1
|
Hao D, McBride MA, Bohannon JK, Hernandez A, Klein B, Williams DL, Sherwood ER. Metabolic adaptations driving innate immune memory: mechanisms and therapeutic implications. J Leukoc Biol 2025; 117:qiaf037. [PMID: 40138361 DOI: 10.1093/jleuko/qiaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
Immune memory is a hallmark of the adaptive immune system. However, recent research reveals that innate immune cells also retain memory of prior pathogen exposure that prompts enhanced responses to subsequent infections. This phenomenon is termed "innate immune memory" or "trained immunity." Notably, remodeling of cellular metabolism, which closely links to epigenetic reprograming, is a prominent feature of innate immune memory. Adaptations in glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, glutaminolysis, and lipid synthesis pathways are critical for establishing innate immune memory. This review provides an overview of the current understanding of how metabolic adaptations drive innate immune memory. This understanding is fundamental to understanding innate immune system functions and advancing therapies against infectious diseases.
Collapse
Affiliation(s)
- Dan Hao
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Margaret A McBride
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Benjamin Klein
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - David L Williams
- Department of Surgery, East Tennessee State University, Quillen College of Medicine, P.O. Box 70575, Johnson City, TN 37614, United States
- Center for Inflammation, Infectious Disease and Immunology, Quillen College of Medicine, 1276 Gilbreath Drive, Johnson City, TN 37614, United States
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Department of Surgery, East Tennessee State University, Quillen College of Medicine, P.O. Box 70575, Johnson City, TN 37614, United States
- Center for Inflammation, Infectious Disease and Immunology, Quillen College of Medicine, 1276 Gilbreath Drive, Johnson City, TN 37614, United States
| |
Collapse
|
2
|
Takahashi H, Kojima D, Watanabe M. Therapeutic potential of trained immunity for malignant disease. Immunol Med 2024:1-12. [PMID: 39639550 DOI: 10.1080/25785826.2024.2438426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Trained immunity (TI) is functional memory displayed by innate immune cells (IICs). TI facilitates rapid, non-specific responses to pathogens upon secondary challenge. It is driven by immunological signaling and metabolic rewriting via epigenetic alteration, triggered by recognition of certain stimuli. Recently, immune checkpoint inhibitors have come into common use in clinical oncology settings, and genetically engineered cytotoxic T cells comprise a potent cancer treatment strategy. However, the contributions of TI in the tumor microenvironment (TME) are only beginning to be uncovered. Accumulating evidence that various microorganisms and vaccines convey tumoricidal ability suggest that TI may become a useful anti-cancer tool. The expected roles of TI in tumor therapy are the 1) promotion of proinflammatory cytokine section, 2) enhancement of phagocytosis, 3) quick expansion and recruitment of cancer-specific cytotoxic T cells to the TME through neoantigen presentation, 4) reversal of immunosuppression in the TME, and 5) removal of pathogens associated with carcinogenesis or tumor development. Medium- to long-term TI durability may reduce the risk of tumor development. Recent findings on TI usher in new aspirations for cancer treatment.
Collapse
Affiliation(s)
- Hiroyuki Takahashi
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Daibo Kojima
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| | - Masato Watanabe
- Department of Surgery, Fukuoka University Chikushi Hospital, Chikushino, Fukuoka, Japan
| |
Collapse
|
3
|
Chen M, Kang X, Zhang Y, Liu Y. Trained immunity: A link between risk factors and cardiovascular disease. Br J Pharmacol 2024. [PMID: 38824960 DOI: 10.1111/bph.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 06/04/2024] Open
Abstract
Cardiovascular diseases are significant contributors to human mortality, closely associated with inflammation. With the changing living conditions and the extension of human lifespan, greater attention has been directed towards understanding the impact of early, long-term events on the development of cardiovascular events. Lifestyle factors such as stress, unhealthy diet and physical inactivity can increase the risk of cardiovascular diseases. Interestingly, even if the risk factors are addressed later, their influence may persist. Recently, the concept of trained innate immunity (TRIM), defined as sustained alterations in the function of innate immunocyte that promote a more robust response to downstream stimuli, has been proposed to be involved in cardiovascular diseases. It is hypothesized that TRIM may serve as a mediator bridging the impacts of aforementioned risk factors. This review aims to elucidate the role of TRIM in cardiovascular diseases and highlight its significance in uncovering new mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Mingqi Chen
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
4
|
Søvik WLM, Madsen AMR, Aaby P, Nielsen S, Benn CS, Schaltz-Buchholzer F. The association between BCG scars and self-reported chronic diseases: A cross-sectional observational study within an RCT of Danish health care workers. Vaccine 2024; 42:1966-1972. [PMID: 38378387 DOI: 10.1016/j.vaccine.2024.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION The live-attenuated vaccines Bacillus Calmette-Guérin (BCG) and Vaccinia have been associated with beneficial non-specific effects. We assessed the prevalence of BCG and Vaccinia vaccine scars in a cohort of Danish health care workers and investigated the association between the presence of vaccine scars and self-reported chronic diseases. METHODS Cross-sectional study utilizing baseline data collected during 2020-2021 at enrollment in a BCG trial aiming to assess the effect of BCG vaccination on absenteeism and infectious disease morbidity during the SARS-COV-2 pandemic. In Denmark, Vaccinia was discontinued in 1977, and BCG was phased out in the early 1980s. We used logistic regression analysis (adjusted for sex, birth year, and smoking status) to estimate the association between scar status and chronic diseases, providing adjusted Odds Ratios (aORs) with 95 % Confidence Intervals, for participants born before 1977, and born from 1965 to 1976. RESULTS The cohort consisted of 1218 participants (206 males; 1012 females) with a median age of 47 years (Q1-Q3: 36-56). Among participants born 1965-1976 (n = 403), who experienced the phase-outs, having BCG and/or Vaccinia scar(s) vs. having no vaccine scars yielded an aOR of 0.51 (0.29-0.90) of self-reported chronic disease; an effect primarily driven by BCG. In the same birth cohort, having vaccine scar(s) was most strongly associated with a lower prevalence of chronic respiratory and allergic diseases; the aORs being 0.39 (0.16-0.97) and 0.39 (0.16-0.91), respectively. CONCLUSION Having a BCG scar was associated with a lower prevalence of self-reported chronic disease.
Collapse
Affiliation(s)
| | - Anne Marie Rosendahl Madsen
- Bandim Health Project, Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Denmark
| | - Peter Aaby
- Bandim Health Project, Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Sebastian Nielsen
- Bandim Health Project, Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Christine Stabell Benn
- Bandim Health Project, Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau
| | - Frederik Schaltz-Buchholzer
- Bandim Health Project, Odense Patient Data Explorative Network (OPEN), Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.
| |
Collapse
|
5
|
Fang XH, Li ZJ, Liu CY, Mor G, Liao AH. Macrophage memory: Types, mechanisms, and its role in health and disease. Immunology 2024; 171:18-30. [PMID: 37702350 DOI: 10.1111/imm.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
On the basis of the mechanisms of action and characteristics of immune effects, immunity is commonly categorized into innate and adaptive immunity. Adaptive immunity is associated with the response to non-self-entities and is characterized by high specificity and memory properties. In contrast, innate immunity has traditionally been considered devoid of memory characteristics. However, an increasing number of studies have sought to challenge this conventional immunological dogma and shown that innate immune cells exhibit a more robust and rapid response to secondary stimulation, thus providing evidence of the immunological memory in innate immunity. Macrophages, which are among the most important innate immune cells, can also acquire memory phenotype that facilitates the mediation of recall responses. Macrophage memory is a relatively new concept that is revolutionizing our understanding of macrophage biology and immunological memory and could lead to a new class of vaccines and immunotherapies. In this review, we describe the characteristics and mechanisms of macrophage memory, as well as its essential roles in various diseases.
Collapse
Affiliation(s)
- Xu-Hui Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Jing Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
6
|
Theilmann M, Geldsetzer P, Bärnighausen T, Sudharsanan N. Does Early Childhood BCG Vaccination Improve Survival to Midlife in a Population With a Low Tuberculosis Prevalence? Quasi-experimental Evidence on Nonspecific Effects From 32 Swedish Birth Cohorts. Demography 2023; 60:1607-1630. [PMID: 37732832 DOI: 10.1215/00703370-10970757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine for tuberculosis (TB) is widely used globally. Many high-income countries discontinued nationwide vaccination policies starting in the 1980s as the TB prevalence decreased. However, there is continued scientific interest in whether the general childhood immunity boost conferred by the BCG vaccination impacts adult health and mortality in low-TB contexts (known as nonspecific effects). While recent studies have found evidence of an association between BCG vaccination and survival to ages 34-45, it is unclear whether these associations are causal or driven by the unobserved characteristics of those who chose to voluntarily vaccinate. We use the abrupt discontinuation of mandatory BCG vaccination in Sweden in 1975 as a natural experiment to estimate the causal nonspecific effect of the BCG vaccine on cohort survival to midlife. Applying two complementary study designs, we find no evidence that survival to age 40 was affected by the discontinuation of childhood BCG vaccination. The results are consistent among both males and females and are robust to several sensitivity tests. Overall, despite prior correlational studies suggesting large nonspecific effects, we do not find any population-level evidence for a nonspecific effect of the BCG vaccine discontinuation on survival to age 40 in Sweden.
Collapse
Affiliation(s)
- Michaela Theilmann
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| | - Pascal Geldsetzer
- Division of Primary Care and Population Health, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Till Bärnighausen
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Harvard Center for Population and Development Studies, Cambridge, MA, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Nikkil Sudharsanan
- Heidelberg Institute of Global Health, Faculty of Medicine and University Hospital, Heidelberg University, Heidelberg, Germany
- Professorship of Behavioral Science for Disease Prevention and Health Care and Institute for Advanced Study, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Abstract
The principle of trained immunity represents innate immune memory due to sustained, mainly epigenetic, changes triggered by endogenous or exogenous stimuli in bone marrow (BM) progenitors (central trained immunity) and their innate immune cell progeny, thereby triggering elevated responsiveness against secondary stimuli. BM progenitors can respond to microbial and sterile signals, thereby possibly acquiring trained immunity-mediated long-lasting alterations that may shape the fate and function of their progeny, for example, neutrophils. Neutrophils, the most abundant innate immune cell population, are produced in the BM from committed progenitor cells in a process designated granulopoiesis. Neutrophils are the first responders against infectious or inflammatory challenges and have versatile functions in immunity. Together with other innate immune cells, neutrophils are effectors of peripheral trained immunity. However, given the short lifetime of neutrophils, their ability to acquire immunological memory may lie in the central training of their BM progenitors resulting in generation of reprogrammed, that is, "trained", neutrophils. Although trained immunity may have beneficial effects in infection or cancer, it may also mediate detrimental outcomes in chronic inflammation. Here, we review the emerging research area of trained immunity with a particular emphasis on the role of neutrophils and granulopoiesis.
Collapse
Affiliation(s)
- Lydia Kalafati
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Hu S, Xiang D, Zhang X, Zhang L, Wang S, Jin K, You L, Huang J. The mechanisms and cross-protection of trained innate immunity. Virol J 2022; 19:210. [PMID: 36482472 PMCID: PMC9733056 DOI: 10.1186/s12985-022-01937-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
In recent years, the traditional cognition of immunological memory being specific to adaptive immunity has been challenged. Innate immunity can mount enhanced responsiveness upon secondary stimulation, and a phenomenon is termed trained innate immunity. Trained innate immunity is orchestrated by distinct metabolic and epigenetic reprogramming in both circulating myeloid cells and myeloid progenitor cells in bone marrow, leading to long-term resistance to related and non-related pathogens infections. The induction of trained innate immunity can also polarize innate immune cells towards a hyperresponsive phenotype in the tumor microenvironment to exert antitumor effects. This review will discuss the current understanding of innate immune memory and the mechanisms during the induction of innate immunity, including signaling pathways, metabolic changes, and epigenetic rewriting. We also provide an overview of cross-protection against infectious diseases and cancers based on trained innate immunity.
Collapse
Affiliation(s)
- Shiwei Hu
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Danhong Xiang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Xinlu Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Lan Zhang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Shengjie Wang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Keyi Jin
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Liangshun You
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| | - Jian Huang
- grid.13402.340000 0004 1759 700XDepartment of Hematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Yiwu, Zhejiang China ,grid.13402.340000 0004 1759 700XDepartment of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang China ,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang China
| |
Collapse
|
9
|
Arch M, Vidal M, Koiffman R, Melkie ST, Cardona PJ. Drosophila melanogaster as a model to study innate immune memory. Front Microbiol 2022; 13:991678. [PMID: 36338030 PMCID: PMC9630750 DOI: 10.3389/fmicb.2022.991678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Over the last decades, research regarding innate immune responses has gained increasing importance. A growing body of evidence supports the notion that the innate arm of the immune system could show memory traits. Such traits are thought to be conserved throughout evolution and provide a survival advantage. Several models are available to study these mechanisms. Among them, we find the fruit fly, Drosophila melanogaster. This non-mammalian model has been widely used for innate immune research since it naturally lacks an adaptive response. Here, we aim to review the latest advances in the study of the memory mechanisms of the innate immune response using this animal model.
Collapse
Affiliation(s)
- Marta Arch
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Vidal
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Romina Koiffman
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Solomon Tibebu Melkie
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- UCBL, UnivLyon, Université Claude Bernard Lyon 1 (UCBL1), Villeurbanne, France
| | - Pere-Joan Cardona
- Tuberculosis Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
- Microbiology Department, Laboratori Clínic Metropolitana Nord, Germans Trias i Pujol University Hospital, Badalona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
10
|
Nica V, Popp RA, Crișan TO, Joosten LAB. The future clinical implications of trained immunity. Expert Rev Clin Immunol 2022; 18:1125-1134. [PMID: 36062825 DOI: 10.1080/1744666x.2022.2120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trained Immunity (TI) refers to the long-term modulation of the innate immune response, based on previous interactions with microbes, microbial ligands or endogenous substances. Through metabolic and epigenetic reprogramming, monocytes, macrophages and neutrophils develop an enhanced capacity to mount innate immune responses to subsequent stimuli and this is persistent due to alterations at the myeloid progenitor compartment. AREAS COVERED The purpose of this article is to review the current understanding of the TI process and discuss about its potential clinical implications in the near future. We address the evidence of TI involvement in various diseases, the currently developed new therapy, and discuss how TI may lead to new clinical tools to improve existing standards of care. EXPERT OPINION The state of art in this domain has made considerable progress, linking TI-related mechanisms in multiple immune-mediated pathologies, starting with infections to autoimmune disorders and cancers. As a relatively new area of immunology, it has seen fast progress with many of its applications ready to be investigated in clinical settings.
Collapse
Affiliation(s)
- Valentin Nica
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Behzadi P, Sameer AS, Nissar S, Banday MZ, Gajdács M, García-Perdomo HA, Akhtar K, Pinheiro M, Magnusson P, Sarshar M, Ambrosi C. The Interleukin-1 (IL-1) Superfamily Cytokines and Their Single Nucleotide Polymorphisms (SNPs). J Immunol Res 2022; 2022:2054431. [PMID: 35378905 PMCID: PMC8976653 DOI: 10.1155/2022/2054431] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
Interleukins (ILs)-which are important members of cytokines-consist of a vast group of molecules, including a wide range of immune mediators that contribute to the immunological responses of many cells and tissues. ILs are immune-glycoproteins, which directly contribute to the growth, activation, adhesion, differentiation, migration, proliferation, and maturation of immune cells; and subsequently, they are involved in the pro and anti-inflammatory responses of the body, by their interaction with a wide range of receptors. Due to the importance of immune system in different organisms, the genes belonging to immune elements, such as ILs, have been studied vigorously. The results of recent investigations showed that the genes pertaining to the immune system undergo progressive evolution with a constant rate. The occurrence of any mutation or polymorphism in IL genes may result in substantial changes in their biology and function and may be associated with a wide range of diseases and disorders. Among these abnormalities, single nucleotide polymorphisms (SNPs) can represent as important disruptive factors. The present review aims at concisely summarizing the current knowledge available on the occurrence, properties, role, and biological consequences of SNPs within the IL-1 family members.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Aga Syed Sameer
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Saniya Nissar
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Mujeeb Zafar Banday
- Molecular Disease & Diagnosis Division, Infinity Biochemistry Pvt. Ltd, Sajjad Abad, Chattabal, Srinagar, Kashmir, India
- Department of Biochemistry, Government Medical College, Karan Nagar, Srinagar, Kashmir, India
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary
| | - Herney Andrés García-Perdomo
- Division of Urology, Department of Surgery, School of Medicine, UROGIV Research Group, Universidad del Valle, Cali, Colombia
| | - Kulsum Akhtar
- Department of Clinical Biochemistry, Sher I Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Marina Pinheiro
- Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CHUP, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001 Porto, Portugal
| | - Peter Magnusson
- School of Medical Sciences, Örebro University, SE, 701 82 Örebro, Sweden
- Cardiology Research Unit, Department of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Ambrosi
- IRCCS San Raffaele Roma, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| |
Collapse
|
12
|
Kleinstern G, Larson MC, Ansell SM, Thompson CA, Nowakowski GS, Call TG, Robinson DP, Maurer MJ, Mwangi R, Feldman AL, Kay NE, Novak AJ, Habermann TM, Slager SL, Cerhan JR. Vaccination History and Risk of Lymphoma and Its Major Subtypes. Cancer Epidemiol Biomarkers Prev 2022; 31:461-470. [PMID: 34782394 PMCID: PMC8825700 DOI: 10.1158/1055-9965.epi-21-0383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/09/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vaccinations have been hypothesized to play a role in lymphoma etiology, but there are few studies, mixed results, and limited data on lymphoma subtypes. Herein, we investigate the association of vaccinations with risk of major lymphoma subtypes. METHODS We studied 2,461 lymphoma cases and 2,253 controls enrolled from 2002 to 2014. Participants self-reported history of vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza. Polytomous logistic regression was used to estimate OR and 95% confidence intervals (CI), adjusting for potential confounders. RESULTS After multivariable adjustment, vaccination against influenza was inversely associated with lymphoma (OR = 0.82; 95% CI, 0.66-1.02), which was stronger for last vaccination 1+ years before enrollment (OR = 0.71; 95% CI, 0.56-0.91) and for >5 influenza vaccinations (OR = 0.56; 95% CI, 0.46-0.68). Ever vaccination against hepatitis A (OR = 0.81; 95% CI, 0.66-1.00) but not hepatitis B (OR = 0.97; 95% CI, 0.81-1.18) was associated with lymphoma risk, although more recent vaccinations were inversely associated with lymphoma risk for both hepatitis A (<6 years before enrollment, OR = 0.56; 95% CI, 0.40-0.77) and hepatitis B (<9 years before enrollment, OR = 0.72; 95% CI, 0.55-0.93). Ever vaccination against yellow fever was inversely associated with risk (OR = 0.73; 95% CI, 0.55-0.96), and this did not vary by time since last vaccination. Although there was no overall statistical evidence for heterogeneity of vaccination history by lymphoma subtype, the only statistically significant inverse associations were observed for influenza and yellow fever vaccinations with diffuse large B-cell and follicular lymphoma. CONCLUSIONS Selected vaccinations were inversely associated with lymphoma risk, with time since last vaccination relevant for some of these vaccines. IMPACT Vaccinations against hepatitis A, hepatitis B, yellow fever, and influenza are unlikely to increase lymphoma risk.
Collapse
Affiliation(s)
- Geffen Kleinstern
- School of Public Health, University of Haifa, Haifa, Israel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Timothy G Call
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Dennis P Robinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Maurer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Raphael Mwangi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Anne J Novak
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | | | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
- Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
13
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
14
|
Marron M, Brackmann LK, Schwarz H, Hummel-Bartenschlager W, Zahnreich S, Galetzka D, Schmitt I, Grad C, Drees P, Hopf J, Mirsch J, Scholz-Kreisel P, Kaatsch P, Poplawski A, Hess M, Binder H, Hankeln T, Blettner M, Schmidberger H. Identification of Genetic Predispositions Related to Ionizing Radiation in Primary Human Skin Fibroblasts From Survivors of Childhood and Second Primary Cancer as Well as Cancer-Free Controls: Protocol for the Nested Case-Control Study KiKme. JMIR Res Protoc 2021; 10:e32395. [PMID: 34762066 PMCID: PMC8663494 DOI: 10.2196/32395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/32395.
Collapse
Affiliation(s)
- Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Heike Schwarz
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | | | - Sebastian Zahnreich
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Iris Schmitt
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Grad
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Philipp Drees
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johannes Hopf
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Peter Scholz-Kreisel
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry, Institute for Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Moritz Hess
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, Mainz, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
15
|
Trained Immunity as an Adaptive Branch of Innate Immunity. Int J Mol Sci 2021; 22:ijms221910684. [PMID: 34639025 PMCID: PMC8508929 DOI: 10.3390/ijms221910684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The concept of trained immunity has become one of the most interesting and potentially commercially and clinically relevant ideas of current immunology. Trained immunity is realized by the epigenetic reprogramming of non-immunocompetent cells, primarily monocytes/macrophages and natural killer (NK) cells, and is less specific than adaptive immunity; therefore, it may cross-protect against other infectious agents. It remains possible, however, that some of the observed changes are simply caused by increased levels of immune reactions resulting from supplementation with immunomodulators, such as glucan. In addition, the question of whether we can talk about trained immunity in cells with a life span of only few days is still unresolved.
Collapse
|
16
|
Marín-Hernández D, Nixon DF, Hupert N. Anticipated reduction in COVID-19 mortality due to population-wide BCG vaccination: evidence from Germany. Hum Vaccin Immunother 2021; 17:2451-2453. [PMID: 33544024 PMCID: PMC8475553 DOI: 10.1080/21645515.2021.1872344] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is known to have "bystander benefits" in protecting against heterologous infections; interim analysis of the "ACTIVATE" trial shows protection against respiratory infections in the elderly population. Epidemiologic studies suggest a potential benefit of BCG vaccination on COVID-19 outcomes. Differential past BCG vaccination policies between the former East and West German states provides a unique natural experiment to assess the potential effect of prior BCG vaccination on COVID-19. We estimated a 5% heterologous vaccine efficacy in the highly vaccinated former East Germany using the COVID-19 International Modeling (CoMo) Consortium model. A comparable BCG vaccination campaign undertaken prior to the pandemic in former West Germany, instituted along with known country-wide transmission reduction measures, is associated with a 37% decrease in projected mortality by mid-summer, 2020. These findings support a combined heterologous vaccine and non-pharmaceutical interventions (HVI+NPI) approach to mitigate the SARS-CoV-2 pandemic until SARS-CoV-2 specific vaccines are widely distributed.
Collapse
Affiliation(s)
- Daniela Marín-Hernández
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, New York, NY, USA
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, Belfer Research Building, New York, NY, USA
| | - Nathaniel Hupert
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
17
|
Moerings BGJ, de Graaff P, Furber M, Witkamp RF, Debets R, Mes JJ, van Bergenhenegouwen J, Govers C. Continuous Exposure to Non-Soluble β-Glucans Induces Trained Immunity in M-CSF-Differentiated Macrophages. Front Immunol 2021; 12:672796. [PMID: 34149707 PMCID: PMC8208035 DOI: 10.3389/fimmu.2021.672796] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
Beta-glucans enable functional reprogramming of innate immune cells, a process defined as "trained immunity", which results in enhanced host responsiveness against primary (training) and/or secondary infections (resilience). Trained immunity holds great promise for promoting immune responses in groups that are at risk (e.g. elderly and patients). In this study, we modified an existing in vitro model for trained immunity by actively inducing monocyte-to-macrophage differentiation using M-CSF and applying continuous exposure. This model reflects mucosal exposure to β-glucans and was used to study the training effects of a variety of soluble or non-soluble β-glucans derived from different sources including oat, mushrooms and yeast. In addition, trained immunity effects were related to pattern recognition receptor usage, to which end, we analyzed β-glucan-mediated Dectin-1 activation. We demonstrated that β-glucans, with different sources and solubilities, induced training and/or resilience effects. Notably, trained immunity significantly correlated with Dectin-1 receptor activation, yet Dectin-1 receptor activation did not perform as a sole predictor for β-glucan-mediated trained immunity. The model, as validated in this study, adds on to the existing in vitro model by specifically investigating macrophage responses and can be applied to select non-digestible dietary polysaccharides and other components for their potential to induce trained immunity.
Collapse
Affiliation(s)
- Bart G J Moerings
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Priscilla de Graaff
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | | | - Renger F Witkamp
- Nutritional Biology Group, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus Medical Center (MC)-Cancer Institute, Rotterdam, Netherlands
| | - Jurriaan J Mes
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | | | - Coen Govers
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Vandeborne L, Pantziarka P, Van Nuffel AMT, Bouche G. Repurposing Infectious Diseases Vaccines Against Cancer. Front Oncol 2021; 11:688755. [PMID: 34055652 PMCID: PMC8155725 DOI: 10.3389/fonc.2021.688755] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccines used to prevent infections have long been known to stimulate immune responses to cancer as illustrated by the approval of the Bacillus Calmette-Guérin (BCG) vaccine to treat bladder cancer since the 1970s. The recent approval of immunotherapies has rejuvenated this research area with reports of anti-tumor responses with existing infectious diseases vaccines used as such, either alone or in combination with immune checkpoint inhibitors. Here, we have reviewed and summarized research activities using approved vaccines to treat cancer. Data supporting a cancer therapeutic use was found for 16 vaccines. For 10 (BCG, diphtheria, tetanus, human papillomavirus, influenza, measles, pneumococcus, smallpox, typhoid and varicella-zoster), clinical trials have been conducted or are ongoing. Within the remaining 6, preclinical evidence supports further evaluation of the rotavirus, yellow fever and pertussis vaccine in carefully designed clinical trials. The mechanistic evidence for the cholera vaccine, combined with the observational data in colorectal cancer, is also supportive of clinical translation. There is limited data for the hepatitis B and mumps vaccine (without measles vaccine). Four findings are worth highlighting: the superiority of intravesical typhoid vaccine instillations over BCG in a preclinical bladder cancer model, which is now the subject of a phase I trial; the perioperative use of the influenza vaccine to limit and prevent the natural killer cell dysfunction induced by cancer surgery; objective responses following intratumoral injections of measles vaccine in cutaneous T-cell lymphoma; objective responses induced by human papillomavirus vaccine in cutaneous squamous cell carcinoma. All vaccines are intended to induce or improve an anti-tumor (immune) response. In addition to the biological and immunological mechanisms that vary between vaccines, the mode of administration and sequence with other (immuno-)therapies warrant more attention in future research.
Collapse
|
19
|
Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-Guérin Immunotherapy for Cancer. Vaccines (Basel) 2021; 9:vaccines9050439. [PMID: 34062708 PMCID: PMC8147207 DOI: 10.3390/vaccines9050439] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Bacillus Calmette–Guérin (BCG), an attenuated vaccine from Mycobacterium bovis, was initially developed as an agent for vaccination against tuberculosis. BCG proved to be the first successful immunotherapy against established human bladder cancer and other neoplasms. The use of BCG has been shown to induce a long-lasting antitumor response over all other forms of treatment against intermediate, non-invasive muscle bladder cancer Several types of tumors may now be treated by releasing the immune response through the blockade of checkpoint inhibitory molecules, such as CTLA-4 and PD-1. In addition, Toll-Like Receptor (TLR) agonists and BCG are used to potentiate the immune response against tumors. Studies concerning TLR-ligands combined with BCG to treat melanoma have demonstrated efficacy in treating mice and patients This review addresses several interventions using BCG on neoplasms, such as Leukemia, Bladder Cancer, Lung Cancer, and Melanoma, describing treatments and antitumor responses promoted by this attenuated bacillus. Of essential importance, BCG is described recently to participate in an adequate microbiome, establishing an effective response during cell-target therapy when combined with anti-PD-1 antibody, which stimulates T cell responses against the melanoma. Finally, trained immunity is discussed, and reprogramming events to shape innate immune responses are addressed.
Collapse
Affiliation(s)
- Fabíola Cardillo
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
- Correspondence:
| | - Maiara Bonfim
- Laboratory of Molecular and Structural Pathology, Gonçalo Moniz Institute, FIOCRUZ, Salvador, BA 40296-710, Brazil;
| | - Periela da Silva Vasconcelos Sousa
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Laboratory of Molecular Virology and Marine Biotechnology, Fluminense Federal University, Niteroi, RJ 24220-008, Brazil
| | - José Mengel
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
- Faculty of Medicine of Petropolis, UNIFASE, Petropolis, RJ 25680-120, Brazil
| | | | - Rosa Teixeira Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ 21040-900, Brazil; (P.d.S.V.S.); (J.M.); (R.T.P.)
| |
Collapse
|
20
|
Drummer C, Saaoud F, Shao Y, Sun Y, Xu K, Lu Y, Ni D, Atar D, Jiang X, Wang H, Yang X. Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arterioscler Thromb Vasc Biol 2021; 41:1032-1046. [PMID: 33380171 PMCID: PMC7904591 DOI: 10.1161/atvbaha.120.315452] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/14/2020] [Indexed: 12/15/2022]
Abstract
Innate immune cells can develop exacerbated immunologic response and long-term inflammatory phenotype following brief exposure to endogenous or exogenous insults, which leads to an altered response towards a second challenge after the return to a nonactivated state. This phenomenon is known as trained immunity (TI). TI is not only important for host defense and vaccine response but also for chronic inflammations such as cardiovascular and metabolic diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/macrophages, natural killer cells, endothelial cells (ECs), and nonimmune cells, such as fibroblast. In this brief review, we analyze the significance of TI in ECs, which are also considered as innate immune cells in addition to macrophages. TI can be induced by a variety of stimuli, including lipopolysaccharides, BCG (bacillus Calmette-Guerin), and oxLDL (oxidized low-density lipoprotein), which are defined as risk factors for cardiovascular and metabolic diseases. Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of TI, including increased glycolysis, glutaminolysis, increased accumulation of tricarboxylic acid cycle metabolites and acetyl-coenzyme A production, as well as increased mevalonate synthesis. Subsequently, this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that enables increased gene transcription and enhanced proinflammatory immune response. However, TI pathways and inflammatory pathways are separated to ensure memory stays when inflammation undergoes resolution. Additionally, reactive oxygen species play context-dependent roles in TI. Therefore, TI plays significant roles in EC and macrophage pathology and chronic inflammation. However, further characterization of TI in ECs and macrophages would provide novel insights into cardiovascular disease pathogenesis and new therapeutic targets. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Charles Drummer
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ying Shao
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yu Sun
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dong Ni
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Diana Atar
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaohua Jiang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Cardiovascular Research Center, Centers for Inflammation, Translational and Clinical Lung Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
21
|
Marron M, Brackmann LK, Kuhse P, Christianson L, Langner I, Haug U, Ahrens W. Vaccination and the Risk of Childhood Cancer-A Systematic Review and Meta-Analysis. Front Oncol 2021; 10:610843. [PMID: 33552984 PMCID: PMC7862764 DOI: 10.3389/fonc.2020.610843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Infections may play a role in the etiology of childhood cancer and immunizations may be protective because vaccinations stimulate the immune system. Observational studies reported inconsistent associations between vaccination and risk of childhood cancer. Since a synthesis of the evidence is lacking, we conducted a meta-analysis stratified by histological and site-specific cancer. METHODS We performed a systematic review (CRD42020148579) following PRISMA guidelines and searched for literature in MEDLINE, Embase, and the Science Citation Index databases. We identified in three literature databases 7,594 different articles of which 35 met the inclusion criteria allowing for 27 analyses of 11 cancer outcomes after exposure to nine different types of vaccinations. We calculated summary odds ratios (ORs) and 95% confidence intervals (CIs) using random effects models. RESULTS We observed four inverse associations between childhood leukemia and certain vaccines as well as the number of vaccinations: OR 0.49 (95% CI = 0.32 to 0.74) for leukemia death after bacillus Calmette-Guérin vaccination; OR 0.76 (95% CI = 0.65 to 0.90) for acute lymphoblastic leukemia after Haemophilus influenzae type b vaccination; OR 0.57 (95% CI = 0.36 to 0.88) for leukemia; and OR 0.62 (95% CI = 0.46 to 0.85) for acute lymphoblastic leukemia after three or more vaccinations of any type. All other conducted analyses did not show any associations. DISCUSSION The results are consistent with the hypothesis that vaccinations reduce the risk of childhood leukemia. However, the robustness and validity of these results is limited due to the small number, substantial heterogeneity, and methodological limitations of available studies.
Collapse
Affiliation(s)
- Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Epidemiological Methods and Etiological Research, Bremen, Germany
| | - Lara Kim Brackmann
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Epidemiological Methods and Etiological Research, Bremen, Germany
| | - Pia Kuhse
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Epidemiological Methods and Etiological Research, Bremen, Germany
| | - Lara Christianson
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Library, Bremen, Germany
| | - Ingo Langner
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Clinical Epidemiology, Bremen, Germany
| | - Ulrike Haug
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Clinical Epidemiology, Bremen, Germany
- University of Bremen, Faculty of Human and Health Sciences, Bremen, Germany
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology—BIPS, Department Epidemiological Methods and Etiological Research, Bremen, Germany
- University of Bremen, Faculty of Mathematics and Computer Science, Bremen, Germany
| |
Collapse
|
22
|
Cirovic B, de Bree LCJ, Groh L, Blok BA, Chan J, van der Velden WJFM, Bremmers MEJ, van Crevel R, Händler K, Picelli S, Schulte-Schrepping J, Klee K, Oosting M, Koeken VACM, van Ingen J, Li Y, Benn CS, Schultze JL, Joosten LAB, Curtis N, Netea MG, Schlitzer A. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe 2020; 28:322-334.e5. [PMID: 32544459 PMCID: PMC7295478 DOI: 10.1016/j.chom.2020.05.014] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 01/13/2023]
Abstract
Induction of trained immunity by Bacille-Calmette-Guérin (BCG) vaccination mediates beneficial heterologous effects, but the mechanisms underlying its persistence and magnitude remain elusive. In this study, we show that BCG vaccination in healthy human volunteers induces a persistent transcriptional program connected to myeloid cell development and function within the hematopoietic stem and progenitor cell (HSPC) compartment in the bone marrow. We identify hepatic nuclear factor (HNF) family members 1a and b as crucial regulators of this transcriptional shift. These findings are corroborated by higher granulocyte numbers in BCG-vaccinated infants, HNF1 SNP variants that correlate with trained immunity, and elevated serum concentrations of the HNF1 target alpha-1 antitrypsin. Additionally, transcriptomic HSPC remodeling was epigenetically conveyed to peripheral CD14+ monocytes, displaying an activated transcriptional signature three months after BCG vaccination. Taken together, transcriptomic, epigenomic, and functional reprogramming of HSPCs and peripheral monocytes is a hallmark of BCG-induced trained immunity in humans.
Collapse
Affiliation(s)
- Branko Cirovic
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - L Charlotte J de Bree
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Laszlo Groh
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands
| | - Bas A Blok
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands; Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Joyce Chan
- Department of Paediatrics, The University of Melbourne & Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Australia
| | | | - M E J Bremmers
- Department of Haematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands
| | - Kristian Händler
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany
| | - Simone Picelli
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany
| | - Jonas Schulte-Schrepping
- Genomics and Immunoregulation, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Kathrin Klee
- Genomics and Immunoregulation, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Marije Oosting
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands; Centre for Individualised Infection Medicine (CiiM) & TWINCORE, joint ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Christine S Benn
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark; Odense Patient Data Explorative Network, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Joachim L Schultze
- Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany; Genomics and Immunoregulation, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands
| | - Nigel Curtis
- Department of Paediatrics, The University of Melbourne & Murdoch Children's Research Institute, The Royal Children's Hospital Melbourne, Parkville, Australia
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, 6526 GA Nijmegen, the Netherlands; Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany.
| | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany; Single Cell Genomics and Epigenomics Unit at the German Center for Neurodegenerative Diseases and the University of Bonn, 53175 Bonn, Germany.
| |
Collapse
|
23
|
Smith LK, Arabi S, Lelliott EJ, McArthur GA, Sheppard KE. Obesity and the Impact on Cutaneous Melanoma: Friend or Foe? Cancers (Basel) 2020; 12:cancers12061583. [PMID: 32549336 PMCID: PMC7352630 DOI: 10.3390/cancers12061583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
Excess body weight has been identified as a risk factor for many types of cancers, and for the majority of cancers, it is associated with poor outcomes. In contrast, there are cancers in which obesity is associated with favorable outcomes and this has been termed the “obesity paradox”. In melanoma, the connection between obesity and the increased incidence is not as strong as for other cancer types with some but not all studies showing an association. However, several recent studies have indicated that increased body mass index (BMI) improves survival outcomes in targeted and immune therapy treated melanoma patients. The mechanisms underlying how obesity leads to changes in therapeutic outcomes are not completely understood. This review discusses the current evidence implicating obesity in melanoma progression and patient response to targeted and immunotherapy, and discusses potential mechanisms underpinning these associations.
Collapse
Affiliation(s)
- Lorey K. Smith
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaghayegh Arabi
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
| | - Emily J. Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karen E. Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (L.K.S.); (S.A.); (E.J.L.); (G.A.M.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
24
|
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-388. [PMID: 32132681 PMCID: PMC7186935 DOI: 10.1038/s41577-020-0285-6] [Citation(s) in RCA: 1510] [Impact Index Per Article: 302.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed 'trained immunity', a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define 'trained immunity' as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, QC, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
- Genetics Section, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Musa M Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andreas Schlitzer
- Myeloid Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
- German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
25
|
Balz K, Trassl L, Härtel V, Nelson PP, Skevaki C. Virus-Induced T Cell-Mediated Heterologous Immunity and Vaccine Development. Front Immunol 2020; 11:513. [PMID: 32296430 PMCID: PMC7137989 DOI: 10.3389/fimmu.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/06/2020] [Indexed: 12/15/2022] Open
Abstract
Heterologous immunity (H.I.) is a consequence of an encounter with a specific antigen, which can alter the subsequent immune response to a different antigen. This can happen at the innate immune system level—often called trained immunity or innate immune memory—and/or at the adaptive immune system level involving T memory cells and antibodies. Viruses may also induce T cell-mediated H.I., which can confer protection or drive immunopathology against other virus subtypes, related or unrelated viruses, other pathogens, auto- or allo-antigens. It is important to understand the underlying mechanisms for the development of antiviral “universal” vaccines and broader T cell responses rather than just subtype-specific antibody responses as in the case of influenza. Furthermore, knowledge about determinants of vaccine-mediated H.I. may inform public health policies and provide suggestions for repurposing existing vaccines. Here, we introduce H.I. and provide an overview of evidence on virus- and antiviral vaccine-induced T cell-mediated cross-reactive responses. We also discuss the factors influencing final clinical outcome of virus-mediated H.I. as well as non-specific beneficial effects of live attenuated antiviral vaccines such as measles and vaccinia. Available epidemiological and mechanistic data have implications both for the development of new vaccines and for personalized vaccinology, which are presented. Finally, we formulate future research priorities and opportunities.
Collapse
Affiliation(s)
- Kathrin Balz
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Lilith Trassl
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Valerie Härtel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Philipp P Nelson
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
26
|
Salmon C, Conus F, Parent MÉ, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guerin (BCG) vaccination and lymphoma risk: A systematic review and meta-analysis. Cancer Epidemiol 2020; 65:101696. [PMID: 32203929 DOI: 10.1016/j.canep.2020.101696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Lymphoma etiology remains ill-defined, but immune factors seem to play a major role. The Bacillus Calmette-Guérin (BCG) vaccine, a non-specific stimulator of the cellular immune response, could influence lymphoma risk. Previous studies addressing this issue showed conflicting results. In this study, we performed a systematic review and meta-analysis to synthesize the epidemiological evidence. We conducted a systematic search of all relevant articles in PubMed, Embase, Library and Archives Canada, and Cochrane databases, up to November 1st 2018. A total of 11 studies were included. Each study was summarized, methodological quality was assessed by independent evaluators, and a consensus score was generated. Heterogeneity and publication bias were evaluated. Summary odds ratios (ORs) and 95 % confidence intervals (CIs) were estimated separately for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL) by either a fixed effect (FE) or a random effect (RE) model depending on heterogeneity. In this meta-analysis, BCG vaccination was not associated with HL (FE summary OR = 1.10; 95 % CI 0.93-1.30), but positively associated with NHL (RE summary OR = 1.20; 95 % CI 1.01-1.43). However, when restricting to higher quality studies, no association was found between BCG vaccination and either HL (RE summary OR = 0.97; 95 % CI 0.67-1.43) or NHL (RE summary OR = 1.15; 95 % CI 0.84-1.59). Overall, our findings do not support that BCG vaccination is associated with lymphoma risk. Yet, lack of statistical power and relatively high heterogeneity among studies prevent us from making definitive conclusions. Future studies investigating this issue are needed, using robust methodology.
Collapse
Affiliation(s)
- Charlotte Salmon
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Florence Conus
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Andrea Benedetti
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, 5252 boul. De Maisonneuve, Montréal, QC, H4A 3S5, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, 1020 Pine Ave. West, Montréal, QC, H3A 1A2, Canada
| | - Marie-Claude Rousseau
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
27
|
Salmon C, Conus F, Parent MÉ, Benedetti A, Rousseau MC. Association between Bacillus Calmette-Guérin vaccination and lymphoma: a population-based birth cohort study. J Intern Med 2019; 286:583-595. [PMID: 31361936 DOI: 10.1111/joim.12965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Most risk factors for lymphoma identified so far relate to immunosuppression, but its aetiology remains unclear. OBJECTIVES We investigated whether Bacillus Calmette-Guérin (BCG) vaccination is associated with lymphoma, overall and separately for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL). METHODS A cohort of 400 611 subjects born in the province of Québec, Canada, between 1970 and 1974 was used. Information on BCG vaccination was extracted from the Quebec BCG Vaccination Registry. Lymphomas cases were individuals who had ≥2 health encounters, medical visits or hospitalizations, for lymphoma within 2 months or who were identified through the Quebec Tumor Registry. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence interval (CI), adjusting for potential confounders. RESULTS A total of 178 335 (46.0%) subjects were BCG-vaccinated, and 1478 (0.38%) cases of lymphomas were ascertained. Amongst them, 922 were identified as NHL and 421 as HL. After adjustment, no association was observed between BCG vaccination and either lymphoma (any type) (HR = 1.03, 95% CI: 0.96-1.11) or NHL (HR = 0.99, 95% CI: 0.86-1.13). For HL, nonproportional hazards were observed. Before the age of 18, the risk of HL was elevated amongst vaccinated individuals (HR = 2.26, 95% CI: 1.39-3.69). However after 18 years of age, no association was found (HR = 0.93, 95% CI: 0.75-1.15). CONCLUSION Bacillus Calmette-Guérin vaccination may increase the risk of HL before 18 years of age, but residual confounding cannot entirely be excluded. Given the benefits of BCG vaccination, these results need to be reproduced in other populations before firm conclusions can be drawn.
Collapse
Affiliation(s)
- C Salmon
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| | - F Conus
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| | - M-É Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| | - A Benedetti
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - M-C Rousseau
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, QC, Canada
| |
Collapse
|
28
|
Messina NL, Zimmermann P, Curtis N. The impact of vaccines on heterologous adaptive immunity. Clin Microbiol Infect 2019; 25:1484-1493. [PMID: 30797062 DOI: 10.1016/j.cmi.2019.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vaccines induce antigen-specific memory in adaptive immune cells that enables long-lived protection against the target pathogen. In addition to this, several vaccines have beneficial effects greater than protection against their target pathogen. These non-specific effects are proposed to be the result of vaccine-induced immunomodulation. In the case of bacille Calmette-Guérin (BCG) vaccine, this involves induction of innate immune memory, termed 'trained immunity', in monocytes and natural killer cells. OBJECTIVES This review discusses current evidence for vaccine-induced immunomodulation of adaptive immune cells and heterologous adaptive immune responses. CONTENT The three vaccines that have been associated with changes in all-cause infant mortality: BCG, diphtheria-tetanus-pertussis (DTP) and measles-containing vaccines (MCV) alter T-cell and B-cell immunity. The majority of studies that investigated non-specific effects of these vaccines on the adaptive immune system report changes in numbers or proportions of adaptive immune cell populations. However, there is also evidence for effects of these vaccines on adaptive immune cell function and responses to heterologous stimuli. There is some evidence that, in addition to BCG, DTP and MCV, other vaccines (that have not been associated with changes in all-cause mortality) may alter adaptive immune responses to unrelated stimuli. IMPLICATIONS This review concludes that vaccines alter adaptive immune cell populations and heterologous immune responses. The non-specific effects differ between various vaccines and their effects on heterologous adaptive immune responses may also involve bystander activation, cross-reactivity and other as yet undefined mechanisms. This has major implications for future vaccine design and vaccination scheduling.
Collapse
Affiliation(s)
- N L Messina
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | - P Zimmermann
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Department of Paediatrics, Fribourg Hospital HFR, Fribourg, Switzerland
| | - N Curtis
- Infectious Diseases Research Group, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Infectious Diseases Unit, The Royal Children's Hospital Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Butkeviciute E, Jones CE, Smith SG. Heterologous effects of infant BCG vaccination: potential mechanisms of immunity. Future Microbiol 2018; 13:1193-1208. [PMID: 30117744 PMCID: PMC6190278 DOI: 10.2217/fmb-2018-0026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current antituberculosis vaccine, BCG, was derived in the 1920s, yet the mechanisms of BCG-induced protective immunity and the variability of protective efficacy among populations are still not fully understood. BCG challenges the concept of vaccine specificity, as there is evidence that BCG may protect immunized infants from pathogens other than Mycobacterium tuberculosis – resulting in heterologous or nonspecific protection. This review summarizes the up-to-date evidence for this phenomenon, potential immunological mechanisms and implications for improved childhood vaccine design. BCG induces functional changes in infant innate and adaptive immune compartments, encouraging their collaboration in the first year of life. Understanding biological mechanisms beyond heterologous BCG effects is crucial to improve infant protection from infectious diseases.
Collapse
Affiliation(s)
- Egle Butkeviciute
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Christine E Jones
- Faculty of Medicine & Institute for Life Sciences, University of Southampton & University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, United Kingdom.,Paediatric Infectious Diseases Research Group, St George's, University of London, Cranmer Terrace, London, SW17 0RE, United Kingdom
| | - Steven G Smith
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| |
Collapse
|
30
|
Jacqueline C, Bonnefoy N, Charrière GM, Thomas F, Roche B. Personal history of infections and immunotherapy: Unexpected links and possible therapeutic opportunities. Oncoimmunology 2018; 7:e1466019. [PMID: 30221066 PMCID: PMC6136881 DOI: 10.1080/2162402x.2018.1466019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 01/17/2023] Open
Abstract
The recent breakthroughs in the understanding of tumor immune biology have given rise to a new generation of immunotherapies, harnessing the immune system to eliminate tumors. As the typology and frequency of encountered infections are susceptible to shape the immune system, it could also impact the efficiency of immunotherapy. In this review, we report evidences for an indirect link between personal history of infection and different strategies of immunotherapy. In the current context of interest rise for personalized medicine, we discuss the potential medical applications of considering personal history of infection to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- Camille Jacqueline
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Nathalie Bonnefoy
- IRCM, INSERM, Université de Montpellier, ICM, F-34298, Montpellier, France
| | - Guillaume M. Charrière
- IHPE, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, 34095, France
| | - Frédéric Thomas
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier, France
| | - Benjamin Roche
- Centre for Ecological and Evolutionary Research on Cancer (CREEC), Montpellier, France
- UMMISCO, IRD/ Sorbonne Université, Bondy, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
31
|
Rieckmann A, Villumsen M, Sørup S, Haugaard LK, Ravn H, Roth A, Baker JL, Benn CS, Aaby P. Vaccinations against smallpox and tuberculosis are associated with better long-term survival: a Danish case-cohort study 1971-2010. Int J Epidemiol 2018; 46:695-705. [PMID: 27380797 PMCID: PMC5837789 DOI: 10.1093/ije/dyw120] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 11/23/2022] Open
Abstract
Background: When vaccinations with vaccinia against smallpox and Bacillus Calmette-Guérin (BCG) against tuberculosis were phased out in some high-income countries around 1980, the impact on overall mortality was not examined. Recent studies from low-income countries have suggested that these vaccines are associated with mortality reductions, not explained by specific disease protection. We examined whether vaccinia and BCG administered in childhood were associated with long-term mortality reductions in a high-income population. Methods: In this case-cohort study, we followed 47 622 schoolchildren from Copenhagen, Denmark, born 1965 to 1976, from their first health examination to 2010. This cohort experienced the phase-out of vaccinia and BCG vaccination programmes. Results: A sub-cohort of 5 316 individuals (699 excluded) was followed for 164 450 person-years (0.2% were lost to follow-up), and 401 deaths due to natural causes (841 deaths in total) occurred in the full cohort. Compared with individuals who had not received vaccinia or BCG, those who had received both vaccinia and BCG had an adjusted hazard ratio (aHR) of 0.54 [95% confidence interval (CI): 0.36–0.81] for mortality due to natural causes of death; those who only received BCG had an aHR of 0.58 (95% CI: 0.39–0.85). Vaccinia and BCG were not associated with any protection against deaths by accidents, suicide or murder, the combined aHR being 0.94 (95% CI: 0.62–1.42). Conclusions: Vaccinia and BCG vaccinations were associated with better long-term survival, which was not explained by specific protection. Vaccines with beneficial non-specific effects may reduce overall mortality even after the target diseases are eradicated.
Collapse
Affiliation(s)
- Andreas Rieckmann
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Marie Villumsen
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Signe Sørup
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark
| | - Line Klingen Haugaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Henrik Ravn
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Adam Roth
- Public Health Division, Secretariat of the Pacific Community, Noumea, New Caledonia and.,Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jennifer Lyn Baker
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | - Christine Stabell Benn
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| | - Peter Aaby
- Research Center for Vitamins and Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Copenhagen, Denmark.,Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.,OPEN, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, Odense, Denmark
| |
Collapse
|
32
|
Netea MG, Joosten LAB, van der Meer JWM. Hypothesis: stimulation of trained immunity as adjunctive immunotherapy in cancer. J Leukoc Biol 2017; 102:1323-1332. [PMID: 29018149 DOI: 10.1189/jlb.5ri0217-064rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 02/04/2023] Open
Abstract
Cancer immunotherapy has steadily progressed during the past decades, with checkpoint inhibitor therapy becoming the latest and one of the most promising treatments. Despite the progress, most of the patients do not respond or develop resistance, and novel additional approaches are needed to improve the clinical effectiveness of immunotherapy. Trained immunity (TI) has been described recently as a process of epigenetic and metabolic reprogramming that induces a long-term enhanced function of innate immune cells. TI is considered to have beneficial effects in improving host response to infections and vaccination, and increasing evidence suggests that TI-mediated mechanisms also have useful and potent antitumor effects. We hypothesized that novel and more effective approaches for immunotherapy in cancer may involve induction of TI, alone or in combination with current immunotherapies.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Morra ME, Kien ND, Elmaraezy A, Abdelaziz OAM, Elsayed AL, Halhouli O, Montasr AM, Vu TLH, Ho C, Foly AS, Phi AP, Abdullah WM, Mikhail M, Milne E, Hirayama K, Huy NT. Early vaccination protects against childhood leukemia: A systematic review and meta-analysis. Sci Rep 2017; 7:15986. [PMID: 29167460 PMCID: PMC5700199 DOI: 10.1038/s41598-017-16067-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Leukemia is the most commonly diagnosed childhood cancer, although its etiology is still largely unknown. Growing evidence supports a role for infection in the etiology of acute lymphocytic leukemia (ALL), and the involvement of the immune system suggests that vaccination may also play a role. However, the findings presented in the published literature are inconsistent. Therefore, we conducted a PRISMA systematic review and meta-analysis. 14 studies were identified and meta-analyzed. Vaccinations studied comprised Bacillus Calmette-Guérin (BCG) vaccine, Triple vaccine, Hepatitis B vaccine (HBV), Polio, Measles, Rubella, Mumps, trivalent MMR vaccine and Haemophilus influenza type B (HiB) vaccine. We observed a protective association between any vaccination in the first year of life and risk of childhood leukemia (summary odds ratio (OR) 0.58 [95% confidence interval (CI) 0.36-0.91]). When individual vaccines were analysed, some evidence of an association was seen only for BCG (summary OR 0.73 [95% CI 0.50-1.08]). In conclusion, early vaccination appears to be associated with a reduced risk of childhood leukemia. This finding may be underpinned by the association observed for BCG. Given the relatively imprecise nature of the results of this meta-analysis, our findings should be interpreted cautiously and replicated in future studies.
Collapse
Affiliation(s)
| | - Nguyen Dang Kien
- Department of Obstetrics and Gynecology, Thai Binh University of Medicine and Pharmacy, Thai Binh, 30000, Vietnam
| | - Ahmed Elmaraezy
- Faculty of Medicine, Al Azhar University, Cairo, 11884, Egypt
| | | | | | - Oday Halhouli
- University of Jordan, Faculty of Medicine, Amman, 11942, Jordan
| | | | - Tran Le-Huy Vu
- University of California, Los Angeles, CA, 90095, United States
| | - Chau Ho
- Hoan My Cuu Long Hospital, Can Tho, 900000, Vietnam
| | - Amr Sayed Foly
- Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Anh Phan Phi
- Department of Pharmacology, Loyola University Chicago, Illinois, 60546, USA
| | | | - Marina Mikhail
- Department of Dermatology, Cairo University Hospital, Cairo, 11562, Egypt
| | - Elizabeth Milne
- Telethon Kids Institute, The University of Western Australia, Crawley, Australia.
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nguyen Tien Huy
- Evidence Based Medicine Research Group & Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Department of Clinical Product Development, Institute of Tropical Medicine (NEKKEN), Leading Graduate School Program, and Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
34
|
Rousseau MC, Conus F, Kâ K, El-Zein M, Parent MÉ, Menzies D. Bacillus Calmette-Guérin (BCG) vaccination patterns in the province of Québec, Canada, 1956-1974. Vaccine 2017; 35:4777-4784. [PMID: 28705514 DOI: 10.1016/j.vaccine.2017.06.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the province of Québec, Canada, the Bacillus Calmette-Guérin (BCG) vaccine was offered to newborns and school-age children from the 1950s to mid-1970s in an organized tuberculosis prevention program. OBJECTIVE We aimed to describe the annual rates of skin test administration, proportion of skin tests that were positive, and rates of BCG vaccination from 1956 to 1974 according to age, sex, and administrative region. METHODS For rates, numerators were extracted from the Québec BCG Vaccination Registry whereas population denominators were obtained from the Canadian Census and governmental publications. Time trends were assessed with linear regression. RESULTS A total of 2,755,336 skin tests and 2,531,366 BCG vaccinations were administered. Yearly rates of skin tests, routinely administered before vaccination among all except newborns, were highest among children aged 5-9 (9.3 per 100) and 10-14years (7.9 per 100). The proportion of positive skin tests varied greatly by age, ranging from 10.2% among children <1year to 67.2% among adults ≥20years. The vast majority of individuals who had a negative skin test were subsequently vaccinated, whereas those with a positive result were not, as per recommended guidelines. The average annual vaccination rate was highest among children aged <1year (43.8 per 100) and 5-9year-olds (6.9 per 100). There were salient differences in immunization rates, including positive skin tests and vaccinations, across administrative regions but no difference by sex. CONCLUSION This is the first comprehensive description of the tuberculosis prevention program in Québec which offered free, non-mandatory BCG vaccination. Our results confirm that the targeted groups, newborns and school-age children, were preferentially reached. Socioeconomic, demographic, and organizational factors may explain regional differences in immunization rates. Beyond presenting a historical context for this vaccination campaign, our findings are relevant to contemporary uses of the Québec BCG Vaccination Registry in epidemiological research.
Collapse
Affiliation(s)
- Marie-Claude Rousseau
- Epidemiology and Biostatistics Unit, Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Florence Conus
- Epidemiology and Biostatistics Unit, Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Khady Kâ
- Epidemiology and Biostatistics Unit, Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Mariam El-Zein
- Epidemiology and Biostatistics Unit, Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Marie-Élise Parent
- Epidemiology and Biostatistics Unit, Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada.
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Montreal Chest Institute, 5252 de Maisonneuve Blvd West, Montréal, QC H4A 3S5, Canada.
| |
Collapse
|
35
|
Lack of evidence for post-vaccine onset of autoimmune/lymphoproliferative disorders, during a nine-month follow-up in multiply vaccinated Italian military personnel. Clin Immunol 2017. [PMID: 28625884 DOI: 10.1016/j.clim.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anecdotal case reports, amplified by mass media and internet-based opinion groups, have recently indicated vaccinations as possibly responsible for autoimmunity/lymphoproliferation development. Multiply vaccinated Italian military personnel (group 1, operating in Italy, group 2, operating in Lebanon) were followed-up for nine months to monitor possible post-vaccine autoimmunity/lymphoproliferation onset. No serious adverse event was noticed in both groups. Multivariate analysis of intergroup differences only showed a significant association between lymphocyte increase and tetanus/diphtheria vaccine administration. A significant post-vaccine decrease in autoantibody positivity was observed. Autoantibodies were also studied by microarray analysis of self-proteins in subjects exposed to ≥4 concurrent vaccinations, without observing significant difference among baseline and one and nine months post-vaccine. Moreover, HLA-A2 subjects have been analyzed for the possible CD8T-cell response to apoptotic self-epitopes, without observing significant difference between baseline and one month post-vaccine. Multiple vaccinations in young adults are safe and not associated to autoimmunity/lymphoproliferation onset during a nine-month-long follow-up.
Collapse
|
36
|
Nicoli F, Appay V. Immunological considerations regarding parental concerns on pediatric immunizations. Vaccine 2017; 35:3012-3019. [PMID: 28465096 DOI: 10.1016/j.vaccine.2017.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023]
Abstract
Despite the fundamental role of vaccines in the decline of infant mortality, parents may decide to decline vaccination for their own children. Many factors may influence this decision, such as the belief that the infant immune system is weakened by vaccines, and concerns have been raised about the number of vaccines and the early age at which they are administered. Studies focused on the infant immune system and its reaction to immunizations, summarized in this review, show that vaccines can overcome those suboptimal features of infant immune system that render them more at risk of infections and of their severe manifestations. In addition, many vaccines have been shown to improve heterologous innate and adaptive immunity resulting in lower mortality rates for fully vaccinated children. Thus, multiple vaccinations are necessary and not dangerous, as infants can respond to several antigens as well as when responding to single stimuli. Current immunization schedules have been developed and tested to avoid vaccine interference, improve benefits and reduce side effects compared to single administrations. The infant immune system is therefore capable, early after birth, of managing several antigenic challenges and exploits them to prompt its development.
Collapse
Affiliation(s)
- Francesco Nicoli
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France; INSERM, U1135, CIMI-Paris, F-75013 Paris, France.
| | - Victor Appay
- Sorbonne Universités, UPMC Univ Paris 06, DHU FAST, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), F-75013 Paris, France; INSERM, U1135, CIMI-Paris, F-75013 Paris, France; International Research Center of Medical Sciences (IRCMS), Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
37
|
Jacqueline C, Tasiemski A, Sorci G, Ujvari B, Maachi F, Missé D, Renaud F, Ewald P, Thomas F, Roche B. Infections and cancer: the "fifty shades of immunity" hypothesis. BMC Cancer 2017; 17:257. [PMID: 28403812 PMCID: PMC5389015 DOI: 10.1186/s12885-017-3234-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Since the beginning of the twentieth century, infection has emerged as a fundamental aspect of cancer causation with a growing number of pathogens recognized as oncogenic. Meanwhile, oncolytic viruses have also attracted considerable interest as possible agents of tumor destruction. DISCUSSION Lost in the dichotomy between oncogenic and oncolytic agents, the indirect influence of infectious organisms on carcinogenesis has been largely unexplored. We describe the various ways - from functional aspects to evolutionary considerations such as modernity mismatches - by which infectious organisms could interfere with oncogenic processes through immunity. Finally, we discuss how acknowledging these interactions might impact public health approaches and suggest new guidelines for therapeutic and preventive strategies both at individual and population levels. Infectious organisms, that are not oncogenic neither oncolytic, may play a significant role in carcinogenesis, suggesting the need to increase our knowledge about immune interactions between infections and cancer.
Collapse
Affiliation(s)
- Camille Jacqueline
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Aurélie Tasiemski
- Unité d’Evolution, Ecologie et Paléontologie (EEP) Université de Lille 1 CNRS UMR 8198, groupe d’Ecoimmunologie des Annélides, 59655 Villeneuve-d’Ascqd’Ascq, France
| | - Gabriele Sorci
- BiogéoSciences, CNRS UMR 6282, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic Australia
| | - Fatima Maachi
- Laboratoire de Pathologie Oncologie Digestive, Institut Pasteur 1, Place Abou Kacem Ez-Zahraoui- B.P, 120, Casablanca, Morocco
| | - Dorothée Missé
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - François Renaud
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology, University of Louisville, Louisville, KY 40292 USA
| | - Frédéric Thomas
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- MIVEGEC, UMR IRD/CNRS/UM 5290, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | - Benjamin Roche
- CREEC, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- International Center for Mathematical and Computational Modeling of Complex Systems (UMI IRD/UPMC UMMISCO), 32 Avenue Henri Varagnat, 93143 Bondy Cedex, France
| |
Collapse
|
38
|
Stevens WBC, Netea MG, Kater AP, van der Velden WJFM. 'Trained immunity': consequences for lymphoid malignancies. Haematologica 2016; 101:1460-1468. [PMID: 27903713 DOI: 10.3324/haematol.2016.149252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
In hematological malignancies complex interactions exist between the immune system, microorganisms and malignant cells. On one hand, microorganisms can induce cancer, as illustrated by specific infection-induced lymphoproliferative diseases such as Helicobacter pylori-associated gastric mucosa-associated lymphoid tissue lymphoma. On the other hand, malignant cells create an immunosuppressive environment for their own benefit, but this also results in an increased risk of infections. Disrupted innate immunity contributes to the neoplastic transformation of blood cells by several mechanisms, including the uncontrolled clearance of microbial and autoantigens resulting in chronic immune stimulation and proliferation, chronic inflammation, and defective immune surveillance and anti-cancer immunity. Restoring dysfunction or enhancing responsiveness of the innate immune system might therefore represent a new angle for the prevention and treatment of hematological malignancies, in particular lymphoid malignancies and associated infections. Recently, it has been shown that cells of the innate immune system, such as monocytes/macrophages and natural killer cells, harbor features of immunological memory and display enhanced functionality long-term after stimulation with certain microorganisms and vaccines. These functional changes rely on epigenetic reprogramming and have been termed 'trained immunity'. In this review the concept of 'trained immunity' is discussed in the setting of lymphoid malignancies. Amelioration of infectious complications and hematological disease progression can be envisioned to result from the induction of trained immunity, but future studies are required to prove this exciting new hypothesis.
Collapse
Affiliation(s)
- Wendy B C Stevens
- Department of Hematology, Radboud University Medical Centre, Nijmegen
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, and Radboud Center for Infectious Diseases, Nijmegen.,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen
| | - Arnon P Kater
- Department of Hematology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE) Academic Medical Center, University of Amsterdam, The Netherlands
| | - Walter J F M van der Velden
- Department of Hematology, Radboud University Medical Centre, Nijmegen .,Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen
| |
Collapse
|
39
|
Flanagan KL, Plebanski M. Sex-differential heterologous (non-specific) effects of vaccines: an emerging public health issue that needs to be understood and exploited. Expert Rev Vaccines 2016; 16:5-13. [DOI: 10.1080/14760584.2016.1203260] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Katie L. Flanagan
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
| | - Magdalena Plebanski
- Vaccine and Infectious Diseases Laboratory, Department of Immunology and Pathology, Monash University, Prahran, Australia
- Monash Institute of Medical Engineering, Monash University, Prahran, Australia
| |
Collapse
|
40
|
Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O'Neill LAJ, Xavier RJ. Trained immunity: A program of innate immune memory in health and disease. Science 2016; 352:aaf1098. [PMID: 27102489 DOI: 10.1126/science.aaf1098] [Citation(s) in RCA: 1743] [Impact Index Per Article: 193.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity, as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed "trained immunity" or "innate immune memory." Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, new therapeutic strategies for the treatment of immune deficiency states, and modulation of exaggerated inflammation in autoinflammatory diseases.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, Bonn University, Bonn, Germany. Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculties of Science and Medicine, Radboud Institute of Molecular Life Sciences, Radboud University, Nijmegen, Netherlands
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
41
|
Gil A, Kenney LL, Mishra R, Watkin LB, Aslan N, Selin LK. Vaccination and heterologous immunity: educating the immune system. Trans R Soc Trop Med Hyg 2015; 109:62-9. [PMID: 25573110 DOI: 10.1093/trstmh/tru198] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This review discusses three inter-related topics: (1) the immaturity of the neonatal and infant immune response; (2) heterologous immunity, where prior infection history with unrelated pathogens alters disease outcome resulting in either enhanced protective immunity or increased immunopathology to new infections, and (3) epidemiological human vaccine studies that demonstrate vaccines can have beneficial or detrimental effects on subsequent unrelated infections. The results from the epidemiological and heterologous immunity studies suggest that the immune system has tremendous plasticity and that each new infection or vaccine that an individual is exposed to during a lifetime will potentially alter the dynamics of their immune system. It also suggests that each new infection or vaccine that an infant receives is not only perturbing the immune system but is educating the immune system and laying down the foundation for all subsequent responses. This leads to the question, is there an optimum way to educate the immune system? Should this be taken into consideration in our vaccination protocols?
Collapse
Affiliation(s)
- Anna Gil
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie L Kenney
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Levi B Watkin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nuray Aslan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liisa K Selin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
42
|
de Castro MJ, Pardo-Seco J, Martinón-Torres F. Nonspecific (Heterologous) Protection of Neonatal BCG Vaccination Against Hospitalization Due to Respiratory Infection and Sepsis. Clin Infect Dis 2015; 60:1611-9. [PMID: 25725054 DOI: 10.1093/cid/civ144] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/01/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Bacille Calmette-Guerin (BCG) vaccination has been suggested to have nonspecific beneficial effects in children from developing countries, reducing morbidity and mortality caused by unrelated pathogens. OBJECTIVE We aimed to assess the heterologous protective effects of BCG vaccination against respiratory infection (RI) and sepsis not attributable to tuberculosis in children born in Spain. METHODS We conducted a retrospective epidemiological study using data from the Official Spanish Registry of Hospitalizations (CMBD-HA) to identify differences in hospitalization rates (HR) in BCG-vaccinated children (Basque Country, where neonatal BCG is part of the immunization schedule and has a 100% coverage) as compared to non-BCG-vaccinated children (from the rest of Spain, where BCG is not used). RESULTS A total of 464 611 hospitalization episodes from 1992 to 2011 were analyzed. The HR due to RI not attributable to tuberculosis in BCG-vaccinated children was significant lower compared to non-BCG-vaccinated children for all age groups, with a total preventive fraction (PF) of 41.4% (95% confidence interval: 40.3-42.5; P-value <.001). According to age group, PF was 32.4% (30.9-33.9; P-value <.001) for children under 1 year old, 60.1% (58.5-61.7; P-value <.001) for children between 1 and 4 years old, 66.6% (62.8-70.2; P-value <.001) for children between 5 and 9 years old, and 69.6% (63.3-75.0; P-value <.001) for children between 10 and 14 years old. The HR due to sepsis not attributable to tuberculosis in BCG-vaccinated children under 1 year of age was also significantly lower, with a PF of 52.8% (43.8-60.7; P-value <.001). CONCLUSIONS BCG vaccination at birth may decrease hospitalization due to RI and sepsis not related to tuberculosis through heterologous protection.
Collapse
Affiliation(s)
- María José de Castro
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela
| | - Jacobo Pardo-Seco
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, La Coruña Unidad de Genética, Instituto de Ciencias Forenses y Departamento de Anatomía Patológica y Ciencias Forenses, Facultad de Medicina, Universidad de Santiago de Compostela, Galicia, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, La Coruña
| |
Collapse
|
43
|
Krone B, Kölmel KF, Grange JM. Childhood infectious diseases and risk of leukaemia in an adult population. Int J Cancer 2014; 134:495-6. [DOI: 10.1002/ijc.28370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Bernd Krone
- Institute of Virology; University of Göttingen; Göttingen Germany
| | | | | |
Collapse
|
44
|
Hollm-Delgado MG, Stuart EA, Black RE. Acute lower respiratory infection among Bacille Calmette-Guérin (BCG)-vaccinated children. Pediatrics 2014; 133:e73-81. [PMID: 24379224 DOI: 10.1542/peds.2013-2218] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To determine whether Bacille Calmette-Guerin (BCG) vaccination is linked to the risk of acute lower respiratory infection (ALRI) among children <5 years of age. METHODS Data from Macro International Demographic and Health Surveys and United Nations Children's Fund Multiple Indicator Cluster Surveys were used to identify a primary cohort of 58,021 children in 19 countries (2005-2010) and a secondary cohort of 93,301 children in 18 countries (2000-2007). Information was collected by trained interviewers during home visits using standardized questionnaires, review of vaccination health cards, and measurement of health indicators. RESULTS BCG vaccination was associated with a 17% to 37% risk reduction for suspected ALRI in both cohorts. The only vaccine or vitamin supplement to modify the effect of BCG was diphtheria-tetanus-pertussis (DTP; P < .001). The order in which the vaccines were first received was central to this phenomena (BCG before DTP, adjusted/propensity score-weighted relative risk [apRR]: 0.79, 95% confidence interval [CI]: 0.70-0.89; BCG with DTP, apRR: 0.82, 95% CI: 0.71-0.94; and BCG after DTP, apRR: 1.00, 95% CI: 0.87-1.13) but not number of DTP doses received. Other modifiers included vaccine strain used in immunization programs, chlorinating drinking water, using wood-burning fuel cook stoves, and owning livestock. CONCLUSIONS Children vaccinated with BCG had a significantly lower risk of suspected ALRI. Clarification is needed as to whether this is due to reductions in the underlying risk of tuberculosis or ALRI per se.
Collapse
Affiliation(s)
- Maria-Graciela Hollm-Delgado
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe St, Baltimore, MD 21205.
| | | | | |
Collapse
|
45
|
|
46
|
Aaby P, Benn CS. Saving lives by training innate immunity with bacille Calmette-Guerin vaccine. Proc Natl Acad Sci U S A 2012; 109:17317-8. [PMID: 23071307 PMCID: PMC3491466 DOI: 10.1073/pnas.1215761109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter Aaby
- Research Center for Vitamins and Vaccines, Bandim Health Project, Statens Serum Institut, 2300 Copenhagen S, Denmark.
| | | |
Collapse
|