1
|
Salvador-Erro J, Pastor Y, Gamazo C. Targeting Enterotoxins: Advancing Vaccine Development for Enterotoxigenic Escherichia coli ETEC. Toxins (Basel) 2025; 17:71. [PMID: 39998088 PMCID: PMC11860656 DOI: 10.3390/toxins17020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrheal disease worldwide, particularly in children in low- and middle-income countries. Its ability to rapidly colonize the intestinal tract through diverse colonization factors and toxins underpins its significant public health impact. Despite extensive research and several vaccine candidates reaching clinical trials, no licensed vaccine exists for ETEC. This review explores the temporal and spatial coordination of ETEC virulence factors, focusing on the interplay between adherence mechanisms and toxin production as critical targets for therapeutic intervention. Advancements in molecular biology and host-pathogen interaction studies have uncovered species-specific variations and cross-reactivity between human and animal strains. In particular, the heat-labile (LT) and heat-stable (ST) toxins have provided crucial insights into molecular mechanisms and intestinal disruption. Additional exotoxins, such as EAST-1 and hemolysins, further highlight the multifactorial nature of ETEC pathogenicity. Innovative vaccine strategies, including multiepitope fusion antigens (MEFAs), mRNA-based approaches, and glycoconjugates, aim to enhance broad-spectrum immunity. Novel delivery methods, like intradermal immunization, show promise in eliciting robust immune responses. Successful vaccination against ETEC will offer an effective and affordable solution with the potential to greatly reduce mortality and prevent stunting, representing a highly impactful and cost-efficient solution to a critical global health challenge.
Collapse
Affiliation(s)
| | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (J.S.-E.); (Y.P.)
| |
Collapse
|
2
|
Pasetti MF, Milletich PL, White JA, Butts J, Brady RC, Dickey MD, Ballou C, Maier N, Sztein MB, Baqar S, Louis Bourgeois A, Bernstein DI. Safety and immunogenicity in humans of enterotoxigenic Escherichia coli double mutant heat-labile toxin administered intradermally. NPJ Vaccines 2025; 10:23. [PMID: 39893179 PMCID: PMC11787345 DOI: 10.1038/s41541-025-01071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) diarrhea is associated with a high burden of disease globally, for which no licensed vaccine is available. A Phase 1, double-blind, dose-escalation (0.1-2.0 µg) study was conducted to evaluate the safety and immunogenicity of double mutant heat-labile toxin LTR192G/L211A (dmLT) delivered intradermally (ID) to healthy adults. Subjects received up to three immunizations at three-week intervals. The vaccine was safe, although it induced mild local and some gastrointestinal adverse events, as well as frequent hyperpigmentation at the injection site. High levels of serum IgG and IgA, LT neutralizing antibodies, and IgG and IgA antibodies in lymphocyte supernatant were elicited post-vaccination, most prominently at the largest dose (2.0 μg). Rates of responses were the highest in subjects who received the largest dose (2.0 μg) and multiple immunizations. The ETEC dmLT vaccine was safe and highly immunogenic, inducing long-lasting systemic and mucosal responses when administered by the ID route. Trial registration Clinical Trials NCT02531685.
Collapse
Affiliation(s)
- Marcela F Pasetti
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Patricia L Milletich
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | - Rebecca C Brady
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle D Dickey
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nicole Maier
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health and Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - A Louis Bourgeois
- PATH, Washington, DC, USA
- John Hopkins University School of Public Health, Baltimore, MD, USA
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Ayibieke A, Wajima T, Kano S, Chatterjee NS, Hamabata T. The colonization factor CS6 of enterotoxigenic Escherichia coli contributes to host cell invasion. Microb Pathog 2024; 190:106636. [PMID: 38556103 DOI: 10.1016/j.micpath.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.
Collapse
Affiliation(s)
- Alafate Ayibieke
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takeaki Wajima
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeyuki Kano
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | - Takashi Hamabata
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
4
|
Fan H, Liu IC, Gao L, Wu L. Bismuth subsalicylate, probiotics, rifaximin and vaccines for the prevention of travelers' diarrhea: a systematic review and network meta-analysis. Front Pharmacol 2024; 15:1361501. [PMID: 38698820 PMCID: PMC11063717 DOI: 10.3389/fphar.2024.1361501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/26/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Bismuth subsalicylate (BSS), probiotics, rifaximin, and vaccines have been proposed as preventive modalities for patients with travelers' diarrhea (TD), but their comparative effectiveness for prevention has rarely been studied. We aimed to perform a systematic review and network meta-analysis to test whether one of these modalities is more effective than the others in reducing the incidence of TD. Methods: We searched Pubmed, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, and clinical registries from inception of the databases through 18 November 2023, without language restriction, for randomized controlled trials (RCTs) evaluating the efficacy of BSS, probiotics, rifaximin, and vaccines in preventing TD. The primary outcome was the incidence of TD and the safety outcome was the incidence of adverse events. The relative ratio (RR) was used to assess the effect of the modalities, and RR estimates between any two of the modalities were calculated and pooled using a frequentist network meta-analysis model. Results: Thirty-one studies (recruiting 10,879 participants) were included in the analysis. Sixteen were judged to have a low risk of bias. In the aggregate analysis, BSS and rifaximin were more effective than placebo and other treatment modalities, which was further confirmed in the individual analysis. The comparison between rifaximin and placebo achieved high confidence, while the comparisons between BSS and placebo, ETEC and probiotics, and rifaximin and vaccines achieved moderate confidence. BSS had a higher rate of adverse events compared with other treatments. Conclusion: Rifaximin had a relative lower TD incidence and lower adverse event rate, and the evidence was with moderate confidence. Systematic Review Registration: https://osf.io/dxab6, identifier.
Collapse
Affiliation(s)
- Hao Fan
- School of Tourism and Service Management, Chongqing University of Education, Chongqing, China
- College of Humanities and Social Sciences, Yuan Ze University, Taoyuan, Taiwan
- School of Tourism and Hotel Management, University of Sanya, Sanya, China
| | - I-Chun Liu
- College of Humanities and Social Sciences, Yuan Ze University, Taoyuan, Taiwan
| | - Lei Gao
- School of Culture and Tourism, Chongqing City Management College, Chongqing, China
| | - Lanka Wu
- School of Tourism and Hotel Management, University of Sanya, Sanya, China
| |
Collapse
|
5
|
Niu L, Gao M, Wen S, Wang F, Shangguan H, Guo Z, Zhang R, Ge J. Effects of Catecholamine Stress Hormones Norepinephrine and Epinephrine on Growth, Antimicrobial Susceptibility, Biofilm Formation, and Gene Expressions of Enterotoxigenic Escherichia coli. Int J Mol Sci 2023; 24:15646. [PMID: 37958634 PMCID: PMC10649963 DOI: 10.3390/ijms242115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a significant contributor to diarrhea. To determine whether ETEC-catecholamine hormone interactions contribute to the development of diarrhea, we tested the effects of catecholamine hormones acting on ETEC in vitro. The results showed that in the presence of norepinephrine (NE) and epinephrine (Epi), the growth of 9 out of 10 ETEC isolates was promoted, the MICs of more than 60% of the isolates to 6 antibiotics significantly increased, and the biofilm formation ability of 10 ETEC isolates was also promoted. In addition, NE and Epi also significantly upregulated the expression of the virulence genes feaG, estA, estB, and elt. Transcriptome analysis revealed that the expression of 290 genes was affected by NE. These data demonstrated that catecholamine hormones may augment the diarrhea caused by ETEC.
Collapse
Affiliation(s)
- Lingdi Niu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| | - Shanshan Wen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haikun Shangguan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhiyuan Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin 150030, China
| |
Collapse
|
6
|
Hazime N, Belguesmia Y, Kempf I, Barras A, Drider D, Boukherroub R. Enhancing Colistin Activity against Colistin-Resistant Escherichia coli through Combination with Alginate Nanoparticles and Small Molecules. Pharmaceuticals (Basel) 2022; 15:ph15060682. [PMID: 35745601 PMCID: PMC9227550 DOI: 10.3390/ph15060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Bacterial resistance to antibiotics has become a major public health problem worldwide, with the yearly number of deaths exceeding 700,000. To face this well-acknowledged threat, new molecules and therapeutic methods are considered. In this context, the application of nanotechnology to fight bacterial infection represents a viable approach and has experienced tremendous developments in the last decades. Escherichia coli (E. coli) is responsible for severe diarrhea, notably in the breeding sector, and especially in pig farming. The resulting infection (named colibacillosis) occurs in young piglets and could lead to important economic losses. Here, we report the design of several new formulations based on colistin loaded on alginate nanoparticles (Alg NPs) in the absence, but also in the presence, of small molecules, such as components of essential oils, polyamines, and lactic acid. These new formulations, which are made by concomitantly binding colistin and small molecules to Alg NPs, were successfully tested against E. coli 184, a strain resistant to colistin. When colistin was associated with Alg NPs, the minimal inhibition concentration (MIC) decreased from 8 to 1 µg/mL. It is notable that when menthol or lactic acid was co-loaded with colistin on Alg NPs, the MIC of colistin drastically decreased, reaching 0.31 or 0.62 µg/mL, respectively. These novel bactericidal formulations, whose innocuity towards eukaryotic HT-29 cells was established in vitro, are presumed to permeabilize the bacterial membrane and provoke the leakage of intracellular proteins. Our findings revealed the potentiating effect of the Alg NPs on colistin, but also of the small molecules mentioned above. Such ecological and economical formulations are easy to produce and could be proposed, after confirmation by in vivo and toxicology tests, as therapeutic strategies to replace fading antibiotics.
Collapse
Affiliation(s)
- Noura Hazime
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Yanath Belguesmia
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Isabelle Kempf
- Agence Nationale de Sécurité Sanitaire de L'Alimentation, de L'Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité Mycoplasmologie Bactériologie Antibiorésistance, 22440 Ploufragan, France;
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
| | - Djamel Drider
- UMR Transfrontalière BioEcoAgro1158, Univ. Lille, INRAE, Univ. Liège, UPJV, YNCREA, Univ. Artois, Univ. Littoral Côte D’Opale, ICV-Institut Charles Viollette, 59000 Lille, France; (Y.B.); (D.D.)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France; (N.H.); (A.B.)
- Correspondence:
| |
Collapse
|
7
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
8
|
Jones RM, Seo H, Zhang W, Sack DA. A multi-epitope fusion antigen candidate vaccine for Enterotoxigenic Escherichia coli is protective against strain B7A colonization in a rabbit model. PLoS Negl Trop Dis 2022; 16:e0010177. [PMID: 35139116 PMCID: PMC8863229 DOI: 10.1371/journal.pntd.0010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of children's and travelers' diarrhea. Developing effective vaccines against this heterologous group has proven difficult due to the varied nature of toxins and adhesins that determine their pathology. A multivalent candidate vaccine was developed using a multi-epitope fusion antigen (MEFA) vaccinology platform and shown to effectively elicit broad protective antibody responses in mice and pigs. However, direct protection against ETEC colonization of the small intestine was not measured in these systems. Colonization of ETEC strains is known to be a determining factor in disease outcomes and is adhesin-dependent. In this study, we developed a non-surgical rabbit colonization model to study immune protection against ETEC colonization in rabbits. We tested the ability for the MEFA-based vaccine adhesin antigen, in combination with dmLT adjuvant, to induce broad immune responses and to protect from ETEC colonization of the rabbit small intestine. Our results indicate that the candidate vaccine MEFA antigen elicits antibodies in rabbits that react to seven adhesins included in its construction and protects against colonization of a challenge strain that consistently colonized naïve rabbits.
Collapse
Affiliation(s)
- Richard M. Jones
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
- University of Washington, Department of Microbiology, Seattle, Washington, United States of America
- * E-mail:
| | - Hyesuk Seo
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - Weiping Zhang
- University of Illinois at Urbana-Champaign, Department of Pathobiology, Urbana, Illinois, United States of America
| | - David A. Sack
- Johns Hopkins Bloomberg School of Public Health, Department of International Health, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Song X, Yang Y, Li J, He M, Zou Y, Jia R, Li L, Hang J, Cui M, Bai L, Yin Z. Tannins extract from Galla Chinensis can protect mice from infection by Enterotoxigenic Escherichia coli O101. BMC Complement Med Ther 2021; 21:84. [PMID: 33676495 PMCID: PMC7937208 DOI: 10.1186/s12906-021-03261-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is classically associated with acute secretory diarrhea, which induces 2 million people death in developing countries over a year, predominantly children in the first years of life. Previously, tannins (47.75%) were extracted from Galla Chinensis and prepared as Galla Chinensis oral solution (GOS) which showed significant antidiarrheal activity in a castor oil-induced diarrhea in mice. Whether the tannins extract were also effective in treatment of ETEC-induced diarrhea was determined in this study. Methods Mice were randomly divided into 6 groups (n = 22). The mice in the normal and untreated groups were given normal saline. Three GOS-treated groups were received different concentrations of GOS (5, 10 and 15%, respectively) at a dose of 10 mL/kg. Mice in the positive control group were fed with loperamide (10 mg/kg). The treatment with GOS started 3 days before infection with ETEC and continued for 4 consecutive days after infection. On day 3, mice were all infected with one dose of LD50 of ETEC, except those in the normal group. Survival of mice was observed daily and recorded throughout the study. On days 4 and 7, samples were collected from 6 mice in each group. Results GOS could increase the survival rate up to 75%, while in the untreated group it is 43.75%. The body weights of mice treated with 15% GOS were significantly increased on day 7 in comparison with the untreated group and the normal group. GOS-treatment recovered the small intestine coefficient enhanced by ETEC-infection. The diarrhea index of mice treated with GOS was significantly decreased. GOS increased the levels of IgG and sIgA in the terminal ileum and decreased the levels of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6 and IL-8) in serum. GOS could increase the amount of intestinal probiotics, Lactobacilli and Bifidobacteria. GOS could alleviate colon lesions induced by ETEC-infection. GOS showed higher potency than loperamide. Conclusions GOS could be a promising drug candidate for treating ETEC infections.
Collapse
Affiliation(s)
- Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Junzhi Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxue He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Hang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, P. R. China
| | - Lu Bai
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Ebomah KE, Okoh AI. An African perspective on the prevalence, fate and effects of carbapenem resistance genes in hospital effluents and wastewater treatment plant (WWTP) final effluents: A critical review. Heliyon 2020; 6:e03899. [PMID: 32420480 PMCID: PMC7215200 DOI: 10.1016/j.heliyon.2020.e03899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
This article provides an overview of the antibiotic era and discovery of earliest antibiotics until the present day state of affairs, coupled with the emergence of carbapenem-resistant bacteria. The ways of response to challenges of antibiotic resistance (AR) such as the development of novel strategies in the search of new antibiotics, designing more effective preventive measures as well as the ecology of AR have been discussed. The applications of plant extract and chemical compounds like nanomaterials which are based on recent developments in the field of antimicrobials, antimicrobial resistance (AMR), and chemotherapy were briefly discussed. The agencies responsible for environmental protection have a role to play in dealing with the climate crisis which poses an existential threat to the planet, and contributes to ecological support towards pathogenic microorganisms. The environment serves as a reservoir and also a vehicle for transmission of antimicrobial resistance genes hence, as dominant inhabitants we have to gain a competitive advantage in the battle against AMR.
Collapse
Affiliation(s)
- Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
11
|
Trujillo E, Rosales-Mendoza S, Angulo C. A multi-epitope plant-made chimeric protein (LTBentero) targeting common enteric pathogens is immunogenic in mice. PLANT MOLECULAR BIOLOGY 2020; 102:159-169. [PMID: 31820286 PMCID: PMC7223238 DOI: 10.1007/s11103-019-00938-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE A plant-based multiepitopic protein (LTBentero) containing epitopes from ETEC, S. typhimurium, and V. parahaemolyticus was produced in plants cells and triggered systemic and intestinal humoral responses in immunized mice. Around 200 million people suffer gastroenteritis daily and more than 2 million people die annually in developing countries due to such pathologies. Vaccination is an alternative to control this global health issue, however new low-cost vaccines are needed to ensure proper vaccine coverage. In this context, plants are attractive hosts for the synthesis and delivery of subunit vaccines. Therefore, in this study a plant-made multiepitopic protein named LTBentero containing epitopes from antigens of enterotoxigenic E. coli, S. typhimurium, and V. parahaemolyticus was produced and found immunogenic in mice. The LTBentero protein was expressed in tobacco plants at up to 5.29 µg g-1 fresh leaf tissue and was deemed immunogenic when administered to BALB/c mice either orally or subcutaneously. The plant-made LTBentero antigen induced specific IgG (systemic) and IgA (mucosal) responses against LTB, ST, and LptD epitopes. In conclusion, multiepitopic LTBentero was functionally produced in plant cells, being capable to trigger systemic and intestinal humoral responses and thus it constitutes a promising oral immunogen candidate in the fight against enteric diseases.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210, San Luis Potosí, Mexico.
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
- Centro de Investigaciones Biológicas del Noroeste, SC, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S, Mexico.
| |
Collapse
|
12
|
Bernstein DI, Pasetti MF, Brady R, Buskirk AD, Wahid R, Dickey M, Cohen M, Baughman H, El-Khorazaty J, Maier N, Sztein MB, Baqar S, Bourgeois AL. A Phase 1 dose escalating study of double mutant heat-labile toxin LTR192G/L211A (dmLT) from Enterotoxigenic Escherichia coli (ETEC) by sublingual or oral immunization. Vaccine 2018; 37:602-611. [PMID: 30563789 DOI: 10.1016/j.vaccine.2018.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND The public health burden of Enterotoxigenic Escherichia coli (ETEC) is high but no vaccine is specifically approved to prevent ETEC infections. METHODS We performed a Phase 1, dose escalation study (1-50 µg) evaluating the sublingual (SL) delivery of the double mutant heat-labile toxin LTR192G/L211A (dmLT) in 80 healthy adult volunteers. The primary objective was safety and the secondary was the immunogenicity of the dmLT. Subjects received 3 doses of dmLT at days 1, 15, and 29. Subjects receiving the first dose at each dosage level were observed overnight in a research facility. The second and third doses were administered on an outpatient basis. Data from cohorts 1-4 were used to select the cohort 5 dose (25 µg), comparing SL and oral routes. RESULTS The vaccine appeared safe and well tolerated with only rare development of vomiting or diarrhea. The serum anti-dmLT IgA and IgG and neutralizing antibody responses were modest after any of the SL immunizations. Serum IgA and IgG titers were increased at the higher antigen doses (25 or 50 µg) but the percent with 4-fold increases was at best 38% for both IgA and IgG. The 4-fold increase among subjects receiving all 3 doses was 43% for both IgA and IgG. Antibody titers following oral administration were, in general, significantly higher than after SL. The frequency of IgA- or IgG-ASCs in circulation were somewhat vaccine dose dependent and were detected at a moderate level. However, antibodies in saliva or stool were rarely detected. Post-vaccination increases in T cells or cytokine production were also infrequent. CONCLUSION The dmLT vaccine formulation evaluated here was safe but only moderately immunogenic at doses up to 50 µg when administered by the SL or oral route. Studies at higher doses with better formulations appear warranted.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rebecca Brady
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Amanda D Buskirk
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rezwanul Wahid
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michelle Dickey
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Mitchell Cohen
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | | | | | | | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
13
|
Rezaie E, Nekoie H, Miri A, Oulad G, Ahmadi A, Saadati M, Bozorgmehr M, Ebrahimi M, Salimian J. Different frequencies of memory B-cells induced by tetanus, botulinum, and heat-labile toxin binding domains. Microb Pathog 2018; 127:225-232. [PMID: 30528250 DOI: 10.1016/j.micpath.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/18/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
Along with robust immunogenicity, an ideal vaccine candidate should be able to produce a long lasting protection. In this regard, the frequency of memory B-cells is possibly an important factor in memory B-cell persistency and duration of immunological memory. On this basis, binding domains of tetanus toxin (HcT), botulinum type A1 toxin (HcA), and heat-labile toxin (LTB) were selected as antigen models that induced long-term, midterm and short-term immune memory, respectively. In the present study, the frequency of total memory B-cells after immunization with HcT, HcA and LTB antigens after 90 and 180 days, and also after one booster, in 190 days, was evaluated. The results showed a significant correlation between frequency of total memory B-cells and duration of humoral immunity. Compared to other antigens, the HcT antibody titers and HcT total memory B-cell populations were greater and persistent even after 6 months. At 6 months after the final immunization, all HcT- and HcA-immunized mice survived against tetanus and botulinum toxins, and also LT toxin binding to GM1 ganglioside was blocked in LTB-immunized mice. We conclude the frequency of memory B-cells and their duration are likely a key factor for vaccine memory duration.
Collapse
Affiliation(s)
- Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran
| | - Hekmat Nekoie
- Biology Research Center, IH University, Tehran, Iran
| | - Ali Miri
- Human Genetic Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamreza Oulad
- Applied Biotechnology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, Tehran, Iran
| | | | - Mahmood Bozorgmehr
- Department of Immunology, Avicenna Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran.
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Akhtar M, Chowdhury MI, Bhuiyan TR, Kaim J, Ahmed T, Rafique TA, Khan A, Rahman SIA, Khanam F, Begum YA, Sharif MZ, Islam LN, Carlin N, Maier N, Fix A, Wierzba TF, Walker RI, Bourgeois AL, Svennerholm AM, Qadri F, Lundgren A. Evaluation of the safety and immunogenicity of the oral inactivated multivalent enterotoxigenic Escherichia coli vaccine ETVAX in Bangladeshi adults in a double-blind, randomized, placebo-controlled Phase I trial using electrochemiluminescence and ELISA assays for immunogenicity analyses. Vaccine 2018; 37:5645-5656. [PMID: 30473185 PMCID: PMC6717083 DOI: 10.1016/j.vaccine.2018.11.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
The safety and immunogenicity of the second generation oral enterotoxigenic Escherichia coli (ETEC) vaccine ETVAX, consisting of inactivated recombinant E. coli strains over-expressing the colonization factors (CFs) CFA/I, CS3, CS5 and CS6 and the heat labile toxoid LCTBA, were evaluated in Bangladeshi volunteers. To enable analysis of antibody responses against multiple vaccine antigens for subsequent use in small sample volumes from children, a sensitive electrochemiluminescence (ECL) assay for analysis of intestine-derived antibody-secreting cell responses using the antibodies in lymphocyte secretions (ALS) assay was established using Meso Scale Discovery technology. Three groups of Bangladeshi adults (n = 15 per group) received two oral doses of ETVAX with or without double mutant LT (dmLT) adjuvant or placebo in the initial part of a randomized, double-blind, placebo-controlled, age-descending, dose-escalation trial. CF- and LTB-specific ALS and plasma IgA responses were analyzed by ECL and/or ELISA. ETVAX was safe and well tolerated in the adults. Magnitudes of IgA ALS responses determined by ECL and ELISA correlated well (r = 0.85 to 0.98 for the five primary antigens, P < 0.001) and ECL was selected as the ALS readout method. ALS IgA responses against each of the primary antigens were detected in 87-100% of vaccinees after the first and in 100% after the second vaccine dose. Plasma IgA responses against different CFs and LTB were observed in 62-93% and 100% of vaccinees, respectively. No statistically significant adjuvant effect of dmLT on antibody responses to any antigen was detected, but the overall antigenic breadth of the plasma IgA response tended to favor the adjuvanted vaccine when responses to 4 or more or 5 vaccine antigens were considered. Responses in placebo recipients were infrequent and mainly detected against single antigens. The promising results in adults supported testing ETVAX in descending age groups of children. ClinicalTrials.gov Identifier: NCT02531802.
Collapse
Affiliation(s)
- Marjahan Akhtar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohiul I Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur R Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Joanna Kaim
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden
| | - Tasnuva Ahmed
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Tanzeem A Rafique
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Arifuzzaman Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sadia I A Rahman
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Farhana Khanam
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Yasmin A Begum
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mir Z Sharif
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Laila N Islam
- Dept. of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh
| | | | | | | | | | | | | | - Ann-Mari Svennerholm
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Anna Lundgren
- GUVAX (Gothenburg University Vaccine Research Institute), Dept. of Microbiology and Immunology, Inst. of Biomedicine, University of Gothenburg, Sweden.
| |
Collapse
|
15
|
Zegeye ED, Govasli ML, Sommerfelt H, Puntervoll P. Development of an enterotoxigenic Escherichia coli vaccine based on the heat-stable toxin. Hum Vaccin Immunother 2018; 15:1379-1388. [PMID: 30081709 PMCID: PMC6663125 DOI: 10.1080/21645515.2018.1496768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea-related illness and death among children under 5 years of age in low– and middle-income countries (LMIC). Recent studies have found that it is the ETEC subtypes that produce the heat-stable enterotoxin (ST), irrespective of whether they also secrete the heat-labile enterotoxin (LT), which contribute most importantly to the disease burden in children from LMIC. Therefore, adding an ST toxoid would importantly complement ongoing ETEC vaccine development efforts. The ST’s potent toxicity, its structural similarity to the endogenous peptides guanylin and uroguanylin, and its poor immunogenicity have all complicated the advancement of ST-based vaccine development. Recent remarkable progress, however, including the unprecedented screening for optimal ST mutants, mapping of cross-reacting ST epitopes and improved ST-carrier coupling strategies (bioconjugation and genetic fusion), enables the rational design of safe, immunogenic, and well-defined ST-based vaccine candidates.
Collapse
Affiliation(s)
| | | | - Halvor Sommerfelt
- b Centre for Intervention Science in Maternal and Child Health, Centre for International Health, Department of Global Public Health and Primary Care , University of Bergen , Bergen , Norway.,c Norwegian Institute of Public Health , Oslo , Norway
| | - Pål Puntervoll
- a Centre for Applied Biotechnology , Uni Research AS , Bergen , Norway
| |
Collapse
|
16
|
Kordbacheh E, Nazarian S, Sadeghi D, Hajizadeh A. An LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:517-524. [PMID: 29922433 PMCID: PMC6000211 DOI: 10.22038/ijbms.2018.27017.6609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is known as the most common bacterial causes of diarrheal diseases related to morbidity and mortality. Heat-labile enterotoxin (LT) is a part of major virulence factors in ETEC pathogenesis. Antigen entrapment into nanoparticles (NPs) can protect them and enhance their immunogenicity. Materials and Methods: In the present study, recombinant LTB protein was expressed in E. coli BL21 (DE3) and purified by an Ni-NTA agarose column. The protein was entrapped in PLGA polymer by the double emulsion method. NPs were characterized physicochemically and the protein release from the NPs was evaluated. ELISA assay was performed for investigation of raised antibody against the recombinant protein in mice. The anti-toxicity and anti-adherence attributes of the immune sera against ETEC were also evaluated. Results: It showed the successful cloning of a 313 bp DNA fragment encoding LTB protein in the pET28a vector. Over-expression in BL21 (DE3) led to the formation of corresponding 15.5 kDa protein bands in the SDS-PAGE gel. Western blotting by using anti-CTX confirmed the purified LTB. Protein-entrapped NPs had a spherical shape with the size of 238 nm mean diameter and 85% entrapment efficiency. Immunological analyses showed the production of a high titer of specific IgG antibody in immunized animals. The neutralizing antibody in the sera of immunized animals was approved by GM1 binding and Ileal loop assays. Conclusion: The results indicate the efficacy of the entrapped LTB protein as an effective immunogen which induces the humoral responses.
Collapse
Affiliation(s)
- Emad Kordbacheh
- Imam Hossein University, Faculty of Science, Department of Biology, Tehran, Iran
| | - Shahram Nazarian
- Imam Hossein University, Faculty of Science, Department of Biology, Tehran, Iran
| | - Davoud Sadeghi
- Imam Hossein University, Faculty of Science, Department of Biology, Tehran, Iran
| | - Abbas Hajizadeh
- Imam Hossein University, Faculty of Science, Department of Biology, Tehran, Iran
| |
Collapse
|
17
|
Beikzadeh B, Nikbakht Brujeni G. Protection against neonatal enteric colibacillosis employing E. Coli-derived outer membrane vesicles in formulation and without vitamin D3. BMC Res Notes 2018; 11:302. [PMID: 29769118 PMCID: PMC5956550 DOI: 10.1186/s13104-018-3442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/11/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Enterotoxigenic Escherichia Coli (ETEC) is the cause of diarrhea and even death in humans and offspring of animals. Outer membrane vesicles (OMVs) of the ETEC was prepared and its potential as a vaccine candidate against enteric colibacillosis in neonatal mice was evaluated. Dam mice intradermally injected with ETEC-derived OMVs and OMVs plus an active form of vitamin D3 (avD3). Mucosal and systemic immune responses in mice and passive immunity protection against ETEC lethality in their offspring was investigated. RESULTS Immunization of adult mice via ETEC-derived OMV alone and in formulation with avD3 protect offspring from ETEC-induced lethality. Nevertheless, avD3 did not indicate a positive effect on mucosal and systemic immune responses. Only the combination of OMV plus avD3 elicited a significant (P < 0.05) increase in the level of specific IgA antibodies in serum.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Azadi Avenue, Tehran, Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Azadi Avenue, Tehran, Iran.
| |
Collapse
|
18
|
Mirhoseini A, Amani J, Nazarian S. Review on pathogenicity mechanism of enterotoxigenic Escherichia coli and vaccines against it. Microb Pathog 2018; 117:162-169. [DOI: 10.1016/j.micpath.2018.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
|
19
|
Gamal Y, Amal A, Reem G. Prevalence and virulence determinants of Escherichia coli isolated from raw cows milk. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/ajmr2018.8798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Kordbacheh E, Nazarian S, Hajizadeh A, Sadeghi D. Entrapment of LTB protein in alginate nanoparticles protects against Enterotoxigenic Escherichia coli. APMIS 2018; 126:320-328. [PMID: 29460309 DOI: 10.1111/apm.12815] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/20/2017] [Indexed: 11/28/2022]
Abstract
Vaccine delivery vehicles are just as important in vaccine efficiency. Through the progress in nanotechnology, various nanoparticles have been evaluated as carriers for these substances. Among them, alginate nanoparticles are a good choice because of their biodegradability, biocompatibility, ease of production, etc. In this study, feasibility of alginate nanoparticles (NPs) such as recombinant LTB from Enterotoxigenic Escherichia coli (ETEC) carrier was investigated. To do this, the eltb gene was cloned and expressed in E. coli BL21 (DE3) host cells, and a Ni-NTA column purified the protein. NPs were achieved through ion gelation method in the presence of LTB protein and CaCl2 as the cross-Linker and NPs were characterized physicochemically. Balb/C mice groups were immunized with LTB-entrapped NPs or LTB with adjuvant and immunogenicity was assessed by evaluating IgG titer. Finally, the neutralization of antibodies was evaluated by GM1 binding and loop assays. LTB protein was expressed and efficiently entrapped into the alginate NPs. The size of NPs was less than 50 nm, and entrapment efficiency was 80%. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein from NPs. Administration of LTB-entrapped NPs stimulated antibody responses in immunized mice. Immunization induced protection against LT toxin of ETEC in ileal loops and inhibits enterotoxin binding to GM1-gangliosides. Alginate NPs are also appropriate vehicle for antigen delivery purpose. Moreover because of their astonishing properties, they have the potential to serve as an adjuvant.
Collapse
Affiliation(s)
- Emad Kordbacheh
- Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| | - Abbas Hajizadeh
- Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| | - Davood Sadeghi
- Faculty of Science, Department of Biology, Imam Hossein University, Tehran, Iran
| |
Collapse
|
21
|
Characterization of Toxins and Colonization Factors of Enterotoxigenic Escherichia coli Isolates from Children with Acute Diarrhea in Abuja, Nigeria. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.64269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Thermostability of the coating, antigen and immunostimulator in an adjuvanted oral capsule vaccine formulation. Int J Pharm 2017; 534:60-70. [PMID: 29024788 DOI: 10.1016/j.ijpharm.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/17/2022]
Abstract
Oral vaccines present an attractive alternative to injectable vaccines for enteric diseases due to ease of delivery and the induction of intestinal immunity at the site of infection. However, susceptibility to gastrointestinal proteolysis, limited transepithelial uptake and a lack of clinically acceptable adjuvants present significant challenges. A further challenge to mass vaccination in developing countries is the very expensive requirement to maintain the cold chain. We recently described the effectiveness of a Single Multiple Pill® (SmPill®) adjuvanted capsule approach to enhance the effectiveness of a candidate enterotoxigenic Escherichia coli (ETEC) oral vaccine. Here it was demonstrated that this delivery system maintains the antigenicity of ETEC colonisation factor antigen I (CFA/I) and the immunostimulatory activity of the orally active α-Galactosylceramide (α-GalCer) adjuvant after storage of SmPill® minispheres under room temperature and extreme storage conditions for several months. In addition, the internal structure of the cores of SmPill® minispheres and antigen release features at intestinal pH were found to be preserved under all these conditions. However, changes in the surface morphology of SmPill® minispheres leading to the antigen release at gastric pH were observed after a few weeks of storage under extreme conditions. Those modifications were prevented by the introduction of an Opadry® White film coating layer between the core of SmPill® minispheres and the enteric coating. Under these conditions, protection against antigen release at gastric pH was maintained even under high temperature and humidity conditions. These results support the potential of the SmPill® minisphere approach to maintain the stability of an adjuvanted whole cell killed oral vaccine formulation.
Collapse
|
23
|
Leach S, Lundgren A, Carlin N, Löfstrand M, Svennerholm AM. Cross-reactivity and avidity of antibody responses induced in humans by the oral inactivated multivalent enterotoxigenicEscherichia coli (ETEC) vaccine ETVAX. Vaccine 2017. [PMID: 28625524 DOI: 10.1016/j.vaccine.2017.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We investigated whether the oral inactivated, multivalent enterotoxigenic Escherichia coli (ETEC) vaccine ETVAX, consisting of four E. coli strains over-expressing the colonisation factors (CFs) CFA/I, CS3, CS5 and CS6, combined with the toxoid LCTBA, could induce cross-reactive antibodies to CFs related to the CFA/I and CS5 families. We also evaluated the avidity of vaccine induced antibodies against the toxoid and CFs. Cross-reactivity was analysed in mucosal (faecal and antibodies in lymphocyte supernatants, ALS) samples, and antibody avidity in serum and ALS samples, from two phase I trials: a primary vaccination study, where two oral doses of ETVAX were given±the double mutant heat labile toxin (dmLT) adjuvant at a 2-week interval, and a booster vaccination study, where a single booster dose of ETVAX was given 13-23months after primary vaccinations. We found that 65-90% of subjects who had responded to CFA/I in ALS or faecal specimens also developed cross-reactive antibodies to the related CFs tested, i.e. CS1, CS14 and CS17, and that approximately 80% of those responding to CS5 also responded to the closely related CS7. For subjects who had developed cross-reactive antibodies, the magnitudes of responses against vaccine CFs and related non-vaccine CFs were comparable. Using both a simple method of antibody avidity determination based on limiting antigen dilution, as well as a chaotropic ELISA method, we found that the avidity of serum and ALS antibodies to key vaccine antigens increased after a late booster dose compared to after primary vaccination. Our results suggest that the cross-reactive antibody responses against multiple CFs may result in expanded ETEC strain coverage of ETVAX and that repeated vaccinations induce vaccine-specific antibodies with increased binding capacity.
Collapse
Affiliation(s)
- Susannah Leach
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Anna Lundgren
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Nils Carlin
- Etvax AB, Gunnar Asplunds allé, 17163 Solna, Sweden.
| | - Madeleine Löfstrand
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| | - Ann-Mari Svennerholm
- University of Gothenburg Vaccine Research Institute (GUVAX), Dept. of Microbiology and Immunology, University of Gothenburg, Box 435, 405 30 Gothenburg, Sweden.
| |
Collapse
|
24
|
Sahl JW, Sistrunk JR, Baby NI, Begum Y, Luo Q, Sheikh A, Qadri F, Fleckenstein JM, Rasko DA. Insights into enterotoxigenic Escherichia coli diversity in Bangladesh utilizing genomic epidemiology. Sci Rep 2017; 7:3402. [PMID: 28611468 PMCID: PMC5469772 DOI: 10.1038/s41598-017-03631-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 11/08/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause more than 500,000 deaths each year in the developing world and are characterized on a molecular level by the presence of genes that encode the heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as surface structures, known as colonization factors (CFs). Genome sequencing and comparative genomic analyses of 94 previously uncharacterized ETEC isolates demonstrated remarkable genomic diversity, with 28 distinct sequence types identified in three phylogenomic groups. Interestingly, there is a correlation between the genomic sequence type and virulence factor profiles based on prevalence of the isolate, suggesting that there is an optimal combination of genetic factors required for survival, virulence and transmission in the most successful clones. A large-scale BLAST score ratio (LS-BSR) analysis was further applied to identify ETEC-specific genomic regions when compared to non-ETEC genomes, as well as genes that are more associated with clinical presentations or other genotypic markers. Of the strains examined, 21 of 94 ETEC isolates lacked any previously identified CF. Homology searches with the structural subunits of known CFs identified 6 new putative CF variants. These studies provide a roadmap to exploit genomic analyses by directing investigations of pathogenesis, virulence regulation and vaccine development.
Collapse
Affiliation(s)
- Jason W Sahl
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
- Translational Genomics Research Institute, Flagstaff, AZ, 86001, USA
| | - Jeticia R Sistrunk
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA
| | - Nabilah Ibnat Baby
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Begum
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington, USA
| | - Alaullah Sheikh
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
| | - Firdausi Qadri
- Centre for Vaccine Sciences, Immunology Laboratory, International Centre Center for Diarrhoeal Disease Research, Mohakhali, Dhaka, 1212, Bangladesh
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington, USA
- The Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, Washington, USA
- Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, USA
| | - David A Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore Street, Suite 600, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
26
|
|
27
|
Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol 2016; 7:1831. [PMID: 27899918 PMCID: PMC5110546 DOI: 10.3389/fmicb.2016.01831] [Citation(s) in RCA: 871] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023] Open
Abstract
Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure.
Collapse
Affiliation(s)
| | - Anu Kumar
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| | - Rita S. Majumdar
- Department of Microbiology, Central University of HaryanaMahendragarh, India
| | - Vinod Yadav
- Department of Biotechnology, School of Engineering and Technology, Sharda UniversityGreater Noida, India
| |
Collapse
|
28
|
Rapid and Specific Polymerase Chain Reaction-Enzyme Linked Immunosorbent Assay for Detection of Escherichia coli LT Toxin From Clinical Isolates. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.36261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Gheibi Hayat SM, Mousavi Gargari SL, Nazarian S. Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals 2016; 44:503-510. [DOI: 10.1016/j.biologicals.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/17/2023] Open
|
30
|
Electron Acceptors Induce Secretion of Enterotoxigenic Escherichia coli Heat-Labile Enterotoxin under Anaerobic Conditions through Promotion of GspD Assembly. Infect Immun 2016; 84:2748-57. [PMID: 27430271 DOI: 10.1128/iai.00358-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/05/2016] [Indexed: 02/01/2023] Open
Abstract
Heat-labile enterotoxin (LT), the major virulence factor of enterotoxigenic Escherichia coli (ETEC), can lead to severe diarrhea and promotes ETEC adherence to intestinal epithelial cells. Most previous in vitro studies focused on ETEC pathogenesis were conducted under aerobic conditions, which do not reflect the real situation of ETEC infection because the intestine is anoxic. In this study, the expression and secretion of LT under anaerobic or microaerobic conditions were determined; LT was not efficiently secreted into the supernatant under anaerobic or microaerobic conditions unless terminal electron acceptors (trimethylamine N-oxide dihydrate [TMAO] or nitrate) were available. Furthermore, we found that the restoration effects of TMAO and nitrate on LT secretion could be inhibited by amytal or ΔtorCAD and ΔnarG E. coli strains, indicating that LT secretion under anaerobic conditions was dependent on the integrity of the respiratory chain. At the same time, electron acceptors increase the ATP level of ETEC, but this increase was not the main reason for LT secretion. Subsequently, the relationship between the integrity of the respiratory chain and the function of the type II secretion system was determined. The GspD protein, the secretin of ETEC, was assembled under anaerobic conditions and was accompanied by LT secretion when TMAO or nitrate was added. Our data also demonstrated that TMAO and nitrate could not induce the GspD assembly and LT secretion in ΔtorCAD and ΔnarG strains, respectively. Moreover, GspD assembly under anaerobic conditions was assisted by the pilot protein YghG.
Collapse
|
31
|
Towards Rational Design of a Toxoid Vaccine against the Heat-Stable Toxin of Escherichia coli. Infect Immun 2016; 84:1239-1249. [PMID: 26883587 DOI: 10.1128/iai.01225-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/04/2016] [Indexed: 01/29/2023] Open
Abstract
Enterotoxigenic Escherichia coli(ETEC) is an important cause of diarrheal disease and death in children <5 years old. ETEC strains that express the heat-stable toxin (ST), with or without the heat-labile toxin, are among the four most important diarrhea-causing pathogens. This makes ST an attractive target for an ETEC vaccine. An ST vaccine should be nontoxic and elicit an immune response that neutralizes native ST without cross-reacting with the human endogenous guanylate cyclase C receptor ligands. To identify variants of ST with no or low toxicity, we screened a library of all 361 possible single-amino-acid mutant forms of ST by using the T84 cell assay. Moreover, we identified mutant variants with intact epitopes by screening for the ability to bind neutralizing anti-ST antibodies. ST mutant forms with no or low toxicity and intact epitopes are termed toxoid candidates, and the top 30 candidates all had mutations of residues A14, N12, and L9. The identification of nontoxic variants of L9 strongly suggests that it is a novel receptor-interacting residue, in addition to the previously identified N12, P13, and A14 residues. The screens also allowed us to map the epitopes of three neutralizing monoclonal antibodies, one of which cross-reacts with the human ligand uroguanylin. The common dominant epitope residue for all non-cross-reacting antibodies was Y19. Our results suggest that it should be possible to rationally design ST toxoids that elicit neutralizing immune responses against ST with minimal risk of immunological cross-reactivity.
Collapse
|
32
|
Characterization of Mucosal Immune Responses to Enterotoxigenic Escherichia coli Vaccine Antigens in a Human Challenge Model: Response Profiles after Primary Infection and Homologous Rechallenge with Strain H10407. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:55-64. [PMID: 26581889 DOI: 10.1128/cvi.00617-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) bacteria are the most common bacterial cause of diarrhea in children in resource-poor settings as well as in travelers. Although there are several approaches to develop an effective vaccine for ETEC, no licensed vaccines are currently available. A significant challenge to successful vaccine development is our poor understanding of the immune responses that correlate best with protection against ETEC illness. In this study, ETEC-specific mucosal immune responses were characterized and compared in subjects challenged with ETEC strain H10407 and in subjects rechallenged with the homologous organism. IgA responses to lipopolysaccharide (LPS), heat-labile toxin B subunit (LTB), and colonization factor antigen I (CFA/I) in antibody in lymphocyte supernatant (ALS), feces, lavage fluid, and saliva samples were evaluated. In all assay comparisons, ALS was the most sensitive indicator of a local immune response, but serum IgA was also a useful indirect marker of immune response to oral antigens. Volunteers challenged and then rechallenged with strain H10407 were protected from illness following rechallenge. Comparing mucosal antibody responses after primary and homologous rechallenge, protection against disease was reflected in reduced antibody responses to key ETEC antigens and in reduced fecal shedding of the H10407 challenge strain. Subjects challenged with strain H10407 mounted stronger antibody responses to LPS and LTB than subjects in the rechallenge group, while responses to CFA/I in the rechallenge group were higher than in the challenge group. We anticipate that this study will help provide an immunological benchmark for the evaluation of ETEC vaccines and immunization regimens in the future.
Collapse
|
33
|
Relationship between heat-labile enterotoxin secretion capacity and virulence in wild type porcine-origin enterotoxigenic Escherichia coli strains. PLoS One 2015; 10:e0117663. [PMID: 25768732 PMCID: PMC4358887 DOI: 10.1371/journal.pone.0117663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 02/07/2023] Open
Abstract
Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and between the latter and virulence.
Collapse
|
34
|
|
35
|
Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, Reidl J, Schild S. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol 2015; 305:85-95. [PMID: 25466205 PMCID: PMC4300426 DOI: 10.1016/j.ijmm.2014.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Vibrio cholerae and enterotoxic Escherichia coli (ETEC) remain two dominant bacterial causes of severe secretory diarrhea and still a significant cause of death, especially in developing countries. In order to investigate new effective and inexpensive therapeutic approaches, we analyzed nanoparticles synthesized by a green approach using corresponding salt (silver or zinc nitrate) with aqueous extract of Caltropis procera fruit or leaves. We characterized the quantity and quality of nanoparticles by UV-visible wavelength scans and nanoparticle tracking analysis. Nanoparticles could be synthesized in reproducible yields of approximately 10(8) particles/ml with mode particles sizes of approx. 90-100 nm. Antibacterial activity against two pathogens was assessed by minimal inhibitory concentration assays and survival curves. Both pathogens exhibited similar resistance profiles with minimal inhibitory concentrations ranging between 5×10(5) and 10(7) particles/ml. Interestingly, zinc nanoparticles showed a slightly higher efficacy, but sublethal concentrations caused adverse effects and resulted in increased biofilm formation of V. cholerae. Using the expression levels of the outer membrane porin OmpT as an indicator for cAMP levels, our results suggest that zinc nanoparticles inhibit adenylyl cyclase activity. This consequently deceases the levels of this second messenger, which is a known inhibitor of biofilm formation. Finally, we demonstrated that a single oral administration of silver nanoparticles to infant mice colonized with V. cholerae or ETEC significantly reduces the colonization rates of the pathogens by 75- or 100-fold, respectively.
Collapse
Affiliation(s)
- Wesam Salem
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria; South Valley University, Faculty of Science, Qena, Egypt
| | - Deborah R Leitner
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Franz G Zingl
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Gebhart Schratter
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Schmiedlstraße 6, 8042 Graz, Austria
| | - Ruth Prassl
- Institute of Biophysics, Medical University of Graz, BioTechMed-Graz, Schmiedlstraße 6, 8042 Graz, Austria
| | - Walter Goessler
- Institute for Chemistry, Analytical Chemistry, University of Graz, BioTechMed-Graz, 8010 Graz, Austria
| | - Joachim Reidl
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Stefan Schild
- University of Graz, Institute of Molecular Biosciences, BioTechMed-Graz, Humboldtstrasse 50, A-8010 Graz, Austria.
| |
Collapse
|
36
|
Walker RI. An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine 2014; 33:954-65. [PMID: 25482842 DOI: 10.1016/j.vaccine.2014.11.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 02/06/2023]
Abstract
Despite improvements to water quality, sanitation, and the implementation of current prevention and treatment interventions, diarrhea remains a major cause of illness and death, especially among children less than five years of age in the developing world. Rotavirus vaccines have already begun making a real impact on diarrhea, but several more enteric vaccines will be necessary to achieve broader reductions of illness and death. Among the many causes of diarrheal disease, enterotoxigenic Escherichia coli (ETEC) and Shigella are the two most important bacterial pathogens for which there are no currently licensed vaccines. Vaccines against these two pathogens could greatly reduce the impact of disease caused by these infections. This review describes the approaches to ETEC and Shigella vaccines that are currently under development, including a range of both cellular and subunit approaches for each pathogen. In addition, the review discusses strategies for maximizing the potential benefit of these vaccines, which includes the feasibility of co-administration, consolidation, and combination of vaccine candidates, as well as issues related to effective administration of enteric vaccines to infants. Recent impact studies indicate that ETEC and Shigella vaccines could significantly benefit global public health. Either vaccine, particularly if they could be combined together or with another enteric vaccine, would be an extremely valuable tool for saving lives and promoting the health of infants and children in the developing world, as well as potentially providing protection to travelers and military personnel visiting endemic areas.
Collapse
Affiliation(s)
- Richard I Walker
- PATH, 455 Massachusetts Avenue NW, Suite 1000, Washington, DC 20001, USA.
| |
Collapse
|
37
|
Wijemanne P, Moxley RA. Glucose significantly enhances enterotoxigenic Escherichia coli adherence to intestinal epithelial cells through its effects on heat-labile enterotoxin production. PLoS One 2014; 9:e113230. [PMID: 25409235 PMCID: PMC4237375 DOI: 10.1371/journal.pone.0113230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
The present study tested whether exposure of enterotoxigenic Escherichia coli (ETEC) to glucose at different concentrations in the media results in increased bacterial adherence to host cells through increased heat-labile enterotoxin (LT) production, thereby suggesting the effects are physiological. Porcine-origin ETEC strains grown in Casamino acid yeast extract medium containing different concentrations of glucose were washed and inoculated onto IPEC-J2 porcine intestinal epithelial cells to test for effects on adherence and host cell cAMP concentrations. Consistent with previous studies, all LT+ strains had higher ETEC adherence to IPEC-J2 cells than did LT− strains. Adherence of the LT− but not the LT+ strains was increased by pre-incubating the IPEC-J2 cells with LT and decreased by co-incubation with GM1 ganglioside in a dose-dependent manner (P<0.05). To determine whether the glucose concentration of the cell culture media has an effect on adherence, IPEC-J2 cells were inoculated with LT+ or LT− strains in cell culture media containing a final glucose concentration of 0, 0.25, 0.5, 1.0 or 2.0%, and incubated for 4 h. Only media containing 0.25% glucose resulted in increased adherence and cAMP levels, and this was limited to IPEC-J2 cells inoculated with LT+ strains. This study supports the hypothesis that glucose, at a concentration optimal for LT expression, enhances bacterial adherence through the promotion of LT production. Hence, these results establish the physiological relevance of the effects of glucose on LT production and provide a basis for how glucose intake may influence the severity of ETEC infection.
Collapse
Affiliation(s)
- Prageeth Wijemanne
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Rodney A. Moxley
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
38
|
Safety and immunogenicity of an improved oral inactivated multivalent enterotoxigenic Escherichia coli (ETEC) vaccine administered alone and together with dmLT adjuvant in a double-blind, randomized, placebo-controlled Phase I study. Vaccine 2014; 32:7077-84. [PMID: 25444830 DOI: 10.1016/j.vaccine.2014.10.069] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND We have developed a new oral vaccine against enterotoxigenic Escherichia coli (ETEC), which is the most common cause of bacterial diarrhea in children in developing countries and in travelers. METHODS The vaccine was tested for safety and immunogenicity alone and together with double-mutant heat-labile toxin (dmLT) adjuvant in a double-blind, placebo-controlled Phase I study in 129 Swedish adults. The vaccine consists of four inactivated recombinant E. coli strains overexpressing the major ETEC colonization factors (CFs) CFA/I, CS3, CS5, and CS6 mixed with an LT B-subunit related toxoid, LCTBA. Volunteers received two oral doses of vaccine alone, vaccine plus 10 μg or 25 μg dmLT or placebo. Secretory IgA antibody responses in fecal samples and IgA responses in secretions from circulating intestine-derived antibody secreting cells were assessed as primary measures of vaccine immunogenicity. RESULTS The vaccine was safe and well tolerated; adverse events were few and generally mild with no significant differences between subjects receiving placebo or vaccine with or without adjuvant. As many as 74% of subjects receiving vaccine alone and 83% receiving vaccine plus 10 μg dmLT showed significant mucosal IgA responses to all five primary vaccine antigens and about 90% of all vaccinees responded to at least four of the antigens. Subjects receiving vaccine plus 10 μg dmLT responded with significantly increased intestine-derived anti-CS6 responses compared to subjects receiving vaccine alone. CONCLUSIONS The vaccine was safe and broadly immunogenic. dmLT further enhanced mucosal immune responses to CF antigens present in low amounts in the vaccine. Based on these encouraging results, the vaccine will be tested for safety and immunogenicity in different age groups including infants in Bangladesh and for protective efficacy in travelers.
Collapse
|
39
|
Molecular analysis and antimicrobial susceptibility of enterotoxigenic Escherichia coli from diarrheal patients. Diagn Microbiol Infect Dis 2014; 81:126-31. [PMID: 25533613 DOI: 10.1016/j.diagmicrobio.2014.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 10/10/2014] [Accepted: 10/20/2014] [Indexed: 11/23/2022]
Abstract
A total of 123 enterotoxigenic Escherichia coli (ETEC) isolates from diarrheal patients from June to December 2012 in Shanghai, China, were examined to determine their genetic relatedness using multilocus sequence typing and pulsed-field gel electrophoresis (PFGE) and for the presence of virulence genes and antimicrobial susceptibility. Twenty-nine sequence types (STs) and 63 PFGE patterns were identified, and results from the 2 subtyping methods correlated well. The 12 isolates of PFGE cluster B all belonged to ST-2332 and were associated with nosocomial neonatal diarrhea. Isolates of a cluster usually had the same set of virulence factors, whereas isolates of different PFGE clusters carried diverse combinations of virulence determinants. Isolates belonging to ST-2332 and ST-182 (n=9) were resistant to at least 6 antimicrobials. Our findings highlighted the need of active surveillance programs for infectious diseases collecting data at both epidemiological and genetic levels that can detect high-risk lineages of pathogens in order to rapidly identify disease outbreaks.
Collapse
|
40
|
Toxins and virulence factors of enterotoxigenic Escherichia coli associated with strains isolated from indigenous children and international visitors to a rural community in Guatemala. Epidemiol Infect 2014; 143:1662-71. [PMID: 25233938 PMCID: PMC4416357 DOI: 10.1017/s0950268814002295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diarrhoea remains a common cause of illness in Guatemala, with children suffering most frequently from the disease. This study directly compared the frequency, enterotoxin, and colonization factor (CF) profiles of enterotoxigenic Escherichia coli (ETEC) strains isolated from children living in a rural community in Guatemala and from Western visitors to the same location during the same seasons, using similar detection methodologies. We found that ETEC accounted for 26% of severe cases of diarrhoea in children requiring hospitalization, 15% of diarrhoea in the community, and 29% of travellers' diarrhoea in visitors staying ⩾2 weeks. The toxin and CF patterns of the ETEC strains isolated from both groups differed significantly (P < 0·0005) as determined by χ2 = 60·39 for CFs and χ2 = 35 for toxins, while ETEC phenotypes found in Guatemalan children were comparable to those found in children from other areas of the world.
Collapse
|
41
|
Experimental infection of healthy volunteers with enterotoxigenic Escherichia coli wild-type strain TW10598 in a hospital ward. BMC Infect Dis 2014; 14:482. [PMID: 25190096 PMCID: PMC4165915 DOI: 10.1186/1471-2334-14-482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/11/2014] [Indexed: 11/26/2022] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) is an important cause of childhood diarrhea in resource-limited regions. It is also an important cause of diarrhea in travellers to these areas. To evaluate the protective efficacy of new ETEC vaccines that are under development, there is a need to increase the capacity to undertake Phase IIB (human challenge) clinical trials and to develop suitable challenge models. Methods An in-hospital study was performed where fasting adult volunteers were experimentally infected with 1 × 106 to 1 × 109 colony forming units (CFUs) of the wild-type ETEC strain TW10598, which had been isolated from a child with diarrhea in West Africa in 1997. We recorded symptoms and physical signs and measured serum immune response to the TW10598 bacterium. Results We included 30 volunteers with mean age 22.8 (range 19.8, 27.4) years. The most common symptoms were diarrhea (77%), abdominal pain (67%), nausea (63%), and abdominal cramping (53%). Seven subjects (23%) experienced fever, none were hypotensive. Most of the volunteers responded with a substantial rise in the level of serum IgA antibodies against the challenge strain. Conclusions We established the capacity and methods for safely undertaking challenge studies to measure the efficacy of ETEC vaccine candidates in a hospital ward. Strain TW10598 elicited both clinical symptoms and an immune response across the doses given. Electronic supplementary material The online version of this article (doi:10.1186/1471-2334-14-482) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Desai SN, Cravioto A, Sur D, Kanungo S. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines. Hum Vaccin Immunother 2014; 10:1457-65. [PMID: 24861554 PMCID: PMC5396246 DOI: 10.4161/hv.29199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022] Open
Abstract
When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.
Collapse
Affiliation(s)
| | | | - Dipika Sur
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| |
Collapse
|
43
|
Oh KH, Kim DW, Jung SM, Cho SH. Molecular characterization of Enterotoxigenic Escherichia coli strains isolated from diarrheal patients in Korea during 2003-2011. PLoS One 2014; 9:e96896. [PMID: 24841334 PMCID: PMC4026316 DOI: 10.1371/journal.pone.0096896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of infectious diarrhea in developing countries. In order to characterize the molecular features of human ETEC isolates from Korea, we investigated the profiles of enterotoxin and colonization factor (CF) genes by polymerase chain reaction (PCR) and performed multilocus sequence typing (MLST) with a total of 291 ETEC strains. The specimens comprised 258 domestic strains isolated from patients who had diarrhea and were from widely separated geographic regions in Korea and 33 inflow strains isolated from travelers visiting other Asian countries. Heat-stable toxin (STh)-possessing ETEC strains were more frequent than heat-labile toxin (LT)-possessing ETEC strains in the domestic isolates, while the detection rates of both enterotoxin genes were similar in the inflow isolates. The profile of CF genes of domestic isolates was similar to that of inflow isolates and the major CF types of the strains were CS3-CS21-CS1/PCF071 and CS2-CS3-CS21. Most of these 2 CF types were detected in ETEC strains that possess both lt and sth genes. The major MLSTST types of domestic isolates were ST171 and ST955. Moreover, the 2 major CF types were usually found concomitantly with the 2 major MLST STs, ST171 and ST955. In conclusion, our genotyping results may provide useful information for guiding the development of geographically specific vaccines against human ETEC isolates.
Collapse
Affiliation(s)
- Kyung-Hwan Oh
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Kyeonggi-do, Republic of Korea
| | - Su-Mi Jung
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
44
|
Bagheri S, Mousavi Gargari SL, Rasooli I, Nazarian S, Alerasol M. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli. Braz J Infect Dis 2014; 18:308-14. [PMID: 24389278 PMCID: PMC9427529 DOI: 10.1016/j.bjid.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives Enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea in children under 5, is an important agent for traveler's diarrhea. Heat-labile enterotoxin (LT) and colonization factors (CFs) are two main virulence mechanisms in ETEC. CS6 is one of the most prevalent CFs consisting of two structural subunits viz., CssA, CssB, necessary for attachment to the intestinal cells. Methods In the present research, a chimeric trivalent protein composed of CssB, CssA and LTB was constructed. The chimeric gene was synthesized with codon bias of E. coli for enhanced expression of the protein. Recombinant proteins were expressed and purified. Mice were immunized with the recombinant protein. The antibody titer and specificity of the immune sera were analyzed by ELISA and Western blotting. Efficiency of the immune sera against ETEC was evaluated. Results Antibody induction was followed by immunization of mice with the chimeric protein. Pretreatment of the ETEC cells with immunized animal antisera remarkably decreased their adhesion to Caco-2 cells. Discussion The results indicate efficacy of the recombinant chimeric protein as an effective immunogen, which induces strong humoral response as well as protection against ETEC adherence and toxicity.
Collapse
|
45
|
Phenotypic and genotypic characterization of enterotoxigenic Escherichia coli clinical isolates from northern Colombia, South America. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236260. [PMID: 24877071 PMCID: PMC4022111 DOI: 10.1155/2014/236260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are major causes of childhood diarrhea in low and middle income countries including Colombia, South America. To understand the diversity of ETEC strains in the region, clinical isolates obtained from northern Colombia children were evaluated for multiple locus sequencing typing, serotyping, classical and nonclassical virulence genes, and antibiotic susceptibility. Among 40 ETEC clinical isolates evaluated, 21 (52.5%) were positive for LT gene, 13 (32.5%) for ST gene, and 6 (15%) for both ST and LT. The most prevalent colonization surface antigens (CS) were CS21 and CFA/I identified in 21 (50%) and 13 (32.5%) isolates, respectively. The eatA, irp2, and fyuA were the most common nonclassical virulence genes present in more than 60% of the isolates. Ampicillin resistance (80% of the strains) was the most frequent phenotype among ETEC strains followed by trimethoprim-sulfamethoxazole resistance (52.5%). Based on multiple locus sequencing typing (MLST), we recognize that 6 clonal groups of ETEC clinical isolates circulate in Colombia. ETEC clinical isolates from children in northern Colombia are highly diverse, yet some isolates circulating in the community belong to well-defined clonal groups that share a unique set of virulence factors, serotypes, and MLST sequence types.
Collapse
|
46
|
Shepherd SM, Shoff WH. Vaccination for the expatriate and long-term traveler. Expert Rev Vaccines 2014; 13:775-800. [DOI: 10.1586/14760584.2014.913485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Characterization of immunological cross-reactivity between enterotoxigenic Escherichia coli heat-stable toxin and human guanylin and uroguanylin. Infect Immun 2014; 82:2913-22. [PMID: 24778111 DOI: 10.1128/iai.01749-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) expressing the heat-stable toxin (ST) (human-type [STh] and porcine-type [STp] variants) is among the five most important enteric pathogens in young children living in low- and middle-income countries. ST mediates diarrheal disease through activation of the guanylate cyclase C (GC-C) receptor and is an attractive vaccine target with the potential to confer protection against a wide range of ETEC strains. However, immunological cross-reactivity to the endogenous GC-C ligands guanylin and uroguanylin is a major concern because of the similarities to ST in amino acid sequence, structure, and function. We have investigated the presence of similar epitopes on STh, STp, guanylin, and uroguanylin by analyzing these peptides in eight distinct competitive enzyme-linked immunosorbent assays (ELISAs). A fraction (27%) of a polyclonal anti-STh antibody and an anti-STh monoclonal antibody (MAb) cross-reacted with uroguanylin, the latter with a 73-fold-lower affinity. In contrast, none of the antibodies raised against STp, one polyclonal antibody and three MAbs, cross-reacted with the endogenous peptides. Antibodies raised against guanylin and uroguanylin showed partial cross-reactivity with the ST peptides. Our results demonstrate, for the first time, that immunological cross-reactions between ST and the endogenous peptides can occur. However, the partial nature and low affinity of the observed cross-reactions suggest that the risk of adverse effects from a future ST vaccine may be low. Furthermore, our results suggest that this risk may be reduced or eliminated by basing an ST immunogen on STp or a selectively mutated variant of STh.
Collapse
|
48
|
Muhammad A, Champeimont J, Mayr UB, Lubitz W, Kudela P. Bacterial ghosts as carriers of protein subunit and DNA-encoded antigens for vaccine applications. Expert Rev Vaccines 2014; 11:97-116. [DOI: 10.1586/erv.11.149] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
49
|
Svennerholm AM, Tobias J. Vaccines against enterotoxigenicEscherichia coli. Expert Rev Vaccines 2014; 7:795-804. [DOI: 10.1586/14760584.7.6.795] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Lal M, Priddy S, Bourgeois L, Walker R, Pebley W, Brown J, Desai J, Darsley MJ, Kristensen D, Chen D. Development of a fast-dissolving tablet formulation of a live attenuated enterotoxigenic E. coli vaccine candidate. Vaccine 2013; 31:4759-64. [DOI: 10.1016/j.vaccine.2013.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/28/2013] [Accepted: 08/05/2013] [Indexed: 12/29/2022]
|