1
|
Kala K, Mallik SK, Shahi N, Pathak R, Sharma P, Chandra S, Patiyal RS, Pande V, Pandey N, Pande A, Pandey PK. Emergence of Aeromonas salmonicida subsp. masoucida MHJM250: unveiling pathological characteristics and antimicrobial susceptibility in golden mahseer, Tor putitora (Hamilton, 1822) in India. Vet Res Commun 2024; 48:3751-3772. [PMID: 39269671 DOI: 10.1007/s11259-024-10518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Aeromonas salmonicida subsp. masoucida, designated as laboratory strain MHJM250, was characterized from a naturally infected farmed golden mahseer, Tor putitora. The infected fish exhibited clinical signs of erosion at the caudal fin and hemorrhage onx the ventral body surface. Molecular identification through 16 S rDNA and phylogenetic analysis revealed 100% similarity with a known strain A. salmonicida subsp. masoucida (MT122821.1). MHJM250 exhibited positive reactions for oxidase, catalase, esculin, MR-VP, O/F and utilized arginine and lysine. It also demonstrated siderophore activity, thrived at various NaCl concentrations, hydrolyzed gelatinase, skimmed milk and casinase. In vitro studies exhibited its hemolytic nature, significant biofilm production in glucose-rich tryptone soya broth and beta-hemolysis. MHJM250 didn't produce slime and was non-precipitated upon boiling. It showed crystal violet binding characteristics and auto-agglutination with relatively weak hydrophobicity (25%). In the challenge assay, intraperitoneal administration of MHJM250 to T. pitutora fingerlings at 108 CFU mL-1 resulted in pathogenicity with 3% mortality and mild hemorrhagic symptoms. Histopathological analysis revealed degenerative changes in gill, kidney, liver, muscle, and intestine samples. The bacterium displayed resistance to several antibiotics (µg/disc); ampicillin (10 µg), ampicillin/ sulbactam (10/10 µg), clindamycin (2 µg), linezolid (30 µg), penicillin G (10 µg) and rifampicin (5 µg) and varied minimum inhibitory concentrations against oxytetracycline, erythromycin and florfenicol. Transmission electron microscopy showed its rod-shaped structure with single polar flagellum and lophotrichous flagella. An investigation on the molecular basis for virulence factors of A. salmonicida subsp. masoucida MHJM250 may offer crucial understandings to formulate disease prevention and control strategies in aquaculture.
Collapse
Affiliation(s)
- Krishna Kala
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Sumanta Kumar Mallik
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Neetu Shahi
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Richa Pathak
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Prerna Sharma
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Suresh Chandra
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - R S Patiyal
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Nityanand Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Amit Pande
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India
| | - Pramod Kumar Pandey
- ICAR-Directorate of Coldwater Fisheries Research (ICAR-DCFR), Anusandhan Bhavan, Bhimtal, Nainital, 263 136, Uttarakhand, India.
| |
Collapse
|
2
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Crossman AH, Ignatz EH, Hall JR, Kumar S, Fast MD, Eslamloo K, Rise ML. Basal and immune-responsive transcript expression of two Atlantic salmon interferon regulatory factor 2 (irf2) paralogues. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104689. [PMID: 36934886 DOI: 10.1016/j.dci.2023.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Atlantic salmon (Salmo salar) is one of the most economically important aquaculture species globally. However, disease has become a prevalent threat to this industry. A thorough understanding of the genes and molecular pathways involved in the immune responses of Atlantic salmon is imperative for selective breeding of disease-resistant broodstock, as well as developing new diets and vaccines to mitigate the impact of disease. Members of the interferon regulatory factor (IRF) family of transcription factors play roles in the induction of interferons and other cytokines involved in host immune responses to intracellular and parasitic pathogens. IRF family members also play diverse roles in other biological processes, such as stress response, reproduction and development. The current study focused on one member of the IRF family: interferon regulatory factor 2 (irf2). As previously shown, due to the genome duplication that occurred ∼80 million years ago in the salmonid lineage, there are two irf2 paralogues in the Atlantic salmon genome. In silico analyses at the cDNA and deduced amino acid levels were conducted followed by phylogenetic tree construction with IRF2 amino acid sequences from various ray-finned fishes, cartilaginous fish and tetrapods. qPCR was then used to analyze paralogue-specific irf2 constitutive expression across 17 adult tissues, as well as responses to the viral mimic pIC (i.e., synthetic double-stranded RNA analog) in cultured macrophage-like cells (in vitro) and to infection with the Gram-negative bacterium Moritella viscosa in skin samples (in vivo). The qPCR studies showed sex- and paralogue-specific differences in expression across tissues. For example, expression of both paralogues was higher in ovary than in testes; expression (considering both sexes together) was highest for irf2-1 in gonad and for irf2-2 in hindgut. Both irf2 paralogues were responsive to pIC stimulation, but varied in their induction level, with irf2-1 having an overall stronger response than irf2-2. Only one paralogue, irf2-2, was significantly responsive to M. viscosa infection. Differences in irf2-1 and irf2-2 transcript expression levels constitutively across tissues, and in response to pIC and M. viscosa, may suggest neo- or subfunctionalization of the duplicated genes. This novel information expands current knowledge and provides insight into how genome duplication events may impact host regulation of important immune markers.
Collapse
Affiliation(s)
- Aleksandra H Crossman
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Eric H Ignatz
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Jennifer R Hall
- Memorial University, Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Surendra Kumar
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Mark D Fast
- Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave, Charlottetown, PE, CIA 4P3, Canada.
| | - Khalil Eslamloo
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| | - Matthew L Rise
- Memorial University, Department of Ocean Sciences, 0 Marine Lab Road, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
4
|
Ramberg S, Krasnov A, Colquhoun D, Wallace C, Andreassen R. Expression Analysis of Moritella viscosa-Challenged Atlantic Salmon Identifies Disease-Responding Genes, MicroRNAs and Their Predicted Target Genes and Pathways. Int J Mol Sci 2022; 23:ijms231911200. [PMID: 36232504 PMCID: PMC9569996 DOI: 10.3390/ijms231911200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Moritella viscosa is a bacterial pathogen causing winter-ulcer disease in Atlantic salmon. The lesions on affected fish lead to increased mortality, decreased fish welfare, and inferior meat quality in farmed salmon. MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation by guiding the miRNA-induced silencing complex to specific mRNA transcripts (target genes). The goal of this study was to identify miRNAs responding to Moritella viscosa in salmon by investigating miRNA expression in the head-kidney and the muscle/skin from lesion sites caused by the pathogen. Protein coding gene expression was investigated by microarray analysis in the same materials. Seventeen differentially expressed guide-miRNAs (gDE-miRNAs) were identified in the head-kidney, and thirty-nine in lesion sites, while the microarray analysis reproduced the differential expression signature of several thousand genes known as infection-responsive. In silico target prediction and enrichment analysis suggested that the gDE-miRNAs were predicted to target genes involved in immune responses, hemostasis, angiogenesis, stress responses, metabolism, cell growth, and apoptosis. The majority of the conserved gDE-miRNAs (e.g., miR-125, miR-132, miR-146, miR-152, miR-155, miR-223 and miR-2188) are known as infection-responsive in other vertebrates. Collectively, the findings indicate that gDE-miRNAs are important post-transcriptional gene regulators of the host response to bacterial infection.
Collapse
Affiliation(s)
- Sigmund Ramberg
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Division of Aquaculture, Norwegian Institute of Fisheries and Aquaculture (Nofima), 1430 Ås, Norway
| | | | | | - Rune Andreassen
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
5
|
Eslamloo K, Kumar S, Xue X, Parrish KS, Purcell SL, Fast MD, Rise ML. Global gene expression responses of Atlantic salmon skin to Moritella viscosa. Sci Rep 2022; 12:4622. [PMID: 35301338 PMCID: PMC8931016 DOI: 10.1038/s41598-022-08341-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
Moritella viscosa is a Gram-negative pathogen that causes large, chronic ulcers, known as winter-ulcer disease, in the skin of several fish species including Atlantic salmon. We used a bath challenge approach to profile the transcriptome responses of M. viscosa-infected Atlantic salmon skin at the lesion (Mv-At) and away from the lesion (Mv-Aw) sites. M. viscosa infection was confirmed through RNA-based qPCR assays. RNA-Seq identified 5212 and 2911 transcripts differentially expressed in the Mv-At compared to no-infection control and Mv-Aw groups, respectively. Also, there were 563 differentially expressed transcripts when comparing the Mv-Aw to control samples. Our results suggest that M. viscosa caused massive and strong, but largely infection site-focused, transcriptome dysregulations in Atlantic salmon skin, and its effects beyond the skin lesion site were comparably subtle. The M. viscosa-induced transcripts of Atlantic salmon were mainly involved in innate and adaptive immune response-related pathways, whereas the suppressed transcripts by this pathogen were largely connected to developmental and cellular processes. As validated by qPCR, M. viscosa dysregulated transcripts encoding receptors, signal transducers, transcription factors and immune effectors playing roles in TLR- and IFN-dependent pathways as well as immunoregulation, antigen presentation and T-cell development. This study broadened the current understanding of molecular pathways underlying M. viscosa-triggered responses of Atlantic salmon, and identified biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada. .,Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kathleen S Parrish
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Sara L Purcell
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Mark D Fast
- Hoplite Laboratory, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Dar SA, Kole S, Shin SM, Jeong HJ, Jung SJ. Comparative study on antigen persistence and immunoprotective efficacy of intramuscular and intraperitoneal injections of squalene - aluminium hydroxide (Sq + Al) adjuvanted viral hemorrhagic septicaemia virus vaccine in olive flounder (Paralichthys olivaceus). Vaccine 2021; 39:6866-6875. [PMID: 34696933 DOI: 10.1016/j.vaccine.2021.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/23/2023]
Abstract
The profitability of the olive flounder (Paralichthys olivaceus) aquaculture industry in Korea depends on high production and maintenance of flesh quality, as consumers prefer to eat raw flounders from aquaria and relish the raw muscles as 'sashimi'. For sustaining high production, easy-to-deliver and efficient vaccination strategies against serious pathogens, such as viral hemorrhagic septicemia virus (VHSV), is very important as it cause considerable losses to the industry. Whereas, a safe and non-invasive vaccine formulation that is free from unacceptable side-effects and does not devalue the fish is needed to maintain flesh quality. We previously developed a squalene-aluminium hydroxide (Sq + Al) adjuvanted VHSV vaccine that conferred moderate to high protection in flounder, without causing any side effects when administered through the intraperitoneal (IP) injection route. However, farmers often demand intramuscular (IM) injection vaccines as they are relatively easy to administer in small fishes. Therefore, we administered the developed vaccine via IP and IM routes and investigated the safety and persistency of the vaccine at the injection site. In addition, we conducted a comparative analysis of vaccine efficacy and serum antibody response. The clinical and histological observation of the IM and IP groups showed that our vaccine remained persistence at the injection sites for 10-17 weeks post vaccination (wpv), without causing any adverse effects to the fish. The relative percentage of survival were 100% and 71.4% for the IP group and 88.9% and 92.3% for the IM group at 3 and 17 wpv, respectively. Thus, considering the persistency period (24 wpv) and both short and long-term efficacy of our vaccine, the present study offers an option to flounder farmers in selecting either IM or IP delivery strategy according to their cultured fish size and harvesting schedule - IM vaccination for small-sized fish and IP vaccination for table-sized fish.
Collapse
Affiliation(s)
- Showkat Ahmad Dar
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sajal Kole
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Su-Mi Shin
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Hyeon-Jong Jeong
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea
| | - Sung-Ju Jung
- Department of Aqualife Medicine, Chonnam National University, Republic of Korea.
| |
Collapse
|
7
|
Torres-Corral Y, Girons A, González-Barreiro O, Seoane R, Riaza A, Santos Y. Effect of Bivalent Vaccines against Vibrio anguillarum and Aeromonas salmonicida Subspecie achromogenes on Health and Survival of Turbot. Vaccines (Basel) 2021; 9:vaccines9080906. [PMID: 34452031 PMCID: PMC8402583 DOI: 10.3390/vaccines9080906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
The efficacy of intraperitoneal injection of an oil-based bivalent autogenous vaccine and the commercial vaccine AlphaJect 3000 (Pharmaq AS) to prevent atypical furunculosis and vibriosis in turbot was analyzed. The effect of both vaccines on health parameters and survival of fish after challenge with V. anguillarum and A. salmonicida subsp. achromogenes was tested. The autogenous vaccine conferred high levels of protection and long-lasting immunity against both pathogens with a single dose. However, severe side effects were observed in turbot injected with this autovaccine and minor negative effects with the AlphaJect 3000 vaccine and the adjuvant Montanide or Eolane. All vaccinated fish showed remarkable antibody agglutination titers, higher than those of control fish, which were maintained 160 d after vaccination. In conclusion, the autogenous bivalent vaccine induces long-lasting protection against atypical furunculosis and vibriosis in turbot, after administration of a single dose, at the cost of high side effects in fish. Therefore, the development of new vaccines should focus on autovaccines and the use of liquid paraffin adjuvants that increase protection with reduced or no side effects.
Collapse
Affiliation(s)
- Yolanda Torres-Corral
- Departamento de Microbiología y Parasitología, Instituto de Análisis Químico y Biológico (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (Y.T.-C.); (Y.S.)
| | | | | | - Rafael Seoane
- Departamento de Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Ana Riaza
- Stolt Sea Farm, Edificio Quercus, 15707 Santiago de Compostela, Spain; (O.G.-B.); (A.R.)
| | - Ysabel Santos
- Departamento de Microbiología y Parasitología, Instituto de Análisis Químico y Biológico (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (Y.T.-C.); (Y.S.)
| |
Collapse
|
8
|
Huang L, Qi W, Zuo Y, Alias SA, Xu W. The immune response of a warm water fish orange-spotted grouper (Epinephelus coioides) infected with a typical cold water bacterial pathogen Aeromonas salmonicida is AhR dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103779. [PMID: 32735958 DOI: 10.1016/j.dci.2020.103779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/21/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China.
| | - Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Yanfei Zuo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, PR China
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Science (IOES), C308, Institute of Postgraduate Studies Building, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, PR China.
| |
Collapse
|
9
|
Ramirez-Paredes JG, Verner-Jeffreys DW, Papadopoulou A, Monaghan SJ, Smith L, Haydon D, Wallis TS, Davie A, Adams A, Migaud H. A commercial autogenous injection vaccine protects ballan wrasse (Labrus bergylta, Ascanius) against Aeromonas salmonicida vapA type V. FISH & SHELLFISH IMMUNOLOGY 2020; 107:43-53. [PMID: 33011432 DOI: 10.1016/j.fsi.2020.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Atypical Aeromonas salmonicida (aAs) and Vibrionaceae related species are bacteria routinely recovered from diseased ballan wrasse used as cleaner fish in the Atlantic salmon farming industry. Autogenous (i.e. farm specific inactivated) multivalent vaccines formulated from these microorganisms are widely used to protect farmed wrasse despite limited experimental proof that they are primary pathogens. In this study, the components of a commercial multivalent injection vaccine containing four strains of Aeromonas salmonicida and one strain of Vibrio splendidus previously isolated from ballan wrasse in Scotland, were tested for infectivity, pathogenicity and virulence via intra peritoneal injection at pre-deployment size (25-50 g) and the efficacy of the vaccine for protection against aAs assessed. Injection with 3.5 × 109, 8 × 109 1.8 × 109 and 5 × 109 cfu/fish of Vibrio splendidus, V. ichthyoenteri, Aliivibrio logeii and A. salmonicida, respectively, did not cause significant mortalities, lesions or clinical signs after a period of 14 days. IP injection with both aAs and Photobacterium indicum successfully reproduced the clinical signs and internal lesions observed during natural outbreaks of the disease. Differences in virulence (LD50 at day 8-post infection of 3.6 × 106 cfu/fish and 1.6 × 107 cfu/fish) were observed for two aAs vapA type V isolates. In addition, the LD50 for Photobacterium indicum was 2.2 × 107 cfu/fish. The autogenous vaccine was highly protective against the two aAs vapA type V isolates after 700-degree days of immunisation. The RPSFINAL values for the first isolate were 95 and 91% at 1 × 106 cfu/fish and 1 × 107 cfu/fish, respectively, and 79% at 1 × 107 cfu/fish for the second isolate tested. In addition, significantly higher anti aAs seral antibodies (IgM), were detected by ELISA in vaccinated fish in contrast with control (mock vaccinated) fish. These results suggest wrasse can be effectively immunised and protected against aAs infection by injection with oil adjuvanted vaccines prepared with inactivated homologous isolates.
Collapse
Affiliation(s)
- J G Ramirez-Paredes
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK; Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - D W Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road - the Nothe, Weymouth, Dorset, England, DT4 8UB, UK
| | - A Papadopoulou
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - S J Monaghan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - L Smith
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road - the Nothe, Weymouth, Dorset, England, DT4 8UB, UK
| | - D Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - T S Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Units 1-3 Old Station Business Park, Compton, Berkshire, England, RG20 6NE, UK
| | - A Davie
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - A Adams
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - H Migaud
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK.
| |
Collapse
|
10
|
Lim J, Hong S. Characterization of Aeromonas salmonicida and A. sobria isolated from cultured salmonid fish in Korea and development of a vaccine against furunculosis. JOURNAL OF FISH DISEASES 2020; 43:609-620. [PMID: 32196710 DOI: 10.1111/jfd.13158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Previously, Aeromonas sobria and A. salmonicida were identified to be the most prevalent species in salmonid farms in Korea. In this study, we evaluated the biochemical characteristics, antibiotic susceptibility and pathogenicity of A. salmonicida (3 isolates) and A. sobria (8 isolates) isolated from salmonids, and further investigated efficacy of A. salmonicida vaccine. In antibiotic susceptibility test, all of A. sobria isolates were resistant to amoxicillin and ampicillin. Six A. sobria and two A. salmonicida isolates were resistant to oxytetracycline. In challenge test, A. sobria isolates exhibited low pathogenicity in rainbow trout (Oncorhynchus mykiss) while one A. salmonicida isolate showed high pathogenicity with LD50 of 6.4 × 103 CFU/fish in rainbow trout and coho salmon (Oncorhynchus kisutch). Among virulence factors, secretion apparatus (ascV and ascC) and transcription regulatory protein (exsA) of type 3 secretion system and A-layer protein genes were differentially detected in DNA or cDNA of A. salmonicida isolates, indicating their contribution to the pathogenicity. A formalin-killed vaccine of highly pathogenic A. salmonicida isolate exhibited a protective effect with relative survival rate of 81.8% and 82.9% at 8 weeks and 16 weeks post-vaccination, respectively, in challenge test.
Collapse
Affiliation(s)
- Jongwon Lim
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| | - Suhee Hong
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, Korea
| |
Collapse
|
11
|
Recombinant outer membrane protein C of Aeromonas salmonicida subsp. masoucida, a potential vaccine candidate for rainbow trout (Oncorhynchus mykiss). Microb Pathog 2020; 145:104211. [PMID: 32333955 DOI: 10.1016/j.micpath.2020.104211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Aeromonas salmonicida subsp. masoucida (ASM) is an important bacterial pathogen of salmonid fish, which can cause huge economic losses to the fish farming industry. In order to screen effective vaccine candidate proteins, four outer membrane proteins of ASM, including OmpA, OmpC, OmpK and OmpW, were selected and recombinantly expressed in Escherichia coli. The result of western blotting showed that these four recombinant proteins could be recognized by rainbow trout anti-ASM antibodies. The immune protective effects of the four rOMPs were also investigated, and the relative percentage survival (RPS) of rOmpA, rOmpC, rOmpK and rOmpW were 71.1%, 81.6%, 55.3% and 42.1%, respectively. The RPS of rOmpC was significantly higher than the other three rOMPs, so the immune responses of rainbow trout induced by rOmpC were further investigated. The results showed that vaccination with rOmpC could significantly induced the production of specific serum antibodies and proliferation of sIg + lymphocytes in peripheral blood. Meanwhile, RT-qPCR analysis showed that rOmpC could significantly enhance the expression of the MHC-II, TCR, CD4, CD8, IL-8 and IgM genes compared with the BSA immunized group. These results demonstrated that rOmpC could induce strong humoral immune response in rainbow trout and provided effective immune protection against ASM challenge, which indicated that OmpC is a promising vaccine candidate against Aeromonas salmonicida infection.
Collapse
|
12
|
Padra JT, Murugan AVM, Sundell K, Sundh H, Benktander J, Lindén SK. Fish pathogen binding to mucins from Atlantic salmon and Arctic char differs in avidity and specificity and is modulated by fluid velocity. PLoS One 2019; 14:e0215583. [PMID: 31125340 PMCID: PMC6534294 DOI: 10.1371/journal.pone.0215583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/04/2019] [Indexed: 11/19/2022] Open
Abstract
Disease outbreaks are limiting factors for an ethical and economically sustainable aquaculture industry. The first point of contact between a pathogen and a host occurs in the mucus, which covers the epithelial surfaces of the skin, gills and gastrointestinal tract. Increased knowledge on host-pathogen interactions at these primary barriers may contribute to development of disease prevention strategies. The mucus layer is built of highly glycosylated mucins, and mucin glycosylation differs between these epithelial sites. We have previously shown that A. salmonicida binds to Atlantic salmon mucins. Here we demonstrate binding of four additional bacteria, A. hydrophila, V. harveyi, M. viscosa and Y. ruckeri, to mucins from Atlantic salmon and Arctic char. No specific binding could be observed for V. salmonicida to any of the mucin groups. Mucin binding avidity was highest for A. hydrophila and A. salmonicida, followed by V. harveyi, M. viscosa and Y. ruckeri in decreasing order. Four of the pathogens showed highest binding to either gills or intestinal mucins, whereas none of the pathogens had preference for binding to skin mucins. Fluid velocity enhanced binding of intestinal mucins to A. hydrophila and A. salmonicida at 1.5 and 2 cm/s, whereas a velocity of 2 cm/s for skin mucins increased binding of A. salmonicida and decreased binding of A. hydrophila. Binding avidity, specificity and the effect of fluid velocity on binding thus differ between salmonid pathogens and with mucin origin. The results are in line with a model where the short skin mucin glycans contribute to contact with pathogens whereas pathogen binding to mucins with complex glycans aid the removal of pathogens from internal epithelial surfaces.
Collapse
Affiliation(s)
- János Tamás Padra
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Abarna V. M. Murugan
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - John Benktander
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sara K. Lindén
- Department of Medical Chemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Recombinant outer membrane protein T (OmpT) of Vibrio ichthyoenteri, a potential vaccine candidate for flounder (Paralichthys olivaceus). Microb Pathog 2019; 126:185-192. [DOI: 10.1016/j.micpath.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022]
|
14
|
Erkinharju T, Dalmo RA, Vågsnes Ø, Hordvik I, Seternes T. Vaccination of Atlantic lumpfish (Cyclopterus lumpus L.) at a low temperature leads to a low antibody response against Aeromonas salmonicida. JOURNAL OF FISH DISEASES 2018; 41:613-623. [PMID: 29226986 DOI: 10.1111/jfd.12760] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/26/2017] [Accepted: 10/29/2017] [Indexed: 06/07/2023]
Abstract
We present a study on the effect of water temperature on immunization of Atlantic lumpfish. In total, 360 fish were vaccinated with either 50 μl of an oil-based injection vaccine (VAX), with Aeromonas salmonicida and Vibrio salmonicida antigens, or PBS. Fish were vaccinated at three different water temperatures, 5°C, 10°C and 15°C, and sorted into six groups (N = 60). Lumpfish were weighed every 3 weeks after vaccination, sampled at 3, 6, 9 and 18 weeks post-immunization (wpi) and evaluated by modified Speilberg score, ELISA and immunoblotting. Vaccinated fish showed low antibody response against V. salmonicida. Fish vaccinated at 5°C showed significantly lower antibody response against A. salmonicida throughout the study. At higher temperatures, vaccinated fish showed significantly increased antibody responses, at 18 wpi for 10°C and at 6 and 18 wpi for 15°C. Immunoblotting demonstrated specific response against the LPS antigen of A. salmonicida in the 10°C and 15°C VAX groups. Mean body weight increased in all groups throughout the study. Vaccinated fish had low Speilberg scores with no melanization of abdominal tissue. Our results show that vaccinating lumpfish at a lower water temperature may lead to a low antibody response against A. salmonicida.
Collapse
Affiliation(s)
- T Erkinharju
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | - R A Dalmo
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| | | | - I Hordvik
- Department of Biology, University of Bergen, Bergen, Norway
| | - T Seternes
- Norwegian College of Fishery Science, University of Tromsø, Tromsø, Norway
| |
Collapse
|
15
|
Tang X, Wang H, Liu F, Sheng X, Xing J, Zhan W. Outer membrane protein A: An immunogenic protein induces highly protective efficacy against Vibrio ichthyoenteri. Microb Pathog 2017; 113:152-159. [PMID: 29074429 DOI: 10.1016/j.micpath.2017.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/21/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022]
Abstract
Vibrio ichthyoenteri was an important causative agent of bacterial enteritis in flounder (Paralichthys olivaceus). Outer membrane protein A (OmpA) of Gram-negative pathogen was a major cell surface antigen. In the present study, OmpA of V. ichthyoenteri was recombinantly expressed in Escherichia coli, and the immunogenicity of OmpA was identified by western blotting using flounder anti-rOmpA and anti-V. ichthyoenteri antibodies. The vaccine potential of rOmpA was tested in a flounder model, and a high relative percentage of survival rate was obtained with 73.1% after challenge with V. ichthyoenteri. Meanwhile, the immune response of flounder induced by rOmpA was also investigated, and the results showed that the sIg + lymphocytes in blood, spleen, and pronephros significantly proliferated, and the peak levels occurred at week 4 after immunization. Moreover, rOmpA could induce higher levels of specific serum antibodies than the control group after immunization, and the peak level occurred at week 5 after immunization. Meanwhile, qRT-PCR analysis showed that the expressions of CD4-1, CD8α, IL-1β, IFN-γ, MHCIα and MHCIIα genes were significantly up-regulated after immunization with rOmpA. Taking together, these results demonstrated that rOmpA could evoke highly protective effects against V. ichthyoenteri challenge and induce strong immune response of flounder, which indicated that OmpA was a promising vaccine candidate.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China
| | - Hongye Wang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Fuguo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Qingdao 266071, China.
| |
Collapse
|
16
|
Rønneseth A, Haugland GT, Colquhoun DJ, Brudal E, Wergeland HI. Protection and antibody reactivity following vaccination of lumpfish (Cyclopterus lumpus L.) against atypical Aeromonas salmonicida. FISH & SHELLFISH IMMUNOLOGY 2017; 64:383-391. [PMID: 28344167 DOI: 10.1016/j.fsi.2017.03.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/01/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Atypical Aeromonas salmonicida is frequently associated with disease and mortality in farmed lumpfish (Cyclopterus lumpus L). Challenge experiments using different modes of exposure identified both high and low pathogenic isolates. Intraperitoneal vaccination induced production of high levels of specific antibodies particularly in fish given multiple injections. The immune sera contained antibodies cross reactive with both high and low pathogenic isolates. SDS-PAGE and LC/MSMS analyses showed that the highly virulent isolate expressed the virulence array protein (A-layer) while the less virulent isolate did not. Vaccines, containing the highly virulent isolate, formulated as a monovalent or as a trivalent vaccine, provided 73 and 60 relative percent survival (RPS) respectively, following intraperitoneal challenge. The detection of high levels of specific antibodies in immune sera and the protection provided by the test vaccines strongly indicate that it is possible to vaccinate lumpfish against atypical A. salmonicida and most probably also against other infectious bacterial diseases.
Collapse
Affiliation(s)
- Anita Rønneseth
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, NO-5020 Bergen, Norway.
| | - Gyri T Haugland
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, NO-5020 Bergen, Norway
| | - Duncan J Colquhoun
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, NO-5020 Bergen, Norway; Norwegian Veterinary Institute, Oslo, Norway
| | | | - Heidrun I Wergeland
- Department of Biology, University of Bergen, Bergen High-Technology Centre, PO Box 7803, NO-5020 Bergen, Norway
| |
Collapse
|
17
|
Xiong J, Xiong S, Qian P, Zhang D, Liu L, Fei Y. Thermal discharge-created increasing temperatures alter the bacterioplankton composition and functional redundancy. AMB Express 2016; 6:68. [PMID: 27620732 PMCID: PMC5016491 DOI: 10.1186/s13568-016-0238-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/30/2016] [Indexed: 01/07/2023] Open
Abstract
Elevated seawater temperature has altered the coupling between coastal primary production and heterotrophic bacterioplankton respiration. This shift, in turn, could influence the feedback of ocean ecosystem to climate warming. However, little is known about how natural bacterioplankton community responds to increasing seawater temperature. To investigate warming effects on the bacterioplankton community, we collected water samples from temperature gradients (ranged from 15.0 to 18.6 °C) created by a thermal flume of a coal power plant. The results showed that increasing temperatures significantly stimulated bacterial abundance, grazing rate, and altered bacterioplankton community compositions (BCCs). The spatial distribution of bacterioplankton community followed a distance similarity decay relationship, with a turnover of 0.005. A variance partitioning analysis showed that temperature directly constrained 2.01 % variation in BCCs, while temperature-induced changes in water geochemical and grazing rate indirectly accounted for 4.03 and 12.8 % of the community variance, respectively. Furthermore, the relative abundances of 24 bacterial families were linearly increased or decreased (P < 0.05 in all cases) with increasing temperatures. Notably, the change pattern for a given bacterial family was in concert with its known functions. In addition, community functional redundancy consistently decreased along the temperature gradient. This study demonstrates that elevated temperature, combined with substrate supply and trophic interactions, dramatically alters BCCs, concomitant with decreases in functional redundancy. The responses of sensitive assemblages are temperature dependent, which could indicate temperature departures.
Collapse
|
18
|
|
19
|
Menanteau‐Ledouble S, El‐Matbouli M. Antigens of Aeromonas salmonicida subsp. salmonicida specifically induced in vivo in Oncorhynchus mykiss. JOURNAL OF FISH DISEASES 2016; 39:1015-1019. [PMID: 26661507 PMCID: PMC4950343 DOI: 10.1111/jfd.12430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Affiliation(s)
- S Menanteau‐Ledouble
- Clinical Division of Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| | - M El‐Matbouli
- Clinical Division of Fish MedicineDepartment for Farm Animals and Veterinary Public HealthUniversity of Veterinary MedicineViennaAustria
| |
Collapse
|
20
|
Gulla S, Lund V, Kristoffersen AB, Sørum H, Colquhoun DJ. vapA (A-layer) typing differentiates Aeromonas salmonicida subspecies and identifies a number of previously undescribed subtypes. JOURNAL OF FISH DISEASES 2016; 39:329-342. [PMID: 25846742 DOI: 10.1111/jfd.12367] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/09/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Sequence variation in a region of the virulence array protein gene (vapA; A-layer) was assessed in 333 ('typical' and 'atypical') isolates of the fish pathogenic bacterium Aeromonas salmonicida. Resulting similarity dendrograms revealed extensive heterogeneity, with nearly all isolates belonging to either of 14 distinct clusters or A-layer types. All acknowledged A. salmonicida subspecies (except ssp. pectinolytica, from which no vapA sequence could be obtained) were clearly separated, and notably, all isolates phenotypically identified as ssp. salmonicida formed a distinct and exclusive A-layer type. Additionally, an array of un-subspeciated atypical strains formed several equally prominent clusters, demonstrating that the concept of typical/atypical A. salmonicida is inappropriate for describing the high degree of diversity evidently occurring outside ssp. salmonicida. Most representatives assessed in this study were clinical isolates of spatiotemporally diverse origins, and were derived from a variety of hosts. We observed that from several fish species or families, isolates predominantly belonged to certain A-layer types, possibly indicating a need for host-/A-layer type-specific A. salmonicida vaccines. All in all, A-layer typing shows promise as an inexpensive and rapid means of unambiguously distinguishing clinically relevant A. salmonicida subspecies, as well as presently un-subspeciated atypical strains.
Collapse
Affiliation(s)
- S Gulla
- Norwegian Veterinary Institute, Oslo, Norway
- Vaxxinova Norway AS, Bergen, Norway
| | | | | | - H Sørum
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - D J Colquhoun
- Norwegian Veterinary Institute, Oslo, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Merino S, Tomás JM. The Aeromonas salmonicida Lipopolysaccharide Core from Different Subspecies: The Unusual subsp. pectinolytica. Front Microbiol 2016; 7:125. [PMID: 26904002 PMCID: PMC4749718 DOI: 10.3389/fmicb.2016.00125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
Initial hydridization tests using Aeromonas salmonicida typical and atypical strains showed the possibility of different lipopolysaccharide (LPS) outer cores among these strains. By chemical structural analysis, LPS-core SDS-PAGE gel migration, and functional and comparative genomics we demonstrated that typical A. salmonicida (subsp. salmonicida) strains and atypical subsp. masoucida and probably smithia strains showed the same LPS outer core. A. salmonicida subsp. achromogenes strains show a similar LPS outer core but lack one of the most external residues (a galactose linked α1-6 to heptose), not affecting the O-antigen LPS linkage. A. salmonicida subsp. pectinolytica strains show a rather changed LPS outer core, which is identical to the LPS outer core from the majority of the A. hydrophila strains studied by genomic analyses. The LPS inner core in all tested A. salmonicida strains, typical and atypical, is well-conserved. Furthermore, the LPS inner core seems to be conserved in all the Aeromonas (psychrophilic or mesophilic) strains studied by genomic analyses.
Collapse
Affiliation(s)
- Susana Merino
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| | - Juan M Tomás
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona Barcelona, Spain
| |
Collapse
|
22
|
Schwenteit JM, Weber B, Milton DL, Bornscheuer UT, Gudmundsdottir BK. Construction of Aeromonas salmonicida subsp. achromogenes AsaP1-toxoid strains and study of their ability to induce immunity in Arctic char, Salvelinus alpinus L. JOURNAL OF FISH DISEASES 2015; 38:891-900. [PMID: 25271952 DOI: 10.1111/jfd.12303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/15/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
The metalloendopeptidase AsaP1 is one of the major extracellular virulence factors of A. salmonicida subsp. achromogenes, expressed as a 37-kDa pre-pro-peptide and processed to a 19-kDa active peptide. The aim of this study was to construct mutant strains secreting an AsaP1-toxoid instead of AsaP1-wt, to study virulence of these strains and to test the potency of the AsaP1-toxoid bacterin and the recombinant AsaP1-toxoids to induce protective immunity in Arctic char. Two A. salmonicida mutants were constructed that secrete either AsaP1E294A or AsaP1Y309F . The secreted AsaP1Y309F -toxoid had weak caseinolytic activity and was processed to the 19-kDa peptide, whereas the AsaP1E294A -toxoid was found as a 37-kDa pre-pro-peptide suggesting that AsaP1 is auto-catalytically processed. The LD50 of the AsaP1Y309F -toxoid mutant in Arctic char was significantly higher than that of the corresponding wt strain, and LD50 of the AsaP1E294A -toxoid mutant was comparable with that of an AsaP1-deficient strain. Bacterin based on AsaP1Y309F -toxoid mutant provided significant protection, comparable with that induced by a commercial polyvalent furunculosis vaccine. Detoxification of AsaP1 is very hard, expensive and time consuming. Therefore, an AsaP1-toxoid-secreting mutant is more suitable than the respective wt strain for production of fish bacterins aimed to protect against atypical furunculosis.
Collapse
Affiliation(s)
- J M Schwenteit
- Institute for Experimental Pathology, University of Iceland, Keldur, Reykjavík, Iceland
- Southern Research Institute, Birmingham, AL, USA
| | - B Weber
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - D L Milton
- Southern Research Institute, Birmingham, AL, USA
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - U T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Greifswald, Germany
| | - B K Gudmundsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
23
|
Pal KB, Verma PR, Gupta T, Mukhopadhyay B. Synthesis of the Trisaccharide Repeating Unit of the Lipopolysaccharide fromMoritella viscosaStrain M2-226. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1021476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Gudmundsdottir BK, Gudmundsdottir S, Gudmundsdottir S, Magnadottir B. Yersiniosis in Atlantic cod, Gadus morhua (L.), characterization of the infective strain and host reactions. JOURNAL OF FISH DISEASES 2014; 37:511-519. [PMID: 23786306 DOI: 10.1111/jfd.12139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/02/2013] [Accepted: 05/04/2013] [Indexed: 06/02/2023]
Abstract
A disease outbreak in farmed Atlantic cod caused by Yersinia ruckeri is reported. Mortality started following vaccination of cod reared in two tanks (A and B). The accumulated mortality reached 1.9% in A and 4.8% in B in the following 30 days when treatment with oxytetracycline was applied. Biochemical and molecular analysis of Y. ruckeri isolates from the cod and other fish species from fresh and marine waters in Iceland revealed a high salinity-tolerant subgroup of Y. ruckeri serotype O1. Infected fish showed clinical signs comparable with those of Y. ruckeri -infected salmonids, with the exception of granuloma formations in infected cod tissues, which is a known response of cod to bacterial infections. Immunohistological examination showed Y. ruckeri antigens in the core of granulomas and the involvement of immune parameters that indicates a strong association between complement and lysozyme killing of bacteria. Experimental infection of cod with a cod isolate induced disease, and the calculated LD50 was 1.7 × 10(4) CFU per fish. The results suggest that yersiniosis can be spread between populations of freshwater and marine fish. Treatment of infected cod with antibiotic did not eliminate the infection, which can be explained by the immune response of cod producing prolonged granulomatous infection.
Collapse
Affiliation(s)
- B K Gudmundsdottir
- Institute for Experimental Pathology, University of Iceland, Reykjavík, Iceland
| | | | | | | |
Collapse
|
25
|
Adikesavalu H, Patra A, Mondal A, Banerjee S, Abraham TJ. Association of Aeromonas salmonicida subsp. achromogenes in the haemorrhagic blister of cultured carp Cyprinus carpio in West Bengal, India. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Tafalla C, Bøgwald J, Dalmo RA. Adjuvants and immunostimulants in fish vaccines: current knowledge and future perspectives. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1740-1750. [PMID: 23507338 DOI: 10.1016/j.fsi.2013.02.029] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/07/2013] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Vaccination is the most adequate method to control infectious diseases that threaten the aquaculture industry worldwide. Unfortunately, vaccines are usually not able to confer protection on their own; especially those vaccines based on recombinant antigens or inactivated pathogens. Therefore, the use of adjuvants or immunostimulants is often necessary to increase the vaccine efficacy. Traditional adjuvants such as mineral oils are routinely used in different commercial bacterial vaccines available for fish; however, important side effects may occur with this type of adjuvants. A search for alternative molecules or certain combinations of them as adjuvants is desirable in order to increase animal welfare without reducing protection levels. Especially, combinations that may target specific cell responses and thus a specific pathogen, with no or minor side effects, should be explored. Despite this, the oil adjuvants currently used are quite friendlier with respect to side effects compared with the oil adjuvants previously used. The great lack of fish antiviral vaccines also evidences the importance of identifying optimal combinations of a vaccination strategy with the use of a targeting adjuvant, especially for the promising fish antiviral DNA vaccines. In this review, we summarise previous studies performed with both traditional adjuvants as well as the most promising new generation adjuvants such as ligands for Toll receptors or different cytokines, focussing mostly on their protective efficacies, and also on what is known concerning their effects on the fish immune system when delivered in vivo.
Collapse
Affiliation(s)
- Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos, 28130 Madrid, Spain.
| | | | | |
Collapse
|
27
|
Interaction of Aeromonas strains with lactic acid bacteria via Caco-2 cells. Appl Environ Microbiol 2013; 80:681-6. [PMID: 24242240 DOI: 10.1128/aem.03200-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Aeromonas includes some species that have now been identified as human pathogens of significant medical importance. We investigated the ability of 13 selected Aeromonas strains belonging to nine species isolated from clinical cases (n = 5), environmental waters (n = 5), and fish (n = 3) to adhere to and translocate Caco-2 cells in the absence and presence of two lactic acid bacteria (LAB), i.e., Lactobacillus acidophilus and Bifidobacterium breve. Aeromonas isolates were also assessed for their cytotoxicity, the presence of virulence genes, and hemolysin production. Among the clinical isolates, one strain of Aeromonas veronii biovar veronii and two strains of Aeromonas hydrophila carried cytotoxin (act), heat-labile toxin (alt), hemolysin (hlyA), and aerolysin (aerA) genes, were cytotoxic to Vero cells, produced hemolysin, and showed higher adherence to Caco-2 cells. In contrast, this was seen in only one environmental strain, a strain of A. veronii biovar sobria. When Aeromonas strains were coinoculated with LAB onto Caco-2 cells, their level of adhesion was reduced. However, their rate of translocation in the presence of LAB increased and was significantly (P < 0.05) higher among fish strains. We suggest that either the interaction between Aeromonas and LAB strains could have a detrimental effect on the Caco-2 cells, allowing the Aeromonas to translocate more readily, or the presence of the LAB stimulated the Aeromonas strains to produce more toxins and/or increase their translocation rate.
Collapse
|
28
|
Draft Genome Sequence of Aeromonas salmonicida subsp. achromogenes AS03, an Atypical Strain Isolated from Crucian Carp (Carassius carassius) in the Republic of Korea. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00791-13. [PMID: 24092786 PMCID: PMC3790090 DOI: 10.1128/genomea.00791-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We present the draft genome sequence of Aeromonas salmonicida subsp. achromogenes strain AS03, an atypical A. salmonicida strain that causes erythrodermatitis in crucian carp (Carassius carassius). This is the first genome sequence report of A. salmonicida subsp. achromogenes, one of the four subspecies of atypical A. salmonicida.
Collapse
|
29
|
Schwenteit JM, Breithaupt A, Teifke JP, Koppang EO, Bornscheuer UT, Fischer U, Gudmundsdottir BK. Innate and adaptive immune responses of Arctic charr (Salvelinus alpinus, L.) during infection with Aeromonas salmonicida subsp. achromogenes and the effect of the AsaP1 toxin. FISH & SHELLFISH IMMUNOLOGY 2013; 35:866-873. [PMID: 23811350 DOI: 10.1016/j.fsi.2013.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Aeromonas salmonicida subsp. achromogenes, the causative agent of atypical furunculosis in many fish species, secretes the toxic metalloendopeptidase AsaP1. This study aimed to analyze innate and adaptive immune parameters induced in Arctic charr (Salvelinus alpinus, L.) infected with wild type (wt) A. salmonicida subsp. achromogenes and its isogenic asaP1 deletion mutant (AsaP1-deficient). Head-kidney, liver and spleen were obtained from i.p. infected charr (wt, AsaP1-deficient), during a time schedule of 7 d post infection. Reverse transcription quantitative real-time PCR (RT-qPCR) was applied to study the expression of immune parameters: pro-inflammatory cytokines IL-1β and TNF-α; anti-inflammatory cytokine IL-10; chemokines CXCL-8 (IL-8) and CC-chemokine; the cytokines IFN-γ and IL-4/13A as tracers for Th1 and Th2 immune responses, respectively; and the cell markers CD8α and CD83. In addition, lymphoid organs were histopathologically examined at days 3 and 7 post infection, including B (IgM) and T (CD3ε) cell staining. The detected immune responses were initially driven by innate mechanisms represented by the up-regulation of pro-inflammatory cytokines and chemokines and later on by adaptive Th2 related responses cumulating in B-cell recruitment as shown by regulation of immune parameters in spleen and head-kidney, with significant differences between mutant and wt infected fish. Histological sections revealed IgM-positive cells around ellipsoid arterioles in spleen, while CD3ε positive cells were found in clusters scattered all over the section. However, histopathological differences were only detected between infected and non-infected fish, but not between AsaP1-deficient mutant and wt infected fish. This work represents the first study on innate and adaptive immune responses of Arctic charr induced by a bacterial infection.
Collapse
Affiliation(s)
- Johanna M Schwenteit
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, IS-112 Reykjavík, Iceland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Magnadottir B, Gudmundsdottir BK, Groman D. Immuno-histochemical determination of humoral immune markers within bacterial induced granuloma formation in Atlantic cod (Gadus morhua L.). FISH & SHELLFISH IMMUNOLOGY 2013; 34:1372-1375. [PMID: 23481211 DOI: 10.1016/j.fsi.2013.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
In this study the involvement of several humoral immune parameters of Atlantic cod (Gadus morhua L.) were studied in granuloma formed as a result of infection by Aeromonas salmonicida ssp. achomogenes. The results showed a clear association of immune parameters within the granuloma, in particular the localization of complement component C3, and including evidence for the presence of IgM, APoLP-A1 (Apolipoprotein), CRP-PI and CRP-PII (pentraxin).
Collapse
Affiliation(s)
- B Magnadottir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | | | | |
Collapse
|
31
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
32
|
Schwenteit J, Bogdanović X, Fridjonsson OH, Aevarsson A, Bornscheuer UT, Hinrichs W, Gudmundsdottir BK. Toxoid construction of AsaP1, a lethal toxic aspzincin metalloendopeptidase of Aeromonas salmonicida subsp. achromogenes, and studies of its activity and processing. Vet Microbiol 2013; 162:687-694. [PMID: 23031341 DOI: 10.1016/j.vetmic.2012.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
AsaP1 is a toxic aspzincin metalloendopeptidase secreted by the fish pathogen Aeromonas salmonicida subsp. achromogenes. The protease is highly immunogenic and antibodies against AsaP1 evoke a passive protection against infection with A. salmonicida subsp. achromogenes. The protease is expressed as 37 kDa pre-pro-protein and processed to an active enzyme of 19kDa in A. salmonicida subsp. achromogenes. Recombinant expression of AsaP1(rec) in E. coli results in a protease of 22 kDa that is not secreted. AsaP1(rec) induces comparable pathological changes in Atlantic salmon (Salmo salar L.) to native AsaP1(wt). The aim of the study was to construct AsaP1 toxoids by exchanging catalytically important amino acids in the active site region of the protease. Four different AsaP1 mutants (AsaP1(E294A), AsaP1(E294Q), AsaP1(Y309A), and AsaP1(Y309F)) were successfully constructed by one step site directed mutagenesis, expressed in E. coli BL21 C43 as pre-pro-proteins and purified by His-tag affinity chromatography and gel filtration. Three of the resulting mutants (AsaP1(E294A), AsaP1(E294Q), and AsaP1(Y309A)) were not caseinolytic active and are detected as unprocessed pre-pro-proteins of 37 kDa. Caseinolytic active AsaP1(rec) and a mutant with reduced activity, AsaP1(Y309F), were processed to a size of 22 kDa. Furthermore, AsaP1(rec) is able to process the inactive mutants to the mature size of 22 kDa, allowing the conclusion that AsaP1 is autocatalytically processed. All four mutants AsaP1(E294A), AsaP1(E294Q), AsaP1(Y309A) and AsaP1(Y309F) are non-toxic in fish but induce a specific anti-AsaP1 antibody response in Arctic charr (Salvelinus alpinus L.) and are therefore true toxoids and possible vaccine additives.
Collapse
Affiliation(s)
- Johanna Schwenteit
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, IS-112 Reykjavík, Iceland; Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Xenia Bogdanović
- Department of Structural Biology, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | | | | | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Winfried Hinrichs
- Department of Structural Biology, Greifswald University, Felix Hausdorff-Str. 4, 17487 Greifswald, Germany.
| | - Bjarnheidur K Gudmundsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, IS-112 Reykjavík, Iceland.
| |
Collapse
|
33
|
Structural studies of the lipopolysaccharide of Moritella viscosa strain M2-226. Carbohydr Res 2012; 347:164-7. [DOI: 10.1016/j.carres.2011.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/19/2011] [Accepted: 10/20/2011] [Indexed: 11/17/2022]
|
34
|
Boltaña S, Roher N, Goetz FW, Mackenzie SA. PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1195-1203. [PMID: 21453721 DOI: 10.1016/j.dci.2011.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/12/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
Understanding the mechanisms that underpin pathogen recognition and subsequent orchestration of the immune response in fish is an area of significant importance for both basic research and management of health in aquaculture. In recent years much attention has been given to the identification of pattern recognition receptors (PRRs) in fish, however, characterisation of interactions with specific pathogen-associated molecular patterns (PAMPs) is still incomplete. Microarray studies have significantly contributed to functional studies and early descriptions of PAMP-PRR driven activation of specific response cassettes in the genome have been obtained although much is left to be done. In this review we will address gram negative (G-negative) bacterial recognition in fish addressing contributing factors such as structure-function relationships between G-negative PAMPs, current knowledge of fish PRRs and the input achieved by microarray-based studies ranging from in vivo infection studies to directed in vitro PAMP-cell studies. Finally we revisit the endotoxic recognition paradigm in fish and suggest a series of future perspectives that could contribute toward the further elucidation of G-negative bacterial recognition across the highly diverse group of vertebrates that encompass the fishes.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Dep. Biologia Cel·lular, Immunologia i Fisiologia Animal, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Wang GX, Wang Y, Wu ZF, Jiang HF, Dong RQ, Li FY, Liu XL. Immunomodulatory effects of secondary metabolites from thermophilic Anoxybacillus kamchatkensis XA-1 on carp, Cyprinus carpio. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1331-1338. [PMID: 21421057 DOI: 10.1016/j.fsi.2011.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 03/12/2011] [Accepted: 03/12/2011] [Indexed: 05/30/2023]
Abstract
A bacterial strain with putative immunomodulatory properties was isolated from Xi'an hot springs in China. Comparison of 16S rRNA gene revealed a 97% similarity between the tested strain (designated XA-1) and Anoxybacillus kamchatkensis. Two compounds isolated from the secondary metabolites of XA-1 were identified by spectral data (infrared, nuclear magnetic resonance and mass spectrometry) as: (1) cyclo (Gly-L-Pro) and (2) cyclo (L-Ala-4-hydroxyl-L-Pro). Two cyclic dipeptides showed stimulatory properties towards a range of parameters when a dose of 20mg kg(-1) body weight was intraperitoneally injected in naive common carp, Cyprinus carpio. Innate immune parameters (serum SOD, lysozyme and bactericidal activity, and phagocytic activity by peripheral blood leucocytes) along with the expression of two immune-related genes (IL-1β and iNOS) in blood were examined after 7, 14, 21, and 28 days of injection. In the absence of infection, immunomodulators should ideally not affect normal physiology and immunity of the host; possible negative outcomes of activated immune responses in the naive state are discussed. Protection by two bacterial dipeptides was assessed in an intraperitoneal injection challenge trial with live Aeromonas hydrophila. Both compounds reduced mortality, with the highest survival rate observed in the group that received compound 2 (80%) followed by the group that received compound 1 (65%) while control group scored the worse (15%). Elucidation of the involved protective mechanisms in carp requires future studies.
Collapse
Affiliation(s)
- Gao-Xue Wang
- Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Broekman DC, Frei DM, Gylfason GA, Steinarsson A, Jörnvall H, Agerberth B, Gudmundsson GH, Maier VH. Cod cathelicidin: isolation of the mature peptide, cleavage site characterisation and developmental expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:296-303. [PMID: 20950641 DOI: 10.1016/j.dci.2010.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 05/30/2023]
Abstract
Cathelicidin antimicrobial peptides are multifunctional peptides that are important in the innate immune system of mammals. Cathelicidins have been identified in several fish species. In this study we have isolated cathelicidin from Atlantic cod (Gadus morhua) and identified the cleavage site from the cathelin propart. This is the first isolation of a cathelicidin from teleost fish. The mature cathelicidin was found to be a 67-residues peptide, highly cationic with a pI of 13. Reversed phase chromatographic fractions containing the purified peptide had pronounced antimicrobial activity and the activity of the mature peptide was confirmed using a synthetic peptide. We examined the expression of cathelicidin during cod larvae early development using real-time PCR and detected expression that varied in the course of the first 68 days post hatching (dph). Two groups of larvae having a different food regime were compared. Cathelicidin expression was found to differ between the two groups and this could be linked to their food input. The presence and rapid adjustment of cathelicidin expression in the larvae indicate that the immune system of cod is active from early on in development and responds to external stimuli by the production of antimicrobial peptides.
Collapse
Affiliation(s)
- Daniela C Broekman
- Institute of Biology, University of Iceland, Sturlagata 7, 101 Reykjavik, Iceland
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schwenteit J, Gram L, Nielsen KF, Fridjonsson OH, Bornscheuer UT, Givskov M, Gudmundsdottir BK. Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence. Vet Microbiol 2011; 147:389-97. [DOI: 10.1016/j.vetmic.2010.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
38
|
Grove S, Wiik-Nielsen CR, Lunder T, Tunsjø HS, Tandstad NM, Reitan LJ, Marthinussen A, Sørgaard M, Olsen AB, Colquhoun DJ. Previously unrecognised division within Moritella viscosa isolated from fish farmed in the North Atlantic. DISEASES OF AQUATIC ORGANISMS 2010; 93:51-61. [PMID: 21290896 DOI: 10.3354/dao02271] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Previously undocumented phenotypical and genetic variation was identified amongst isolates of Moritella viscosa collected from various geographical locations and from different fish species. The studied isolates could be split into 2 major phenotypically and genetically different clusters, one of which was consistent with the species type strain (NCIMB 13548). Isolates consistent with the type strain originated exclusively from Atlantic salmon farmed in Norway, Scotland and the Faroe Isles, although a single isolate from farmed Norwegian cod clustered closely with this group. The 'variant' cluster comprised isolates originating from Norwegian farmed rainbow trout, Icelandic farmed rainbow trout and salmon, Canadian farmed (Atlantic) salmon, Icelandic lumpsucker and only exceptionally from Norwegian salmon. With the exception of the single aforementioned cod isolate, all isolates from Norwegian farmed cod belonged to the variant cluster. Phenotypically, the clusters could be absolutely separated only by elevated haemolytic activity in the variant strain, although approximately half of these isolates also produced acid from mannose, in contrast to the typical (type) strain. While 16S rRNA gene sequencing was unable to separate the 2 clusters, Western blot analyses, plasmid profile analysis, pulsed field gel electrophoresis and gyrB gene sequence analysis produced clusters consistent with the phenotypic data. Macroscopically and histologically the disease in rainbow trout caused by the variant strain was consistent with that previously described in Atlantic salmon. The results of the present study may indicate a degree of host specificity of the typical strain for Atlantic salmon.
Collapse
Affiliation(s)
- S Grove
- National Veterinary Institute, Oslo, PO Box 8156 Dep, 0033 Oslo, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bektas S, Ayik O. Alterations in Erythrocyte Osmotic Fragility and Erythrocyte Membrane Fatty Acid Profile of Rainbow Trout (Oncorhynchus mykiss) Experimentally Infected with Aeromonas salmonicida. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/javaa.2010.2472.2476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Magnadottir B. Immunological control of fish diseases. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:361-79. [PMID: 20352271 DOI: 10.1007/s10126-010-9279-x] [Citation(s) in RCA: 388] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/25/2010] [Indexed: 05/04/2023]
Abstract
All metazoans possess innate immune defence system whereas parameters of the adaptive immune system make their first appearance in the gnathostomata, the jawed vertebrates. Fish are therefore the first animal phyla to possess both an innate and adaptive immune system making them very interesting as regards developmental studies of the immune system. The massive increase in aquaculture in recent decades has also put greater emphasis on studies of the fish immune system and defence against diseases commonly associated with intensive fish rearing. Some of the main components of the innate and adaptive immune system of fish are described. The innate parameters are at the forefront of immune defence in fish and are a crucial factor in disease resistance. The adaptive response of fish is commonly delayed but is essential for lasting immunity and a key factor in successful vaccination. Some of the inherent and external factors that can manipulate the immune system of fish are discussed, the main fish diseases are listed and the pathogenicity and host defence discussed. The main prophylactic measures are covered, including vaccination, probiotics and immunostimulation. A key element in the immunological control of fish diseases is the great variation in disease susceptibility and immune defence of different fish species, a reflection of the extended time the present day teleosts have been separated in evolution. Future research will probably make use of molecular and proteomic tools both to study important elements in immune defence and prophylactic measures and to assist with breeding programmes for disease resistance.
Collapse
Affiliation(s)
- Bergljot Magnadottir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| |
Collapse
|
41
|
Cheng S, Hu YH, Zhang M, Sun L. Analysis of the vaccine potential of a natural avirulent Edwardsiella tarda isolate. Vaccine 2010; 28:2716-21. [DOI: 10.1016/j.vaccine.2010.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/06/2009] [Accepted: 01/13/2010] [Indexed: 01/05/2023]
|
42
|
Skugor S, Jørgensen SM, Gjerde B, Krasnov A. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics 2009; 10:503. [PMID: 19878563 PMCID: PMC2775754 DOI: 10.1186/1471-2164-10-503] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 10/30/2009] [Indexed: 11/21/2022] Open
Abstract
Background Furunculosis, a disease caused with gram negative bacteria Aeromonas salmonicida produces heavy losses in aquaculture. Vaccination against furunculosis reduces mortality of Atlantic salmon but fails to eradicate infection. Factors that determine high individual variation of vaccination efficiency remain unknown. We used gene expression analyses to search for the correlates of vaccine protection against furunculosis in Atlantic salmon. Results Naïve and vaccinated fish were challenged by co-habitance. Fish with symptoms of furunculosis at the onset of mass mortality (LR - low resistance) and survivors (HR - high resistance) were sampled. Hepatic gene expression was analyzed with microarray (SFA2.0 - immunochip) and real-time qPCR. Comparison of LR and HR indicated changes associated with the protection and results obtained with naïve fish were used to find and filter the vaccine-independent responses. Genes involved in recruitment and migration of immune cells changed expression in both directions with greater magnitude in LR. Induction of the regulators of immune responses was either equal (NFkB) or greater (Jun) in LR. Expression levels of proteasome components and extracellular proteases were higher in LR while protease inhibitors were up-regulated in HR. Differences in chaperones and protein adaptors, scavengers of reactive oxygen species and genes for proteins of iron metabolism suggested cellular and oxidative stress in LR. Reduced levels of free iron and heme can be predicted in LR by gene expression profiles with no protection against pathogen. The level of complement regulation was greater in HR, which showed up-regulation of the components of membrane attack complex and the complement proteins that protect the host against the auto-immune damages. HR fish was also characterized with up-regulation of genes for proteins involved in the protection of extracellular matrix, lipid metabolism and clearance of endogenous and exogenous toxic compounds. A number of genes with marked expression difference between HR and LR can be considered as positive and negative correlates of vaccine protection against furunculosis. Conclusion Efficiency of vaccination against furunculosis depends largely on the ability of host to neutralize the negative impacts of immune responses combined with efficient clearance and prevention of tissue damages.
Collapse
|
43
|
Wang HR, Hu YH, Zhang WW, Sun L. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine. Vaccine 2009; 27:4047-55. [DOI: 10.1016/j.vaccine.2009.04.023] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/09/2023]
|
44
|
Bjornsdottir B, Fast MD, Sperker SA, Brown LL, Gudmundsdottir BK. Effects of Moritella viscosa antigens on pro-inflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) cell line (SHK-1). FISH & SHELLFISH IMMUNOLOGY 2009; 26:858-863. [PMID: 19345267 DOI: 10.1016/j.fsi.2009.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 05/27/2023]
Abstract
Moritella viscosa is the causative agent of winter ulcer disease in salmonids reared in North-Atlantic countries. In this study the effects of selected M. viscosa antigens on cytotoxicity and pro-inflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) macrophage-like cell line (SHK-1) were examined. SHK-1 cells were stimulated with live and heat-killed bacterial cells, extracellular products (ECP) and an extracellular vibriolysin, termed MvP1. Following incubation, cytotoxicity and expression levels of interleukin-1 beta (IL-1 beta) and interleukin-8 (IL-8) were examined at different time points. Both live M. viscosa cells and ECP were cytotoxic, but neither heat-killed cells, nor the MvP1 peptidase caused cell death. Expression levels of both IL-1 beta and IL-8 increased significantly after stimulation with live cells, but heat-killed cells only caused increased IL-8 expression. ECP did not affect IL-1 beta expression, but did stimulate IL-8 expression. The isolated MvP1 peptidase stimulated both IL-1 beta and IL-8 expression at the highest concentration tested. This study reveals a difference in the induction of pro-inflammatory gene expression in salmon SHK-1 cells between live and heat-killed M. viscosa cells, and also that an unknown secreted factor is the main stimulant of IL-beta and IL-8 expression.
Collapse
Affiliation(s)
- Bryndis Bjornsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, 112 Reykjavík, Iceland
| | | | | | | | | |
Collapse
|
45
|
Løvoll M, Wiik-Nielsen CR, Tunsjø HS, Colquhoun D, Lunder T, Sørum H, Grove S. Atlantic salmon bath challenged with Moritella viscosa--pathogen invasion and host response. FISH & SHELLFISH IMMUNOLOGY 2009; 26:877-84. [PMID: 19361559 DOI: 10.1016/j.fsi.2009.03.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 05/27/2023]
Abstract
The Gram-negative bacterium Moritella viscosa is considered to be the main causative agent of winter ulcer, a disease that primarily affects salmonid fish in sea water during cold periods. The disease is initially characterised by localised swelling of the skin followed by development of lesions. To gain more knowledge of the role of M. viscosa in the pathogenesis of winter ulcer, 159 Atlantic salmon (80-110 g) were exposed to a bath challenge dose of 7 x 10(5) cfu ml(-1) for 1 h at 8.9 degrees C. The first mortalities were registered two days post-challenge and the mortality rate increased rapidly. Multi-organ samples were taken throughout the challenge for culture, immunohistochemistry and PCR analysis. Using real-time PCR, M. viscosa DNA was first detected in the gills of all fish examined 2, 6 and 12 h after challenge. From day 2, the bacterium was detected in the muscle/skin, head kidney, spleen and liver. This was in correlation with positive cultured samples and confirmed systemic infection. The early and consistent detection of M. viscosa DNA in gill samples, and less or not in muscle/skin or intestine, could suggest gills as a port of entry for the bacterium. Immunohistochemical analysis using a polyclonal antiserum against M. viscosa demonstrated generalised staining in the lumen of blood vessels and some positive mononuclear cells. The antigens recognised by the antiserum may have originated from extracellular bacterial products and be part of a bacterial invasion strategy. To better understand the immune response in salmon to M. viscosa infection, the expression profiles of the immune genes IL1 beta, C3, ISG15 and CD83 were studied. Increased expression of IL1 beta and C3 was not induced until day 7, which may suggest that M. viscosa might utilize escape mechanisms to evade the host's immune system by suppressing relevant immune responses.
Collapse
Affiliation(s)
- M Løvoll
- National Veterinary Institute, Department of Animal Health, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
46
|
Bjornsdottir B, Fridjonsson OH, Magnusdottir S, Andresdottir V, Hreggvidsson GO, Gudmundsdottir BK. Characterisation of an extracellular vibriolysin of the fish pathogen Moritella viscosa. Vet Microbiol 2009; 136:326-34. [DOI: 10.1016/j.vetmic.2008.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/25/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
|
47
|
Gudmundsdóttir S, Magnadóttir B, Björnsdóttir B, Arnadóttir H, Gudmundsdóttir BK. Specific and natural antibody response of cod juveniles vaccinated against Vibrio anguillarum. FISH & SHELLFISH IMMUNOLOGY 2009; 26:619-624. [PMID: 18977447 DOI: 10.1016/j.fsi.2008.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 09/26/2008] [Indexed: 05/27/2023]
Abstract
The purpose of the present study was to study specific and natural antibody levels in individual cod juveniles before and after being vaccinated against Vibrio anguillarum. Different vaccine preparations and vaccination regimes, i.e. bathing, dipping, i.p. injection or combination of treatments were employed and the performance of different groups to bath challenge by the bacterium tested. Antibody responses to V. anguillarum antigens in groups vaccinated by bathing and/or dipping were negligible, while responses were observed in i.p. injected fish. Fish receiving i.p. injection in addition to bathing, showed significant antibody response. Both groups showed increased levels of natural antibodies while levels were low in other groups. Fish bathed or dipped showed higher mortality when challenged than untreated fish, while fish that received a second vaccination showed the best protection. It was not ascertained whether there is a long term difference between the effects of immersion versus i.p. injection as a booster method. Levels of antibodies against V. anguillarum antigens or natural antibodies in groups with the lowest mortalities show that neither could have been used to predict protection given by the vaccines tested.
Collapse
Affiliation(s)
- S Gudmundsdóttir
- Department of Fish Diseases, Institute for Experimental Pathology, University of Iceland, Reykjavík, Iceland.
| | | | | | | | | |
Collapse
|
48
|
Lund V, Arnesen JA, Mikkelsen H, Gravningen K, Brown L, Schrøder MB. Atypical furunculosis vaccines for Atlantic cod (Gadus morhua); vaccine efficacy and antibody responses. Vaccine 2008; 26:6791-9. [DOI: 10.1016/j.vaccine.2008.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/22/2008] [Accepted: 10/06/2008] [Indexed: 11/28/2022]
|
49
|
The AsaP1 peptidase of Aeromonas salmonicida subsp. achromogenes is a highly conserved deuterolysin metalloprotease (family M35) and a major virulence factor. J Bacteriol 2008; 191:403-10. [PMID: 18952802 DOI: 10.1128/jb.00847-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.
Collapse
|
50
|
Lund V, Mikkelsen H, Schrøder MB. Comparison of atypical furunculosis vaccines in spotted wolffish (Anarhicas minor O.) and Atlantic halibut (Hippoglossus hippoglossus L.). Vaccine 2008; 26:2833-40. [DOI: 10.1016/j.vaccine.2008.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 03/06/2008] [Accepted: 03/21/2008] [Indexed: 11/26/2022]
|