccine. On the basis of available genome-wide transcriptomic and proteomic data, previously uncharacterized Plasmodium falciparum open reading frames were screened for new blood stage vaccine candidates. This has led to the identification of the cysteine-rich protective antigen (PfCyRPA), which forms together with PfRH5 and PfRipr a multiprotein complex that is crucial for erythrocyte invasion. METHODS Glycosylated and non-glycosylated variants of recombinant PfCyRPA were expressed and produced as secreted protein in mammalian cells. Adjuvanted formulations of purified PfCyRPA were tested to assess whether they can effectively elicit parasite inhibitory antibodies, and to investigate whether or not the glycosylation status affects antibody binding. For this purpose, two sets of PfCyRPA-specific mouse monoclonal antibodies (mAbs) have been raised and evaluated for functional activity. RESULTS Generated PfCyRPA-specific mAbs, irrespective of the immunogen's glycosylation status, showed substantial parasite in vitro growth-inhibitory activity due to inhibition of erythrocyte invasion by merozoites. Furthermore, passive immunization experiments in P. falciparum infected NOD-scid IL2Rγ (null) mice engrafted with human erythrocytes demonstrated potent in vivo growth-inhibitory activity of generated mAbs. CONCLUSIONS Recombinantly expressed PfCyRPA tested as adjuvanted vaccine formulations in mice elicited antibodies that significantly inhibit P. falciparum asexual blood stage parasite growth both in vitro and in vivo. These findings render PfCyRPA a promising blood-stage candidate antigen for inclusion into a multicomponent malaria subunit vaccine.
Collapse
Affiliation(s)
- Paola Favuzza
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Simon Blaser
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Anita M Dreyer
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Guy Riccio
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Marco Tamborrini
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Ralf Thoma
- Roche Pharmaceutical Research & Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hugues Matile
- Roche Pharmaceutical Research & Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology Department, Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
16
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Rodrigues-da-Silva RN, Martins da Silva JH, Singh B, Jiang J, Meyer EVS, Santos F, Banic DM, Moreno A, Galinski MR, Oliveira-Ferreira J, Lima-Junior JDC. In silico Identification and Validation of a Linear and Naturally Immunogenic B-Cell Epitope of the Plasmodium vivax Malaria Vaccine Candidate Merozoite Surface Protein-9. PLoS One 2016; 11:e0146951. [PMID: 26788998 PMCID: PMC4720479 DOI: 10.1371/journal.pone.0146951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.
Collapse
Affiliation(s)
| | | | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Jianlin Jiang
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Esmeralda V. S. Meyer
- Environmental Health and Safety Office, Emory University, Atlanta, GA, United States of America
| | - Fátima Santos
- National Health Foundation, Department of Entomology, Central Laboratory, Porto Velho, RO, Brazil
| | - Dalma Maria Banic
- Laboratory of Simulids and Onchocerciasis "Malaria and Onchocerciasis Research", Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Mary R. Galinski
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States of America
| | - Joseli Oliveira-Ferreira
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
- * E-mail: (JCLJ); (JO-F)
| |
Collapse
|
18
|
Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine 2015; 33:7525-37. [DOI: 10.1016/j.vaccine.2015.09.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
|
19
|
Roeffen W, Theisen M, van de Vegte-Bolmer M, van Gemert G, Arens T, Andersen G, Christiansen M, Sevargave L, Singh SK, Kaviraj S, Sauerwein R. Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants. Malar J 2015; 14:443. [PMID: 26552428 PMCID: PMC4640242 DOI: 10.1186/s12936-015-0972-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is transmitted from person to person by Anopheles mosquitoes after completing its sexual reproductive cycle within the infected mosquito. An efficacious vaccine holds the potential to interrupt development of the parasite in the mosquito leading to control and possibly eradication of malaria. A multi-component, R0.10C, was developed comprising P. falciparum glutamate-rich protein (R0) fused in frame to a correctly folded fragment of Pfs48/45 (10C). Here, a series of novel adjuvants were screened for their ability to elicit transmission-blocking (TB) antibodies. METHODS The recombinant fusion protein R0.10C was produced in Lactococcus lactis and purified by affinity-chromatography on a monoclonal antibody (mAb 85RF45.1) against a major epitope for TB antibodies (epitope 1) harboured on R0.10C. Immune-purified R0.10C was mixed with a series of adjuvants and tested in mice and rats. RESULTS In general, all R0.10C formulations elicited high levels of antibodies recognizing native Pfs48/45 in macrogametes/zygotes. TB activity of anti-R0.10C antisera was assessed in the standard membrane-feeding assay (SMFA). Potency of different adjuvant/R0.10C combinations was tested in mice and rats using aluminium hydroxide (Alum), Alum with micellar and emulsion formulations of a synthetic TLR4 agonist, Glucopyranosyl Lipid Adjuvant (GLA), stable emulsion (SE)/GLA, AbISCO-100 and Freund's adjuvant (as reference). All formulations produced high antibody titres recognizing the native Pfs48/45 protein in macrogametes/zygotes. Interestingly, the GLA-Alum combination adjuvant was the most potent inducer of TB antibodies based on serum collected after two immunizations. In agreement with previous observations, biological activity in the SMFA correlated well with the level of anti-Pfs48/45 antibodies. CONCLUSION The combined data provide a strong basis for entering the next phase of clinical grade R0.10C production and testing.
Collapse
Affiliation(s)
- Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark. .,Department of International Health, Immunology, and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | | - GeertJan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Theo Arens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Gorm Andersen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Moreno A, Joyner C. Malaria vaccine clinical trials: what's on the horizon. Curr Opin Immunol 2015; 35:98-106. [PMID: 26172291 DOI: 10.1016/j.coi.2015.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/22/2015] [Indexed: 01/01/2023]
Abstract
Significant progress toward a malaria vaccine, specifically for Plasmodium falciparum, has been made in the past few years with the completion of numerous clinical trials. Each trial has utilized a unique combination of antigens, delivery platforms, and adjuvants, which has provided the research community with a wealth of critical information to apply towards the development of next generation malaria vaccines. Despite the progress toward a P. falciparum vaccine, P. vivax vaccine research requires more momentum and additional investigations to identify novel vaccine candidates. In this review, recently completed and ongoing malaria vaccine clinical trials as well as vaccine candidates that are in the development pipeline are reviewed. Perspectives for future research using post-genomic mining, nonhuman primate models, and systems biology are also discussed.
Collapse
Affiliation(s)
- Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Division of Infectious Diseases, Department of Medicine, Emory University, 69 Jesse Hill, Jr. Drive, SE, Atlanta, GA 30303, USA.
| | - Chester Joyner
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA; Malaria Host-Pathogen Interaction Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA
| |
Collapse
|
21
|
Chitnis CE, Mukherjee P, Mehta S, Yazdani SS, Dhawan S, Shakri AR, Bhardwaj R, Bharadwaj R, Gupta PK, Hans D, Mazumdar S, Singh B, Kumar S, Pandey G, Parulekar V, Imbault N, Shivyogi P, Godbole G, Mohan K, Leroy O, Singh K, Chauhan VS. Phase I Clinical Trial of a Recombinant Blood Stage Vaccine Candidate for Plasmodium falciparum Malaria Based on MSP1 and EBA175. PLoS One 2015; 10:e0117820. [PMID: 25927360 PMCID: PMC4415778 DOI: 10.1371/journal.pone.0117820] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A phase I randomised, controlled, single blind, dose escalation trial was conducted to evaluate safety and immunogenicity of JAIVAC-1, a recombinant blood stage vaccine candidate against Plasmodium falciparum malaria, composed of a physical mixture of two recombinant proteins, PfMSP-1(19), the 19 kD conserved, C-terminal region of PfMSP-1 and PfF2 the receptor-binding F2 domain of EBA175. METHOD Healthy malaria naïve Indian male subjects aged 18-45 years were recruited from the volunteer database of study site. Fifteen subjects in each cohort, randomised in a ratio of 2:1 and meeting the protocol specific eligibility criteria, were vaccinated either with three doses (10 μg, 25 μg and 50 μg of each antigen) of JAIVAC-1 formulated with adjuvant Montanide ISA 720 or with standard dosage of Hepatitis B vaccine. Each subject received the assigned vaccine in the deltoid muscle of the upper arms on Day 0, Day 28 and Day 180. RESULTS JAIVAC-1 was well tolerated and no serious adverse event was observed. All JAIVAC-1 subjects sero-converted for PfF2 but elicited poor immune response to PfMSP-1(19). Dose-response relationship was observed between vaccine dose of PfF2 and antibody response. The antibodies against PfF2 were predominantly of IgG1 and IgG3 isotype. Sera from JAIVAC-1 subjects reacted with late schizonts in a punctate pattern in immunofluorescence assays. Purified IgG from JAIVAC-1 sera displayed significant growth inhibitory activity against Plasmodium falciparum CAMP strain. CONCLUSION Antigen PfF2 should be retained as a component of a recombinant malaria vaccine but PfMSP-1(19) construct needs to be optimised to improve its immunogenicity. TRIAL REGISTRATION Clinical Trial Registry, India CTRI/2010/091/000301.
Collapse
Affiliation(s)
- Chetan E Chitnis
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Paushali Mukherjee
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shantanu Mehta
- Malaria Vaccine Development Program (MVDP), New Delhi, India
| | - Syed Shams Yazdani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shikha Dhawan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ahmad Rushdi Shakri
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Rukmini Bharadwaj
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Puneet Kumar Gupta
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Dhiraj Hans
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Suman Mazumdar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Bijender Singh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sanjeev Kumar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Gaurav Pandey
- Malaria Vaccine Development Program (MVDP), New Delhi, India
| | | | | | | | | | - Krishna Mohan
- Bharat Biotech International Ltd. (BBIL), Hyderabad, India
| | - Odile Leroy
- European Vaccine Initiative (EVI), Heidelberg, Germany
| | - Kavita Singh
- Malaria Vaccine Development Program (MVDP), New Delhi, India
| | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
22
|
Jones S, Grignard L, Nebie I, Chilongola J, Dodoo D, Sauerwein R, Theisen M, Roeffen W, Singh SK, Singh RK, Singh S, Kyei-Baafour E, Tetteh K, Drakeley C, Bousema T. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates. J Infect 2015; 71:117-27. [PMID: 25869538 DOI: 10.1016/j.jinf.2015.03.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso. We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. RESULTS Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p < 0.001) and 230CMB (p = 0.031). Membrane feeding assays on a separate dataset demonstrated an association between functional transmission reducing activity and antibody prevalence for both 10C (p = 0.017) and 230CMB (p = 0.049). 17 single nucleotide polymorphisms were found in pfs48/45 (from 126 samples), with 5 non-synonymous SNPs in the Pfs48/45 10C region. CONCLUSIONS We conclude there are naturally acquired antibody responses to both vaccine candidates which have functional relevance by reducing the transmissibility of infected individuals. We identified genetic polymorphisms, in pfs48/45 which exhibited geographical specificity.
Collapse
Affiliation(s)
- Sophie Jones
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Lynn Grignard
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Robert Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Theisen
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark; Centre for Medical Parasitology at Department of International Health, Immunology, and Microbiology, University of Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Will Roeffen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Sanjay Singh
- Gennova Bio Pharmaceuticals Limited, Pune, India
| | - Eric Kyei-Baafour
- Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | - Kevin Tetteh
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Daou M, Kouriba B, Ouédraogo N, Diarra I, Arama C, Keita Y, Sissoko S, Ouologuem B, Arama S, Bousema T, Doumbo OK, Sauerwein RW, Scholzen A. Protection of Malian children from clinical malaria is associated with recognition of multiple antigens. Malar J 2015; 14:56. [PMID: 25653026 PMCID: PMC4332451 DOI: 10.1186/s12936-015-0567-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/16/2015] [Indexed: 12/13/2022] Open
Abstract
Background Naturally acquired immunity to clinical malaria is thought to be mainly antibody-mediated, but reports on antigen targets are contradictory. Recognition of multiple antigens may be crucial for protection. In this study, the magnitude of antibody responses and their temporal stability was assessed for a panel of malaria antigens in relation to protection against clinical Plasmodium falciparum malaria. Methods Malian children aged two to 14 years were enrolled in a longitudinal study and followed up by passive and active case detection for seven months. Plasma was collected at enrolment and at the beginning, in the middle and after the end of the transmission season. Antibody titres to the P. falciparum-antigens apical membrane protein (AMA)-1, merozoite surface protein (MSP)-119, MSP-3, glutamine-rich protein (GLURP-R0) and circumsporozoite antigen (CSP) were assessed by enzyme-linked immunosorbent assay (ELISA) for 99 children with plasma available at all time points. Parasite carriage was determined by microscopy and nested PCR. Results Antibody titres to all antigens, except MSP-119, and the number of antigens recognized increased with age. After malaria exposure, antibody titres increased in children that had low titres at baseline, but decreased in those with high baseline responses. No significant differences were found between antibody titers for individual antigens between children remaining symptomatic or asymptomatic after exposure, after adjustment for age. Instead, children remaining asymptomatic following parasite exposure had a broader repertoire of antigen recognition. Conclusions The present study provides immune-epidemiological evidence from a limited cohort of Malian children that strong recognition of multiple antigens, rather than antibody titres for individual antigens, is associated with protection from clinical malaria. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0567-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Modibo Daou
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali. .,Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Bourèma Kouriba
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou, Burkina Faso.
| | - Issa Diarra
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Charles Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Yamoussa Keita
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Sibiri Sissoko
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Boucary Ouologuem
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Seydou Arama
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Teun Bousema
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands. .,Department of Infection and Immunity, London School of Hygiene and Tropical Medicine, London, UK.
| | - Ogobara K Doumbo
- Department of Epidemiology of Parasitic Diseases, Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali.
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud university medical center, Route 268, PO Box 9101, 6500, HB Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Assessment of humoral immune responses to blood-stage malaria antigens following ChAd63-MVA immunization, controlled human malaria infection and natural exposure. PLoS One 2014; 9:e107903. [PMID: 25254500 PMCID: PMC4177865 DOI: 10.1371/journal.pone.0107903] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/17/2014] [Indexed: 11/19/2022] Open
Abstract
The development of protective vaccines against many difficult infectious pathogens will necessitate the induction of effective antibody responses. Here we assess humoral immune responses against two antigens from the blood-stage merozoite of the Plasmodium falciparum human malaria parasite--MSP1 and AMA1. These antigens were delivered to healthy malaria-naïve adult volunteers in Phase Ia clinical trials using recombinant replication-deficient viral vectors--ChAd63 to prime the immune response and MVA to boost. In subsequent Phase IIa clinical trials, immunized volunteers underwent controlled human malaria infection (CHMI) with P. falciparum to assess vaccine efficacy, whereby all but one volunteer developed low-density blood-stage parasitemia. Here we assess serum antibody responses against both the MSP1 and AMA1 antigens following i) ChAd63-MVA immunization, ii) immunization and CHMI, and iii) primary malaria exposure in the context of CHMI in unimmunized control volunteers. Responses were also assessed in a cohort of naturally-immune Kenyan adults to provide comparison with those induced by a lifetime of natural malaria exposure. Serum antibody responses against MSP1 and AMA1 were characterized in terms of i) total IgG responses before and after CHMI, ii) responses to allelic variants of MSP1 and AMA1, iii) functional growth inhibitory activity (GIA), iv) IgG avidity, and v) isotype responses (IgG1-4, IgA and IgM). These data provide the first in-depth assessment of the quality of adenovirus-MVA vaccine-induced antibody responses in humans, along with assessment of how these responses are modulated by subsequent low-density parasite exposure. Notable differences were observed in qualitative aspects of the human antibody responses against these malaria antigens depending on the means of their induction and/or exposure of the host to the malaria parasite. Given the continued clinical development of viral vectored vaccines for malaria and a range of other diseases targets, these data should help to guide further immuno-monitoring studies of vaccine-induced human antibody responses.
Collapse
|
25
|
de Souza JB. Protective immunity against malaria after vaccination. Parasite Immunol 2014; 36:131-9. [PMID: 24188045 DOI: 10.1111/pim.12086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
A good understanding of the immunological correlates of protective immunity is an important requirement for the development of effective vaccines against malaria. However, this concern has received little attention even in the face of two decades of intensive vaccine research. Here, we review the immune response to blood-stage malaria, with a particular focus on the type of vaccine most likely to induce the kind of response required to give strong protection against infection.
Collapse
Affiliation(s)
- J B de Souza
- Faculty of Infectious and Tropical Diseases, Department of Immunity and Infection, London School of Hygiene & Tropical Medicine, London, UK; Division of Infection & Immunity, University College London Medical School, London, UK
| |
Collapse
|
26
|
Abstract
Malaria is a life-threatening disease caused by parasites of the Plasmodium genus. In many parts of the world, the parasites have developed resistance to a number of antimalarial agents. Key interventions to control malaria include prompt and effective treatment with artemisinin-based combination therapies, use of insecticidal nets by individuals at risk and active research into malaria vaccines. Protection against malaria through vaccination was demonstrated more than 30 years ago when individuals were vaccinated via repeated bites by Plasmodium falciparum-infected and irradiated but still metabolically active mosquitoes. However, vaccination with high doses of irradiated sporozoites injected into humans has long been considered impractical. Yet, following recent success using whole-organism vaccines, the approach has received renewed interest; it was recently reported that repeated injections of irradiated sporozoites increased protection in 80 vaccinated individuals. Other approaches include subunit malaria vaccines, such as the current leading candidate RTS,S (consisting of fusion between a portion of the P. falciparum-derived circumsporozoite protein and the hepatitis B surface antigen), which has been demonstrated to induce reasonably good protection. Although results have been encouraging, the level of protection is generally considered to be too low to achieve eradication of malaria. There is great interest in developing new and better formulations and stable delivery systems to improve immunogenicity. In this review, we will discuss recent strategies to develop efficient malaria vaccines.
Collapse
Affiliation(s)
- C Arama
- Malaria Research and Training Center, University of Sciences Techniques and Technologies of Bamako (USTTB), Bamako, Mali; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
27
|
Theisen M, Roeffen W, Singh SK, Andersen G, Amoah L, van de Vegte-Bolmer M, Arens T, Tiendrebeogo RW, Jones S, Bousema T, Adu B, Dziegiel MH, Christiansen M, Sauerwein R. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages. Vaccine 2014; 32:2623-30. [DOI: 10.1016/j.vaccine.2014.03.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 11/27/2022]
|
28
|
Arumugam TU, Ito D, Takashima E, Tachibana M, Ishino T, Torii M, Tsuboi T. Application of wheat germ cell-free protein expression system for novel malaria vaccine candidate discovery. Expert Rev Vaccines 2013; 13:75-85. [DOI: 10.1586/14760584.2014.861747] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Jepsen MPG, Jogdand PS, Singh SK, Esen M, Christiansen M, Issifou S, Hounkpatin AB, Ateba-Ngoa U, Kremsner PG, Dziegiel MH, Olesen-Larsen S, Jepsen S, Mordmüller B, Theisen M. The Malaria Vaccine Candidate GMZ2 Elicits Functional Antibodies in Individuals From Malaria Endemic and Non-Endemic Areas. J Infect Dis 2013; 208:479-88. [DOI: 10.1093/infdis/jit185] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BIOMED RESEARCH INTERNATIONAL 2013; 2013:282913. [PMID: 23710439 PMCID: PMC3655447 DOI: 10.1155/2013/282913] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/21/2013] [Indexed: 12/11/2022]
Abstract
There is no malaria vaccine currently available, and the most advanced candidate has recently reported a modest 30% efficacy against clinical malaria. Although many efforts have been dedicated to achieve this goal, the research was mainly directed to identify antigenic targets. Nevertheless, the latest progresses on understanding how immune system works and the data recovered from vaccination studies have conferred to the vaccine formulation its deserved relevance. Additionally to the antigen nature, the manner in which it is presented (delivery adjuvants) as well as the immunostimulatory effect of the formulation components (immunostimulants) modulates the immune response elicited. Protective immunity against malaria requires the induction of humoral, antibody-dependent cellular inhibition (ADCI) and effector and memory cell responses. This review summarizes the status of adjuvants that have been or are being employed in the malaria vaccine development, focusing on the pharmaceutical and immunological aspects, as well as on their immunization outcomings at clinical and preclinical stages.
Collapse
|
31
|
Jogdand PS, Singh SK, Christiansen M, Dziegiel MH, Singh S, Theisen M. Flow cytometric readout based on Mitotracker Red CMXRos staining of live asexual blood stage malarial parasites reliably assesses antibody dependent cellular inhibition. Malar J 2012; 11:235. [PMID: 22818754 PMCID: PMC3418546 DOI: 10.1186/1475-2875-11-235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
Background Functional in vitro assays could provide insights into the efficacy of malaria vaccine candidates. For estimating the anti-parasite effect induced by a vaccine candidate, an accurate determination of live parasite count is an essential component of most in vitro bioassays. Although traditionally parasites are counted microscopically, a faster, more accurate and less subjective method for counting parasites is desirable. In this study mitochondrial dye (Mitotracker Red CMXRos) was used for obtaining reliable live parasite counts through flow cytometry. Methods Both asynchronous and tightly synchronized asexual blood stage cultures of Plasmodium falciparum were stained with CMXRos and subjected to detection by flow cytometry and fluorescence microscopy. The parasite counts obtained by flow cytometry were compared to standard microscopic counts obtained through examination of Giemsa-stained thin smears. A comparison of the ability of CMXRos to stain live and compromised parasites (induced by either medium starvation or by anti-malarial drug treatment) was carried out. Finally, parasite counts obtained by CMXRos staining through flow cytometry were used to determine specific growth inhibition index (SGI) in an antibody-dependent cellular inhibition (ADCI) assay. Results Mitotracker Red CMXRos can reliably detect live intra-erythrocytic stages of P. falciparum. Comparison between staining of live with compromised parasites shows that CMXRos predominantly stains live parasites with functional mitochondria. Parasite counts obtained by CMXRos staining and flow cytometry were highly reproducible and can reliably determine the ability of IgG from hyper-immune individuals to inhibit parasite growth in presence of monocytes in ADCI assay. Further, a dose-dependent parasite growth inhibitory effect could be detected for both total IgG purified from hyper-immune sera and affinity purified IgGs against the N-terminal non-repeat region of GLURP in ADCI assays coupled with determination of parasite counts through CMXRos staining and flow cytometry. Conclusions A flow cytometry method based on CMXRos staining for detection of live parasite populations has been optimized. This is a rapid and sensitive method with high inter-assay reproducibility which can reliably determine the anti-parasite effect mediated by antibodies in functional in vitro assays such as ADCI assay.
Collapse
Affiliation(s)
- Prajakta S Jogdand
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Dreyer AM, Matile H, Papastogiannidis P, Kamber J, Favuzza P, Voss TS, Wittlin S, Pluschke G. Passive Immunoprotection ofPlasmodium falciparum-Infected Mice Designates the CyRPA as Candidate Malaria Vaccine Antigen. THE JOURNAL OF IMMUNOLOGY 2012; 188:6225-37. [DOI: 10.4049/jimmunol.1103177] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
34
|
Corradin G, Céspedes N, Verdini A, Kajava AV, Arévalo-Herrera M, Herrera S. Malaria vaccine development using synthetic peptides as a technical platform. Adv Immunol 2012; 114:107-49. [PMID: 22449780 DOI: 10.1016/b978-0-12-396548-6.00005-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.
Collapse
|
35
|
Teirlinck AC, McCall MBB, Roestenberg M, Scholzen A, Woestenenk R, de Mast Q, van der Ven AJAM, Hermsen CC, Luty AJF, Sauerwein RW. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog 2011; 7:e1002389. [PMID: 22144890 PMCID: PMC3228790 DOI: 10.1371/journal.ppat.1002389] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 10/05/2011] [Indexed: 01/09/2023] Open
Abstract
Cellular responses to Plasmodium falciparum parasites, in particular interferon-gamma (IFNγ) production, play an important role in anti-malarial immunity. However, clinical immunity to malaria develops slowly amongst naturally exposed populations, the dynamics of cellular responses in relation to exposure are difficult to study and data about the persistence of such responses are controversial. Here we assess the longevity and composition of cellular immune responses following experimental malaria infection in human volunteers. We conducted a longitudinal study of cellular immunological responses to sporozoites (PfSpz) and asexual blood-stage (PfRBC) malaria parasites in naïve human volunteers undergoing single (n = 5) or multiple (n = 10) experimental P. falciparum infections under highly controlled conditions. IFNγ and interleukin-2 (IL-2) responses following in vitro re-stimulation were measured by flow-cytometry prior to, during and more than one year post infection. We show that cellular responses to both PfSpz and PfRBC are induced and remain almost undiminished up to 14 months after even a single malaria episode. Remarkably, not only ‘adaptive’ but also ‘innate’ lymphocyte subsets contribute to the increased IFNγ response, including αβT cells, γδT cells and NK cells. Furthermore, results from depletion and autologous recombination experiments of lymphocyte subsets suggest that immunological memory for PfRBC is carried within both the αβT cells and γδT compartments. Indeed, the majority of cytokine producing T lymphocytes express an CD45RO+ CD62L- effector memory (EM) phenotype both early and late post infection. Finally, we demonstrate that malaria infection induces and maintains polyfunctional (IFNγ+IL-2+) EM responses against both PfRBC and PfSpz, previously found to be associated with protection. These data demonstrate that cellular responses can be readily induced and are long-lived following infection with P. falciparum, with a persisting contribution by not only adaptive but also (semi-)innate lymphocyte subsets. The implications hereof are positive for malaria vaccine development, but focus attention on those factors potentially inhibiting such responses in the field. A decade into the 21st century, malaria remains responsible for an intolerable global health burden and an effective vaccine is sorely needed. Compounding the many technical hurdles in developing such a vaccine, (naturally-acquired) immunity to malaria is generally perceived to be short-lived, although direct evidence from field studies is conflicting. To overcome this issue, we measured the development of immune responses against the malaria parasite Plasmodium falciparum in human volunteers undergoing experimental malaria infections for the first time, allowing a uniquely detailed analysis thereof. We found that cellular immune responses against two clinically-relevant life-stages of the parasite are not only rapidly acquired following even a single malaria infection, but also remain virtually undiminished over a year later – an unprecedented measurement. These findings refute conclusively the notion that an intrinsic defect exists in either the development or persistence of cellular immune responses against malaria. This realization, in conjunction with a growing recognition that such responses are indeed associated with clinical protection against malaria, markedly enhances the prospect of one day developing a successful vaccine. Simultaneously, however, these results re-focus attention on the question of why the development of long-lived immune responses is often inhibited under conditions of natural exposure.
Collapse
Affiliation(s)
- Anne C. Teirlinck
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Meta Roestenberg
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anja Scholzen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Andre J. A. M. van der Ven
- Department of General Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Cornelus C. Hermsen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Adrian J. F. Luty
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
36
|
A phase 1 trial of MSP2-C1, a blood-stage malaria vaccine containing 2 isoforms of MSP2 formulated with Montanide® ISA 720. PLoS One 2011; 6:e24413. [PMID: 21949716 PMCID: PMC3176224 DOI: 10.1371/journal.pone.0024413] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion. Methodology/Principal Findings The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth. Conclusions/Significance As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant. Trial Registration Australian New Zealand Clinical Trials Registry 12607000552482
Collapse
|
37
|
de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, Coppel RL. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J 2011; 10:266. [PMID: 21920045 PMCID: PMC3182980 DOI: 10.1186/1475-2875-10-266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
Background Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. Plasmodium falciparum Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria. Methods Nine monoclonal antibodies (Mabs) were produced against Escherichia coli-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally P. falciparum-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce P. falciparum growth inhibition in vitro and compared against polyclonal rabbit serum raised against recombinant MSP4 Results All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth in vitro in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth. Conclusions The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Harini D de Silva
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Pratt-Riccio LR, Bianco-Junior C, Totino PRR, Perce-Da-Silva DDS, Silva LA, Riccio EKP, Ennes-Vidal V, Neves-Ferreira AGC, Perales J, Rocha SLGD, Dias-Da-Silva F, Ferreira-da-Cruz MDF, Daniel-Ribeiro CT, Oliveira-Ferreira JD, Theisen M, Carvalho LJDM, Banic DM. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:34-43. [DOI: 10.1590/s0074-02762011000900005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/01/2011] [Indexed: 11/22/2022] Open
|
39
|
Ellis RD, Sagara I, Doumbo O, Wu Y. Blood stage vaccines for Plasmodium falciparum: current status and the way forward. HUMAN VACCINES 2011; 6:627-34. [PMID: 20519960 DOI: 10.4161/hv.6.8.11446] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the recent call for a shift from malaria control to eradication, the role of asexual blood stage vaccines for falciparum malaria, which are not expected to prevent infection, has become less clear. However, blood stage antigens remain likely to be a critical component of a highly effective malaria vaccine. The inclusion of a blood stage component in a multistage malaria vaccine would not only prevent disease caused by “leaky” pre-erythrocytic immunity, but would also protect against epidemics in newly vulnerable populations. Recent clinical results of blood stage vaccine candidates have shown strain specific and partial efficacy, although no protection against clinical outcomes has been demonstrated in experimental infection or field trials to date. The current status of Plasmodium falciparum blood stage vaccine development is summarized and the potential role of these vaccines in the changed malaria landscape is discussed. Alternative preclinical and clinical development paths will speed iterative development.
Collapse
Affiliation(s)
- Ruth D Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA.
| | | | | | | |
Collapse
|
40
|
An overview on the field of micro- and nanotechnologies for synthetic Peptide-based vaccines. JOURNAL OF DRUG DELIVERY 2011; 2011:181646. [PMID: 21773041 PMCID: PMC3134826 DOI: 10.1155/2011/181646] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 04/05/2011] [Indexed: 11/17/2022]
Abstract
The development of synthetic peptide-based vaccines has many advantages in comparison with vaccines based on live attenuated organisms, inactivated or killed organism, or toxins. Peptide-based vaccines cannot revert to a virulent form, allow a better conservation, and are produced more easily and safely. However, they generate a weaker immune response than other vaccines, and the inclusion of adjuvants and/or the use of vaccine delivery systems is almost always needed. Among vaccine delivery systems, micro- and nanoparticulated ones are attractive, because their particulate nature can increase cross-presentation of the peptide. In addition, they can be passively or actively targeted to antigen presenting cells. Furthermore, particulate adjuvants are able to directly activate innate immune system in vivo. Here, we summarize micro- and nanoparticulated vaccine delivery systems used in the field of synthetic peptide-based vaccines as well as strategies to increase their immunogenicity.
Collapse
|
41
|
Lousada-Dietrich S, Jogdand PS, Jepsen S, Pinto VV, Ditlev SB, Christiansen M, Larsen SO, Fox CB, Raman VS, Howard RF, Vedvick TS, Ireton G, Carter D, Reed SG, Theisen M. A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 – A GLURP–MSP3 fusion protein malaria vaccine candidate. Vaccine 2011; 29:3284-92. [DOI: 10.1016/j.vaccine.2011.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/14/2011] [Accepted: 02/07/2011] [Indexed: 11/26/2022]
|
42
|
Strain-transcending Fc-dependent killing of Plasmodium falciparum by merozoite surface protein 2 allele-specific human antibodies. Infect Immun 2010; 79:1143-52. [PMID: 21189324 DOI: 10.1128/iai.01034-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that antibody responses against the human parasitic pathogen Plasmodium falciparum protect the host from the rigors of severe malaria and death. However, there is a continuing need for the development of in vitro correlate assays of immune protection. To this end, the capacity of human monoclonal and polyclonal antibodies in eliciting phagocytosis and parasite growth inhibition via Fcγ receptor-dependent mechanisms was explored. In examining the extent to which sequence diversity in merozoite surface protein 2 (MSP2) results in the evasion of antibody responses, an unexpectedly high level of heterologous function was measured for allele-specific human antibodies. The dependence on Fcγ receptors for opsonic phagocytosis and monocyte-mediated antibody-dependent parasite inhibition was demonstrated by the mutation of the Fc domain of monoclonal antibodies against both MSP2 and a novel vaccine candidate, peptide 27 from the gene PFF0165c. The described flow cytometry-based functional assays are expected to be useful for assessing immunity in naturally infected and vaccinated individuals and for prioritizing among blood-stage antigens for inclusion in blood-stage vaccines.
Collapse
|
43
|
Crompton PD, Pierce SK, Miller LH. Advances and challenges in malaria vaccine development. J Clin Invest 2010; 120:4168-78. [PMID: 21123952 DOI: 10.1172/jci44423] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Malaria caused by Plasmodium falciparum remains a major public health threat, especially among children and pregnant women in Africa. An effective malaria vaccine would be a valuable tool to reduce the disease burden and could contribute to elimination of malaria in some regions of the world. Current malaria vaccine candidates are directed against human and mosquito stages of the parasite life cycle, but thus far, relatively few proteins have been studied for potential vaccine development. The most advanced vaccine candidate, RTS,S, conferred partial protection against malaria in phase II clinical trials and is currently being evaluated in a phase III trial in Africa. New vaccine targets need to be identified to improve the chances of developing a highly effective malaria vaccine. A better understanding of the mechanisms of naturally acquired immunity to malaria may lead to insights for vaccine development.
Collapse
Affiliation(s)
- Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease (NIAID), NIH, Rockville, Maryland, USA
| | | | | |
Collapse
|
44
|
Genton B, D'Acremont V, Lurati-Ruiz F, Verhage D, Audran R, Hermsen C, Wolters L, Reymond C, Spertini F, Sauerwein R. Randomized double-blind controlled Phase I/IIa trial to assess the efficacy of malaria vaccine PfCS102 to protect against challenge with P. falciparum. Vaccine 2010; 28:6573-80. [PMID: 20691266 DOI: 10.1016/j.vaccine.2010.07.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/17/2010] [Accepted: 07/21/2010] [Indexed: 11/25/2022]
Abstract
The aim of this Phase I/IIa double-blind controlled trial was to test the efficacy of the sporozoite-based malaria vaccine PfCS 282-383 (PfCS102) to protect against Plasmodium falciparum parasitaemia. 16 volunteers were randomized to receive twice 30 μg of PfCS102 formulated in Montanide ISA 720 or ISA 720 alone (control). Two weeks after 2nd immunization, volunteers were challenged using 5 infected mosquitoes. All vaccinees developed antibodies against PfCS102 versus none control. 8/8 vaccinees and 6/6 controls challenged developed malaria parasitaemia. The duration from infection to onset of patent parasitaemia was similar in both groups (214 h in vaccinees and 216 in controls). PfCS102 is safe and immunogenic but provides no protection against artificial challenge in its current formulation.
Collapse
Affiliation(s)
- Blaise Genton
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mata E, Igartua M, Hernández RM, Rosas JE, Patarroyo ME, Pedraz JL. Comparison of the adjuvanticity of two different delivery systems on the induction of humoral and cellular responses to synthetic peptides. Drug Deliv 2010; 17:490-9. [PMID: 20500129 DOI: 10.3109/10717544.2010.483254] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
|
47
|
Pierce MA, Ellis RD, Martin LB, Malkin E, Tierney E, Miura K, Fay MP, Marjason J, Elliott SL, Mullen GED, Rausch K, Zhu D, Long CA, Miller LH. Phase 1 safety and immunogenicity trial of the Plasmodium falciparum blood-stage malaria vaccine AMA1-C1/ISA 720 in Australian adults. Vaccine 2010; 28:2236-2242. [PMID: 20051276 DOI: 10.1016/j.vaccine.2009.12.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/04/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
A Phase 1 trial was conducted in malaria-naïve adults to evaluate the recombinant protein vaccine apical membrane antigen 1-Combination 1 (AMA1-C1) formulated in Montanide ISA 720 (SEPPIC, France), a water-in-oil adjuvant. Vaccinations were halted early due to a formulation issue unrelated to stability or potency. Twenty-four subjects (12 in each group) were enrolled and received 5 or 20 microg protein at 0 and 3 months and four subjects were enrolled and received one vaccination of 80 microg protein. After first vaccination, nearly all subjects experienced mild to moderate local reactions and six experienced delayed local reactions occurring at Day 9 or later. After the second vaccination, three subjects experienced transient grade 3 (severe) local reactions; the remainder experienced grade 1 or 2 local reactions. All related systemic reactogenicity was grade 1 or 2, except one instance of grade 3 malaise. Anti-AMA1-C1 antibody responses were dose dependent and seen following each vaccination, with mean antibody levels 2-3 fold higher in the 20 microg group compared to the 5 microg group at most time points. In vitro growth-inhibitory activity was a function of the anti-AMA1 antibody titer. AMA1-C1 formulated in ISA 720 is immunogenic in malaria-naïve Australian adults. It is reasonably tolerated, though some transient, severe, and late local reactions are seen.
Collapse
Affiliation(s)
- Mark A Pierce
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Ruth D Ellis
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States.
| | - Laura B Martin
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Elissa Malkin
- PATH Malaria Vaccine Initiative, Bethesda, MD, United States
| | - Eveline Tierney
- PATH Malaria Vaccine Initiative, Bethesda, MD, United States
| | - Kazutoyo Miura
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Michael P Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, MD, United States
| | | | | | - Gregory E D Mullen
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Kelly Rausch
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Daming Zhu
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD, United States
| | - Louis H Miller
- Malaria Vaccine Development Branch (MVDB), National Institute of Allergy and Infectious Disease, National Institutes of Health (NIAID/NIH), Rockville, MD, United States
| |
Collapse
|
48
|
Plasmodium falciparum merozoite surface protein 1 (MSP-1)-MSP-3 chimeric protein: immunogenicity determined with human-compatible adjuvants and induction of protective immune response. Infect Immun 2009; 78:872-83. [PMID: 19933832 DOI: 10.1128/iai.00427-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric gene, MSP-Fu(24), was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-1(19)]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-3(11)]). The recombinant MSP-Fu(24) protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of approximately 30 mg/liter. Analyses of conformational properties of MSP-Fu(24) using PfMSP-1(19)-specific monoclonal antibody showed that the conformational epitopes of PfMSP-1(19) that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu(24) was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-1(19) and PfMSP-3(11). Purified anti-MSP-Fu(24) antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-1(19) component. The protective potential of MSP-Fu(24) was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu(24) antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-1(19) and PfMSP-3(11) components of the MSP-Fu(24) protein. The antiparasitic activities elicited by anti-MSP-Fu(24) antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-1(19) and PfMSP-3(11). The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.
Collapse
|
49
|
Courtin D, Oesterholt M, Huismans H, Kusi K, Milet J, Badaut C, Gaye O, Roeffen W, Remarque EJ, Sauerwein R, Garcia A, Luty AJF. The quantity and quality of African children's IgG responses to merozoite surface antigens reflect protection against Plasmodium falciparum malaria. PLoS One 2009; 4:e7590. [PMID: 19859562 PMCID: PMC2763201 DOI: 10.1371/journal.pone.0007590] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/01/2009] [Indexed: 11/20/2022] Open
Abstract
Background Antibodies, particularly cytophilic IgG subclasses, with specificity for asexual blood stage antigens of Plasmodium falciparum, are thought to play an important role in acquired immunity to malaria. Evaluating such responses in longitudinal sero-epidemiological field studies, allied to increasing knowledge of the immunological mechanisms associated with anti-malarial protection, will help in the development of malaria vaccines. Methods and Findings We conducted a 1-year follow-up study of 305 Senegalese children and identified those resistant or susceptible to malaria. In retrospective analyses we then compared post-follow-up IgG responses to six asexual-stage candidate malaria vaccine antigens in groups of individuals with clearly defined clinical and parasitological histories of infection with P. falciparum. In age-adjusted analyses, children resistant to malaria as well as to high-density parasitemia, had significantly higher IgG1 responses to GLURP and IgG3 responses to MSP2 than their susceptible counterparts. Among those resistant to malaria, high anti-MSP1 IgG1 levels were associated with protection against high-density parasitemia. To assess functional attributes, we used an in vitro parasite growth inhibition assay with purified IgG. Samples from individuals with high levels of IgG directed to MSP1, MSP2 and AMA1 gave the strongest parasite growth inhibition, but a marked age-related decline was observed in these effects. Conclusion Our data are consistent with the idea that protection against P. falciparum malaria in children depends on acquisition of a constellation of appropriate, functionally active IgG subclass responses directed to multiple asexual stage antigens. Our results suggest at least two distinct mechanisms via which antibodies may exert protective effects. Although declining with age, the growth inhibitory effects of purified IgG measurable in vitro reflected levels of anti-AMA1, -MSP1 and -MSP2, but not of anti-GLURP IgG. The latter could act on parasite growth via indirect parasiticidal pathways.
Collapse
Affiliation(s)
- David Courtin
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Unité de Recherche (UR) 010 « Santé de la mère et de l'enfant en milieu tropical », Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Mayke Oesterholt
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Harm Huismans
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kwadwo Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jacqueline Milet
- Unité de Recherche (UR) 010 « Santé de la mère et de l'enfant en milieu tropical », Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Cyril Badaut
- Unité de Recherche (UR) 010 « Santé de la mère et de l'enfant en milieu tropical », Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Oumar Gaye
- Laboratoire de Parasitologie et de Mycologie, Département de Biologie et d'Explorations fonctionnelles, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Will Roeffen
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Edmond J. Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Robert Sauerwein
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - André Garcia
- Unité de Recherche (UR) 010 « Santé de la mère et de l'enfant en milieu tropical », Institut de Recherche pour le Développement, Université Paris Descartes, Paris, France
| | - Adrian J. F. Luty
- Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Esen M, Kremsner PG, Schleucher R, Gässler M, Imoukhuede EB, Imbault N, Leroy O, Jepsen S, Knudsen BW, Schumm M, Knobloch J, Theisen M, Mordmüller B. Safety and immunogenicity of GMZ2 - a MSP3-GLURP fusion protein malaria vaccine candidate. Vaccine 2009; 27:6862-8. [PMID: 19755144 DOI: 10.1016/j.vaccine.2009.09.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/15/2009] [Accepted: 09/01/2009] [Indexed: 11/15/2022]
Abstract
Malaria is a major public health problem in Sub-Saharan Africa. In highly endemic regions infants, children and pregnant women are mostly affected. An effective malaria vaccine would complement existing malaria control strategies because it can be integrated in existing immunization programs easily. Here we present the results of the first phase Ia clinical trial of GMZ2 adjuvanted in aluminium hydroxide. GMZ2 is a malaria vaccine candidate, designed upon the rationale to induce immune responses against asexual blood stages of Plasmodium falciparum similar to those encountered in semi-immune individuals. Ten, 30 and 100 microg of GMZ2 were well tolerated in 30 healthy malaria-naïve German volunteers when given three times in monthly intervals. Antigen-specific antibodies as well as memory B-cells were induced and detectable throughout the one year follow-up of the study. We conclude that GMZ2 is a safe and immunogenic malaria vaccine candidate suitable for further clinical development.
Collapse
Affiliation(s)
- Meral Esen
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstrasse 27, D-72074 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|