1
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
2
|
Wu L, Yang H, Wang J, Yu X, He Y, Chen S. A Novel Combined DNA Vaccine Encoding Toxoplasma gondii SAG1 and ROP18 Provokes Protective Immunity Against a Lethal Challenge in Mice. Acta Parasitol 2021; 66:1387-1395. [PMID: 34019277 DOI: 10.1007/s11686-021-00415-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Antigens expressed by Toxoplasma gondii (T. gondii) during its life cycle trigger various immune responses in the host. Recently, toxoplasma vaccine research focused on T. gondii surface antigen 1 (SAG1) and Rhoptry Protein 18 (ROP18) to establish a safe and efficacious DNA vaccine. METHOD We constructed two eukaryotic expression plasmids: p3 × FLAG-Myc-CMV™-24-SAG1 and p3 × FLAG-Myc-CMV™-24-ROP18. BALB/c mice were randomly divided into six groups and immunized with these DNA vaccines either separately or in combination. The combination vaccine was administered at either the full dose or at half-strength dose. Control mice were immunized with empty vector or with phosphate-buffered saline. RESULTS The frequency of CD4+ cells in the spleen was consistent among all groups, whereas that of CD8+ T cells was the highest in the group immunized with the combination vaccine at half-strength dose (p < 0.05). Importantly, the mRNA expression levels of interleukin-12 (IL-12) and interferon-gamma (INF-γ) were closely correlated (r = 0.6, p < 0.0001) and both were upregulated in the group that was immunized with the combination vaccine at half-strength dose (p < 0.0001). The survival time of the mice subjected to a lethal dose of toxoplasma was significantly extended by prior immunization with DNA vaccines expressing either SAG1 or ROP18 or a combination of both (p < 0.05). The group that was immunized with the combination vaccine at half-strength dose demonstrated the best efficacy (p < 0.05). CONCLUSION These results showed that the combination DNA vaccine provided better immune protection than the single gene vaccines, and that optimizing the dosing of the vaccine can improve the immune response.
Collapse
Affiliation(s)
- Lamei Wu
- Department of Clinical Laboratory, Anting Hospital, Jiading District, Shanghai, 201800, China
| | - Huijian Yang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jianglin Wang
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Jiading District, Shanghai, 201800, China
| | - Xiuwen Yu
- Department of Clinical Laboratory, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Jiading District, Shanghai, 201800, China
| | - Yanhong He
- Department of Clinical Laboratory, Anting Hospital, Jiading District, Shanghai, 201800, China.
| | - Shenxia Chen
- Department of Microbiology, Medical College of Jiangsu University, ZhenJiang, 212013, China.
| |
Collapse
|
3
|
Fatollahzadeh M, Eskandarian A, Darani HY, Pagheh AS, Ahmadpour E. Evaluation of Th17 immune responses of recombinant DNA vaccine encoding GRA14 and ROP13 genes against Toxoplasma gondii in BALB/c mice. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105150. [PMID: 34801755 DOI: 10.1016/j.meegid.2021.105150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Toxoplasma gondii, a worldwide opportunistic parasite, causes serious diseases in both humans and fetuses with defective immune systems. The development of an effective vaccine is urgently required to prevent and control the spread of toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii which is one of the most damaging zoonotic diseases of global importance. Plasmid DNA vaccination is a promising procedure for vaccine development and following the previous studies, pcROP13 + pcGRA14 cocktail DNA vaccine was evaluated for Th17 immune responses. Four groups of BALB/c mice were immunized intramuscularly three times at 2-week intervals. Subsequently, the production of anti- T. gondii antibodies and serum levels of cytokines IL-17, and IL-22 were evaluated against the RH strain of T. gondii. In addition, both the reactive oxygen species (ROS) and parasite load were assessed using ELISA and Q-PCR, respectively. The results of this study showed that high levels of IgG were found in mice immunized with cocktail DNA vaccine (p < 0.05). The cytokines level of Th17, IL-17, and IL-22, increased remarkably in the immunized mice (p < 0.05). Also, significant induction (p < 0.05) was observed in ROS. In addition, immunization with pcROP13 + GRA14 resulted in a considerable decrease in parasite load compared to the control groups (p < 0.05). Based on the results, the pcROP13 + GRA14 cocktail DNA vaccine induced Th17 related cytokines and decreased the parasite load in spleen and brain tissues. Hence, pcGRA14 + pcROP13 cocktails are suitable candidates for DNA-based vaccines and due to the development of protective immune responses against T. gondii infection, future studies may yield promising results using these antigens in vaccine design.
Collapse
Affiliation(s)
- Mohammad Fatollahzadeh
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Hossein Yousofi Darani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Ahmadpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Warner RC, Chapman RC, Davis BN, Davis PH. REVIEW OF DNA VACCINE APPROACHES AGAINST THE PARASITE TOXOPLASMA GONDII. J Parasitol 2021; 107:882-903. [PMID: 34852176 DOI: 10.1645/20-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that affects both humans and livestock. Transmitted to humans through ingestion, it is the second-leading cause of foodborne illness-related death. Currently, there exists no approved vaccine for humans or most livestock against the parasite. DNA vaccines, a type of subunit vaccine which uses segments of the pathogen's DNA to generate immunity, have shown varying degrees of experimental efficacy against infection caused by the parasite. This review compiles DNA vaccine efforts against Toxoplasma gondii, segmenting the analysis by parasite antigen, as well as a review of concomitant adjuvant usage. No single antigenic group was consistently more effective within in vivo trials relative to others.
Collapse
Affiliation(s)
- Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Ryan C Chapman
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Brianna N Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
5
|
Papatsiros VG, Athanasiou LV, Kostoulas P, Giannakopoulos A, Tzika E, Billinis C. Toxoplasma gondii Infection in Swine: Implications for Public Health. Foodborne Pathog Dis 2021; 18:823-840. [PMID: 34491108 DOI: 10.1089/fpd.2021.0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxoplasmosis, due to Toxoplasma gondii, is a parasitic disease with global importance. Among livestock, chronic T. gondii infection has been reported in higher rates in pigs and small ruminants, but with subclinical infections in case commonly encountered in pigs. Seroprevalence in the global pig population ranges according to the age or species of pigs, geographical distribution, production programs, and systems. Generally, T. gondii infections are noticed in low prevalence rates in conventional pig farms with high hygiene standards. In contrast, higher prevalence is common on free-ranging farms, outdoor or backyard small pig fams, as well as in farmed or hunted wild boars. The T. gondii average worldwide seroprevalence in pigs is reported to be 13% in Europe, 21% in Africa, 25% in North America, 21% in Asia, and 23% in South America. Human toxoplasmosis outbreaks have been correlated with the consumption of raw or undercooked meat, especially from infected pigs or wild boars, as well as of contaminated drinking water. The risk of infection in processed pork products is lower compared with fresh pork, as meat processing can reduce or inactivate T. gondii tissue cysts. Hence, the prevalence of T. gondii in the pig population may be a useful indicator of the risk of human toxoplasmosis associated with the consumption of pork products. The lack of obligatory screening methods at farm level for the detection of antibodies in farmed animals or the viable T. gondii in carcasses at slaughterhouse level increases the risk of contaminated pork or meat products. For this reason, the application of biosecurity and surveillance programs at farm level is very important to prevent a T. gondii infection.
Collapse
Affiliation(s)
- Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Labrini V Athanasiou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Polychronis Kostoulas
- Laboratory of Epidemiology & Artificial Intelligence, Faculty of Public Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Alexios Giannakopoulos
- Department of Microbiology & Parasitology, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Eleni Tzika
- Farm Animal Clinic, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Charalambos Billinis
- Department of Microbiology & Parasitology, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
6
|
Yektaeian N, Malekpour A, Atapour A, Davoodi T, Hatam G. Genetic immunization against toxoplasmosis: A review article. Microb Pathog 2021; 155:104888. [PMID: 33930415 DOI: 10.1016/j.micpath.2021.104888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is a protozoan coccidian parasite belonging to Phylum Apicomplexa and is the causative agent of toxoplasmosis as a zoonotic disease around the world. It is one of the most important protozoa which is transmitted via various routes and infects several warm-blooded animals. The seroprevalence of T. gondii infection is high worldwide and leads to clinical, psychological, and economic problems. At present, available drug therapy for toxoplasmosis has severe side effects, so the development of new anti-toxoplasma drugs or effective vaccines is mandatory. Therefore, different measures have been taken for the development of anti-toxoplasmosis vaccines, and various studies have shown that DNA vaccines could be one of the most successful approaches against the intracellular parasite, T. gondii. Many of these studies have evaluated the efficacy of immunogenicity and different aspects of the DNA vaccines for toxoplasmosis including single genes or multi-gene plasmids with or without adjuvants. Most of the literature confirms that DNA vaccines containing different antigens of the toxoplasma parasite can induce suitable immune response and protection in acute or chronic toxoplasmosis. Therefore, in this review article, we aimed to discuss the current status of DNA vaccines as a new immunization method against toxoplasmosis.
Collapse
Affiliation(s)
- Narjes Yektaeian
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amir Atapour
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Tahereh Davoodi
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Hatam
- Department of Parasitology and Mycology, Shiraz University of Medical Sciences, Shiraz, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Arab-Mazar Z, Javadi Mamaghani A, Fallahi S, Rajaeian S, Koochaki A, Seyyed Tabaei SJ, Rezaee H. Immunodiagnosis and molecular validation of Toxoplasma gondii-recombinant dense granular (GRA) 5 protein for the detection of toxoplasmosis in hemodialysis patients. Semin Dial 2021; 34:332-337. [PMID: 33939858 DOI: 10.1111/sdi.12981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 03/13/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Toxoplasmosis causes serious complications in immunocompromised and pregnant women. Serological tests for the detection of toxoplasmosis are often designed from parasitic tachyzoites antigens. The process of producing these antigens is very difficult. The purpose of this study was evaluation of T. gondii-rGRA5 for the immunodiagnosis and molecular detection of Toxoplasma infection using enzyme-linked immunosorbent assay (ELISA) and LAMP methods in hemodialysis patients. The GRA5 gene was successfully expressed and purified by affinity chromatography assay and evaluated by western blot. Then it was used to design an ELISA assay. A total of 260 samples were tested for anti-Toxoplasma IgG and IgM antibodies using a commercial ELISA kit and designed ELISA kit. Finally, the LAMP method was used to evaluate the precision and reliability of the results obtained by commercial and designed ELISA kits. The consistency of the results of two methods was analyzed using the Kappa coefficient of agreement. The rGRA5 revealed higher immunoreactivity with 1:100 dilution of sera from toxoplasmosis patients. The specificity and sensitivity of the assay were 93% and 96%, respectively. According to the Kappa coefficient, there was a substantial correlation between the results of ELISA and LAMP based on rGRA5 (≈98%, p < 0.001). Also it showed that rGRA5 protein can be used as an antigenic protein for designing sero-diagnostic tests to identify Toxoplasma infection especially in hemodialysis patients.
Collapse
Affiliation(s)
- Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medial Sciences, Tehran, Iran
| | - Amirreza Javadi Mamaghani
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirzad Fallahi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Science, Khorramabad, Iran.,Department of Medical Parasitology and Mycology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran, Iran
| | - Simin Rajaeian
- Department of Applied Cell Sciences, School of advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| | - Seyyed Javad Seyyed Tabaei
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Rezaee
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Maia MM, da Cruz AB, Taniwaki NN, Namiyama GM, Gava R, Gomes AHS, Kanamura CT, Barbo MLP, Pereira-Chioccola VL. Immunization with extracellular vesicles excreted by Toxoplasma gondii confers protection in murine infection, activating cellular and humoral responses. Int J Parasitol 2021; 51:559-569. [PMID: 33713649 DOI: 10.1016/j.ijpara.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
The study aim was to analyze whether microvesicles and exosomes, named extracellular vesicles (EVs), purified from Toxoplasma gondii are able to stimulate the protective immunity of experimental mice when administered, as challenge, a highly virulent strain. EVs excreted from T. gondii tachyzoites (RH strain) were purified by chromatography and used for immunization assays in inbred mouse groups (EV-IM). Chronic infected (CHR) and naive (NI) mice were used as control groups, since the immune response is well known. After immunizations, experimental groups were challenged with 100 tachyzoites. Next, parasitemias were determined by real-time PCR (qPCR), and survival levels were evaluated daily. The humoral response was analyzed by detection of IgM, IgG, IgG1 and IgG2a, and opsonization experiments. The cellular response was evaluated in situ by immunohistochemistry on IFN-γ, IL-10, TNF-α and IL-17 expression in cells of five organs (brain, heart, liver, spleen and skeletal muscles). EV immunization reduced parasitemia and increased the survival index in two mouse lineages (A/Sn and BALB/c) infected with a lethal T. gondii strain. EV-IM mice had higher IgG1 levels than IgM or IgG2a. IgGs purified from sera of EV-IM mice were able to opsonize tachyzoites (RH strain), and mice that received these parasites had lower parasitemias, and mortality was delayed 48 h, compared with the same results from those receiving parasites opsonized with IgG purified from NI mice. Brain and spleen cells from EV-IM mice more highly expressed IFN-γ, IL-10 and TNF-α. In conclusion, EV-immunization was capable of inducing immune protection, eliciting high production of IgG1, IFN-γ, IL-10 and TNF-α.
Collapse
Affiliation(s)
- Marta Marques Maia
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | | | - Ricardo Gava
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | | | | | - Maria Lourdes Peris Barbo
- Departamento de Morfologia e Patologia, Faculdade de Ciências Médicas e Saúde, Pontifícia Universidade Católica, São Paulo, Brazil
| | | |
Collapse
|
9
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
10
|
Cunha IALD, Zulpo DL, Taroda A, Barros LDD, Almeida JCD, Candim ST, Navarro IT, Garcia JL. Protection against Toxoplasma gondii cysts in pigs immunized with rROP2 plus Iscomatrix. ACTA ACUST UNITED AC 2020; 29:e012620. [PMID: 33053057 DOI: 10.1590/s1984-29612020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the humoral immune response in pigs immunized intranasally and intramuscularly with recombinant Toxoplasma gondii rROP2 protein in combination with the adjuvant Iscomatrix. Twelve mixed breed pigs divided into three groups (n=4) were used, G1 received recombinant ROP2 proteins (200 µg/dose) plus Iscomatrix, G2 received PBS plus Iscomatrix, and G3 as the control group. The intranasal (IN) and intramuscular (IM) routes were used. Animals were challenged orally with VEG strain oocysts and treated on day three after challenge. Fever, anorexia, and prostration were the clinical signs observed in all animals. All the G1 animals produced antibodies above the cut-off on the day of the challenge, while the G2 and G3 remained below the cut-off. Better partial protection against parasitemia and cyst tissue formation was observed in G1 than G3. The protection factors against tissue cyst formation were 40.0% and 6.1% for G1 and G2, respectively, compared to G3. In conclusion, there were not systemic antibody responses in pigs with IN immunization with rROP2+Iscomatrix; however, after IM immunization, those animals produced higher titers than animal controls. We associated these results with partial protection obtained against parasitemia and tissue cysts formation.
Collapse
Affiliation(s)
- Ivo Alexandre Leme da Cunha
- Laboratório de Parasitologia Aplicada, Centro de Ciências Agrárias e Ambientais, Universidade Federal do Maranhão - UFMA, Chapadinha, MA, Brasil
| | - Dauton Luiz Zulpo
- Faculdade de Medicina Veterinária, Pontifícia Universidade Católica do Paraná - PUCPR, Toledo, PR, Brasil
| | - Alexandra Taroda
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| | - Luiz Daniel de Barros
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| | - Jonatas Campos de Almeida
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| | - Sérgio Tosi Candim
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| | - Italmar Teodorico Navarro
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| | - João Luis Garcia
- Laboratório de Protozoologia Animal, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina - UEL, Londrina, PR, Brasil
| |
Collapse
|
11
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
12
|
Sander VA, Sánchez López EF, Mendoza Morales L, Ramos Duarte VA, Corigliano MG, Clemente M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front Cell Infect Microbiol 2020; 10:288. [PMID: 32670892 PMCID: PMC7332557 DOI: 10.3389/fcimb.2020.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Foodborne diseases (FBDs) are a major concern worldwide since they are associated with high mortality and morbidity in the human population. Among the causative agents of FBDs, Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp., and Trichinella spiralis are listed in the top global risk ranking of foodborne parasites. One common feature between them is that they affect domestic livestock, encompassing an enormous risk to global food production and human health from farm to fork, infecting animals, and people either directly or indirectly. Several approaches have been employed to control FBDs caused by parasites, including veterinary vaccines for livestock. Veterinary vaccines against foodborne parasites not only improve the animal health by controlling animal infections but also contribute to increase public health by controlling an important source of FBDs. In the present review, we discuss the advances in the development of veterinary vaccines for domestic livestock as a strategy to control foodborne parasitic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Unidad Biotecnológica 6-UB6, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
13
|
Rezaei F, Sharif M, Sarvi S, Hejazi SH, Aghayan S, Pagheh AS, Dodangeh S, Daryani A. A systematic review on the role of GRA proteins of Toxoplasma gondii in host immunization. J Microbiol Methods 2019; 165:105696. [PMID: 31442457 DOI: 10.1016/j.mimet.2019.105696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 11/29/2022]
Abstract
Toxoplasma gondii is a widespread obligatory intracellular parasite infecting humans and most of all other warm-blooded animals. Currently there is no any accepted vaccine for prevention of T. gondii infection. Many studies are focused on using of various excretory secretory antigens (ESA); and among them dense granule antigens (GRAs) being involved in parasite survival, virulence and replication processes, are considered as one of the predominant vaccine candidates. The aim of this systematic review is to prepare more comprehensive understanding of these antigens to reduce T. gondii infection in humans and animals. English databases, including PubMed, Science Direct, Google Scholar, Scopus, ISI Web of Science were systematically searched and papers evaluating GRA antigens published until June 2019 were selected. Evaluation of selected publications revealed that GRA4 and GRA7 substantially increased survival time of the experimental animals. It is noticeable that the maximum reduction in cyst burden was observed in BALB/c mice vaccinated with combination of GRA3, GRA7 and M2AP antigens (93.5%). GRA6 and GRA10 have shown high immunogenicity and GRA1 and 2 are important for virulence and induction of immune responses. This review will be helpful for researchers to conduct more effective studies in the field of immunization against T. gondii infection.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology & Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Students Research Committee, Department of Parasitology and Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniosis Research Center, Department of Parasitology & Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sargis Aghayan
- Laboratory of Zoology, Research Institute of Biology, Yerevan State University, Yerevan, Armenia
| | - Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University Of Medical Sciences, Birjand, Iran
| | - Samira Dodangeh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Innes EA, Hamilton C, Garcia JL, Chryssafidis A, Smith D. A one health approach to vaccines against Toxoplasma gondii. Food Waterborne Parasitol 2019; 15:e00053. [PMID: 32095623 PMCID: PMC7034027 DOI: 10.1016/j.fawpar.2019.e00053] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 12/22/2022] Open
Abstract
Toxoplasmosis is a serious disease with global impact, now recognised as one of the most important food borne diseases worldwide and a major cause of production loss in livestock. A one health approach to develop a vaccination programme to tackle toxoplasmosis is an attractive and realistic prospect. Knowledge of disease epidemiology, parasite transmission routes and main risk groups has helped to target key host species and outcomes for a vaccine programme and these would be to prevent/reduce congenital disease in women and sheep; prevent/reduce T. gondii tissue cysts in food animal species and to prevent/reduce T. gondii oocyst shedding in cats. Most animals, including humans, develop good protective immunity following infection, involving cell mediated immune responses, which may explain why live vaccines are generally more effective to protect against T. gondii. Recent advances in our knowledge of parasite genetics and gene manipulation, strain variation, key antigenic epitopes, delivery systems and induction of immune responses are all contributing to the prospects of developing new vaccines which may be more widely applicable. A key area in progressing vaccine development is to devise standard vaccine efficacy models in relevant animal hosts and this is where a one health approach bringing together researchers across different disciplines can be of major benefit. The tools and technologies are in place to make a real impact in tackling toxoplasmosis using vaccination and it just requires a collective will to make it happen.
Collapse
Affiliation(s)
- Elisabeth A. Innes
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Scotland EH26 OPZ, United Kingdom of Great Britain and Northern Ireland
| | - Clare Hamilton
- Moredun Research Institute, Pentlands Science Park, Edinburgh, Scotland EH26 OPZ, United Kingdom of Great Britain and Northern Ireland
| | - Joao L. Garcia
- Universidade Estadual de Londrina, Campus Universitario, Rodovia Celso Garcia Cid, Pr 380, CEP 86057-970 Londrina, Parana, Brazil
| | - Andreas Chryssafidis
- Universidade Estadual de Londrina, Campus Universitario, Rodovia Celso Garcia Cid, Pr 380, CEP 86057-970 Londrina, Parana, Brazil
- Department of Veterinary Medicine, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - David Smith
- 5740A Medical Science Building II, 1150 W. Medical Centre Dr, University of Michigan, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
15
|
A systematic review of Toxoplasma gondii antigens to find the best vaccine candidates for immunization. Microb Pathog 2018; 126:172-184. [PMID: 30399440 DOI: 10.1016/j.micpath.2018.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/24/2022]
Abstract
At present, there is not any available accepted vaccine for prevention of Toxoplasma gondii (T. gondii) in human and animals. We conducted literature search through English (Google Scholar, PubMed, Science Direct, Scopus, EBSCO, ISI Web of Science) scientific paper databases to find the best vaccine candidates against toxoplasmosis among T. gondii antigens. Articles with information on infective stage, pathogenicity, immunogenicity and characterization of antigens were selected. We considered that the ideal and significant vaccines should include different antigens and been expressed in all infective stages of the parasite with a high pathogenicity and immunogenicity. Evaluation within this systematic review indicates that MIC 3, 4, 13, ROP 2, RON 5, GRA 1, 6, 8, 14 are expressed in all three infective stages and have pathogenicity and immunogenicity. MIC 5, ROM 4, GRA 2, 4, 15, ROP 5, 16, 17, 38, RON 4, MIC 1, GRA 10, 12, 16, SAG 3 are expressed in only tachyzoites and bradyzoites stages of T. gondii with pathogenicity/immunogenicity. Some antigens appeared to be expressed in a single stage (tachyzoites) but have high pathogenicity and induce immune response. They include enolase2 (ENO2), SAG 1, SAG5D, HSP 70, ROM 1, ROM 5, AMA 1, ROP 18, RON2 and GRA 24. In conclusion, current vaccination against T. gondii infection is not satisfactory, and with the increasing number of high-risk individuals, the development of an effective and safe specific vaccine is greatly valuable for toxoplasmosis prevention. This systematic review reveals prepare candidates for immunization studies.
Collapse
|
16
|
Döşkaya M, Liang L, Jain A, Can H, Gülçe İz S, Felgner PL, Değirmenci Döşkaya A, Davies DH, Gürüz AY. Discovery of new Toxoplasma gondii antigenic proteins using a high throughput protein microarray approach screening sera of murine model infected orally with oocysts and tissue cysts. Parasit Vectors 2018; 11:393. [PMID: 29973272 PMCID: PMC6033234 DOI: 10.1186/s13071-018-2934-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/04/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is an obligate intracellular protozoan parasite that causes congenital toxoplasmosis, as well as other serious clinical presentations in immune compromised humans. The parasite has also been recently linked to behavioral diseases in humans and other mammalian hosts. New antigens are being evaluated to develop a diagnostic kit for the diagnosis of acute infection or a protective vaccine. METHODS In this study, we have focused on the discovery of new antigenic proteins from T. gondii genomic data using a high throughput protein microarray screening. To date, microarrays containing > 2870 candidate exon products of T. gondii have been probed with sera collected from patients with toxoplasmosis. Here, the protein microarrays are probed with well-characterized serum samples from animal models administered orally with oocysts or tissue cysts. The aim was to discover the antigens that overlap in the mouse profile with human antibody profiles published previously. For this, a reactive antigen list of 240 antigens recognized by murine IgG and IgM was identified using pooled sera from orally infected mice. RESULTS Analyses of screening data have identified plenty of antigens and showed strong immunogenicity in both mouse and human antibody profiles. Among them, ROP1, GRA2, GRA3, GRA4, GRA5, GRA6, GRA7, GRA8, GRA14, MIC1, MIC2 and MAG1 have shown strong immunogenicity and used as antigen in development of vaccines or serological diagnostic assays in previous studies. CONCLUSION In addition to the above findings, ROP6, MIC12, SRS29A and SRS13 have shown strong immunogenicity but have not been tested in development of a diagnostic assay or a vaccine model yet.
Collapse
Affiliation(s)
- Mert Döşkaya
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| | - Li Liang
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Aarti Jain
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Hüseyin Can
- Department of Molecular Biology, Ege University Faculty of Sciences, Bornova/İzmir, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Ege University Faculty of Engineering, Bornova/İzmir, Turkey
| | - Philip Louis Felgner
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Aysu Değirmenci Döşkaya
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| | - David Huw Davies
- Department of Medicine, Division of Infectious Diseases, University of California Irvine, Irvine, California USA
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Vaccine Research and Development Laboratory, Ege University Faculty of Medicine, Bornova/İzmir, Turkey
| |
Collapse
|
17
|
Zhang NZ, Gao Q, Wang M, Elsheikha HM, Wang B, Wang JL, Zhang FK, Hu LY, Zhu XQ. Immunization With a DNA Vaccine Cocktail Encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 Genes Protects Mice Against Chronic Toxoplasmosis. Front Immunol 2018; 9:1505. [PMID: 30008721 PMCID: PMC6033959 DOI: 10.3389/fimmu.2018.01505] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/18/2018] [Indexed: 01/29/2023] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the intracellular protozoan Toxoplasma gondii; and a major source of infection in humans is via ingestion of T. gondii tissue cysts. Ultimately, the goal of anti-toxoplasmosis vaccines is to elicit a sustainable immune response, capable of preventing formation of the parasite tissue cysts-or, at least, to restrain its growth. In this study, we formulated a cocktail DNA vaccine and investigated its immunologic efficacy as a protection against the establishment of T. gondii cysts in the mouse brain. This multicomponent DNA vaccine, encoded the TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, which play key roles in the pathogenesis of T. gondii infection. Results showed that mice immunized via intramuscular injection three times, at 2-week intervals with this multicomponent DNA vaccine, mounted a strong humoral and cellular immune response, indicated by significantly high levels of total IgG, CD4+ and CD8+ T lymphocytes, and antigen-specific lymphocyte proliferation when compared with non-immunized mice. Immunization also induced a mixed Th1/Th2 response, with a slightly elevated IgG2a to IgG1 ratio. The increased production of proinflammatory cytokines gamma-interferon, interleukin-2, and interleukin-12 (p < 0.0001) correlated with increased expression of p65/RelA and T-bet genes of the NF-κB pathway. However, no significant difference was detected in level of interleukin-4 (p > 0.05). The number of brain cysts in immunized mice was significantly less than those in non-immunized mice (643.33 ± 89.63 versus 3,244.33 ± 96.42, p < 0.0001), resulting in an 80.22% reduction in the parasite cyst burden. These findings indicate that a multicomponent DNA vaccine, encoding TgPF, TgROP16, TgROP18, TgMIC6, and TgCDPK3 genes, shows promise as an immunization strategy against chronic toxoplasmosis in mice, and calls for a further evaluation in food-producing animals.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qi Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Hunan Entry-Exit Inspection and Quarantine Bureau, Changsha, China
| | - Meng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Bo Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ling-Ying Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
18
|
Experimental Porcine Toxoplasma gondii Infection as a Representative Model for Human Toxoplasmosis. Mediators Inflamm 2017; 2017:3260289. [PMID: 28883687 PMCID: PMC5572617 DOI: 10.1155/2017/3260289] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 07/05/2017] [Indexed: 12/01/2022] Open
Abstract
Porcine infections are currently not the state-of-the-art model to study human diseases. Nevertheless, the course of human and porcine toxoplasmosis is much more comparable than that of human and murine toxoplasmosis. For example, severity of infection, transplacental transmission, and interferon-gamma-induced antiparasitic effector mechanisms are similar in pigs and humans. In addition, the severe immunosuppression during acute infection described in mice does not occur in the experimentally infected ones. Thus, we hypothesise that porcine Toxoplasma gondii infection data are more representative for human toxoplasmosis. We therefore suggest that the animal model chosen must be critically evaluated for its assignability to human diseases.
Collapse
|
19
|
Jennes M, De Craeye S, Devriendt B, Dierick K, Dorny P, Cox E. Strain- and Dose-Dependent Reduction of Toxoplasma gondii Burden in Pigs Is Associated with Interferon-Gamma Production by CD8 + Lymphocytes in a Heterologous Challenge Model. Front Cell Infect Microbiol 2017. [PMID: 28642841 PMCID: PMC5462990 DOI: 10.3389/fcimb.2017.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is a worldwide prevalent parasite of humans and animals. The global infection burden exceeds yearly one million disability-adjusted life years (DALY's) in infected individuals. Therefore, effective preventive measures should be taken to decrease the risk of infection in humans. Although human toxoplasmosis is predominantly foodborne by ingestion of tissue cysts in meat from domestic animals such as pigs, the incidence risk is difficult to estimate due to the lack of screening of animals for infection and insights in location and persistence of the parasite in the tissues. Hence, experimental infections in pigs can provide more information on the risk for zoonosis based on the parasite burden in meat products intended for human consumption and on the immune responses induced by infection. In the present study, homo- and heterologous infection experiments with two distinct T. gondii strains (IPB-LR and IPB-Gangji) were performed. The humoral and cellular immune responses, the presence of viable parasites and the parasite load in edible meat samples were evaluated. In homologous infection experiments the parasite persistence was clearly strain-dependent and inversely correlated with the infection dose. The results strongly indicate a change in the amount of parasite DNA and viable cysts in porcine tissues over time. Heterologous challenge infections demonstrated that IPB-G strain could considerably reduce the parasite burden in the subsequent IPB-LR infection. A strong, however, not protective humoral response was observed against GRA7 and TLA antigens upon inoculation with both strains. The in vitro IFN-γ production by TLA-stimulated PBMCs was correlated with the infection dose and predominantly brought about by CD3+CD4-CD8αbright T-lymphocytes. The described adaptive cellular and humoral immune responses in pigs are in line with the induced or natural infections in mice and humans. Previous studies underscored the heterogeneity of T. gondii strains and the corresponding virulence factors. These findings suggest the potential of the IPB-G strain to elicit a partially protective immune response and to reduce the parasite burden upon a challenge infection. The IPB-G strain could be used as a promising tool in limiting the number of viable parasites in edible tissues and, hence, in lowering the risk for human toxoplasmosis.
Collapse
Affiliation(s)
- Malgorzata Jennes
- Laboratory for Immunology, Faculty of Veterinary Medicine, Ghent UniversityMerelbeke, Belgium
| | - Stéphane De Craeye
- National Reference Laboratory for Toxoplasmosis, Operational Direction Communicable and Infectious Diseases, Scientific Institute of Public Health, Security of Food Chain and EnvironmentBrussels, Belgium
| | - Bert Devriendt
- Laboratory for Immunology, Faculty of Veterinary Medicine, Ghent UniversityMerelbeke, Belgium
| | - Katelijne Dierick
- National Reference Laboratory for Toxoplasmosis, Operational Direction Communicable and Infectious Diseases, Scientific Institute of Public Health, Security of Food Chain and EnvironmentBrussels, Belgium
| | - Pierre Dorny
- Department of Biomedical Sciences, Institute for Tropical MedicineAntwerp, Belgium.,Laboratory for Parasitology, Faculty of Veterinary Medicine, Ghent UniversityMerelbeke, Belgium
| | - Eric Cox
- Laboratory for Immunology, Faculty of Veterinary Medicine, Ghent UniversityMerelbeke, Belgium
| |
Collapse
|
20
|
Toxoplasma gondii : Immunological response of sheep to injections of recombinant SAG1, SAG2, GRA1 proteins coupled to the non-toxic microparticle muramyl dipeptide. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Lee SH, Kim AR, Lee DH, Rubino I, Choi HJ, Quan FS. Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 2017; 12:e0175644. [PMID: 28406951 PMCID: PMC5391012 DOI: 10.1371/journal.pone.0175644] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
Abstract
Toxoplasma gondii (T. gondii) microneme protein 8 (MIC8) represents a novel, functional distinct invasion factor. In this study, we generated virus-like particles (VLPs) targeting Toxoplasma gondii MIC8 for the first time, and investigated the protection against highly virulent RH strain of T. gondii in a mouse model. We found that VLP vaccination induced Toxoplasma gondii-specific IgG and IgG1 antibody responses in the sera. Upon challenge infection with RH strain of T. gondii tachyzoites, vaccinated mice showed a significant increase of both IgG antibodies in sera and IgA antibodies in feces compared to those before challenge, and a rapid expansion of both germinal center B cell (B220+, GL7+) and T cell (CD4+, CD8+) populations. Importantly, intranasally immunized mice showed higher neutralizing antibodies and displayed no proinflammatory cytokine IFN-γ in the spleen. Mice were completely protected from a lethal challenge infection with the highly virulent T. gondii (RH) showing no body weight loss (100% survival). Our study shows the effective protection against T. gondii infection provided by VLPs containing microneme protein 8 of T. gondii, thus indicating a potential T. gondii vaccine candidate.
Collapse
Affiliation(s)
- Su-Hwa Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ah-Ra Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong-Hun Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ilaria Rubino
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
22
|
Zheng B, Ding J, Chen X, Yu H, Lou D, Tong Q, Kong Q, Lu S. Immuno-Efficacy of a T. gondii Secreted Protein with an Altered Thrombospondin Repeat (TgSPATR) As a Novel DNA Vaccine Candidate against Acute Toxoplasmosis in BALB/c Mice. Front Microbiol 2017; 8:216. [PMID: 28261175 PMCID: PMC5313532 DOI: 10.3389/fmicb.2017.00216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/31/2017] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii (T.gondii) is distributed worldwide and infects most species of warm-blooded animals, including humans. Toxoplasmosis has serious consequences, especially in people with an impaired or immature immune system. Thus, an effective vaccine is urgently required. Secretory microneme proteins are essential for the adhesion and invasion of T. gondii. The gene encoding the microneme protein, T. gondii secreted protein with an altered thrombospondin repeat (TgSPATR), we constructed a recombinant eukaryotic plasmid, pVAX1-TgSPATR, as a DNA vaccine, injected it intramuscularly into BALB/c mice and evaluated the induced immune response. Lymphocyte proliferation assays, cytokine (IFN-γ, IL-2, IL-4, IL-10), and antibody determinations showed that mice immunized with pVAX1-TgSPATR produced humoral and mixed Th1/Th2 type cellular immune responses. The survival times of mice immunized with pVAX1-TgSPATR were also significantly prolonged (15.7 ± 1.42 days) compared with control groups, which died within 7 days of challenge (p < 0.05). The current study indicated that pVAX1-TgSPATR induce a T. gondii specific immune response and might be a promising vaccine candidate against toxoplasmosis. To the best of our knowledge, this is the first report to evaluate the immunoprotective value of TgSPATR against T. gondii.
Collapse
Affiliation(s)
- Bin Zheng
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Jianzu Ding
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Xiaoheng Chen
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Haijie Yu
- Jiaxing Vocational Technical College Jiaxing, China
| | - Di Lou
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Qunbo Tong
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Qingming Kong
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| | - Shaohong Lu
- Immunology and Biochemistry Laboratory, Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences Hangzhou, China
| |
Collapse
|
23
|
Sonaimuthu P, Ching XT, Fong MY, Kalyanasundaram R, Lau YL. Induction of Protective Immunity against Toxoplasmosis in BALB/c Mice Vaccinated with Toxoplasma gondii Rhoptry-1. Front Microbiol 2016; 7:808. [PMID: 27303390 PMCID: PMC4883518 DOI: 10.3389/fmicb.2016.00808] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/12/2016] [Indexed: 11/26/2022] Open
Abstract
Toxoplasma gondii is the causative agent for toxoplasmosis. The rhoptry protein 1 (ROP1) is secreted by rhoptry, an apical secretory organelle of the parasite. ROP1 plays an important role in host cell invasion. In this study, the efficacy of ROP1 as a vaccine candidate against toxoplasmosis was evaluated through intramuscular or subcutaneous injection of BALB/c mice followed by immunological characterization (humoral- and cellular-mediated) and lethal challenge against virulent T. gondii RH strain in BALB/c mice. Briefly, a recombinant DNA plasmid (pVAX1-GFP-ROP1) was expressed in CHO cells while expression of recombinant ROP1 protein (rROP1) was carried out in Escherichia coli expression system. Immunization study involved injection of the recombinant pVAX1-ROP1 and purified rROP1 into different group of mice. Empty vector and PBS served as two different types of negative controls. Results obtained demonstrated that ROP1 is an immunogenic antigen that induced humoral immune response whereby detection of a protein band with expected size of 43 kDa was observed against vaccinated mice sera through western blot analysis. ROP1 antigen was shown to elicit cellular-mediated immunity as well whereby stimulated splenocytes with total lysate antigen (TLA) and rROP1 from pVAX1-ROP1 and rROP1-immunized mice, respectively, readily proliferated and secreted large amount of IFN-γ (712 ± 28.1 pg/ml and 1457 ± 31.19 pg/ml, respectively) and relatively low IL-4 level (94 ± 14.5 pg/ml and 186 ± 14.17 pg/ml, respectively). These phenomena suggested that Th1-favored immunity was being induced. Vaccination with ROP1 antigen was able to provide partial protection in the vaccinated mice against lethal challenge with virulent RH strain of tachyzoites. These findings proposed that the ROP1 antigen is a potential candidate for the development of vaccine against toxoplasmosis.
Collapse
Affiliation(s)
| | - Xiao T Ching
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Mun Y Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| | - Ramaswamy Kalyanasundaram
- Department of Biomedical Sciences, College of Medicine, University of Illinois at Chicago, Chicago IL, USA
| | - Yee L Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Wang HL, Wen LM, Pei YJ, Wang F, Yin LT, Bai JZ, Guo R, Wang CF, Yin GR. Recombinant Toxoplasma gondii phosphoglycerate mutase 2 confers protective immunity against toxoplasmosis in BALB/c mice. ACTA ACUST UNITED AC 2016; 23:12. [PMID: 26984115 PMCID: PMC4794628 DOI: 10.1051/parasite/2016012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/05/2016] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis is one of the most widespread zoonoses worldwide. It has a high incidence and can result in severe disease in humans and livestock. Effective vaccines are needed to limit and prevent infection with Toxoplasma gondii. In this study, we evaluated the immuno-protective efficacy of a recombinant Toxoplasma gondii phosphoglycerate mutase 2 (rTgPGAM 2) against T. gondii infection in BALB/c mice. We report that the mice nasally immunised with rTgPGAM 2 displayed significantly higher levels of special IgG antibodies against rTgPGAM 2 (including IgG1, IgG2a and IgAs) and cytokines (including IFN-γ, IL-2 and IL-4) in their blood sera and supernatant of cultured spleen cells compared to those of control animals. In addition, an increased number of spleen lymphocytes and enhanced lymphocyte proliferative responses were observed in the rTgPGAM 2-immunised mice. After chronic infection and lethal challenge with the highly virulent T. gondii RH strain by oral gavage, the survival time of the rTgPGAM 2-immunised mice was longer (P < 0.01) and the survival rate (70%) was higher compared with the control mice (P < 0.01). The reduction rate of brain and liver tachyzoites in rTgPGAM 2-vaccinated mice reached approximately 57% and 69% compared with those of the control mice (P < 0.01). These results suggest that rTgPGAM 2 can generate protective immunity against T. gondii infection in BALB/c mice and may be a promising antigen in the further development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Hai-Long Wang
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Li-Min Wen
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yan-Jiang Pei
- Department of General Surgery, Xi'an Red Cross Hospital, Xi'an, Shanxi 710000, PR China
| | - Fen Wang
- Department of Infection Control, The Central Hospital of Enshi Prefecture, Enshi, Hubei 445000, PR China
| | - Li-Tian Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ji-Zhong Bai
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92-019, Auckland 1142, New Zealand
| | - Rui Guo
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Chun-Fang Wang
- Laboratory Animal Center, Shanxi Medical University; Shanxi Key Laboratory of Laboratory Animals and Animal Models of Human Diseases, Taiyuan, Shanxi 030001, PR China
| | - Guo-Rong Yin
- Academy of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China - Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| |
Collapse
|
25
|
Gedik Y, Gülçe İz S, Can H, Değirmenci Döşkaya A, İsmet Deliloğlu Gürhan S, Gürüz Y, Döşkaya M. Immunogenic multistage recombinant protein vaccine confers partial protection against experimental toxoplasmosis mimicking natural infection in murine model. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2015.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Burrells A, Benavides J, Cantón G, Garcia JL, Bartley PM, Nath M, Thomson J, Chianini F, Innes EA, Katzer F. Vaccination of pigs with the S48 strain of Toxoplasma gondii--safer meat for human consumption. Vet Res 2015; 46:47. [PMID: 25928856 PMCID: PMC4415212 DOI: 10.1186/s13567-015-0177-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/26/2015] [Indexed: 11/29/2022] Open
Abstract
As clinical toxoplasmosis is not considered a problem in pigs, the main reason to implement a control strategy against Toxoplasma gondii (T. gondii) in this species is to reduce the establishment of T. gondii tissue cysts in pork, consequently reducing the risk of the parasite entering the human food chain. Consumption of T. gondii tissue cysts from raw or undercooked meat is one of the main sources of human infection, with infected pork being considered a high risk. This study incorporates a mouse bioassay with molecular detection of T. gondii DNA to study the effectiveness of vaccination (incomplete S48 strain) in its ability to reduce tissue cyst burden in pigs, following oocyst (M4 strain) challenge. Results from the mouse bioassay show that 100% of mice which had received porcine tissues from vaccinated and challenged pigs survived compared with 51.1% of mice which received tissues from non-vaccinated and challenged pigs. The presence (or absence) of T. gondii DNA from individual mouse brains also confirmed these results. This indicates a reduction in viable T. gondii tissue cysts within tissues from pigs which have been previously vaccinated with the S48 strain. In addition, the study demonstrated that the main predilection sites for the parasite were found to be brain and highly vascular muscles (such as tongue, diaphragm, heart and masseter) of pigs, while meat cuts used as human food such as chop, loin, left tricep and left semitendinosus, had a lower burden of T. gondii tissue cysts. These promising results highlight the potential of S48 strain tachyzoites for reducing the number of T. gondii tissues cysts in pork and thus improving food safety.
Collapse
Affiliation(s)
- Alison Burrells
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| | - Julio Benavides
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK. .,Instituto de Ganadería de Montaña (CSIC-ULE), León, Spain.
| | - German Cantón
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK. .,Instituto Nacional de Tecnología Agropecuaria (INATA), EEA Balcarce, Argentina.
| | - João L Garcia
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK. .,Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Londrina, Brazil.
| | - Paul M Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| | - Mintu Nath
- Biomathematics & Statistics Scotland, The King's Buildings, Edinburgh, EH9 3JZ, , Scotland, UK.
| | - Jackie Thomson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| | - Elisabeth A Innes
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian, EH26 0PZ, , Scotland, UK.
| |
Collapse
|
27
|
Leroux LP, Dasanayake D, Rommereim LM, Fox BA, Bzik DJ, Jardim A, Dzierszinski FS. Secreted Toxoplasma gondii molecules interfere with expression of MHC-II in interferon gamma-activated macrophages. Int J Parasitol 2015; 45:319-32. [PMID: 25720921 DOI: 10.1016/j.ijpara.2015.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 11/15/2022]
Abstract
The obligate intracellular protozoan parasite Toxoplasma gondii interferes with major histocompatibility complex class II antigen presentation to dampen host CD4(+) T cell responses. While it is known that T. gondii inhibits major histocompatibility complex class II gene transcription and expression in infected host cells, the mechanism of this host manipulation is unknown. Here, we show that soluble parasite proteins inhibit IFNγ-induced expression of major histocompatibility complex class II on the surface of the infected cell in a dose-dependent response that was abolished by protease treatment. Subcellular fractionation of T. gondii tachyzoites revealed that the major histocompatibility complex class II inhibitory activity co-partitioned with rhoptries and/or dense granules. However, parasite mutants deleted for single rhoptries or dense granules genes (ROP1, 4/7, 14, 16 and 18 or GRA 2-9 and 12 knock-out strains) retained the ability to inhibit expression of major histocompatibility complex class II. In addition, excreted/secreted antigens released by extracellular tachyzoites displayed immunomodulatory activity characterized by an inhibition of major histocompatibility complex class II expression, and reduced expression and release of TNFα by macrophages. Tandem MS analysis of parasite excreted/secreted antigens generated a list of T. gondii secreted proteins that may participate in major histocompatibility complex class II inhibition and the modulation of host immune functions.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Dayal Dasanayake
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Leah M Rommereim
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Barbara A Fox
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - David J Bzik
- Geisel School of Medicine at Dartmouth, Borwell Research Building, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Armando Jardim
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Centre for Host-Parasite Interaction, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Florence S Dzierszinski
- Institute of Parasitology, McGill University, Parasitology Building, 21,111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; Carleton University Research Office, Dunton Tower, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
28
|
Verhelst D, De Craeye S, Jennes M, Dorny P, Goddeeris B, Cox E. Interferon-gamma expression and infectivity of Toxoplasma infected tissues in experimentally infected sheep in comparison with pigs. Vet Parasitol 2014; 207:7-16. [PMID: 25499128 DOI: 10.1016/j.vetpar.2014.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 11/16/2022]
Abstract
Livestock animals are a potential risk for transmission of toxoplasmosis to humans. Sheep and pigs still remain an important source because their meat is often eaten undercooked which has been regarded as a major route of infection in many countries. Moreover, porcine tissues are processed in many food products. In the current study, the IFN-gamma (T-helper 1 cells), IL-4 (Th2 cells) and IL-10 mRNA (Treg cells) expression by blood mononuclear cells, and the serum antibody response against Toxoplasma gondii total lysate antigen, recombinant T. gondii GRA1, rGRA7, rMIC3 and rEC2, a chimeric antigen composed of MIC2, MIC3 and SAG1, was studied in sheep the first two months after a T. gondii infection and compared with these responses in pigs. At the end of this period, the parasite distribution in heart, brain and two skeletal muscles in sheep was compared with this in pigs. Whereas the parasite distribution was similar in sheep and pigs, the antibody response differed considerably. In sheep, antibodies appeared against all tested T. gondii antigens, but mainly against rGRA7, rMIC3234307 and TLA whereas in pigs only rGRA7-specific antibodies could be demonstrated. Also, the cytokine response differed. Both in sheep and pigs an IFN-gamma response occurred which seemed to be a slightly more pronounced in sheep. In sheep, also IL-10 and IL-4 mRNA expression showed an increase, but later than IFN-gamma and with more variation. However, in pigs no such increase was seen. As concerning diagnosis, results indicate that serum antibodies against GRA7 in live sheep and pigs and heart tissue for bioassay and qPCR in slaughtered animals are the best targets to demonstrate presence of T. gondii infection.
Collapse
Affiliation(s)
- D Verhelst
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - S De Craeye
- National Reference Laboratory for Toxoplasmosis, Operational Direction Communicable and Infectious Diseases, Scientific Institute of Public Health, Federal Public Service Public Health, Security of the Food chain and Environment, Brussels, Belgium
| | - M Jennes
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - P Dorny
- Department of Biomedical Sciences, Institute for Tropical Medicine, Antwerp, Belgium; Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - B Goddeeris
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium; Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Belgium
| | - E Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
29
|
Abstract
Toxoplasma gondii is a cosmopolitan protozoan parasite that infects a wide range of mammal and bird species. Common infection leads to high economic (e.g., abortions in sheep) and human (e.g., congenital toxoplasmosis or neurotoxoplasmosis in humans) losses. With one exception (Toxovax for sheep), there are no vaccines to prevent human or animal toxoplasmosis. The paper presents the current state and challenges in the development of a vaccine against toxoplasmosis, designed for farm animals either bred for consumption or commonly kept on farms and involved in parasite transmission. So far, the trials have mostly revolved around conventional vaccines and, compared with the research using laboratory animals (mainly mice), they have not been very numerous. However, the results obtained are promising and could be a good starting point for developing an effective vaccine to prevent toxoplasmosis.
Collapse
|
30
|
Ocular toxoplasmosis past, present and new aspects of an old disease. Prog Retin Eye Res 2014; 39:77-106. [DOI: 10.1016/j.preteyeres.2013.12.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 12/22/2022]
|
31
|
Kur J, Holec-Gąsior L, Hiszczyńska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines 2014; 8:791-808. [DOI: 10.1586/erv.09.27] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
32
|
Wang Y, Zhang D, Wang G, Yin H, Wang M. Immunization with excreted-secreted antigens reduces tissue cyst formation in pigs. Parasitol Res 2013; 112:3835-42. [PMID: 23949245 DOI: 10.1007/s00436-013-3571-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
It has been demonstrated that tachyzoite-pooled excreted-secreted antigens (ESAs) of Toxoplasma gondii are highly immunogenic and can be used in vaccine development. However, most of the information regarding protective immunity induced by immunization with ESAs is derived from studies using mouse model systems. These results cannot be extrapolated to pigs due to important differences in the susceptibility and immune response mechanisms between pigs and mice. We show that the immunization of pigs with ESAs emulsified in Freund's adjuvant induced not only a humoral immune response but also a cellular response. The cellular immune response was associated with the production of IFN-γ and IL-4. The humoral immune response was mainly directed against the antigens with molecular masses between 34 and 116 kDa. After intraperitoneal challenge with 10(7) T. gondii of the Gansu Jingtai strain (GJS) of tachyzoites, the immunized pigs remained clinically normal except for a brief low-grade fever (≤40.5 °C), while the control pigs developed clinical signs of toxoplasmosis (cough, anorexia, prostration, and high fever). At necropsy, visible lesions were found at multiple locations (enlarged mesenteric lymph nodes, an enlarged spleen with focal necrosis, and enlarged lungs with miliary or focal necrosis and off-white lesions) in all of the control pigs but not in the pigs that had been immunized. We also found that immunization with ESAs reduced tissue cyst formation in the muscle (P < 0.01). Our data demonstrate that immunization with ESAs can trigger a strong immune response against T. gondii infection in pigs.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China,
| | | | | | | | | |
Collapse
|
33
|
Zhang NZ, Chen J, Wang M, Petersen E, Zhu XQ. Vaccines against Toxoplasma gondii: new developments and perspectives. Expert Rev Vaccines 2013; 12:1287-99. [PMID: 24093877 DOI: 10.1586/14760584.2013.844652] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Toxoplasmosis caused by the protozoan Toxoplasma gondii is a major public health problem, infecting one-third of the world human beings, and leads to abortion in domestic animals. A vaccine strategy would be an ideal tool for improving disease control. Many efforts have been made to develop vaccines against T. gondii to reduce oocyst shedding in cats and tissue cyst formation in mammals over the last 20 years, but only a live-attenuated vaccine based on the S48 strain has been licensed for veterinary use. Here, the authors review the recent development of T. gondii vaccines in cats, food-producing animals and mice, and present its future perspectives. However, a single or only a few antigen candidates revealed by various experimental studies are limited by only eliciting partial protective immunity against T. gondii. Future studies of T. gondii vaccines should include as many CTL epitopes as the live attenuated vaccines.
Collapse
Affiliation(s)
- Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, PR China
| | | | | | | | | |
Collapse
|
34
|
Wang Y, Wang G, Zhang D, Yin H, Wang M. Identification of novel B cell epitopes within Toxoplasma gondii GRA1. Exp Parasitol 2013; 135:606-10. [PMID: 24090568 DOI: 10.1016/j.exppara.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/18/2013] [Accepted: 09/22/2013] [Indexed: 11/28/2022]
Abstract
Newly synthesized epitopes are one of the most promising antigens for the development of diagnostic kits and peptide vaccines. Very little is known about the B cell epitopes on GRA1 of Toxoplasma gondii, which are recognized by the humoral immune response in pigs. In this study, epitopes derived from GRA1 of T. gondii were identified using synthetic peptide techniques and bioinformatics. Three (PG10, PG13 and PG18) out of the eighteen peptides tested were recognized by all pig sera from different time points after infection, and the other peptides were recognized by select sera from various time points after infection. Our data indicate that many regions of GRA1, and in particular, the regions represented by the peptides PG10, PG13 and PG18, are involved in the pig antibody response. The identification of specific epitopes targeted by the host antibody response is important both for understanding the natural response to infection and for the development of epitope-based marker vaccines and diagnostic tools for toxoplasmosis.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Key Laboratory of Veterinary Public Health of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China.
| | | | | | | | | |
Collapse
|
35
|
Wang HL, Li YQ, Yin LT, Meng XL, Guo M, Zhang JH, Liu HL, Liu JJ, Yin GR. Toxoplasma gondii protein disulfide isomerase (TgPDI) is a novel vaccine candidate against toxoplasmosis. PLoS One 2013; 8:e70884. [PMID: 23967128 PMCID: PMC3744524 DOI: 10.1371/journal.pone.0070884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/24/2013] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can infect all warm-blooded animals, including both mammals and birds. Protein disulfide isomerase (PDI) localises to the surface of T. gondii tachyzoites and modulates the interactions between parasite and host cells. In this study, the protective efficacy of recombinant T. gondii PDI (rTgPDI) as a vaccine candidate against T. gondii infection in BALB/c mice was evaluated. rTgPDI was expressed and purified from Escherichia coli. Five groups of animals (10 animals/group) were immunised with 10, 20, 30, 40 μg of rTgPDI per mouse or with PBS as a control group. All immunisations were performed via the nasal route at 1, 14 and 21 days. Two weeks after the last immunisation, the immune responses were evaluated by lymphoproliferative assays and by cytokine and antibody measurements. The immunised mice were challenged with tachyzoites of the virulent T. gondii RH strain on the 14th day after the last immunisation. Following the challenge, the tachyzoite loads in tissues were assessed, and animal survival time was recorded. Our results showed that the group immunised with 30 μg rTgPDI showed significantly higher levels of specific antibodies against the recombinant protein, a strong lymphoproliferative response and significantly higher levels of IgG2a, IFN-gamma (IFN-γ), IL-2 and IL-4 production compared with other doses and control groups. While no changes in IL-10 levels were detected. After being challenged with T. gondii tachyzoites, the numbers of tachyzoites in brain and liver tissues from the rTgPDI group were significantly reduced compared with those of the control group, and the survival time of the mice in the rTgPDI group was longer than that of mice in the control group. Our results showed that immunisation with rTgPDI elicited a protective immune reaction and suggested that rTgPDI might represent a promising vaccine candidate for combating toxoplasmosis.
Collapse
Affiliation(s)
- Hai-Long Wang
- Research Institute of Medical Parasitology, Shanxi Medical University, Taiyuan, Shanxi, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zheng B, Lu S, Tong Q, Kong Q, Lou D. The virulence-related rhoptry protein 5 (ROP5) of Toxoplasma Gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine 2013; 31:4578-84. [PMID: 23928460 DOI: 10.1016/j.vaccine.2013.07.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 06/29/2013] [Accepted: 07/25/2013] [Indexed: 12/22/2022]
Abstract
Infections with the intracellular protozoan parasite Toxoplasma gondii pose a serious public health problem and are of great economic importance worldwide. The parasite rhoptry protein 5 (ROP5) has been implicated as a major virulence factor that reduces the accumulation of immunity-related GTPases (IRG) in parasitophorous vacuole membrane (PVM), which maintains PVM integrity and evades IFNγ-mediated killing by intracellular parasites. To study the immunoprotective value of ROP5, BALB/c mice were immunized with a recombinant form of the protein administered alone or in combination with another promising vaccine antigen, rSAG1. All mice vaccinated with the recombinant antigens developed a high level of specific antibody responses against soluble tachyzoite antigens (STAg), a statistically significant increase of the splenocyte proliferation response, and significant levels of IFN-γ and IL-2 production. In contrast to rSAG1, which only stimulated the release of IFN-γ and IL-2, rROP5 induced the specific production of IL-10, the Th2-type cytokine, in addition to IFN-γ and IL-2. These results demonstrated that rROP5 could induce significant cellular and humoral (Th1/Th2) immune responses. Moreover, mice immunized with rROP5 displayed a prolonged survival time against a lethal challenge with the T. gondii RH strain. Additionally, vaccination with the mixture of rROP5+rSAG1 resulted in higher levels of T. gondii-specific IgG antibodies and lymphocyte proliferative responses and conferred more efficient protection against T. gondii challenge compared to immunization with rROP5 or rSAG1 alone. Our studies show that recombinant ROP5 antigen may be a promising vaccine candidate against toxoplasmosis. To our knowledge, this is the first report to evaluate the immunoprotective value of ROP5.
Collapse
Affiliation(s)
- Bin Zheng
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, PR China
| | | | | | | | | |
Collapse
|
37
|
Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 2013; 31:3135-9. [DOI: 10.1016/j.vaccine.2013.05.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 12/26/2022]
|
38
|
Baer AA, Miller MJ, Dilger AC. Pathogens of Interest to the Pork Industry: A Review of Research on Interventions to Assure Food Safety. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arica A. Baer
- Dept. of Animal Science, Univ. of Illinois Urbana-Champaign; 1503 S
| | - Michael J. Miller
- Dept. of Food Science and Human Nutrition; Div. of Nutritional Sciences; 905 S.; Goodwin Ave.; Urbana; IL 61801; U.S.A
| | - Anna C. Dilger
- Dept. of Animal Science, Univ. of Illinois Urbana-Champaign; 1503 S
| |
Collapse
|
39
|
Protective efficacy of a Toxoplasma gondii rhoptry protein 13 plasmid DNA vaccine in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1916-20. [PMID: 23015648 DOI: 10.1128/cvi.00397-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite infecting humans and other warm-blooded animals, resulting in serious public health problems and economic losses worldwide. Rhoptries are involved in T. gondii invasion and host cell interaction and have been implicated as important virulence factors. In the present study, a DNA vaccine expressing rhoptry protein 13 (ROP13) of T. gondii inserted into eukaryotic expression vector pVAX I was constructed, and the immune protection it induced in Kunming mice was evaluated. Kunming mice were immunized intramuscularly with pVAX-ROP13 and/or with interleukin-18 (IL-18). Then, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged with the virulent T. gondii RH strain (type I) and the cyst-forming PRU strain (type II). The results showed that pVAX-ROP13 alone or with pVAX/IL-18 induced a high level of specific anti-T. gondii antibodies and specific lymphocyte proliferative responses. Coinjection of pVAX/IL-18 significantly increased the production of gamma interferon (IFN-γ), IL-2, IL-4, and IL-10. Further, challenge experiments showed that coimmunization of pVAX-ROP13 with pVAX/IL-18 significantly (P < 0.05) increased survival time (32.3 ± 2.7 days) compared with pVAX-ROP13 alone (24.9 ± 2.3 days). Immunized mice challenged with T. gondii cysts (strain PRU) had a significant reduction in the number of brain cysts, suggesting that ROP13 could trigger a strong humoral and cellular response against T. gondii cyst infection and that it is a potential vaccine candidate against toxoplasmosis, which provided the foundation for further development of effective vaccines against T. gondii.
Collapse
|
40
|
Cui X, Lei T, Yang D, Hao P, Li B, Liu Q. Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine 2012; 30:2282-7. [DOI: 10.1016/j.vaccine.2012.01.073] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 12/28/2011] [Accepted: 01/23/2012] [Indexed: 01/19/2023]
|
41
|
da Cunha IAL, Zulpo DL, Bogado ALG, de Barros LD, Taroda A, Igarashi M, Navarro IT, Garcia JL. Humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. Vet Parasitol 2011; 186:216-21. [PMID: 22137347 DOI: 10.1016/j.vetpar.2011.11.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/02/2011] [Accepted: 11/08/2011] [Indexed: 11/25/2022]
Abstract
We evaluated the humoral and cellular immune responses in pigs immunized intranasally with crude rhoptry proteins of Toxoplasma gondii plus Quil-A. The experiment used 13 mixed-breed pigs divided into the following three groups: G1 (vaccinated-challenged, n=6), which received the rhoptry vaccine (200(g/dose); G2 (adjuvant-challenged, n=4), which received PBS plus Quil-A; and G3 (unvaccinated-challenged, n=3), which was the control group. The treatments were performed intranasally at days 0, 21, and 42. Three pigs from G1 produced IgG and IgM antibody levels above the cut-off in the ELISA on the challenge day. Partial protection was observed in G1 at the chronic phase of infection when compared with G3. The preventable fractions were 41.6% and 6.5%, in G1 and G2, respectively. The results of this study suggest that rhoptry proteins plus Quil-A stimulated humoral, local, and systemic immune responses, which were able to partially protect the brain from cyst formation.
Collapse
Affiliation(s)
- Ivo Alexandre Leme da Cunha
- Laboratório de Protozoologia, Departamento de Medicina Veterinária Preventiva, Universidade de Londrina - UEL, Postal Box 6001, 86050-970 Londrina, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Innes EA, Bartley PM, Rocchi M, Benavidas-Silvan J, Burrells A, Hotchkiss E, Chianini F, Canton G, Katzer F. Developing vaccines to control protozoan parasites in ruminants: Dead or alive? Vet Parasitol 2011; 180:155-63. [DOI: 10.1016/j.vetpar.2011.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Verhelst D, De Craeye S, Dorny P, Melkebeek V, Goddeeris B, Cox E, Jongert E. IFN-γ expression and infectivity of Toxoplasma infected tissues are associated with an antibody response against GRA7 in experimentally infected pigs. Vet Parasitol 2011; 179:14-21. [PMID: 21414723 DOI: 10.1016/j.vetpar.2011.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/13/2011] [Accepted: 02/17/2011] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii, an obligate intracellular parasite, can be transmitted to humans via the consumption of infected meat. However, there are currently no veterinary diagnostic tests available for the screening of animals at slaughter. In the current work, we investigated whether cytokine responses in the blood, and antibody responses against recombinant T. gondii GRA1, GRA7, MIC3 proteins and a chimeric antigen EC2 encoding MIC2-MIC3-SAG1, are associated with the infectivity of porcine tissues after experimental infection with T. gondii. Two weeks after experimental infection of conventional 5-week-old seronegative pigs, an IFN-γ response was detected in the blood, with a kinetic profile that followed the magnitude of the GRA7 antibody response. Antibody responses to GRA1, MIC3 and EC2 were very weak or absent up to 6 weeks post infection. Antibodies against GRA7 occurred in all infected animals and were associated with the presence of the parasite in tissues at euthanasia a few months later, as demonstrated by quantitative real-time PCR and isolation by bio-assay. Remarkably, although brain and heart tissue remained infectious, musculus gastrocnemius and musculus longissimus dorsi were found clear of infectious parasites 6 months after experimental infection. Seropositive response in a GRA7 ELISA indicates a Toxoplasma infection in pigs and is predictive of the presence of infectious cysts in pig heart and brain. This new ELISA is a promising tool to study the prevalence of Toxoplasma infection in pigs. Clearance of the infection in certain pig tissues suggests that the risk assessment of pig meat for human health needs further evaluation.
Collapse
Affiliation(s)
- D Verhelst
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Miriam Englander
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA
| | | |
Collapse
|
45
|
Hiszczyńska-Sawicka E, Olędzka G, Holec-Gąsior L, Li H, Xu JB, Sedcole R, Kur J, Bickerstaffe R, Stankiewicz M. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Vet Parasitol 2010; 177:281-9. [PMID: 21251760 DOI: 10.1016/j.vetpar.2010.11.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 11/23/2010] [Accepted: 11/29/2010] [Indexed: 11/18/2022]
Abstract
The dense granule proteins of Toxoplasma gondii are investigated as possible vaccine candidates against the parasite. The aim of this research was to evaluate the immune responses of sheep injected twice, intramuscularly, with DNA plasmids encoding T. gondii dense granule antigens GRA1, GRA4, GRA6 and GRA7 formulated into liposomes. Control sheep were injected with an empty vector or received no injections. The injection of sheep with DNA plasmids encoding for GRA1, GRA4, GRA6 or GRA7 elicited an immune response after the first and the second injections as indicated by the moderate to high antibody responses. The injection of pGRA7 induced a significant level of anti-GRA7 IgG2 antibody and IFN-γ responses indicating a Th1-like immune response whereas injection with pGRA1, pGRA4 and pGRA6 stimulated a IgG1 type antibody response with a limited, if any, IFN-γ response. The results demonstrate that the intramuscular injection of sheep with a DNA liposome formulated plasmid coding for GRA proteins is an effective system that induces a significant immune response against T. gondii.
Collapse
|
46
|
Protective immunity induced by Toxoplasma gondii rhoptry protein 16 against toxoplasmosis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:119-24. [PMID: 21106780 DOI: 10.1128/cvi.00312-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Toxoplasma gondii can infect a large variety of domestic and wild animals and human beings, sometimes causing severe pathology. Rhoptries are involved in T. gondii invasion and host cell interaction and have been implicated as important virulence factors. In this study, we constructed a DNA vaccine expressing rhoptry protein 16 (ROP16) of T. gondii and evaluated the immune responses it induced in Kunming mice. The gene sequence encoding ROP16 was inserted into the eukaryotic expression vector pVAX I. We immunized Kunming mice intramuscularly. After immunization, we evaluated the immune response using a lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged lethally. The results showed that mice immunized with pVAX-ROP16 developed a high level of specific antibody responses against T. gondii ROP16 expressed in Escherichia coli, a strong lymphoproliferative response, and significant levels of gamma interferon (IFN-γ), interleukin-2 (IL-2), IL-4, and IL-10 production compared with results for other mice immunized with either empty plasmid or phosphate-buffered saline, respectively. The results showed that pVAX-ROP16 induces significant humoral and cellular Th1 immune responses. After lethal challenge, the mice immunized with pVAX-ROP16 showed a significantly (P < 0.05) prolonged survival time (21.6 ± 9.9 days) compared with control mice, which died within 7 days of challenge. Our data demonstrate, for the first time, that ROP16 triggers a strong humoral and cellular response against T. gondii and that ROP16 is a promising vaccine candidate against toxoplasmosis, worth further development.
Collapse
|
47
|
Comparison of immune response in sheep immunized with DNA vaccine encoding Toxoplasma gondii GRA7 antigen in different adjuvant formulations. Exp Parasitol 2010; 124:365-72. [DOI: 10.1016/j.exppara.2009.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 10/27/2009] [Accepted: 11/25/2009] [Indexed: 11/21/2022]
|
48
|
Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitol Res 2010; 106:1079-84. [DOI: 10.1007/s00436-010-1742-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/13/2010] [Indexed: 12/15/2022]
|
49
|
Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Förster-Wald E, Petersen E. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz 2010; 104:252-66. [PMID: 19430651 DOI: 10.1590/s0074-02762009000200019] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 12/04/2008] [Indexed: 12/21/2022] Open
Abstract
Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge.
Collapse
Affiliation(s)
- Erik Jongert
- Laboratory for Toxoplasmosis, Pasteur Institute of Brussels, Scientific Institute for Public Health, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Toxoplasma gondii: expression of GRA1 gene in endoplasmic reticulum promotes both growth and adherence and modulates intracellular calcium release in macrophages. Exp Parasitol 2010; 125:165-71. [PMID: 20122928 DOI: 10.1016/j.exppara.2010.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 11/22/2022]
Abstract
In this study, effects of GRA1 organelle-targeted expression on macrophage functions were investigated. The recombinant plasmid pCMV/myc/ER-GRA1 was constructed and then was transfected into murine macrophage RAW264.7 by Lipofectamine, selected by resistance of G418. The selected mono-clone cell line was named ER-GRA1-RAW264.7. The expression of GRA1 was localized in ER of ER-GRA1-RAW264.7 cells by indirect immunofluorescence detection. GRA1 mRNA expression level in ER-GRA1-RAW264.7 cell was significantly enhanced with a concomitant increase in its growth and adherence activity. Fluorescence intensity of intracellular calcium in ER-GRA1-RAW264.7, ER-ctrl-RAW264.7 and RAW264.7 cells in the presence of 1 mmol/l arachidonic acid (AA) were assayed by confocal microscopy using calcium-sensitive dye, Fluo-3 AM. Cytoplasm [Ca2+]i peaked at about 18 s after AA treatment, and cytoplasm [Ca2+]i of RAW264.7 cell almost instantly stepped up after AA was added, and peaked in 3 s, with a minor cytoplasm [Ca2+]i vibration subsequently. These results demonstrated that the expression of GRA1 in ER of macrophages promotes both growth and adherence of macrophages and modulates the intracellular calcium release stimulated by AA.
Collapse
|