1
|
Cantoni D, Wilkie C, Bentley EM, Mayora-Neto M, Wright E, Scott S, Ray S, Castillo-Olivares J, Heeney JL, Mattiuzzo G, Temperton NJ. Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature. Front Immunol 2023; 14:1184362. [PMID: 37790941 PMCID: PMC10544934 DOI: 10.3389/fimmu.2023.1184362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.
Collapse
Affiliation(s)
- Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Emma M. Bentley
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| |
Collapse
|
2
|
Delgadillo-Gutiérrez K, Castelán-Vega JA, Jiménez-Alberto A, Fernández-Lizárraga MDC, Aparicio-Ozores G, Monterrubio-López GP, Ribas-Aparicio RM. Characterization and use in neutralization assays of avian influenza codon-optimized H5 and H7 retroviral pseudotypes. J Virol Methods 2021; 300:114391. [PMID: 34890710 DOI: 10.1016/j.jviromet.2021.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/12/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Influenza is a relevant problem for public and animal health, with a significant economic impact. In recent years, outbreaks of avian influenza virus have resulted in devastating losses in the poultry industry worldwide, and although its transmission to humans is very rare, there is always a potential risk for an even more severe outbreak. Currently, vaccination is considered the most effective tool for the control and prevention of influenza infections in both humans and animals. The maintenance of animal welfare and the successful implementation of animal health programs depend on the timely administration of vaccines, which must comply with quality specifications indicated by health authorities; for example, the capability to ensure a minimum antibody titer. The production of viral antigens used in these tests can pose a biosafety risk, and some viral strains can be difficult to grow. Therefore, new biotechnological alternatives are required to overcome these disadvantages. In this study, we produced pseudotypes carrying H5 and H7 hemagglutinins from lowly and highly pathogenic avian influenza viruses. These pseudotypes were used in neutralization assays to detect neutralizing antibodies in avian sera, which were confirmed positive by inhibition of the hemagglutination test. Our results showed that the pseudotype neutralization assay is a viable alternative for the detection of neutralizing antibodies, by demonstrating subtype specificity and requiring reduced biosafety requirements. Therefore, it represents a versatile platform that can facilitate technology transfer protocols between laboratories, and an immediate application in serological tools for quality control of veterinary vaccines against avian influenza.
Collapse
Affiliation(s)
- Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan Arturo Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gloria Paulina Monterrubio-López
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
3
|
Zhou F, Hansen L, Pedersen G, Grødeland G, Cox R. Matrix M Adjuvanted H5N1 Vaccine Elicits Broadly Neutralizing Antibodies and Neuraminidase Inhibiting Antibodies in Humans That Correlate With In Vivo Protection. Front Immunol 2021; 12:747774. [PMID: 34887855 PMCID: PMC8650010 DOI: 10.3389/fimmu.2021.747774] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
The highly pathogenic avian influenza H5N1 viruses constantly evolve and give rise to novel variants that have caused widespread zoonotic outbreaks and sporadic human infections. Therefore, vaccines capable of eliciting broadly protective antibody responses are desired and under development. We here investigated the magnitude, kinetics and protective efficacy of the multi-faceted humoral immunity induced by vaccination in healthy adult volunteers with a Matrix M adjuvanted virosomal H5N1 vaccine. Vaccinees were given escalating doses of adjuvanted vaccine (1.5μg, 7.5μg, or 30μg), or a non-adjuvanted vaccine (30μg). An evaluation of sera from vaccinees against pseudotyped viruses covering all (sub)clades isolated from human H5N1 infections demonstrated that the adjuvanted vaccines (7.5μg and 30μg) could elicit rapid and robust increases of broadly cross-neutralizing antibodies against all clades. In addition, the adjuvanted vaccines also induced multifaceted antibody responses including hemagglutinin stalk domain specific, neuraminidase inhibiting, and antibody-dependent cellular cytotoxicity inducing antibodies. The lower adjuvanted dose (1.5µg) showed delayed kinetics, whilst the non-adjuvanted vaccine induced overall lower levels of antibody responses. Importantly, we demonstrate that human sera post vaccination with the adjuvanted (30μg) vaccine provided full protection against a lethal homologous virus challenge in mice. Of note, when combining our data from mice and humans we identified the neutralizing and neuraminidase inhibiting antibody titers as correlates of in vivo protection.
Collapse
Affiliation(s)
- Fan Zhou
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lena Hansen
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gabriel Pedersen
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway.,Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Gunnveig Grødeland
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rebecca Cox
- Influenza Center, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Sealy JE, Howard WA, Molesti E, Iqbal M, Temperton NJ, Banks J, Slomka MJ, Barclay WS, Long JS. Amino acid substitutions in the H5N1 avian influenza haemagglutinin alter pH of fusion and receptor binding to promote a highly pathogenic phenotype in chickens. J Gen Virol 2021; 102. [PMID: 34726594 PMCID: PMC8742987 DOI: 10.1099/jgv.0.001672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Highly pathogenic H5N1 avian influenza viruses cause devastating outbreaks in farmed poultry with serious consequences for animal welfare and economic losses. Zoonotic infection of humans through close contact with H5N1 infected birds is often severe and fatal. England experienced an outbreak of H5N1 in turkeys in 1991 that led to thousands of farmed bird mortalities. Isolation of clonal populations of one such virus from this outbreak uncovered amino acid differences in the virus haemagglutinin (HA) gene whereby the different genotypes could be associated with distinct pathogenic outcomes in chickens; both low pathogenic (LP) and high pathogenic (HP) phenotypes could be observed despite all containing a multi-basic cleavage site (MBCS) in the HA gene. Using reverse genetics, three amino acid substitutions in HA were examined for their ability to affect pathogenesis in the chicken. Restoration of amino acid polymorphisms close to the receptor binding site that are commonly found in H5 viruses only partially improved viral fitness in vitro and in vivo. A third novel substitution in the fusion peptide, HA2G4R, enabled the HP phenotype. HA2G4R decreased the pH stability of HA and increased the pH of HA fusion. The substitutions close to the receptor binding site optimised receptor binding while modulating the pH of HA fusion. Importantly, this study revealed pathogenic determinants beyond the MBCS.
Collapse
Affiliation(s)
- Joshua E Sealy
- Avian Influenza Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Wendy A Howard
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK.,VisMederi Research S.r.l., Siena, Italy
| | - Munir Iqbal
- Avian Influenza Group, The Pirbright Institute, Woking, GU24 0NF, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, UK
| | - Jill Banks
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Marek J Slomka
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, UK
| | - Jason S Long
- Virology Department, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, Addlestone, Surrey KT15 3NB, UK.,Department of Infectious Disease, Faculty of Medicine, Imperial College London, St. Mary's Campus, London W2 1NY, UK.,Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar EN6 3QG, UK
| |
Collapse
|
5
|
Toon K, Bentley EM, Mattiuzzo G. More Than Just Gene Therapy Vectors: Lentiviral Vector Pseudotypes for Serological Investigation. Viruses 2021; 13:217. [PMID: 33572589 PMCID: PMC7911487 DOI: 10.3390/v13020217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Serological assays detecting neutralising antibodies are important for determining the immune responses following infection or vaccination and are also often considered a correlate of protection. The target of neutralising antibodies is usually located in the Envelope protein on the viral surface, which mediates cell entry. As such, presentation of the Envelope protein on a lentiviral particle represents a convenient alternative to handling of a potentially high containment virus or for those viruses with no established cell culture system. The flexibility, relative safety and, in most cases, ease of production of lentiviral pseudotypes, have led to their use in serological assays for many applications such as the evaluation of candidate vaccines, screening and characterization of anti-viral therapeutics, and sero-surveillance. Above all, the speed of production of the lentiviral pseudotypes, once the envelope sequence is published, makes them important tools in the response to viral outbreaks, as shown during the COVID-19 pandemic in 2020. In this review, we provide an overview of the landscape of the serological applications of pseudotyped lentiviral vectors, with a brief discussion on their production and batch quality analysis. Finally, we evaluate their role as surrogates for the real virus and possible alternatives.
Collapse
Affiliation(s)
- Kamilla Toon
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Emma M. Bentley
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control-MHRA, Blanche Lane, South Mimms EN6 3QG, UK;
| |
Collapse
|
6
|
Hyseni I, Molesti E, Benincasa L, Piu P, Casa E, Temperton NJ, Manenti A, Montomoli E. Characterisation of SARS-CoV-2 Lentiviral Pseudotypes and Correlation between Pseudotype-Based Neutralisation Assays and Live Virus-Based Micro Neutralisation Assays. Viruses 2020; 12:E1011. [PMID: 32927639 PMCID: PMC7551040 DOI: 10.3390/v12091011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/06/2023] Open
Abstract
The recent outbreak of a novel Coronavirus (SARS-CoV-2) and its rapid spread across the continents has generated an urgent need for assays to detect the neutralising activity of human sera or human monoclonal antibodies against SARS-CoV-2 spike protein and to evaluate the serological immunity in humans. Since the accessibility of live virus microneutralisation (MN) assays with SARS-CoV-2 is limited and requires enhanced bio-containment, the approach based on "pseudotyping" can be considered a useful complement to other serological assays. After fully characterising lentiviral pseudotypes bearing the SARS-CoV-2 spike protein, we employed them in pseudotype-based neutralisation assays in order to profile the neutralising activity of human serum samples from an Italian sero-epidemiological study. The results obtained with pseudotype-based neutralisation assays mirrored those obtained when the same panel of sera was tested against the wild type virus, showing an evident convergence of the pseudotype-based neutralisation and MN results. The overall results lead to the conclusion that the pseudotype-based neutralisation assay is a valid alternative to using the wild-type strain, and although this system needs to be optimised and standardised, it can not only complement the classical serological methods, but also allows serological assessments to be made when other methods cannot be employed, especially in a human pandemic context.
Collapse
Affiliation(s)
- Inesa Hyseni
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | - Eleonora Molesti
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | - Linda Benincasa
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
| | | | - Elisa Casa
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham ME7 4TB, UK;
| | - Alessandro Manenti
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
| | - Emanuele Montomoli
- VisMederi Research s.r.l., 53100 Siena, Italy; (I.H.); (L.B.); (E.C.); (A.M.); (E.M.)
- VisMederi s.r.l., 53100 Siena, Italy;
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
7
|
Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Sci Rep 2020; 10:14289. [PMID: 32868837 PMCID: PMC7459353 DOI: 10.1038/s41598-020-71225-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Ebola virus (EBOV) is an enveloped, single-stranded RNA virus that can cause Ebola virus disease (EVD). It is thought that EVD survivors are protected against subsequent infection with EBOV and that neutralising antibodies to the viral surface glycoprotein (GP) are potential correlates of protection. Serological studies are vital to assess neutralising antibodies targeted to EBOV GP; however, handling of EBOV is limited to containment level 4 laboratories. Pseudotyped viruses can be used as alternatives to live viruses, which require high levels of bio-containment, in serological and viral entry assays. However, neutralisation capacity can differ among pseudotyped virus platforms. We evaluated the suitability of EBOV GP pseudotyped human immunodeficiency virus type 1 (HIV-1) and vesicular stomatitis virus (VSV) to measure the neutralising ability of plasma from EVD survivors, when compared to results from a live EBOV neutralisation assay. The sensitivity, specificity and correlation with live EBOV neutralisation were greater for the VSV-based pseudotyped virus system, which is particularly important when evaluating EBOV vaccine responses and immuno-therapeutics. Therefore, the EBOV GP pseudotyped VSV neutralisation assay reported here could be used to provide a better understanding of the putative correlates of protection against EBOV.
Collapse
|
8
|
Delgadillo-Gutiérrez K, Ribas-Aparicio RM, Jiménez-Alberto A, Aparicio-Ozores G, Castelán-Vega JA. Stability of retroviral pseudotypes carrying the hemagglutinin of avian influenza viruses under various storage conditions. J Virol Methods 2018; 263:44-49. [PMID: 30347199 DOI: 10.1016/j.jviromet.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/09/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022]
Abstract
Retroviral pseudotypes are broadly used as safe instruments to mimic the structure and surface of highly pathogenic viruses. They have been employed for the discovery of new drugs, as diagnostic tools in vaccine studies, and part of serological assays. Because of their widespread use in research and their potential as tools for quality control, it is important to know their shelf life, stability, and best storage conditions. In this study, we produced pseudotypes carrying the lacZ reporter gene and the hemagglutinin (HA) of avian influenza virus subtypes H5 and H7 to investigate their stability under various storage conditions. We produced pseudotypes with titers of approximately 106 RLU/mL, which decreased to 105-106 RLU/mL after short-term storage at 4 °C (up to 4 weeks). Stability was maintained after long-term storage at -20 °C (up to 12 months), even under storage variations such as freeze-thaw cycles. We conclude that, although the titers decreased by 1 log10 under the different storage conditions, the remaining titers can be readily applicable in many techniques, such as neutralization assays. These findings show that large quantities of retroviral pseudotypes can be safely stored for short- or long-term use, allowing standardization and reduced variation in assays involving retroviral pseudotypes.
Collapse
Affiliation(s)
- Karen Delgadillo-Gutiérrez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gerardo Aparicio-Ozores
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Juan A Castelán-Vega
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
| |
Collapse
|
9
|
Ferrara F, Molesti E, Scott S, Cattoli G, Temperton N. The Use of Hyperimmune Chicken Reference Sera Is Not Appropriate for the Validation of Influenza Pseudotype Neutralization Assays. Pathogens 2017; 6:pathogens6040045. [PMID: 28946689 PMCID: PMC5750569 DOI: 10.3390/pathogens6040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
The pseudotype particle neutralization test (pp-NT) is a next-generation serological assay employed for the sensitive study of influenza antibody responses against hemagglutinin (HA), including stalk-directed antibodies. However, a validation of this assay has yet to be performed, and this limits its use to primarily research laboratories. To identify possible serological standards to be used in optimization and validation of the pp-NT, we have evaluated the cross-reactivity of hyperimmune chicken reference antisera in this assay. Our findings show that the cross-reactivity detected by the pp-NT is only partly explained by phylogenetic relationships and protein homology between the HA subtypes analysed; further studies are necessary to understand the origin of the cross-reactivity detected, and reference standards with higher specificity should be evaluated or generated de novo for future use in pp-NT.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Eleonora Molesti
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| | - Giovanni Cattoli
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency, A-2444 Seibersdorf, Austria.
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent, Chatham, Kent ME4 4TB, UK.
| |
Collapse
|
10
|
Chada KE, Forshee R, Golding H, Anderson S, Yang H. A systematic review and meta-analysis of cross-reactivity of antibodies induced by oil-in-water emulsion adjuvanted influenza H5N1 virus monovalent vaccines. Vaccine 2017; 35:3162-3170. [PMID: 28483200 DOI: 10.1016/j.vaccine.2017.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/07/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Cross-clade immunogenic stockpiled H5N1 vaccines may decrease the morbidity and transmission of infection during the initial phase of influenza pandemic. Meta-analysis of cross-reactive antibodies induced by oil-in-water emulsion adjuvanted (OWEA) influenza H5N1 virus monovalent vaccines with circulating heterologous H5N1 virus strains, isolated from human infections was performed. METHODS Literature search of MEDLINE, EMBASE, Web of Knowledge, The Cochrane Library, ClinicalTrials.gov, and International Standard Randomised Controlled Trial Number registry was conducted up through December 1, 2015. Methodologically qualified studies were included for (1) use of two doses of licensed OWEA (AS03 or MF59) egg-derived, inactivated influenza H5N1 virus monovalent vaccine, (2) participant age between 18 and 64years, and (3) evaluation of immunogenicity outcome for one or more subclade. Meta-analysis assessed the cross-reactivity of antibodies elicited by clade 1 adjuvanted vaccine strain against clade 2.1 virus strain (A/Vietnam/1194/2004 vs. A/Indonesia/05/2005); and separately against clade 2.2 virus strain (A/Vietnam/1194/2004 vs. A/turkey/Turkey/1/05); and clade 2.1 adjuvanted vaccine strain against clade 1 virus strain (A/Indonesia/05/2005 vs. A/Vietnam/1194/2004). Quantitative publication bias and influence analysis was conducted to evaluate potential impact of unpublished or new studies on the robustness of meta-analysis. RESULTS Of 960 articles, 53 qualified for quality assessment and 15 studies met the inclusion criteria. All assessed clade pairs elicited cross-reactive antibodies (clade 1 against clade 2.1 and 2.2; clade 2.1 against clade 1, 2.2, and 2.3). Heterologous strains of same sub-clade are likely to elicit higher cross-reactive antibodies. CONCLUSIONS OWEA influenza H5N1 virus monovalent vaccines exhibit broad cross-clade immunogenicity, a desired feature for vaccine stockpiling not yet demonstrated by unadjuvanted vaccines. In case of an impending H5N1 virus pandemic, stockpiled OWEA influenza H5N1 virus monovalent vaccines may allow population priming that could slow down the course of pandemic and could offer additional time needed for development of an effective strain specific vaccine supply.
Collapse
Affiliation(s)
- Kinnera E Chada
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States.
| | - Richard Forshee
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Hana Golding
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Steven Anderson
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, United States
| |
Collapse
|
11
|
Temperton N. The Viral Pseudotype Unit: viral pseudotype R&D, dissemination and education. Future Virol 2016. [DOI: 10.2217/fvl.15.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Viral Pseudotype Unit was established in 2010 to act as an interface between academia, industry and public/animal health laboratories with the purpose of translating basic virus research (on viral pseudotypes) into in vitro cell culture-based assays that can be readily employed for the immunogenicity testing of preclinical vaccine candidates, and for the functional screening of new antivirals and therapeutic antibodies. More recently the Viral Pseudotype Unit has become involved with the exploitation of pseudotypes for the development of serological standards, and with training and education via traditional and new media platforms.
Collapse
Affiliation(s)
- Nigel Temperton
- Viral Pseudotype Unit (VPU), School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
12
|
King B, Temperton NJ, Grehan K, Scott SD, Wright E, Tarr AW, Daly JM. Technical considerations for the generation of novel pseudotyped viruses. Future Virol 2016. [DOI: 10.2217/fvl.15.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A pseudotyped virus (PV) is a virus particle with an envelope protein originating from a different virus. The ability to dictate which envelope proteins are expressed on the surface has made pseudotyping an important tool for basic virological studies such as determining the cellular targets of the envelope protein of the virus as well as identification of potential antiviral compounds and measuring specific antibody responses. In this review, we describe the common methodologies employed to generate PVs, with a focus on approaches to improve the efficacy of PV generation.
Collapse
Affiliation(s)
- Barnabas King
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Keith Grehan
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Simon D Scott
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Janet M Daly
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| |
Collapse
|
13
|
Luczkowiak J, Arribas JR, Gómez S, Jiménez-Yuste V, de la Calle F, Viejo A, Delgado R. Specific neutralizing response in plasma from convalescent patients of Ebola Virus Disease against the West Africa Makona variant of Ebola virus. Virus Res 2015; 213:224-229. [PMID: 26739425 DOI: 10.1016/j.virusres.2015.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The current outbreak of Ebola Virus Disease in West Africa is caused by a new variant of Ebola virus (EBOV) named Makona 2014, whose sequence differs 3% from isolates from Central Africa such as Mayinga 1976 EBOV. The specificity and kinetics of the neutralizing antibody response induced by the circulating Makona EBOV has not been thoroughly studied. METHODS We have used a lentiviral EBOV-glycoprotein (GP)-pseudotyped infection assay to measure Makona-GP and Mayinga-GP specific neutralizing activity of plasma from three convalescent Ebola Virus Disease patients from the current EBOV outbreak at 2, 3, 4 and 9 months post-infection. Total anti-EBOV GP IgG was measured by a commercial ELISA assay. FINDINGS In convalescent Ebola Virus Disease patients, Makona-GP-specific neutralizing titers increased from 2 months (mean IC50 1/59), 3 months (IC50 1/212), 4 months (IC50 1/239) and up to 9 months (IC50 1/268) post-infection. Neutralizing activity of plasma from the three convalescent Ebola Virus Disease patients was more vigorous against the current Makona-GP pseudotyped EBOV variant than against Mayinga-GP pseudotyped EBOV and this difference was observed at each time point tested: Mayinga vs Makona mean IC50 fold=4.92 at 2 months post-infection, 2.89 fold at 3 months post-infection, 2.23 at 4 months post-infection and 2.98 at 9 months post-infection (all differences p<0.01). Total level of IgG against EBOV-GP did not evolve significantly during the follow up. DISCUSSION In convalescent Ebola Virus Disease patients, EBOV-GP specific neutralizing activity increases over time, at least up to 9 months post-infection, which suggests that active affinity maturation of antibodies takes place long after clinical recovery. EBOV-GP specific neutralizing response is significantly higher against Makona EBOV circulating in West Africa than against the variants included in the currently approved vaccines. Correlates of protection for EBOV vaccines have not been completely established and the relevance of a lower neutralizing activity in convalescent plasma from the current outbreak against one of the EBOV-GPs contained in the vaccines in terms of its potential efficacy does not necessarily preclude its efficacy. However, this observation highlights the concern regarding the natural diversity of EBOV and its subsequent challenge for diagnosis, therapy and vaccine design. EBOV-GP neutralizing activity varies considerably over time in convalescent Ebola Virus Disease patients. Titering of convalescent blood products would be desirable to standardize and evaluate their potential therapeutic value.
Collapse
Affiliation(s)
- Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| | - José R Arribas
- Infectious Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Sara Gómez
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| | - Víctor Jiménez-Yuste
- Department of Hematology, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Fernando de la Calle
- Tropical Diseases Unit, Department of Internal Medicine, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Aurora Viejo
- Department of Hematology, Instituto de Investigación Hospital La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain.
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital 12 de Octubre (imas12), CAA, Avenida de Córdoba sn, 28041 Madrid, Spain.
| |
Collapse
|
14
|
Cox F, Baart M, Huizingh J, Tolboom J, Dekking L, Goudsmit J, Saeland E, Radošević K. Protection against H5N1 Influenza Virus Induced by Matrix-M Adjuvanted Seasonal Virosomal Vaccine in Mice Requires Both Antibodies and T Cells. PLoS One 2015; 10:e0145243. [PMID: 26696245 PMCID: PMC4687931 DOI: 10.1371/journal.pone.0145243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
Background It remains important to develop the next generation of influenza vaccines that can provide protection against vaccine mismatched strains and to be prepared for potential pandemic outbreaks. To achieve this, the understanding of the immunological parameters that mediate such broad protection is crucial. Method In the current study we assessed the contribution of humoral and cellular immune responses to heterosubtypic protection against H5N1 induced by a Matrix-M (MM) adjuvanted seasonal influenza vaccine by serum transfer and T-cell depletion studies. Results We demonstrate that the heterosubtypic protection against H5N1 induced by MM adjuvanted vaccine is partially mediated by antibodies. The serum contained both H5N1 cross-reactive hemagglutinin (HA)- and neuraminidase (NA)-specific antibodies but with limited virus neutralizing and no hemagglutination inhibiting activity. The cross-reactive antibodies induced antibody-dependent cellular cytotoxicity (ADCC) in vitro, suggesting a role for the Fc part of the antibodies in protection against H5N1. Besides H5N1 specific antibody responses, cross-reactive HA- and NA-specific T-cell responses were induced by the adjuvanted vaccine. T-cell depletion experiments demonstrated that both CD4+ and CD8+ T cells contribute to protection. Conclusion Our study demonstrates that cross-protection against H5N1 induced by MM adjuvanted seasonal virosomal influenza vaccine requires both the humoral and cellular arm of the immune system.
Collapse
Affiliation(s)
- Freek Cox
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Matthijs Baart
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Jeroen Huizingh
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Jeroen Tolboom
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Liesbeth Dekking
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Jaap Goudsmit
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| | - Eirikur Saeland
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
- * E-mail:
| | - Katarina Radošević
- Janssen Prevention Center, Center of Excellence of Janssen Research & Development, Pharmaceutical companies of Johnson and Johnson, Leiden, The Netherlands
| |
Collapse
|
15
|
Affiliation(s)
- Nigel J Temperton
- Viral Pseudotype Unit (VPU), School of Pharmacy, University of Kent, Chatham Maritime, UK
| | - Mark Page
- Division of Virology, NIBSC, South Mimms, Hertfordshire, UK
| |
Collapse
|
16
|
Multiplexed detection of influenza A virus subtype H5 and H9 via quantum dot-based immunoassay. Biosens Bioelectron 2015; 77:464-70. [PMID: 26454828 PMCID: PMC7126372 DOI: 10.1016/j.bios.2015.10.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/16/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
A quantum dot-based lateral flow immunoassay system (QD-LFIAS) was developed to simultaneously detect both influenza A virus subtypes H5 and H9. Water-soluble carboxyl-functionalized quantum dots (QDs) were used as fluorescent tags. The QDs were conjugated to specific influenza A virus subtype H5 and H9 antibodies via an amide bond. When influenza A virus subtype H5 or H9 was added to the QD-LFIAS, the QD-labeled antibodies specifically bound to the H5 or H9 subtype viruses and were then captured by the coating antibodies at test line 1 or 2 to form a sandwich complex. This complex produced a bright fluorescent band in response to 365 nm ultraviolet excitation. The intensity of fluorescence can be detected using an inexpensive, low-maintenance instrument, and the virus concentration directly correlates with the fluorescence intensity. The detection limit of the QD-LFIAS for influenza A virus subtype H5 was 0.016 HAU, and the detection limit of the QD-LFIAS for influenza A virus subtype H9 was 0.25 HAU. The specificity and reproducibility were good. The simple analysis step and objective results that can be obtained within 15 min indicate that this QD-LFIAS is a highly efficient test that can be used to monitor and prevent both Influenza A virus subtypes H5 and H9.
Collapse
|
17
|
Gao Y, Pallister J, Lapierre F, Crameri G, Wang LF, Zhu Y. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin. J Virol Methods 2015; 222:170-7. [DOI: 10.1016/j.jviromet.2015.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 05/19/2015] [Accepted: 05/19/2015] [Indexed: 01/21/2023]
|
18
|
Impagliazzo A, Milder F, Kuipers H, Wagner MV, Zhu X, Hoffman RMB, van Meersbergen R, Huizingh J, Wanningen P, Verspuij J, de Man M, Ding Z, Apetri A, Kükrer B, Sneekes-Vriese E, Tomkiewicz D, Laursen NS, Lee PS, Zakrzewska A, Dekking L, Tolboom J, Tettero L, van Meerten S, Yu W, Koudstaal W, Goudsmit J, Ward AB, Meijberg W, Wilson IA, Radošević K. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015; 349:1301-6. [PMID: 26303961 DOI: 10.1126/science.aac7263] [Citation(s) in RCA: 475] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 12/14/2022]
Abstract
The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruses.
Collapse
Affiliation(s)
- Antonietta Impagliazzo
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands.
| | - Fin Milder
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Harmjan Kuipers
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Michelle V Wagner
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan M B Hoffman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ruud van Meersbergen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Jeroen Huizingh
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Patrick Wanningen
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Johan Verspuij
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Martijn de Man
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Zhaoqing Ding
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Adrian Apetri
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Başak Kükrer
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Eveline Sneekes-Vriese
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Danuta Tomkiewicz
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Nick S Laursen
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter S Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anna Zakrzewska
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Liesbeth Dekking
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Jeroen Tolboom
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Lisanne Tettero
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Sander van Meerten
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wouter Koudstaal
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Jaap Goudsmit
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wim Meijberg
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Katarina Radošević
- Crucell Vaccine Institute, Janssen Center of Excellence for Immunoprophylaxis, Archimedesweg 4-6, 2301 CA Leiden, Netherlands
| |
Collapse
|
19
|
Prevato M, Cozzi R, Pezzicoli A, Taddei AR, Ferlenghi I, Nandi A, Montomoli E, Settembre EC, Bertholet S, Bonci A, Legay F. An Innovative Pseudotypes-Based Enzyme-Linked Lectin Assay for the Measurement of Functional Anti-Neuraminidase Antibodies. PLoS One 2015; 10:e0135383. [PMID: 26267900 PMCID: PMC4534301 DOI: 10.1371/journal.pone.0135383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/22/2015] [Indexed: 01/16/2023] Open
Abstract
Antibodies (Ab) to neuraminidase (NA) play a role in limiting influenza infection and might help reduce the disease impact. The most widely used serological assay to measure functional anti-NA immune responses is the Enzyme-Linked Lectin Assay (ELLA) which relies on hemagglutinin (HA) mismatched virus reassortants, or detergent treated viruses as the NA source to overcome interference associated with steric hindrance of anti-HA Ab present in sera. The difficulty in producing and handling these reagents, which are not easily adapted for screening large numbers of samples, limits the routine analysis of functional anti-NA Ab in clinical trials. In this study, we produced influenza lentiviral pseudoparticles (PPs) containing only the NA antigen (NA-PPs) with a simple two-plasmid co-transfection system. NA-PPs were characterized and tested as an innovative source of NA in the NA inhibition (NI) assay. Both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) N1s within NA-PPs retained their sialidase activity and were specifically inhibited by homologous and N1 subtype-specific, heterologous sheep sera. Moreover, A/California/07/2009 N1-PPs were a better source of NA compared to whole live and detergent treated H1N1 viruses in ELLA, likely due to lack of interference by anti-HA Ab, and absence of possible structural modifications caused by treatment with detergent. This innovative assay is safer and applicable to all NAs. Taken together, these results highlight the potential of NA-PPs-based NI assays to be developed as sensitive, flexible, easy to handle and scalable serological tests for routine NA immune response analysis.
Collapse
Affiliation(s)
- Marua Prevato
- University of Siena, Department of Life Sciences, Via A. Moro, 53100, Siena, Italy
| | - Roberta Cozzi
- GSK, Research Center, Via Fiorentina 1, 53100, Siena, Italy
| | | | - Anna Rita Taddei
- Section of Electron Microscopy, Great Equipment Center, Tuscia University, 01100, Viterbo, Italy
| | | | - Avishek Nandi
- GSK, Vaccine Research, Holly Springs, North Carolina, 27540, United States of America
- GSK, Vaccine Research, Cambridge, Massachusetts, 02139, United States of America
| | - Emanuele Montomoli
- University of Siena, Department of Molecular and Developmental Medicine, Via A. Moro, 53100, Siena, Italy
| | - Ethan C. Settembre
- GSK, Vaccine Research, Cambridge, Massachusetts, 02139, United States of America
| | | | | | - Francois Legay
- GSK, Research Center, Via Fiorentina 1, 53100, Siena, Italy
- GSK, Peter Merian Strasse, 4056, Basel, Switzerland
| |
Collapse
|
20
|
Wheatley AK, Kent SJ. Prospects for antibody-based universal influenza vaccines in the context of widespread pre-existing immunity. Expert Rev Vaccines 2015; 14:1227-39. [DOI: 10.1586/14760584.2015.1068125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Adam Kenneth Wheatley
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
| | - Stephen John Kent
- 1 Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- 2 The University of Melbourne, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Parkville, Victoria, Australia
- 3 Melbourne Sexual Health Centre, Central Clinical School, Monash University, Carlton, Victoria, Australia
| |
Collapse
|
21
|
Bentley EM, Mather ST, Temperton NJ. The use of pseudotypes to study viruses, virus sero-epidemiology and vaccination. Vaccine 2015; 33:2955-62. [PMID: 25936665 PMCID: PMC7127415 DOI: 10.1016/j.vaccine.2015.04.071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/11/2015] [Accepted: 04/20/2015] [Indexed: 01/23/2023]
Abstract
The globalization of the world's economies, accompanied by increasing international travel, changing climates, altered human behaviour and demographics is leading to the emergence of different viral diseases, many of which are highly pathogenic and hence are considered of great public and animal health importance. To undertake basic research and therapeutic development, many of these viruses require handling by highly trained staff in BSL-3/4 facilities not readily available to the majority of the global R&D community. In order to circumvent the enhanced biosafety requirement, the development of non-pathogenic, replication-defective pseudotyped viruses is an effective and established solution to permit the study of many aspects of virus biology in a low containment biosafety level (BSL)-1/2 laboratory. Under the spectre of the unfolding Ebola crisis, this timely conference (the second to be organised by the Viral Pseudotype Unit, www.viralpseudotypeunit.info*) discusses the recent advances in pseudotype technology and how it is revolutionizing the study of important human and animal pathogens (human and avian influenza viruses, rabies/lyssaviruses, HIV, Marburg and Ebola viruses). Key topics addressed in this conference include the exploitation of pseudotypes for serology and serosurveillance, immunogenicity testing of current and next-generation vaccines and new pseudotype assay formats (multiplexing, kit development). The first pseudotype-focused Euroscicon conference organised by the Viral Pseudotype Unit was recently reviewed [1].
Collapse
Affiliation(s)
- Emma M Bentley
- VPU Fitzrovia, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom
| | - Stuart T Mather
- VPU Medway, Medway School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom
| | - Nigel J Temperton
- VPU Medway, Medway School of Pharmacy, University of Kent, Anson Building, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom.
| |
Collapse
|
22
|
Ferrara F, Molesti E, Temperton N. The application of pseudotypes to influenza pandemic preparedness. Future Virol 2015. [DOI: 10.2217/fvl.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT Human and animal populations are constantly exposed to multiple influenza strains due to zoonotic spillover and rapid viral evolution driven by intrinsic error-prone replication and immunological pressure. In this context, antibody responses directed against the hemagglutinin protein on the surface of the virus are of importance since they have been shown to correlate with protective immunity. Serological techniques, detecting these responses, play a critical role in influenza pandemic preparedness in particular with regard to the measurement of vaccine immunogenicity. As the recent human pandemics (H1N1) and avian influenza outbreaks (H5 and H7) have demonstrated, there is an urgent need to be better prepared to assess the contribution of the antibody response to protection against newly emerged viruses and to evaluate the extent of pre-existing heterosubtypic immunity in populations. This review compares pseudotype-based assays with wild-type and virus-like particle virus assays and discusses their place in the pandemic preparedness against the influenza virus. It additionally addresses the state-of-the-art developments of pseudotype-based assays (chimeric hemagglutinins, multiplex and post-attachment) including the development and future deployment of assay kits and approaches toward standardization to both preclinical and clinical endpoints. Progress toward the development of an influenza pseudotype library for the purposes of pandemic preparedness is also outlined and discussed.
Collapse
Affiliation(s)
- Francesca Ferrara
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
23
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
24
|
Aguilar-Madrid G, Castelán-Vega JA, Juárez-Pérez CA, Ribas-Aparicio RM, Estrada-García I, Baltierra-Jasso L, Cervantes-Servín N, Méndez-Ortega V, Haro-García LC, Sánchez-Román FR, Ortiz-Navarrete V, Fabila-Castillo LH, Magaña-Hernández A, Chávez-Negrete A, Salamanca-Gómez FA, Jiménez-Alberto A. Seroprevalence of Pandemic A(H1N1) pmd09 Virus Antibodies in Mexican Health Care Workers Before and After Vaccination. Arch Med Res 2015; 46:154-63. [PMID: 25796508 DOI: 10.1016/j.arcmed.2015.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS In April 2009, a new strain of influenza A(H1N1) was identified in Mexico and in the U.S. In June 2009, WHO declared this a pandemic. Health care workers constituted a risk group for their close contact with infected individuals. The aim was to estimate seropositivity for A(H1N1)pdm09 in health staff at the Instituto Mexicano del Seguro Social. METHODS A two-stage cross-sectional study, before and after vaccination in the same workers, was performed on a random sample of health-care workers. A socio-occupational questionnaire was applied and serum antibodies against influenza A(H1N1)pdm09 were determined through neutralization of retroviral pseudotypes; two logistic regression models for both were constructed. RESULTS The average (median/mean) age of 1378 participants from 13 work centers was 41.7 years and 68.7% (947) were women. Seroprevalence for the first stage was 26.5% (365) (7.4-43%) vs. 20.8% (11) in a control group from the blood bank; for the second stage, the vaccinated group was 33% (215) (18.2-47%) and 27% (196) (11.6-50%) for the unvaccinated group. In regression models, seropositivity was associated with occupational exposure to suspected influenza infected patients, being physicians, and being vaccinated. CONCLUSIONS Seropositivity against pandemic virus is similar to what was reported, both for vaccinated (2.8-40.9%) and unvaccinated (18.8-64.7%). Low seroprevalence in the vaccinated group indicates that between 67% and 73% were susceptible to infection. Given the relatively low vaccine-induced seropositivity, it is imperative to increase, hygiene and safety for health staff and at-risk populations, and strengthen epidemiological surveillance.
Collapse
Affiliation(s)
- Guadalupe Aguilar-Madrid
- Occupational Health Research Unit, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Juan Arturo Castelán-Vega
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Cuauhtémoc Arturo Juárez-Pérez
- Occupational Health Research Unit, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Rosa María Ribas-Aparicio
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Iris Estrada-García
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Laura Baltierra-Jasso
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Nicté Cervantes-Servín
- Immunology Research Unit, Hospital for Infectious Diseases, La Raza National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vanessa Méndez-Ortega
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Luis C Haro-García
- Academia de Salud Comunitaria, Promoción a la Salud. Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Francisco Raúl Sánchez-Román
- Department of Workplace Health, Disability Division, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis H Fabila-Castillo
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Anastasia Magaña-Hernández
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Adolfo Chávez-Negrete
- Education and Research, Specialties Hospital, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Fabio Abdel Salamanca-Gómez
- Coordinación de Investigación en Salud, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alicia Jiménez-Alberto
- Departments of Microbiology and Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| |
Collapse
|
25
|
Yang J, Li W, Long Y, Song S, Liu J, Zhang X, Wang X, Jiang S, Liao G. Reliability of pseudotyped influenza viral particles in neutralizing antibody detection. PLoS One 2014; 9:e113629. [PMID: 25436460 PMCID: PMC4249968 DOI: 10.1371/journal.pone.0113629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Current influenza control strategies require an active surveillance system. Pseudotyped viral particles (pp) together with the evaluation of pre-existing immunity in a population might satisfy this requirement. However, the reliability of using pp in neutralizing antibody (nAb) detection are undefined. Methodology/Principal Findings Pseudotyped particles of A(H1N1)pmd09 (A/California/7/2009) and HPAI H5N1 (A/Anhui/1/2005), as well as their reassortants, were generated. The reliability of using these pp in nAb detection were compared concurrently with the corresponding viruses by a hemagglutination inhibition test, as well as ELISA-, cytopathic effect-, and fluorescence-based microneutralization assays. In the qualitative detection on nAbs, the pp and their corresponding viruses were in complete agreement, with an R2 value equal to or near 1 in two different populations. In the quantitative detection on nAbs, although the geometric mean titers (95% confidence interval) differed between the pp and viruses, no significant difference was observed. Furthermore, humoral immunity against the reassortants was evaluated; our results indicated strong consistency between the nAbs against reassortant pp and those against naïve pp harboring the same hemagglutinin. Conclusion/Significance The pp displayed high reliability in influenza virus nAb detection. The use of reassortant pp is a safe and convenient strategy for characterizing emerging influenza viruses and surveying the disease burden.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Viral/immunology
- Cells, Cultured
- Dogs
- HEK293 Cells
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Middle Aged
- Reassortant Viruses/immunology
- Virion/immunology
- Young Adult
Collapse
Affiliation(s)
- Jinghui Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Weidong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| | - Yunfeng Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Shaohui Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoguang Wang
- Minhang District Center for Disease Control and Prevention, Shanghai, China
- * E-mail: (GL); (WL); (XW)
| | - Shude Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| |
Collapse
|
26
|
Trombetta CM, Perini D, Mather S, Temperton N, Montomoli E. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future. Vaccines (Basel) 2014; 2:707-34. [PMID: 26344888 PMCID: PMC4494249 DOI: 10.3390/vaccines2040707] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Serological techniques commonly used to quantify influenza-specific antibodies include the Haemagglutination Inhibition (HI), Single Radial Haemolysis (SRH) and Virus Neutralization (VN) assays. HI and SRH are established and reproducible techniques, whereas VN is more demanding. Every new influenza vaccine needs to fulfil the strict criteria issued by the European Medicines Agency (EMA) in order to be licensed. These criteria currently apply exclusively to SRH and HI assays and refer to two different target groups-healthy adults and the elderly, but other vaccine recipient age groups have not been considered (i.e., children). The purpose of this timely review is to highlight the current scenario on correlates of protection concerning influenza vaccines and underline the need to revise the criteria and assays currently in use. In addition to SRH and HI assays, the technical advantages provided by other techniques such as the VN assay, pseudotype-based neutralization assay, neuraminidase and cell-mediated immunity assays need to be considered and regulated via EMA criteria, considering the many significant advantages that they could offer for the development of effective vaccines.
Collapse
Affiliation(s)
- Claudia Maria Trombetta
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
| | - Daniele Perini
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| | - Stuart Mather
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK.
| | - Emanuele Montomoli
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy.
- VisMederi srl, Enterprise in Life Sciences, Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
27
|
Sawoo O, Dublineau A, Batéjat C, Zhou P, Manuguerra JC, Leclercq I. Cleavage of hemagglutinin-bearing lentiviral pseudotypes and their use in the study of influenza virus persistence. PLoS One 2014; 9:e106192. [PMID: 25166303 PMCID: PMC4148439 DOI: 10.1371/journal.pone.0106192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/28/2014] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of infectious respiratory human diseases and their transmission is dependent upon the environment. However, the role of environmental factors on IAV survival outside the host still raises many questions. In this study, we used lentiviral pseudotypes to study the influence of the hemagglutinin protein in IAV survival. High-titered and cleaved influenza-based lentiviral pseudoparticles, through the use of a combination of two proteases (HAT and TMPRSS2) were produced. Pseudoparticles bearing hemagglutinin proteins derived from different H1N1, H3N2 and H5N1 IAV strains were subjected to various environmental parameters over time and tested for viability through single-cycle infectivity assays. We showed that pseudotypes with different HAs have different persistence profiles in water as previously shown with IAVs. Our results also showed that pseudotypes derived from H1N1 pandemic virus survived longer than those derived from seasonal H1N1 virus from 1999, at high temperature and salinity, as previously shown with their viral counterparts. Similarly, increasing temperature and salinity had a negative effect on the survival of the H3N2 and H5N1 pseudotypes. These results showed that pseudotypes with the same lentiviral core, but which differ in their surface glycoproteins, survived differently outside the host, suggesting a role for the HA in virus stability.
Collapse
Affiliation(s)
- Olivier Sawoo
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
- University of Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), Paris, France
| | - Amélie Dublineau
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
| | - Christophe Batéjat
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
| | - Paul Zhou
- Institut Pasteur of Shanghai, Unit of Antiviral Immunity and Genetic Therapy, Chinese Academy of Sciences, Shanghai, China
| | - Jean-Claude Manuguerra
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
| | - India Leclercq
- Institut Pasteur, Environment and Infectious Risks Research and Expertise Unit, Laboratory for Urgent Response to Biological Threats, Paris, France
- University of Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), Paris, France
- * E-mail:
| |
Collapse
|
28
|
Multiplex evaluation of influenza neutralizing antibodies with potential applicability to in-field serological studies. J Immunol Res 2014; 2014:457932. [PMID: 25101305 PMCID: PMC4101955 DOI: 10.1155/2014/457932] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/22/2014] [Indexed: 12/26/2022] Open
Abstract
The increased number of outbreaks of H5 and H7 LPAI and HPAI viruses in poultry has major public and animal health implications. The continuous rapid evolution of these subtypes and the emergence of new variants influence the ability to undertake effective surveillance. Retroviral pseudotypes bearing influenza haemagglutinin (HA) and neuraminidase (NA) envelope glycoproteins represent a flexible platform for sensitive, readily standardized influenza serological assays. We describe a multiplex assay for the study of neutralizing antibodies that are directed against both influenza H5 and H7 HA. This assay permits the measurement of neutralizing antibody responses against two antigenically distinct HAs in the same serum/plasma sample thus increasing the amount and quality of serological data that can be acquired from valuable sera. Sera obtained from chickens vaccinated with a monovalent H5N2 vaccine, chickens vaccinated with a bivalent H7N1/H5N9 vaccine, or turkeys naturally infected with an H7N3 virus were evaluated in this assay and the results correlated strongly with data obtained by HI assay. We show that pseudotypes are highly stable under basic cold-chain storage conditions and following multiple rounds of freeze-thaw. We propose that this robust assay may have practical utility for in-field serosurveillance and vaccine studies in resource-limited regions worldwide.
Collapse
|
29
|
Discordant correlation between serological assays observed when measuring heterosubtypic responses against avian influenza H5 and H7 viruses in unexposed individuals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:231365. [PMID: 25013769 PMCID: PMC4071775 DOI: 10.1155/2014/231365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 11/21/2022]
Abstract
The human population is constantly exposed to multiple influenza A subtypes due to zoonotic spillover and rapid viral evolution driven by intrinsic error-prone replication and immunological pressure. In this context, antibody responses directed against the HA protein are of importance since they have been shown to correlate with protective immunity. Serological techniques, detecting these responses, play a critical role for influenza surveillance, vaccine development, and assessment. As the recent human pandemics and avian influenza outbreaks have demonstrated, there is an urgent need to be better prepared to assess the contribution of the antibody response to protection against newly emerged viruses and to evaluate the extent of preexisting heterosubtypic immunity in populations. In this study, 68 serum samples collected from the Italian population between 1992 and 2007 were found to be positive for antibodies against H5N1 as determined by single radial hemolysis (SRH), but most were negative when evaluated using haemagglutination inhibition (HI) and microneutralisation (MN) assays. As a result of these discordant serological findings, the increased sensitivity of lentiviral pseudotypes was exploited in pseudotype-based neutralisation (pp-NT) assays and the results obtained provide further insight into the complex nature of humoral immunity against influenza A viruses.
Collapse
|
30
|
Zimmer G, Locher S, Berger Rentsch M, Halbherr SJ. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses. J Gen Virol 2014; 95:1634-1639. [PMID: 24814925 DOI: 10.1099/vir.0.065201-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.
Collapse
Affiliation(s)
- Gert Zimmer
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Samira Locher
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Marianne Berger Rentsch
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| | - Stefan J Halbherr
- Institut für Virologie und Immunologie (IVI), Sensemattstrasse 293, 3147 Mittelhäusern, Switzerland
| |
Collapse
|
31
|
Wallerström S, Lagerqvist N, Temperton NJ, Cassmer M, Moreno A, Karlsson M, Leijon M, Lundkvist A, Falk KI. Detection of antibodies against H5 and H7 strains in birds: evaluation of influenza pseudovirus particle neutralization tests. Infect Ecol Epidemiol 2014; 4:23011. [PMID: 24455106 PMCID: PMC3895261 DOI: 10.3402/iee.v4.23011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 01/16/2023] Open
Abstract
Introduction Avian influenza viruses circulate in bird populations, and it is important to maintain and uphold our knowledge of the viral strains that are currently of interest in this context. Here, we describe the use of hemagglutinin-pseudotype retroviruses based on highly pathogenic influenza viruses for the screening of avian sera for influenza A antibodies. Our aim was also to determine whether the pseudovirus neutralization tests that we assessed were sensitive and simple to use compared to the traditional methods, including hemagglutination inhibition assays and microneutralization tests. Material and methods H5 and H7 pseudovirus neutralization tests were evaluated by using serum from infected rabbits. Subsequently, the assays were further investigated using a panel of serum samples from avian species. The panel contained samples that were seropositive for five different hemagglutinin subtypes as well as influenza A seronegative samples. Results and discussion The results suggest that the pseudovirus neutralization test is an alternative to hemagglutination inhibition assays, as we observed comparable titers to those of both standard microneutralizations assays as well as hemagglutinin inhibition assays. When evaluated by a panel of avian sera, the method also showed its capability to recognize antibodies directed toward low-pathogenic H5 and H7. Hence, we conclude that it is possible to use pseudoviruses based on highly pathogenic avian influenza viruses to screen avian sera for antibodies directed against influenza A subtypes H5 and H7.
Collapse
Affiliation(s)
- Sofie Wallerström
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Nina Lagerqvist
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | | | - Michaela Cassmer
- Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Ana Moreno
- Reparto di Virologia, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Malin Karlsson
- Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Mikael Leijon
- National Veterinary Institute, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ake Lundkvist
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden ; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin I Falk
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| |
Collapse
|
32
|
Del Giudice G, Rappuoli R. Inactivated and adjuvanted influenza vaccines. Curr Top Microbiol Immunol 2014; 386:151-80. [PMID: 25038938 DOI: 10.1007/82_2014_406] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inactivated influenza vaccines are produced every year to fight against the seasonal epidemics of influenza. Despite the nonoptimal coverage, even in subjects at risk like the elderly, pregnant women, etc., these vaccines significantly reduce the burden of mortality and morbidity linked to the influenza infection. Importantly, these vaccines have also contributed to reduce the impact of the last pandemics. Nevertheless, the performance of these vaccines can be improved mainly in those age groups, like children and the elderly, in which their efficacy is suboptimal. The use of adjuvants has proven effective to this scope. Oil-in-water adjuvants like MF59 and AS03 have been licensed and widely used, and shown efficacious in preventing influenza infection in the last pandemic. MF59-adjuvanted inactivated vaccine was more efficacious than non-adjuvanted vaccine in preventing influenza infection in young children and in reducing hospitalization due to the influenza infection in the elderly. Other adjuvants are now at different stages of development and some are being tested in clinical trials. The perspective remains to improve the way inactivated vaccines are prepared and to accelerate their availability, mainly in the case of influenza pandemics, and to enhance their efficacy/effectiveness for a more successful impact at the public health level.
Collapse
Affiliation(s)
- Giuseppe Del Giudice
- Research and Development, Novartis Vaccines, Via Fiorentina 1, 53100, Siena, Italy,
| | | |
Collapse
|
33
|
Dormitzer PR. Rapid Production of Synthetic Influenza Vaccines. Curr Top Microbiol Immunol 2014; 386:237-73. [DOI: 10.1007/82_2014_399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
34
|
Comparative serological assays for the study of h5 and h7 avian influenza viruses. INFLUENZA RESEARCH AND TREATMENT 2013; 2013:286158. [PMID: 24163763 PMCID: PMC3791816 DOI: 10.1155/2013/286158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/16/2013] [Indexed: 01/20/2023]
Abstract
The nature of influenza virus to randomly mutate and evolve into new types is an important challenge in the control of influenza infection. It is necessary to monitor virus evolution for a better understanding of the pandemic risk posed by certain variants as evidenced by the highly pathogenic avian influenza (HPAI) viruses. This has been clearly recognized in Egypt following the notification of the first HPAI H5N1 outbreak. The continuous circulation of the virus and the mass vaccination programme undertaken in poultry have resulted in a progressive genetic evolution and a significant antigenic drift near the major antigenic sites. In order to establish if vaccination is sufficient to provide significant intra- and interclade cross-protection, lentiviral pseudotypes derived from H5N1 HPAI viruses (A/Vietnam/1194/04, A/chicken/Egypt-1709-01/2007) and an antigenic drift variant (A/chicken/Egypt-1709-06-2008) were constructed and used in pseudotype-based neutralization assays (pp-NT). pp-NT data obtained was confirmed and correlated with HI and MN assays. A panel of pseudotypes belonging to influenza Groups 1 and 2, with a combination of reporter systems, was also employed for testing avian sera in order to support further application of pp-NT as an alternative valid assay that can improve avian vaccination efficacy testing, vaccine virus selection, and the reliability of reference sera.
Collapse
|
35
|
Shelton H, Roberts KL, Molesti E, Temperton N, Barclay WS. Mutations in haemagglutinin that affect receptor binding and pH stability increase replication of a PR8 influenza virus with H5 HA in the upper respiratory tract of ferrets and may contribute to transmissibility. J Gen Virol 2013; 94:1220-1229. [PMID: 23486663 PMCID: PMC3709624 DOI: 10.1099/vir.0.050526-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The H5N1 influenza A viruses have circulated widely in the avian population for 10 years with only sporadic infection of humans observed and no sustained human to human transmission. Vaccination against potential pandemic strains is one strategy in planning for future influenza pandemics; however, the success of live attenuated vaccines for H5N1 has been limited, due to poor replication in the human upper respiratory tract (URT). Mutations that increase the ability of H5N1 viruses to replicate in the URT will aid immunogenicity of these vaccines and provide information about humanizing adaptations in H5N1 strains that may signal transmissibility. As well as mediating receptor interactions, the haemagglutinin (HA) protein of influenza facilitates fusion of the viral membrane and genome entry into the host cell; this process is pH dependent. We have shown in this study that the pH at which a panel of avian influenza HA proteins, including H5, mediate fusion is higher than that for human influenza HA proteins, and that mutations in the H5 HA can reduce the pH of fusion. Coupled with receptor switching mutations, increasing the pH stability of the H5 HA resulted in increased viral shedding of H5N1 from the nasal cavity of ferrets and contact transmission to a co-housed animal. Ferret serum antibodies induced by infection with any of the mutated H5 HA viruses neutralized HA pseudotyped lentiviruses bearing homologous or heterologous H5 HAs, suggesting that this strategy to increase nasal replication of a vaccine virus would not compromise vaccine efficacy.
Collapse
Affiliation(s)
- Holly Shelton
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| | - Kim L Roberts
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| | - Eleonora Molesti
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Anson Building, Chatham Maritime ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Anson Building, Chatham Maritime ME4 4TB, UK
| | - Wendy S Barclay
- Division of Infectious Diseases, Imperial College London, St Mary's Campus, London, UK
| |
Collapse
|
36
|
Development of a neutralization assay for influenza virus using an endpoint assessment based on quantitative reverse-transcription PCR. PLoS One 2013; 8:e56023. [PMID: 23437084 PMCID: PMC3577804 DOI: 10.1371/journal.pone.0056023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022] Open
Abstract
A microneutralization assay using an ELISA-based endpoint assessment (ELISA-MN) is widely used to measure the serological response to influenza virus infection and vaccination. We have developed an alternative microneutralization assay for influenza virus using a quantitative reverse transcription PCR-based endpoint assessment (qPCR-MN) in order to improve upon technical limitations associated with ELISA-MN. For qPCR-MN, infected MDCK-London cells in 96-well cell-culture plates are processed with minimal steps such that resulting samples are amenable to high-throughput analysis by downstream one-step quantitative reverse transcription PCR (qRT-PCR; SYBR Green chemistry with primers targeting a conserved region of the M1 gene of influenza A viruses). The growth curves of three recent vaccine strains demonstrated that the qRT-PCR signal detected at 6 hours post-infection reflected an amplification of at least 100-fold over input. Using ferret antisera, we have established the feasibility of measuring virus neutralization at 6 hours post-infection, a duration likely confined to a single virus-replication cycle. The neutralization titer for qPCR-MN was defined as the highest reciprocal serum dilution necessary to achieve a 90% inhibition of the qRT-PCR signal; this endpoint was found to be in agreement with ELISA-MN using the same critical reagents in each assay. qPCR-MN was robust with respect to assay duration (6 hours vs. 12 hours). In addition, qPCR-MN appeared to be compliant with the Percentage Law (i.e., virus neutralization results appear to be consistent over an input virus dose ranging from 500 to 12,000 TCID50). Compared with ELISA-MN, qPCR-MN might have inherent properties conducive to reducing intra- and inter-laboratory variability while affording suitability for automation and high-throughput uses. Finally, our qRT-PCR-based approach may be broadly applicable to the development of neutralization assays for a wide variety of viruses.
Collapse
|
37
|
Buricchi F, Bardelli M, Malzone C, Capecchi B, Nicolay U, Fragapane E, Castellino F, Del Giudice G, Galli G, Finco O. Impact of preexisting memory to seasonal A/H1N1 influenza virus on the immune response following vaccination against avian A/H5N1 virus. Eur J Immunol 2013; 43:641-8. [DOI: 10.1002/eji.201242563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/12/2012] [Accepted: 12/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
| | - Monia Bardelli
- Research, Novartis Vaccines and Diagnostics; Siena; Italy
| | | | | | - Uwe Nicolay
- Biostatistics, Novartis Vaccines and Diagnostics; Marburg; Germany
| | - Elena Fragapane
- Clinical Development; Novartis Vaccines and Diagnostics; Siena; Italy
| | | | | | - Grazia Galli
- Research, Novartis Vaccines and Diagnostics; Siena; Italy
| | - Oretta Finco
- Research, Novartis Vaccines and Diagnostics; Siena; Italy
| |
Collapse
|
38
|
Del Giudice G, Fragapane E, Della Cioppa G, Rappuoli R. Aflunov®: a vaccine tailored for pre-pandemic and pandemic approaches against influenza. Expert Opin Biol Ther 2012. [PMID: 23189937 DOI: 10.1517/14712598.2013.748030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Aflunov is an egg-derived, subunit vaccine from Novartis Vaccines and Diagnostics containing 7.5 μg of hemagglutinin (HA) from the avian A/H5N1 virus and the oil-in-water adjuvant MF59. AREAS COVERED Aflunov behaves as a pre-pandemic vaccine. It has a good safety profile at all ages. At all ages, it induces high and persisting antibody titers and activation of HA-specific Th0/Th1 CD4(+) T cells, the levels of which correlate with the neutralizing antibody titers after a booster dose 6 months later. Aflunov triggers strong immunological memory, which persists for at least 6 - 8 years and can be rapidly boosted with a heterovariant vaccine strain, inducing very high neutralizing antibody titers within one week. These antibodies broadly and strongly cross-react with drifted H5N1 virus strains from various clades. Finally, the MF59 changes the pattern of HA recognition by antibodies that react with the HA1 more than with the HA2 region. EXPERT OPINION The available data show that Aflunov is a pre-pandemic vaccine suitable not only for stockpiling in case of a pandemic, but also before a pandemic is declared, with the ultimate objective of preventing the onset of an influenza pandemic.
Collapse
|
39
|
Sinisi A, Popp MWL, Antos JM, Pansegrau W, Savino S, Nissum M, Rappuoli R, Ploegh HL, Buti L. Development of an influenza virus protein array using Sortagging technology. Bioconjug Chem 2012; 23:1119-26. [PMID: 22594688 DOI: 10.1021/bc200577u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein array technology is an emerging tool that enables high-throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work, we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as "Sortagging". LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a preactivated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies, and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high-throughput screening.
Collapse
Affiliation(s)
- Antonia Sinisi
- Whitehead Institute for Biomedical Research , 9 Cambridge Center, Cambridge, Massachusetts 02142, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Katz JM, Hancock K, Xu X. Serologic assays for influenza surveillance, diagnosis and vaccine evaluation. Expert Rev Anti Infect Ther 2011; 9:669-83. [PMID: 21692672 DOI: 10.1586/eri.11.51] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serological techniques play a critical role in various aspects of influenza surveillance, vaccine development and evaluation, and sometimes in diagnosis, particularly for novel influenza virus infections of humans. Because individuals are repeatedly exposed to antigenically and genetically diverse influenza viruses over a lifetime, the gold standard for detection of a recent influenza virus infection or response to current vaccination is the demonstration of a seroconversion, a fourfold or greater rise in antibody titer relative to a baseline sample, to a circulating influenza strain or vaccine component. The hemagglutination-inhibition assay remains the most widely used assay to detect strain-specific serum antibodies to influenza. The hemagglutination-inhibition assay is also used to monitor antigenic changes among influenza viruses which are constantly evolving; such antigenic data is essential for consideration of changes in influenza vaccine composition. The use of the hemagglutinin-specific microneutralization assay has increased, in part, owing to its sensitivity for detection of human antibodies to novel influenza viruses of animal origin. Neutralization assays using replication-incompetent pseudotyped particles may be advantageous in some laboratory settings for detection of antibodies to influenza viruses with heightened biocontainment requirements. The use of standardized protocols and antibody standards are important steps to improve reproducibility and interlaboratory comparability of results of serologic assays for influenza viruses.
Collapse
Affiliation(s)
- Jacqueline M Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
41
|
O'Hagan DT, Rappuoli R, De Gregorio E, Tsai T, Del Giudice G. MF59 adjuvant: the best insurance against influenza strain diversity. Expert Rev Vaccines 2011; 10:447-62. [PMID: 21506643 DOI: 10.1586/erv.11.23] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
MF59 is a well-established, safe and potent vaccine adjuvant that has been licensed for more than 13 years for use in an influenza vaccine focused on elderly subjects (Fluad®), Novartis, Cambridge, MA, USA). Recently, MF59 was shown to be safe in a seasonal influenza vaccine for young children and was able to increase vaccine efficacy from 43 to 89%. A key and consistent feature of MF59 is the ability of the emulsion to induce fast priming of influenza antigen-specific CD4(+) T-cell responses, to induce strong and long-lasting memory T- and B-cell responses and to broaden the immune response beyond the influenza strains actually included in the vaccine. The enhanced breadth of response is valuable in the seasonal setting, but is particularly valuable in a (pre-) pandemic setting, when it is difficult to predict which strain will emerge to cause the pandemic. We have shown that the ability of MF59 to increase the breadth of immune response against influenza vaccines is mainly due to the spreading of the repertoire of the B-cell epitopes recognized on the hemagglutinin and neuraminidase of the influenza virus.
Collapse
|
42
|
Dormitzer PR, Galli G, Castellino F, Golding H, Khurana S, Del Giudice G, Rappuoli R. Influenza vaccine immunology. Immunol Rev 2011; 239:167-77. [PMID: 21198671 DOI: 10.1111/j.1600-065x.2010.00974.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studying the spread of influenza in human populations and protection by influenza vaccines provides important insights into immunity against influenza. The 2009 H1N1 pandemic has taught the most recent lessons. Neutralizing and receptor-blocking antibodies against hemagglutinin are the primary means of protection from the spread of pandemic and seasonal strains. Anti-neuraminidase antibodies seem to play a secondary role. More broadly cross-reactive forms of immunity may lessen disease severity but are insufficient to prevent epidemic spread. Priming by prior exposure to related influenza strains through infection or immunization permits rapid, potent antibody responses to immunization. Priming is of greater importance to the design of immunization strategies than the immunologically fascinating phenomenon of dominant recall responses to previously encountered strains (original antigenic sin). Comparisons between non-adjuvanted inactivated vaccines and live attenuated vaccines demonstrate that both can protect, with some advantage of live attenuated vaccines in children and some advantage of inactivated vaccines in those with multiple prior exposures to influenza antigens. The addition of oil-in-water emulsion adjuvants to inactivated vaccines provides enhanced functional antibody titers, greater breadth of antibody cross-reactivity, and antigen dose sparing. The MF59 adjuvant broadens the distribution of B-cell epitopes recognized on HA and NA following immunization.
Collapse
|
43
|
Wang W, Anderson CM, De Feo CJ, Zhuang M, Yang H, Vassell R, Xie H, Ye Z, Scott D, Weiss CD. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2. PLoS Pathog 2011; 7:e1002081. [PMID: 21695241 PMCID: PMC3111540 DOI: 10.1371/journal.ppat.1002081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022] Open
Abstract
Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure. Influenza A viruses mutate to escape neutralization by antibodies. These mutations predominantly occur in the globular head of the hemagglutinin protein, while the stalk is more conserved. Pandemic 2009 H1N1 influenza virus differs from seasonal H1N1 strains that circulated in the past 50 years and resembles a strain that did not circulate but was used in the 1976 swine influenza vaccine. We investigated whether persons immunized with either the 1976 swine influenza or recent seasonal influenza vaccines, or both, have antibodies that cross-neutralize pandemic 2009 H1N1. Sera from 1976 swine influenza vaccine trials cross-neutralized pandemic 2009 H1N1 and to a lesser extent the A/New Caledonia/20/1999 H1N1 strain that was used in vaccines during the 2000/01–2006/07 influenza seasons. Sera from persons who received several seasonal influenza vaccines containing A/New Caledonia/20/1999 H1N1 cross-neutralized pandemic 2009 H1N1, regardless of whether they received the 1976 swine influenza vaccine. We found that cross-neutralization between 2009 H1N1 and A/New Caledonia/20/1999 frequently mapped to the hemagglutinin stalk. A mutation in the stalk of strains circulating during the 2007/08–2008/09 seasons abrogates this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in the hemagglutinin stalk and suggest that the stalk may be evolving under direct or indirect immune pressure.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christine M. Anderson
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christopher J. De Feo
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Min Zhuang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Russell Vassell
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Dorothy Scott
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Carol D. Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
44
|
Khurana S, Verma N, Yewdell JW, Hilbert AK, Castellino F, Lattanzi M, Del Giudice G, Rappuoli R, Golding H. MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci Transl Med 2011; 3:85ra48. [PMID: 21632986 PMCID: PMC3501657 DOI: 10.1126/scitranslmed.3002336] [Citation(s) in RCA: 284] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oil-in-water adjuvants have been shown to improve immune responses against pandemic influenza vaccines as well as reduce the effective vaccine dose, increasing the number of doses available to meet global vaccine demand. Here, we use genome fragment phage display libraries and surface plasmon resonance to elucidate the effects of MF59 on the quantity, diversity, specificity, and affinity maturation of human antibody responses to the swine-origin H1N1 vaccine in different age groups. In adults and children, MF59 selectively enhanced antibody responses to the hemagglutinin 1 (HA1) globular head relative to the more conserved HA2 domain in terms of increased antibody titers as well as a more diverse antibody epitope repertoire. Antibody affinity, as inferred by greatly diminished (≥10-fold) off-rate constants, was significantly increased in toddlers and children who received the MF59-adjuvanted vaccine. Moreover, MF59 also improved antibody affinity maturation after each sequential vaccination against avian H5N1 in adults. For both pandemic influenza vaccines, there was a close correlation between serum antibody affinity and virus-neutralizing capacity. Thus, MF59 quantitatively and qualitatively enhances functional antibody responses to HA-based vaccines by improving both epitope breadth and binding affinity, demonstrating the added value of such adjuvants for influenza vaccines.
Collapse
Affiliation(s)
- Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Nitin Verma
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Flora Castellino
- Novartis Vaccines and Diagnostics Research Center, Siena 53100, Italy
| | - Maria Lattanzi
- Novartis Vaccines and Diagnostics Research Center, Siena 53100, Italy
| | | | - Rino Rappuoli
- Novartis Vaccines and Diagnostics Research Center, Siena 53100, Italy
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|
46
|
Wang W, Castelán-Vega JA, Jiménez-Alberto A, Vassell R, Ye Z, Weiss CD. A mutation in the receptor binding site enhances infectivity of 2009 H1N1 influenza hemagglutinin pseudotypes without changing antigenicity. Virology 2010; 407:374-80. [DOI: 10.1016/j.virol.2010.08.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 07/20/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
|
47
|
Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology 2010; 408:183-9. [PMID: 20951400 PMCID: PMC7172354 DOI: 10.1016/j.virol.2010.09.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/16/2010] [Indexed: 12/25/2022]
Abstract
It is likely that phylogroup 2 lyssaviruses circulate within bat reservoirs. We adapted a pseudotype (pt) neutralisation assay (PNA) to a multiplex format enabling serosurveillance for Lagos bat virus (LBV), Mokola virus (MOKV) and West Caucasian bat virus (WCBV) in a potential reservoir, the African straw-coloured fruit bat, Eidolon helvum. Highly correlated titres were observed between single and multiplex PNAs using ptLBV and ptMOKV (r=0.97, p<0.0001), validating its use for bat serosurveillance. Of the bat serum samples screened 56% neutralised ptLBV, 27% ptMOKV and 1% ptWCBV. Mean VNAb titres were 1:266, 1:35 and 1:7 against ptLBV, ptMOKV and ptWCBV respectively. The high seroprevalence estimates suggest that the infection rate of LBV in E. helvum remains high enough to persist in this species. This supports the hypothesis that LBV is endemic in Ghanaian E. helvum and we speculate that LBV may have co-evolved with African megachiroptera.
Collapse
|
48
|
Development of a safe and convenient neutralization assay for rapid screening of influenza HA-specific neutralizing monoclonal antibodies. Biochem Biophys Res Commun 2010; 397:580-5. [PMID: 20617558 PMCID: PMC7092825 DOI: 10.1016/j.bbrc.2010.05.161] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The worldwide outbreak of the swine-origin 2009 H1N1 influenza A virus (IAV) and an increasing number of influenza cases caused by a highly pathogenic avian influenza (HPAI) H5N1 have accelerated the need to develop vaccines and antiviral agents against IAVs. Among various antivirals, neutralizing monoclonal antibodies (mAbs) are considered important passive therapeutics having an immediate effect against viral pathogens. Here we report a pseudovirus neutralization assay for rapid screening of neutralizing mAbs targeting hemagglutinin (HA) of H5N1 and H1N1 IAV. In this study, we generated six pseudoviruses with an HIV-1 backbone, respectively, expressing HA of four clades of H5N1 IAV and the 2009 epidemic H1N1 IAV. The resulting pseudoviruses were able to infect a variety of human and non-human cells, with 293T cells from human kidney as the most susceptible target cells. Using the established pseudovirus neutralization assay, we showed that three of ten selected mAbs specific to HA could potently neutralize infection of a pseudovirus bearing HA from the homologous IAV A/VietNam/1194/2004(H5N1) strain. This was highly consistent with the result of a microneutralization assay testing the same strain of a live IAV. Since the pseudovirus neutralization assay does not involve an infectious virus and can be performed without the requirement of a biosafety-3 laboratory, it may be applied for safe and rapid screening of neutralizing mAbs and antiviral agents targeting HA of IAVs.
Collapse
|
49
|
|
50
|
Corti D, Suguitan AL, Pinna D, Silacci C, Fernandez-Rodriguez BM, Vanzetta F, Santos C, Luke CJ, Torres-Velez FJ, Temperton NJ, Weiss RA, Sallusto F, Subbarao K, Lanzavecchia A. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest 2010; 120:1663-73. [PMID: 20389023 PMCID: PMC2860935 DOI: 10.1172/jci41902] [Citation(s) in RCA: 376] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/17/2010] [Indexed: 11/17/2022] Open
Abstract
The target of neutralizing antibodies that protect against influenza virus infection is the viral protein HA. Genetic and antigenic variation in HA has been used to classify influenza viruses into subtypes (H1-H16). The neutralizing antibody response to influenza virus is thought to be specific for a few antigenically related isolates within a given subtype. However, while heterosubtypic antibodies capable of neutralizing multiple influenza virus subtypes have been recently isolated from phage display libraries, it is not known whether such antibodies are produced in the course of an immune response to influenza virus infection or vaccine. Here we report that, following vaccination with seasonal influenza vaccine containing H1 and H3 influenza virus subtypes, some individuals produce antibodies that cross-react with H5 HA. By immortalizing IgG-expressing B cells from 4 individuals, we isolated 20 heterosubtypic mAbs that bound and neutralized viruses belonging to several HA subtypes (H1, H2, H5, H6, and H9), including the pandemic A/California/07/09 H1N1 isolate. The mAbs used different VH genes and carried a high frequency of somatic mutations. With the exception of a mAb that bound to the HA globular head, all heterosubtypic mAbs bound to acid-sensitive epitopes in the HA stem region. Four mAbs were evaluated in vivo and protected mice from challenge with influenza viruses representative of different subtypes. These findings reveal that seasonal influenza vaccination can induce polyclonal heterosubtypic neutralizing antibodies that cross-react with the swine-origin pandemic H1N1 influenza virus and with the highly pathogenic H5N1 virus.
Collapse
Affiliation(s)
- Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Amorsolo L. Suguitan
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Debora Pinna
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Blanca M. Fernandez-Rodriguez
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabrizia Vanzetta
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Celia Santos
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Catherine J. Luke
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fernando J. Torres-Velez
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Nigel J. Temperton
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Robin A. Weiss
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Federica Sallusto
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kanta Subbarao
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
Laboratory of Infectious Diseases and
Comparative Medicine Branch, NIAID, NIH, Rockville, Maryland, USA.
MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|