1
|
Adhikari RP, Alem F, Kemboi D, Kanipakala T, Sherchand SP, Kailasan S, Purcell BK, Heine HS, Russell-Lodrigue K, Etobayeva I, Howell KA, Vu H, Shulenin S, Holtsberg FW, Roy CJ, Hakami RM, Nelson DC, Aman MJ. Engineered antibodies targeted to bacterial surface integrate effector functions with toxin neutralization to provide superior efficacy against bacterial infections. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24313920. [PMID: 39398995 PMCID: PMC11469364 DOI: 10.1101/2024.09.23.24313920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anti-bacterial monoclonal antibody (mAb) therapies either rely on toxin neutralization or opsonophagocytic killing (OPK). Toxin neutralization protects the host from toxin-induced damage, while leaving the organism intact. OPK inducing antibodies clear the bacteria but leave the released toxins unencountered. Infection site targeted anti-toxin antibodies (ISTAbs) that we report here addresses this binary paradigm by combining both functionalities into a single molecule. ISTAbs consist of cell wall targeting (CWT) domains of bacteriophage endolysins fused to toxin neutralizing mAbs (IgG). CWT governs specific binding to the surface of bacteria while the IgG variable domain neutralizes the toxins as they are released. The complex is then cleared by phagocytic cells. As proof of concept, we generated several ISTAb prototypes targeting major toxins from two Gram-positive spore forming pathogens that have a high clinical significance; Clostridium difficile , causative agent of the most common hospital-acquired infection, and Bacillus anthracis , a Category A select agent pathogen. Both groups of ISTAbs exhibited potent toxin neutralization, binding to their respective bacterial cells, and induction of opsonophagocytosis. In mice infected with B. anthracis , ISTAbs exhibit significantly higher efficacy than parental IgG in both pre- and post-challenge models. Furthermore, ISTAbs fully protected against B. anthracis infection in a nonhuman primate (NHP) aerosol challenge model. These findings establish that as a platform technology, ISTAbs are broadly applicable for therapeutic intervention against several toxigenic bacterial pathogens.
Collapse
|
2
|
Kumar G, Sarathi R, Sharma A. Effective proliferation control of MCF7 breast cancer using microsecond duration electrical pulse. J Cancer Res Ther 2023; 19:1725-1730. [PMID: 38376271 DOI: 10.4103/jcrt.jcrt_414_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/30/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Electro-permeablization using a pulse generator is a novel non-invasive approach for cancer therapy. It serves as a cell permeability enhancing agent for cancer treatment. OBJECTIVE In this article in vitro investigation of the effect of 1.0 kV/cm, 1.5 kV/cm and 2.0 kV/cm, 50 µs duration pulsed electric field on MCF-7 cell line has been done. Furthermore, combinational therapy of curcumin and electrical pulses has been also investigated. MATERIAL AND METHOD A variable voltage (100 V-1200 V, 100 V step) and 50 µs duration pulse generator has been designed, which is further used for the investigation of electroporation and destructive electrical field intensity. Investigation of the effect of electrical pulses on cancer cells has been performed using Trypan Blue Exclusion Test, MTT Assay and Clonogenic Assay. RESULTS It has been observed that electrical field intensity of 2 kV/cm, 50 µsec duration, 10 pulses at repetition rate of 1 pulse per second corresponding to total energy of 4 J is more than enough for causing necrotic cell death due to permanent damage of cell membrane of the cancer cell. Also, it has been observed that electrical pulse application enhances curcumin uptake by cells. CONCLUSION Electrical pulses can effectively inhibit the cancer cell growth and proliferation. Furthermore, observation shows that electroporation enhances the curcumin uptake, therefore, it can be used for therapeutic purposes.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Department of Electrical Engineering Science, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - R Sarathi
- Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Archana Sharma
- Department of Electrical Engineering Science, Homi Bhabha National Institute, Mumbai, Maharashtra, India
- Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Wang N, Liang Y, Ma Q, Mi J, Xue Y, Yang Y, Wang L, Wu X. Mechanisms of ag85a/b DNA vaccine conferred immunotherapy and recovery from Mycobacterium tuberculosis-induced injury. Immun Inflamm Dis 2023; 11:e854. [PMID: 37249284 PMCID: PMC10187016 DOI: 10.1002/iid3.854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Our previous research developed a novel tuberculosis (TB) DNA vaccine ag85a/b that showed a significant therapeutic effect on the mouse tuberculosis model by intramuscular injection (IM) and electroporation (EP). However, the action mechanisms between these two vaccine immunization methods remain unclear. In a previous study, 96 Mycobacterium tuberculosis (MTB) H37 Rv-infected BALB/c mice were treated with phosphate-buffered saline, 10, 50, 100, and 200 μg ag85a/b DNA vaccine delivered by IM and EP three times at 2-week intervals, respectively. In this study, peripheral blood mononuclear cells (PBMCs) from three mice in each group were isolated to extract total RNA. The gene expression profiles were analyzed using gene microarray technology to obtain differentially expressed (DE) genes. Finally, DE genes were validated by real-time reverse transcription-quantitive polymerase chain reaction and the GEO database. After MTB infection, most of the upregulated DE genes were related to the digestion and absorption of nutrients or neuroendocrine (such as Iapp, Scg2, Chga, Amy2a5), and most of the downregulated DE genes were related to cellular structural and functional proteins, especially the structure and function proteins of the alveolar epithelial cell (such as Sftpc, Sftpd, Pdpn). Most of the abnormally upregulated or downregulated DE genes in the TB model group were recovered in the 100 and 200 μg ag85a/b DNA IM groups and four DNA EP groups. The pancreatic secretion pathway downregulated and the Rap1 signal pathway upregulated had particularly significant changes during the immunotherapy of the ag85a/b DNA vaccine on the mouse TB model. The action targets and mechanisms of IM and EP are highly consistent. Tuberculosis infection causes rapid catabolism and slow anabolism in mice. For the first time, we found that the effective dose of the ag85a/b DNA vaccine immunized whether by IM or EP could significantly up-regulate immune-related pathways and recover the metabolic disorder and the injury caused by MTB.
Collapse
Affiliation(s)
- Nan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Qianqian Ma
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Yourong Yang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General HospitalPLA General HospitalBeijingChina
| |
Collapse
|
4
|
Kim NY, Son WR, Lee MH, Choi HS, Choi JY, Song YJ, Yu CH, Song DH, Hur GH, Jeong ST, Hong SY, Shin YK, Shin S. A multipathogen DNA vaccine elicits protective immune responses against two class A bioterrorism agents, anthrax and botulism. Appl Microbiol Biotechnol 2022; 106:1531-1542. [PMID: 35141866 PMCID: PMC8979915 DOI: 10.1007/s00253-022-11812-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/17/2022]
Abstract
Abstract
The potential use of biological agents has become a major public health concern worldwide. According to the CDC classification, Bacillus anthracis and Clostridium botulinum, the bacterial pathogens that cause anthrax and botulism, respectively, are considered to be the most dangerous potential biological agents. Currently, there is no licensed vaccine that is well suited for mass immunization in the event of an anthrax or botulism epidemic. In the present study, we developed a dual-expression system-based multipathogen DNA vaccine that encodes the PA-D4 gene of B. anthracis and the HCt gene of C. botulinum. When the multipathogen DNA vaccine was administered to mice and guinea pigs, high level antibody responses were elicited against both PA-D4 and HCt. Analysis of the serum IgG subtype implied a combined Th1/Th2 response to both antigens, but one that was Th2 skewed. In addition, immunization with the multipathogen DNA vaccine induced effective neutralizing antibody activity against both PA-D4 and HCt. Finally, the protection efficiency of the multipathogen DNA vaccine was determined by sequential challenge with 10 LD50 of B. anthracis spores and 10 LD50 of botulinum toxin, or vice versa, and the multipathogen DNA vaccine provided higher than 50% protection against lethal challenge with both high-risk biothreat agents. Our studies suggest the strategy used for this anthrax-botulinum multipathogen DNA vaccine as a prospective approach for developing emergency vaccines that can be immediately distributed on a massive scale in response to a biothreat emergency or infectious disease outbreak.
Key points • A novel multipathogen DNA vaccine was constructed against anthrax and botulism. • Robust immune responses were induced following vaccination. • Suggests a potential vaccine development strategy against biothreat agents. |
Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11812-6.
Collapse
Affiliation(s)
- Na Young Kim
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Won Rak Son
- R&D Center, ABION Inc., Seoul, Republic of Korea
| | - Min Hoon Lee
- R&D Center, ABION Inc., Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | | | | | - Young Jo Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Chi Ho Yu
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Dong Hyun Song
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Gyeung Haeng Hur
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Seong Tae Jeong
- The 4th R&D Institute, Agency for Defense Development, Daejeon, Republic of Korea
| | - Sung Youl Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Kee Shin
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungho Shin
- Bio-MAX/N-Bio, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Abstract
A DNA vaccine is a plasmid encoding a vaccine antigen together with an efficient eukaryotic promoter to drive protein expression. The chief problem of DNA vaccines has been their suboptimal immunogenicity in humans. Many different flaviviruses infect and cause serious illness and even death in humans, but human vaccines are not available against most of the relevant flaviviruses with the exception of Japanese encephalitis virus. DNA vaccines are easy and fast to produce at relatively low cost, do not require handling of dangerous pathogens, are stable at room temperature allowing for low-cost storage and transportation, and are highly versatile, allowing for rapid changes in coding sequence design and synthesis. This makes a DNA vaccine approach ideally suited for development as a broad-based flavivirus vaccine platform. However, to be useful as a flavivirus prophylactic vaccine platform in humans, a method would need to be found to enhance DNA vaccine immunogenicity without the need for the cumbersome and expensive equipment involved with electroporation. We describe here a protocol used to test different adjuvants with flavivirus DNA vaccines to determine an optimal formulation. An optimal regimen involving a DNA adjuvanted vaccine prime followed by an adjuvanted protein vaccine boost is described and can be applied by readers to solve barriers to the development of other DNA vaccines where immunogenicity is a problem.
Collapse
|
6
|
Manish M, Verma S, Kandari D, Kulshreshtha P, Singh S, Bhatnagar R. Anthrax prevention through vaccine and post-exposure therapy. Expert Opin Biol Ther 2020; 20:1405-1425. [DOI: 10.1080/14712598.2020.1801626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Manish Manish
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Shashikala Verma
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Parul Kulshreshtha
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Samer Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Kondakova OA, Nikitin NA, Evtushenko EA, Ryabchevskaya EM, Atabekov JG, Karpova OV. Vaccines against anthrax based on recombinant protective antigen: problems and solutions. Expert Rev Vaccines 2019; 18:813-828. [PMID: 31298973 DOI: 10.1080/14760584.2019.1643242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Anthrax is a dangerous bio-terror agent because Bacillus anthracis spores are highly resilient and can be easily aerosolized and disseminated. There is a threat of deliberate use of anthrax spores aerosol that could lead to serious fatal diseases outbreaks. Existing control measures against inhalation form of the disease are limited. All of this has provided an impetus to the development of new generation vaccines. Areas сovered: This review is devoted to challenges and achievements in the design of vaccines based on the anthrax recombinant protective antigen (rPA). Scientific databases have been searched, focusing on causes of PA instability and solutions to this problem, including new approaches of rPA expression, novel rPA-based vaccines formulations as well as the simultaneous usage of PA with other anthrax antigens. Expert opinion: PA is a central anthrax toxin component, playing a key role in the defense against encapsulated and unencapsulated strains. Subunit rPA-based vaccines have a good safety and protective profile. However, there are problems of PA instability that are greatly enhanced when using aluminum adjuvants. New adjuvant compositions, dry formulations and resistant to proteolysis and deamidation mutant PA forms can help to handle this issue. Devising a modern anthrax vaccine requires huge efforts.
Collapse
Affiliation(s)
- Olga A Kondakova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Nikolai A Nikitin
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina A Evtushenko
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Ekaterina M Ryabchevskaya
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Joseph G Atabekov
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Olga V Karpova
- a Department of Virology, Faculty of Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| |
Collapse
|
8
|
Jiang J, Banglore P, Cashman KA, Schmaljohn CS, Schultheis K, Pugh H, Nguyen J, Humeau LM, Broderick KE, Ramos SJ. Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Hum Vaccin Immunother 2019; 15:2066-2074. [PMID: 31071008 PMCID: PMC6773375 DOI: 10.1080/21645515.2019.1616499] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lassa virus (LASV) is a hemorrhagic fever virus of the Arenaviridae family with high rates of mortality and co-morbidities, including chronic seizures and permanent bilateral or unilateral deafness. LASV is endemic in West Africa and Lassa fever accounts for 10-16% of hospitalizations annually in parts of Sierra Leone and Liberia according to the CDC. An ongoing outbreak in Nigeria has resulted in 144 deaths in 568 cases confirmed as LASV as of November 2018, with many more suspected, highlighting the urgent need for a vaccine to prevent this severe disease. We previously reported on a DNA vaccine encoding a codon-optimized LASV glycoprotein precursor gene, pLASV-GPC, which completely protects Guinea pigs and nonhuman primates (NHPs) against viremia, clinical disease, and death following lethal LASV challenge. Herein we report on the immunogenicity profile of the LASV DNA vaccine in protected NHPs. Antigen-specific binding antibodies were generated in 100% (6/6) NHPs after two immunizations with pLASV-GPC. These antibodies bound predominantly to the assembled LASV glycoprotein complex and had robust neutralizing activity in a pseudovirus assay. pLASV-GPC DNA-immunized NHPs (5/6) also developed T cell responses as measured by IFNγ ELISpot assay. These results revealed that the pLASV-GPC DNA vaccine is capable of generating functional, LASV-specific T cell and antibody responses, and the assays developed in this study will provide a framework to identify correlates of protection and characterize immune responses in future clinical trials.
Collapse
Affiliation(s)
- Jingjing Jiang
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Preeti Banglore
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Kathleen A. Cashman
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Connie S. Schmaljohn
- Office of the Chief Scientists, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | | | - Holly Pugh
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Jacklyn Nguyen
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Laurent M. Humeau
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Kate E. Broderick
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA
| | - Stephanie J. Ramos
- Research & Development, Inovio Pharmaceuticals Inc, Plymouth Meeting, PA, USA,CONTACT Stephanie J. Ramos 10480 Wateridge Circle, San Diego, CA 92121, USA
| |
Collapse
|
9
|
Sheng Z, Chen H, Feng K, Gao N, Wang R, Wang P, Fan D, An J. Electroporation-Mediated Immunization of a Candidate DNA Vaccine Expressing Dengue Virus Serotype 4 prM-E Antigen Confers Long-Term Protection in Mice. Virol Sin 2019; 34:88-96. [PMID: 30790202 DOI: 10.1007/s12250-019-00090-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
Dengue fever, caused by dengue viruses (DENVs), is a widespread mosquito-borne zoonotic disease; however, there is no available anti-dengue vaccine for worldwide use. In the current study, a DNA vaccine candidate (pV-D4ME) expressing prM-E protein of DENV serotype 4 (DENV-4) was constructed, and its immunogenicity and protection were evaluated in immunocompetent BALB/c mice. The pV-D4ME candidate vaccine induced effective humoral and cellular immunity of mice against DENV-4 in vivo when administered both at 50 μg and 5 μg through electroporation. Two weeks after receiving three immunizations, both doses of pV-D4ME DNA were shown to confer effective protection against lethal DENV-4 challenge. Notably, at 6 months after the three immunizations, 50 μg, but not 5 μg, of pV-D4ME could provide stable protection (100% survival rate) against DENV-4 lethal challenge without any obvious clinical signs. These results suggest that immunization with 50 μg pV-D4ME through electroporation could confer effective and long-term protection against DENV-4, offering a promising approach for development of a novel DNA vaccine against DENVs.
Collapse
Affiliation(s)
- Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hui Chen
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaihao Feng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ran Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100093, China.
| |
Collapse
|
10
|
Smith TRF, Schultheis K, Broderick KE. Nucleic acid-based vaccines targeting respiratory syncytial virus: Delivering the goods. Hum Vaccin Immunother 2018; 13:2626-2629. [PMID: 28881156 PMCID: PMC5703370 DOI: 10.1080/21645515.2017.1363134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a massive medical burden on a global scale. Infants, children and the elderly represent the vulnerable populations. Currently there is no approved vaccine to protect against the disease. Vaccine development has been hindered by several factors including vaccine enhanced disease (VED) associated with formalin-inactivated RSV vaccines, inability of target populations to raise protective immune responses after vaccination or natural viral infection, and a lack of consensus concerning the most appropriate virus-associated target antigen. However, with recent advances in the molecular understanding of the virus, and design of highly characterized vaccines with enhanced immunogenicity there is new belief a RSV vaccine is possible. One promising approach is nucleic acid-based vaccinology. Both DNA and mRNA RSV vaccines are showing promising results in clinically relevant animal models, supporting their transition into humans. Here we will discuss this strategy to target RSV, and the ongoing studies to advance the nucleic acid vaccine platform as a viable option to protect vulnerable populations from this important disease.
Collapse
|
11
|
Adipose tissue: a new target for electroporation-enhanced DNA vaccines. Gene Ther 2017; 24:757-767. [PMID: 29106403 PMCID: PMC5746593 DOI: 10.1038/gt.2017.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
Abstract
DNA vaccines delivered using electroporation (EP) have had clinical success, but these EP methods generally utilize invasive needle electrodes. Here, we demonstrate the delivery and immunogenicity of a DNA vaccine into subcutaneous adipose tissue cells using noninvasive EP. Using finite element analysis, we predicted that plate electrodes, when oriented properly, could effectively concentrate the electric field within adipose tissue. In practice, these electrodes generated widespread gene expression persisting for at least 60 days in vivo within interscapular subcutaneous fat pads of guinea pigs. We then applied this adipose-EP protocol to deliver a DNA vaccine coding for an influenza antigen into guinea pigs. The resulting host immune responses elicited were of a similar magnitude to those achieved by skin delivery with EP. The onset of the humoral immune response was more rapid when the DNA dose was spread over multiple injection sites, and increasing the voltage of the EP device increased the magnitude of the immune response. This study supports further development of EP protocols delivering gene-based therapies to subcutaneous fat.
Collapse
|
12
|
The Electrode Modality Development in Pulsed Electric Field Treatment Facilitates Biocellular Mechanism Study and Improves Cancer Ablation Efficacy. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3624613. [PMID: 29065589 PMCID: PMC5438864 DOI: 10.1155/2017/3624613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Abstract
Pulsed electric field treatment is now widely used in diverse biological and medical applications: gene delivery, electrochemotherapy, and cancer therapy. This minimally invasive technique has several advantages over traditional ablation techniques, such as nonthermal elimination and blood vessel spare effect. Different electrodes are subsequently developed for a specific treatment purpose. Here, we provide a systematic review of electrode modality development in pulsed electric field treatment. For electrodes invented for experiment in vitro, sheet electrode and electrode cuvette, electrodes with high-speed fluorescence imaging system, electrodes with patch-clamp, and electrodes with confocal laser scanning microscopy are introduced. For electrodes invented for experiment in vivo, monopolar electrodes, five-needle array electrodes, single-needle bipolar electrode, parallel plate electrodes, and suction electrode are introduced. The pulsed electric field provides a promising treatment for cancer.
Collapse
|
13
|
Kachura MA, Hickle C, Kell SA, Sathe A, Calacsan C, Kiwan R, Hall B, Milley R, Ott G, Coffman RL, Kanzler H, Campbell JD. A CpG-Ficoll Nanoparticle Adjuvant for Anthrax Protective Antigen Enhances Immunogenicity and Provides Single-Immunization Protection against Inhaled Anthrax in Monkeys. THE JOURNAL OF IMMUNOLOGY 2015; 196:284-97. [PMID: 26608924 DOI: 10.4049/jimmunol.1501903] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023]
Abstract
Nanoparticulate delivery systems for vaccine adjuvants, designed to enhance targeting of secondary lymphoid organs and activation of APCs, have shown substantial promise for enhanced immunopotentiation. We investigated the adjuvant activity of synthetic oligonucleotides containing CpG-rich motifs linked to the sucrose polymer Ficoll, forming soluble 50-nm particles (DV230-Ficoll), each containing >100 molecules of the TLR9 ligand, DV230. DV230-Ficoll was evaluated as an adjuvant for a candidate vaccine for anthrax using recombinant protective Ag (rPA) from Bacillus anthracis. A single immunization with rPA plus DV230-Ficoll induced 10-fold higher titers of toxin-neutralizing Abs in cynomolgus monkeys at 2 wk compared with animals immunized with equivalent amounts of monomeric DV230. Monkeys immunized either once or twice with rPA plus DV230-Ficoll were completely protected from challenge with 200 LD50 aerosolized anthrax spores. In mice, DV230-Ficoll was more potent than DV230 for the induction of innate immune responses at the injection site and draining lymph nodes. DV230-Ficoll was preferentially colocalized with rPA in key APC populations and induced greater maturation marker expression (CD69 and CD86) on these cells and stronger germinal center B and T cell responses, relative to DV230. DV230-Ficoll was also preferentially retained at the injection site and draining lymph nodes and produced fewer systemic inflammatory responses. These findings support the development of DV230-Ficoll as an adjuvant platform, particularly for vaccines such as for anthrax, for which rapid induction of protective immunity and memory with a single injection is very important.
Collapse
Affiliation(s)
| | | | | | - Atul Sathe
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | - Brian Hall
- Amnis Corp., EMD Millipore, Seattle, WA 98119
| | | | - Gary Ott
- Dynavax Technologies, Berkeley, CA 94710; and
| | | | | | | |
Collapse
|
14
|
Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge. PLoS One 2015; 10:e0139671. [PMID: 26430894 PMCID: PMC4591996 DOI: 10.1371/journal.pone.0139671] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022] Open
Abstract
Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats.
Collapse
|
15
|
Aghazadeh-Habashi A, Yang Y, Tang K, Lőbenberg R, Doschak MR. Transdermal drug delivery: feasibility for treatment of superficial bone stress fractures. Drug Deliv Transl Res 2015; 5:540-51. [DOI: 10.1007/s13346-015-0257-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Comprehensive analysis and selection of anthrax vaccine adsorbed immune correlates of protection in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1512-20. [PMID: 25185577 DOI: 10.1128/cvi.00469-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Humoral and cell-mediated immune correlates of protection (COP) for inhalation anthrax in a rhesus macaque (Macaca mulatta) model were determined. The immunological and survival data were from 114 vaccinated and 23 control animals exposed to Bacillus anthracis spores at 12, 30, or 52 months after the first vaccination. The vaccinated animals received a 3-dose intramuscular priming series (3-i.m.) of anthrax vaccine adsorbed (AVA) (BioThrax) at 0, 1, and 6 months. The immune responses were modulated by administering a range of vaccine dilutions. Together with the vaccine dilution dose and interval between the first vaccination and challenge, each of 80 immune response variables to anthrax toxin protective antigen (PA) at every available study time point was analyzed as a potential COP by logistic regression penalized by least absolute shrinkage and selection operator (LASSO) or elastic net. The anti-PA IgG level at the last available time point before challenge (last) and lymphocyte stimulation index (SI) at months 2 and 6 were identified consistently as a COP. Anti-PA IgG levels and lethal toxin neutralization activity (TNA) at months 6 and 7 (peak) and the frequency of gamma interferon (IFN-γ)-secreting cells at month 6 also had statistically significant positive correlations with survival. The ratio of interleukin 4 (IL-4) mRNA to IFN-γ mRNA at month 6 also had a statistically significant negative correlation with survival. TNA had lower accuracy as a COP than did anti-PA IgG response. Following the 3-i.m. priming with AVA, the anti-PA IgG responses at the time of exposure or at month 7 were practicable and accurate metrics for correlating vaccine-induced immunity with protection against inhalation anthrax.
Collapse
|
17
|
Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges. Annu Rev Biomed Eng 2014; 16:295-320. [DOI: 10.1146/annurev-bioeng-071813-104622] [Citation(s) in RCA: 519] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Martin L. Yarmush
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Burn Hospital for Children, Boston, Massachusetts 02114; email (M.L.Y.):
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854;
| | - Alexander Golberg
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School and Shriners Burn Hospital for Children, Boston, Massachusetts 02114; email (M.L.Y.):
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Tadej Kotnik
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Damijan Miklavčič
- Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
18
|
Grunwald T, Tenbusch M, Schulte R, Raue K, Wolf H, Hannaman D, de Swart RL, Überla K, Stahl-Hennig C. Novel vaccine regimen elicits strong airway immune responses and control of respiratory syncytial virus in nonhuman primates. J Virol 2014; 88:3997-4007. [PMID: 24453366 PMCID: PMC3993754 DOI: 10.1128/jvi.02736-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/11/2014] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Induction of long-lasting immunity against viral respiratory tract infections remains an elusive goal. Using a nonhuman primate model of human respiratory syncytial virus (hRSV) infection, we compared mucosal and systemic immune responses induced by different DNA delivery approaches to a novel parenteral DNA prime-tonsillar adenoviral vector booster immunization regimen. Intramuscular (i.m.) electroporation (EP) of a DNA vaccine encoding the fusion protein of hRSV induced stronger systemic immune responses than intradermal EP, tattoo immunization, and conventional i.m. DNA injection. A single EP i.m., followed by two atraumatic tonsillar immunizations with the adenoviral vector, elicited strong systemic immune responses, an unique persistent CD4(+) and CD8(+) T cell response in the lower respiratory tract and protection from intranasal hRSV challenge. Thus, parenteral DNA priming followed by booster immunization targeted to a mucosal inductive site constitutes an effective vaccine regimen for eliciting protective immune responses at mucosal effector sites. IMPORTANCE The human respiratory syncytial virus (hRSV) is the most common cause of severe respiratory tract disease in infancy and leads to substantial morbidity and morality in the elderly. In this study, we compared the immunogenicity and efficacy of several gene-based immunization protocols in rhesus macaques. Thereby, we found that the combination of an initially parenterally delivered DNA vaccine with a subsequent atraumatic tonsillar adenoviral vector immunization results in a strong systemic immune response accompanied by an exceptional high T-cell response in the mucosa. Strikingly, these animals were protected against a RSV challenge infection controlling the viral replication indicated by a 1,000-fold-lower viral load in the lower respiratory tract. Since mucosal cellular responses of this strength had not been described in earlier RSV vaccine studies, this heterologous DNA prime-tonsillar boost vaccine strategy is very promising and should be pursued for further preclinical and clinical testing.
Collapse
Affiliation(s)
- Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | - Reiner Schulte
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Katharina Raue
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Hans Wolf
- Institute for Medical Microbiology and Hygiene, Regensburg, Germany
| | - Drew Hannaman
- Ichor Medical Systems, Inc., San Diego, California, USA
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | | |
Collapse
|
19
|
Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells. Cell Biosci 2014; 4:11. [PMID: 24594273 PMCID: PMC4015858 DOI: 10.1186/2045-3701-4-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 01/05/2023] Open
Abstract
Human papillomavirus (HPV) infections are particularly problematic for HIV + and solid organ transplant patients with compromised CD4+ T cell-dependent immunity as they produce more severe and progressive disease compared to healthy individuals. There are no specific treatments for chronic HPV infection, resulting in an urgent unmet need for a modality that is safe and effective for both immunocompromised and otherwise normal patients with recalcitrant disease. DNA vaccination is attractive because it avoids the risks of administration of live vectors to immunocompromised patients, and can induce potent HPV-specific cytotoxic T cell responses. We have developed a DNA vaccine (pNGVL4a-hCRTE6E7L2) encoding calreticulin (CRT) fused to E6, E7 and L2 proteins of HPV-16, the genotype associated with approximately 90% vaginal, vulvar, anal, penile and oropharyngeal HPV-associated cancers and the majority of cervical cancers. Administration of the DNA vaccine by intramuscular (IM) injection followed by electroporation induced significantly greater HPV-specific immune responses compared to IM injection alone or mixed with alum. Furthermore, pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation of mice carrying an intravaginal HPV-16 E6/E7-expressing syngeneic tumor demonstrated more potent therapeutic effects than IM vaccination alone. Of note, administration of the DNA vaccine by IM injection followed by electroporation elicited potent E6 and E7-specific CD8+ T cell responses and antitumor effects despite CD4+ T cell-depletion, although no antibody response was detected. While CD4+ T cell-depletion did reduce the E6 and E7-specific CD8+ T cell response, it remained sufficient to prevent subcutaneous tumor growth and to eliminate circulating tumor cells in a model of metastatic HPV-16+ cancer. Thus, the antibody response was CD4-dependent, whereas CD4+ T cell help enhanced the E6/E7-specific CD8+ T cell immunity, but was not required. Taken together, our data suggest that pNGVL4a-hCRTE6E7L2 DNA vaccination via electroporation warrants testing in otherwise healthy patients and those with compromised CD4+ T cell immunity to treat HPV-16-associated anogenital disease and cancer.
Collapse
|
20
|
Schoellhammer CM, Blankschtein D, Langer R. Skin permeabilization for transdermal drug delivery: recent advances and future prospects. Expert Opin Drug Deliv 2014; 11:393-407. [PMID: 24392787 PMCID: PMC3980659 DOI: 10.1517/17425247.2014.875528] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Transdermal delivery has potential advantages over other routes of administration. It could reduce first-pass metabolism associated with oral delivery and is less painful than injections. However, the outermost layer of the skin, the stratum corneum (SC), limits passive diffusion to small lipophilic molecules. Therefore, methods are needed to safely permeabilize the SC so that ionic and larger molecules may be delivered transdermally. AREAS COVERED This review focuses on low-frequency sonophoresis, microneedles, electroporation and iontophoresis, and combinations of these methods to permeabilize the SC. The mechanisms of enhancements and developments in the last 5 years are discussed. Potentially high-impact applications, including protein delivery, vaccination and sensing are presented. Finally, commercial interest and clinical trials are discussed. EXPERT OPINION Not all permeabilization methods are appropriate for all applications. Focused studies into applications utilizing the advantages of each method are needed. The total dose and kinetics of delivery must be considered. Vaccination is one application where permeabilization methods could make an impact. Protein delivery and analyte sensing are also areas of potential impact, although the amount of material that can be delivered (or extracted) is of critical importance. Additional work on the miniaturization of these technologies will help to increase commercial interest.
Collapse
Affiliation(s)
- Carl M Schoellhammer
- Massachusetts Institute of Technology, Department of Chemical Engineering , Room 76-661, 77 Massachusetts Avenue, Cambridge, MA 02139 , USA +1 617 253 3107 ; +1 617 258 8827 ;
| | | | | |
Collapse
|
21
|
van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 2014; 9:503-17. [DOI: 10.1586/erv.10.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Abstract
Vaccines to prevent HIV remain desperately needed, but a number of challenges, including retroviral integration, establishment of anatomic reservoir sites, high sequence diversity, and heavy envelope glycosylation. have precluded development of a highly effective vaccine. DNA vaccines have been utilized as candidate HIV vaccines because of their ability to generate cellular and humoral immune responses, the lack of anti-vector response allowing for repeat administration, and their ability to prime the response to viral-vectored vaccines. Because the HIV epidemic has disproportionately affected the developing world, the favorable thermostability profile and relative ease and low cost of manufacture of DNA vaccines offer additional advantages. In vivo electroporation (EP) has been utilized to improve immune responses to DNA vaccines as candidate HIV-1 vaccines in standalone or prime-boost regimens with both proteins and viral-vectored vaccines in several animal models and, more recently, in human clinical trials. This chapter describes the preclinical and clinical development of candidate DNA vaccines for HIV-1 delivered by EP, including challenges to bringing this technology to the developing world.
Collapse
Affiliation(s)
- Sandhya Vasan
- Department of Retrovirology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| |
Collapse
|
23
|
Wright JG, Plikaytis BD, Rose CE, Parker SD, Babcock J, Keitel W, El Sahly H, Poland GA, Jacobson RM, Keyserling HL, Semenova VA, Li H, Schiffer J, Dababneh H, Martin SK, Martin SW, Marano N, Messonnier NE, Quinn CP. Effect of reduced dose schedules and intramuscular injection of anthrax vaccine adsorbed on immunological response and safety profile: a randomized trial. Vaccine 2013; 32:1019-28. [PMID: 24373307 DOI: 10.1016/j.vaccine.2013.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We evaluated an alternative administration route, reduced schedule priming series, and increased intervals between booster doses for anthrax vaccine adsorbed (AVA). AVA's originally licensed schedule was 6 subcutaneous (SQ) priming injections administered at months (m) 0, 0.5, 1, 6, 12 and 18 with annual boosters; a simpler schedule is desired. METHODS Through a multicenter randomized, double blind, non-inferiority Phase IV human clinical trial, the originally licensed schedule was compared to four alternative and two placebo schedules. 8-SQ group participants received 6 SQ injections with m30 and m42 "annual" boosters; participants in the 8-IM group received intramuscular (IM) injections according to the same schedule. Reduced schedule groups (7-IM, 5-IM, 4-IM) received IM injections at m0, m1, m6; at least one of the m0.5, m12, m18, m30 vaccine doses were replaced with saline. All reduced schedule groups received a m42 booster. Post-injection blood draws were taken two to four weeks following injection. Non-inferiority of the alternative schedules was compared to the 8-SQ group at m2, m7, and m43. Reactogenicity outcomes were proportions of injection site and systemic adverse events (AEs). RESULTS The 8-IM group's m2 response was non-inferior to the 8-SQ group for the three primary endpoints of anti-protective antigen IgG geometric mean concentration (GMC), geometric mean titer, and proportion of responders with a 4-fold rise in titer. At m7 anti-PA IgG GMCs for the three reduced dosage groups were non-inferior to the 8-SQ group GMCs. At m43, 8-IM, 5-IM, and 4-IM group GMCs were superior to the 8-SQ group. Solicited injection site AEs occurred at lower proportions in the IM group compared to SQ. Route of administration did not influence the occurrence of systemic AEs. A 3 dose IM priming schedule with doses administered at m0, m1, and m6 elicited long term immunological responses and robust immunological memory that was efficiently stimulated by a single booster vaccination at 42 months. CONCLUSIONS A priming series of 3 intramuscular doses administered at m0, m1, and m6 with a triennial booster was non-inferior to more complex schedules for achieving antibody response.
Collapse
Affiliation(s)
- Jennifer G Wright
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States.
| | - Brian D Plikaytis
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Charles E Rose
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Scott D Parker
- Alabama Vaccine Research Clinic, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL 35294-2050, United States
| | - Janiine Babcock
- Walter Reed Army Institute for Research, 503 Robert Grant Avenue, Silver Springs, MD 20910-7500, United States
| | - Wendy Keitel
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Hana El Sahly
- Departments of Molecular Virology & Microbiology and Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Gregory A Poland
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Robert M Jacobson
- Mayo Clinic and Foundation, 611C Guggenheim Building, 200 First Street SW, Rochester, MN 55905, United States
| | - Harry L Keyserling
- Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322, United States
| | - Vera A Semenova
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Han Li
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Jarad Schiffer
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Hanan Dababneh
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Sandra K Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Stacey W Martin
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nina Marano
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Nancy E Messonnier
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| | - Conrad P Quinn
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, United States
| |
Collapse
|
24
|
Flingai S, Czerwonko M, Goodman J, Kudchodkar SB, Muthumani K, Weiner DB. Synthetic DNA vaccines: improved vaccine potency by electroporation and co-delivered genetic adjuvants. Front Immunol 2013; 4:354. [PMID: 24204366 PMCID: PMC3816528 DOI: 10.3389/fimmu.2013.00354] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/20/2013] [Indexed: 01/07/2023] Open
Abstract
In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.
Collapse
Affiliation(s)
- Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | | | | | | | | | | |
Collapse
|
25
|
Stab V, Nitsche S, Niezold T, Storcksdieck genannt Bonsmann M, Wiechers A, Tippler B, Hannaman D, Ehrhardt C, Überla K, Grunwald T, Tenbusch M. Protective efficacy and immunogenicity of a combinatory DNA vaccine against Influenza A Virus and the Respiratory Syncytial Virus. PLoS One 2013; 8:e72217. [PMID: 23967287 PMCID: PMC3743785 DOI: 10.1371/journal.pone.0072217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/05/2013] [Indexed: 12/18/2022] Open
Abstract
The Respiratory Syncytial Virus (RSV) and Influenza A Virus (IAV) are both two major causative agents of severe respiratory tract infections in humans leading to hospitalization and thousands of deaths each year. In this study, we evaluated the immunogenicity and efficacy of a combinatory DNA vaccine in comparison to the single component vaccines against both diseases in a mouse model. Intramuscular electroporation with plasmids expressing the hemagglutinin (HA) of IAV and the F protein of RSV induced strong humoral immune responses regardless if they were delivered in combination or alone. In consequence, high neutralizing antibody titers were detected, which conferred protection against a lethal challenge with IAV. Furthermore, the viral load in the lungs after a RSV infection could be dramatically reduced in vaccinated mice. Concurrently, substantial amounts of antigen-specific, polyfunctional CD8⁺ T-cells were measured after vaccination. Interestingly, the cellular response to the hemagglutinin was significantly reduced in the presence of the RSV-F encoding plasmid, but not vice versa. Although these results indicate a suppressive effect of the RSV-F protein, the protective efficacy of the combinatory vaccine was comparable to the efficacy of both single-component vaccines. In conclusion, the novel combinatory vaccine against RSV and IAV may have great potential to reduce the rate of severe respiratory tract infections in humans without increasing the number of necessary vaccinations.
Collapse
Affiliation(s)
- Viktoria Stab
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Sandra Nitsche
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | | | - Andrea Wiechers
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Bettina Tippler
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Drew Hannaman
- Ichor Medical Systems, San Diego, California, United States of America
| | - Christina Ehrhardt
- Institute of Molecular Virology, Centre of Molecular Biology of Inflammation, Westfaelische Wilhelms University, Muenster, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Grunwald
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
26
|
Merkel TJ, Perera PY, Lee GM, Verma A, Hiroi T, Yokote H, Waldmann TA, Perera LP. Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection. Hum Vaccin Immunother 2013; 9:1841-8. [PMID: 23787486 DOI: 10.4161/hv.25337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An intense effort has been launched to develop improved anthrax vaccines that confer rapid, long lasting protection preferably with an extended stability profile amenable for stockpiling. Protective antigen (PA)-based vaccines are most favored as immune responses directed against PA are singularly protective, although the actual protective mechanism remains to be unraveled. Herein we show that contrary to the prevailing view, an efficacious PA-based vaccine confers protection against inhalation anthrax by preventing the establishment of a toxin-releasing systemic infection. Equally importantly, antibodies measured by the in vitro lethal toxin neutralization activity assay (TNA) that is considered as a reliable correlate of protection, especially for PA protein-based vaccines adjuvanted with aluminum salts appear to be not absolutely essential for this protective immune response.
Collapse
Affiliation(s)
- Tod J Merkel
- Center for Biologics Evaluation and Research; Food and Drug Administration; Bethesda, MD USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Assessment of delivery parameters with the multi-electrode array for development of a DNA vaccine against Bacillus anthracis. Bioelectrochemistry 2013; 94:1-6. [PMID: 23727769 DOI: 10.1016/j.bioelechem.2013.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022]
Abstract
Gene electrotransfer (GET) enhances delivery of DNA vaccines by increasing both gene expression and immune responses. Our lab has developed the multi-electrode array (MEA) for DNA delivery to skin. The MEA was used at constant pulse duration (150 ms) and frequency (6.67 Hz). In this study, delivery parameters including applied voltage (5-45 V), amount of plasmid (100-300 μg), and number of treatments (2-3) were evaluated for delivery of a DNA vaccine. Mice were intradermally injected with plasmid expressing Bacillus anthracis protective antigen with or without GET and αPA serum titers measured. Within this experiment no significant differences were noted in antibody levels from varying dose or treatment number. However, significant differences were measured from applied voltages of 25 and 35 V. These voltages generated antibody levels between 20,000 and 25,000. Serum from animals vaccinated with these conditions also resulted in toxin neutralization in 40-60% of animals. Visual damage was noted at MEA conditions of 40 V. No damage was noted either visually or histologically from conditions of 35 V or below. These results reflect the importance of establishing appropriate electrical parameters and the potential for the MEA in non-invasive DNA vaccination against B. anthracis.
Collapse
|
28
|
A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1730-45. [PMID: 22933399 DOI: 10.1128/cvi.00324-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 3-dose (0, 1, and 6 months) intramuscular (3-IM) priming series of a human dose (HuAVA) and dilutions of up to 1:10 of anthrax vaccine adsorbed (AVA) provided statistically significant levels of protection (60 to 100%) against inhalation anthrax for up to 4 years in rhesus macaques. Serum anti-protective antigen (anti-PA) IgG and lethal toxin neutralization activity (TNA) were detectable following a single injection of HuAVA or 1:5 AVA or following two injections of diluted vaccine (1:10, 1:20, or 1:40 AVA). Anti-PA and TNA were highly correlated (overall r(2) = 0.89 for log(10)-transformed data). Peak responses were seen at 6.5 months. In general, with the exception of animals receiving 1:40 AVA, serum anti-PA and TNA responses remained significantly above control levels at 28.5 months (the last time point measured for 1:20 AVA), and through 50.5 months for the HuAVA and 1:5 and 1:10 AVA groups (P < 0.05). PA-specific gamma interferon (IFN-γ) and interleukin-4 (IL-4) CD4(+) cell frequencies and T cell stimulation indices were sustained through 50.5 months (the last time point measured). PA-specific memory B cell frequencies were highly variable but, in general, were detectable in peripheral blood mononuclear cells (PBMC) by 2 months, were significantly above control levels by 7 months, and remained detectable in the HuAVA and 1:5 and 1:20 AVA groups through 42 months (the last time point measured). HuAVA and diluted AVA elicited a combined Th1/Th2 response and robust immunological priming, with sustained production of high-avidity PA-specific functional antibody, long-term immune cell competence, and immunological memory (30 months for 1:20 AVA and 52 months for 1:10 AVA). Vaccinated animals surviving inhalation anthrax developed high-magnitude anamnestic anti-PA IgG and TNA responses.
Collapse
|
29
|
Tenbusch M, Ignatius R, Nchinda G, Trumpfheller C, Salazar AM, Töpfer K, Sauermann U, Wagner R, Hannaman D, Tenner-Racz K, Racz P, Stahl-Hennig C, Überla K. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques. PLoS One 2012; 7:e39038. [PMID: 22720025 PMCID: PMC3373620 DOI: 10.1371/journal.pone.0039038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 05/15/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Targeting antigens encoded by DNA vaccines to dendritic cells (DCs) in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.
Collapse
Affiliation(s)
- Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Ralf Ignatius
- Institute of Tropical Medicine and International Health, Charité – University Medicine of Berlin, Berlin, Germany
| | - Godwin Nchinda
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | - Christine Trumpfheller
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | | | - Katharina Töpfer
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | | | - Drew Hannaman
- Ichor Medical Systems, San Diego, California, United States of America
| | | | - Paul Racz
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
- * E-mail:
| |
Collapse
|
30
|
Markelc B, Bellard E, Sersa G, Pelofy S, Teissie J, Coer A, Golzio M, Cemazar M. In vivo molecular imaging and histological analysis of changes induced by electric pulses used for plasmid DNA electrotransfer to the skin: a study in a dorsal window chamber in mice. J Membr Biol 2012; 245:545-54. [PMID: 22644389 PMCID: PMC3464392 DOI: 10.1007/s00232-012-9435-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 04/30/2012] [Indexed: 12/21/2022]
Abstract
Electropermeabilization/electroporation (EP) is a physical method that by application of electric pulses to cells increases cell membrane permeability and enables the introduction of molecules into the cells. One of the uses of EP in vivo is plasmid DNA electrotransfer to the skin for DNA vaccination. EP of tissues induces reduction of blood flow and, in combination with plasmid DNA, induction of an immune response. One of the EP protocols for plasmid DNA electrotransfer to the skin is a combination of high-voltage (HV) and low-voltage (LV) pulses. However, the effects of this pulse combination on skin-vessel blood flow are not known. Therefore, using intravital microscopy in a dorsal window chamber in mice and fluorescently labeled dextrans, the effects of one HV and eight LV pulses on skin vasculature were investigated. In addition, a detailed histological analysis was performed. Image analysis of fluorescence intensity changes demonstrated that EP induces a transient constriction and increased permeability of blood vessels as well as a “vascular lock.” Histological analysis revealed rounding up of endothelial cells and stacking up of erythrocytes at 1 h after EP. In addition, extravasation of erythrocytes and leukocyte infiltration accompanied by edema were determined up to 24 h after EP. In conclusion, our results show that blood flow modifying effects of EP in skin contribute to the infiltration of immune cells in the exposed area. When combined with plasmid DNA for vaccination, this could enable the initial and prolonged contact of immune cells with encoded therapeutic proteins.
Collapse
Affiliation(s)
- Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Albrecht MT, Livingston BD, Pesce JT, Bell MG, Hannaman D, Keane-Myers AM. Electroporation of a multivalent DNA vaccine cocktail elicits a protective immune response against anthrax and plague. Vaccine 2012; 30:4872-83. [PMID: 22633906 DOI: 10.1016/j.vaccine.2012.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/03/2012] [Accepted: 04/22/2012] [Indexed: 10/28/2022]
Abstract
Electroporation of DNA vaccines represents a platform technology well positioned for the development of multivalent biodefense vaccines. To evaluate this hypothesis, three vaccine constructs were produced using codon-optimized genes encoding Bacillus anthracis Protective Antigen (PA), and the Yersinia pestis genes LcrV and F1, cloned into pVAX1. A/J mice were immunized on a prime-boost schedule with these constructs using the electroporation-based TriGrid Delivery System. Immunization with the individual pDNA vaccines elicited higher levels of antigen-specific IgG than when used in combination. DNA vaccine effectiveness was proven, the pVAX-PA titers were toxin neutralizing and fully protective against a lethal B. anthracis spore challenge when administered alone or co-formulated with the plague pDNA vaccines. LcrV and F1 pVAX vaccines against plague were synergistic, resulting in 100% survival, but less protective individually and when co-formulated with pVAX-PA. These DNA vaccine responses were Th1/Th2 balanced with high levels of IFN-γ and IL-4 in splenocyte recall assays, contrary to complimentary protein Alum vaccinations displaying a Th2 bias with increased IL-4 and low levels of IFN-γ. These results demonstrate the feasibility of electroporation to deliver and maintain the overall efficacy of an anthrax-plague DNA vaccine cocktail whose individual components have qualitative immunological differences when combined.
Collapse
Affiliation(s)
- Mark T Albrecht
- Biological Defense Research Directorate, Naval Medical Research Center, 8400 Research Plaza, Fort Detrick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
32
|
Albrecht MT, Eyles JE, Baillie LW, Keane-Myers AM. Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model. ACTA ACUST UNITED AC 2012; 65:505-9. [PMID: 22515653 DOI: 10.1111/j.1574-695x.2012.00974.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/02/2012] [Accepted: 04/03/2012] [Indexed: 11/27/2022]
Abstract
The efficacy of multi-agent DNA vaccines consisting of a truncated gene encoding Bacillus anthracis lethal factor (LFn) fused to either Yersinia pestis V antigen (V) or Y . pestis F1 was evaluated. A/J mice were immunized by gene gun and developed predominantly IgG1 responses that were fully protective against a lethal aerosolized B. anthracis spore challenge but required the presence of an additional DNA vaccine expressing anthrax protective antigen to boost survival against aerosolized Y. pestis.
Collapse
Affiliation(s)
- Mark T Albrecht
- Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, MD, USA
| | | | | | | |
Collapse
|
33
|
Weaver JC, Smith KC, Esser AT, Son RS, Gowrishankar TR. A brief overview of electroporation pulse strength-duration space: a region where additional intracellular effects are expected. Bioelectrochemistry 2012; 87:236-43. [PMID: 22475953 DOI: 10.1016/j.bioelechem.2012.02.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 12/22/2022]
Abstract
Electroporation (EP) of outer cell membranes is widely used in research, biotechnology and medicine. Now intracellular effects by organelle EP are of growing interest, mainly due to nanosecond pulsed electric fields (nsPEF). For perspective, here we provide an approximate overview of EP pulse strength-duration space. This overview locates approximately some known effects and applications in strength-duration space, and includes a region where additional intracellular EP effects are expected. A feature of intracellular EP is direct, electrical redistribution of endogenous biochemicals among cellular compartments. For example, intracellular EP may initiate a multistep process for apoptosis. In this hypothesis, initial EP pulses release calcium from the endoplasmic reticulum, followed by calcium redistribution within the cytoplasm. With further EP pulses calcium penetrates mitochondrial membranes and causes changes that trigger release of cytochrome c and other death molecules. Apoptosis may therefore occur even in the presence of apoptotic inhibitors, using pulses that are smaller, but longer, than nsPEF.
Collapse
Affiliation(s)
- James C Weaver
- Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
34
|
Enhanced magnitude and breadth of neutralizing humoral response to a DNA vaccine targeting the DHBV envelope protein delivered by in vivo electroporation. Virology 2012; 425:61-9. [DOI: 10.1016/j.virol.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
|
35
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
36
|
Davtyan H, Ghochikyan A, Movsesyan N, Ellefsen B, Petrushina I, Cribbs DH, Hannaman D, Evans CF, Agadjanyan MG. Delivery of a DNA vaccine for Alzheimer's disease by electroporation versus gene gun generates potent and similar immune responses. NEURODEGENER DIS 2012; 10:261-4. [PMID: 22301697 DOI: 10.1159/000333359] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/11/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Induction of a humoral response against amyloid-β peptide may be beneficial for Alzheimer's disease (AD) patients and may alleviate the onset and progression of AD. DNA-based vaccination provides a unique alternative method of immunization for treatment and prevention of AD. Currently, the two major delivery methods used for enhancing DNA uptake and immune responses to DNA vaccines in humans are electroporation (EP) and gene gun (GG). OBJECTIVE The goal of this translational study was to evaluate the efficacy of an AD DNA epitope vaccine (DepVac) delivered intramuscularly by EP or intradermally by GG. METHODS Humoral and cellular immune responses to immunization with DepVac were evaluated by ELISA and ELISPOT, respectively. Functional activity of the antibodies was also assessed. RESULTS EP- and GG-mediated immunizations with DepVac induced similar anti-amyloid-β (Aβ) antibody and T cell responses. Anti-Aβ antibodies bound to amyloid plaques in AD brain tissue and to toxic forms of Aβ(42) peptide. CONCLUSION Both delivery methods are effective at promoting potent antibodies specific for Aβ.
Collapse
Affiliation(s)
- Hayk Davtyan
- Department of Molecular Immunology, Institute for Molecular Medicine, Huntington Beach, Calif 92647, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rochard A, Scherman D, Bigey P. Genetic immunization with plasmid DNA mediated by electrotransfer. Hum Gene Ther 2011; 22:789-98. [PMID: 21631165 DOI: 10.1089/hum.2011.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The concept of DNA immunization was first advanced in the early 1990s, but was not developed because of an initial lack of efficiency. Recent technical advances in plasmid design and gene delivery techniques have allowed renewed interest in the idea. Particularly, a better understanding of genetic immunization has led to construction of optimized plasmids and the use of efficient molecular adjuvants. The field also took great advantage of new delivery techniques such as electrotransfer. This is a simple physical technique consisting of injecting plasmid DNA into a target tissue and applying an electric field, allowing up to a thousandfold more expression of the transgene than naked DNA. DNA immunization mediated by electrotransfer is now effective in a variety of preclinical models against infectious or acquired diseases such as cancer or autoimmune diseases, and is making its way through the clinics in several ongoing phase I human clinical trials. This review will briefly describe genetic immunization mediated by electrotransfer and the main fields of application.
Collapse
Affiliation(s)
- Alice Rochard
- Unité de Pharmacologie Chimique et Génétique et d'Imagerie, CNRS, UMR8151, Paris, F-75006 France
| | | | | |
Collapse
|
38
|
Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011; 23:421-9. [PMID: 21530212 PMCID: PMC3109217 DOI: 10.1016/j.coi.2011.03.008] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 01/12/2023]
Abstract
A number of noteworthy technology advances in DNA vaccines research and development over the past few years have led to the resurgence of this field as a viable vaccine modality. Notably, these include--optimization of DNA constructs; development of new DNA manufacturing processes and formulations; augmentation of immune responses with novel encoded molecular adjuvants; and the improvement in new in vivo delivery strategies including electroporation (EP). Of these, EP mediated delivery has generated considerable enthusiasm and appears to have had a great impact in vaccine immunogenicity and efficacy by increasing antigen delivery upto a 1000 fold over naked DNA delivery alone. This increased delivery has resulted in an improved in vivo immune response magnitude as well as response rates relative to DNA delivery by direct injection alone. Indeed the immune responses and protection from pathogen challenge observed following DNA administration via EP in many cases are comparable or superior to other well studied vaccine platforms including viral vectors and live/attenuated/inactivated virus vaccines. Significantly, the early promise of EP delivery shown in numerous pre-clinical animal models of many different infectious diseases and cancer are now translating into equally enhanced immune responses in human clinical trials making the prospects for this vaccine approach to impact diverse disease targets tangible.
Collapse
Affiliation(s)
- Niranjan Y Sardesai
- Inovio Pharmaceuticals, 1787 Sentry Parkway, Blue Bell, PA 19422, United States.
| | | |
Collapse
|
39
|
Vasan S, Hurley A, Schlesinger SJ, Hannaman D, Gardiner DF, Dugin DP, Boente-Carrera M, Vittorino R, Caskey M, Andersen J, Huang Y, Cox JH, Tarragona-Fiol T, Gill DK, Cheeseman H, Clark L, Dally L, Smith C, Schmidt C, Park HH, Kopycinski JT, Gilmour J, Fast P, Bernard R, Ho DD. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers. PLoS One 2011; 6:e19252. [PMID: 21603651 PMCID: PMC3095594 DOI: 10.1371/journal.pone.0019252] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022] Open
Abstract
Background DNA-based vaccines have been safe but weakly immunogenic in humans to
date. Methods and Findings We sought to determine the safety, tolerability, and immunogenicity of ADVAX,
a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by
in vivo electroporation (EP) in a Phase-1,
double-blind, randomized placebo-controlled trial in healthy volunteers.
Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo
via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8.
A third vaccination was administered to eleven volunteers at week 36. EP was
safe, well-tolerated and considered acceptable for a prophylactic vaccine.
EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated
immunity by up to 70-fold over IM injection, as measured by gamma interferon
ELISpot. The number of antigens to which the response was detected improved
with EP and increasing dosage. Intracellular cytokine staining analysis of
ELISpot responders revealed both CD4+ and CD8+ T cell responses,
with co-secretion of multiple cytokines. Conclusions This is the first demonstration in healthy volunteers that EP is safe,
tolerable, and effective in improving the magnitude, breadth and durability
of cellular immune responses to a DNA vaccine candidate. Trial Registration ClinicalTrials.gov NCT00545987
Collapse
Affiliation(s)
- Sandhya Vasan
- Aaron Diamond AIDS Research Center, New York, New York, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
A DNA vaccine for venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:707-16. [PMID: 21450977 DOI: 10.1128/cvi.00030-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We evaluated the immunogenicity and protective efficacy of a DNA vaccine expressing codon-optimized envelope glycoprotein genes of Venezuelan equine encephalitis virus (VEEV) when delivered by intramuscular electroporation. Mice vaccinated with the DNA vaccine developed robust VEEV-neutralizing antibody responses that were comparable to those observed after administration of the live-attenuated VEEV vaccine TC-83 and were completely protected from a lethal aerosol VEEV challenge. The DNA vaccine also elicited strong neutralizing antibody responses in rabbits that persisted at high levels for at least 6 months and could be boosted by a single additional electroporation administration of the DNA performed approximately 6 months after the initial vaccinations. Cynomolgus macaques that received the vaccine by intramuscular electroporation developed substantial neutralizing antibody responses and after an aerosol challenge had no detectable serum viremia and had reduced febrile reactions, lymphopenia, and clinical signs of disease compared to those of negative-control macaques. Taken together, our results demonstrate that this DNA vaccine provides a potent means of protecting against VEEV infections and represents an attractive candidate for further development.
Collapse
|
41
|
Dolter KE, Evans CF, Ellefsen B, Song J, Boente-Carrera M, Vittorino R, Rosenberg TJ, Hannaman D, Vasan S. Immunogenicity, safety, biodistribution and persistence of ADVAX, a prophylactic DNA vaccine for HIV-1, delivered by in vivo electroporation. Vaccine 2011; 29:795-803. [DOI: 10.1016/j.vaccine.2010.11.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/20/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
|
42
|
Rao M, Peachman KK, Li Q, Matyas GR, Shivachandra SB, Borschel R, Morthole VI, Fernandez-Prada C, Alving CR, Rao VB. Highly effective generic adjuvant systems for orphan or poverty-related vaccines. Vaccine 2010; 29:873-7. [PMID: 21115053 DOI: 10.1016/j.vaccine.2010.11.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/14/2010] [Accepted: 11/15/2010] [Indexed: 11/19/2022]
Abstract
Safe and effective adjuvants are needed for many vaccines with limited commercial appeal, such as vaccines to infrequent (orphan) diseases or to neglected and poverty-related diseases. Here we found that three nonproprietary liposome formulations containing monophosphoryl lipid A each induced 3-fold to 5-fold increased titers of binding and neutralizing antibodies to anthrax protective antigen compared to aluminum hydroxide-adsorbed antigen in monkeys. All vaccinated monkeys were protected against lethal challenge with aerosolized Ames strain spores.
Collapse
Affiliation(s)
- Mangala Rao
- Division of Retrovirology, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, 1600 East Gude Drive, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Development of a highly efficacious vaccinia-based dual vaccine against smallpox and anthrax, two important bioterror entities. Proc Natl Acad Sci U S A 2010; 107:18091-6. [PMID: 20921397 DOI: 10.1073/pnas.1013083107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bioterrorism poses a daunting challenge to global security and public health in the 21st century. Variola major virus, the etiological agent of smallpox, and Bacillus anthracis, the bacterial pathogen responsible for anthrax, remain at the apex of potential pathogens that could be used in a bioterror attack to inflict mass casualties. Although licensed vaccines are available for both smallpox and anthrax, because of inadequacies associated with each of these vaccines, serious concerns remain as to the deployability of these vaccines, especially in the aftermath of a bioterror attack involving these pathogens. We have developed a single vaccine (Wyeth/IL-15/PA) using the licensed Wyeth smallpox vaccine strain that is efficacious against both smallpox and anthrax due to the integration of immune-enhancing cytokine IL-15 and the protective antigen (PA) of B. anthracis into the Wyeth vaccinia virus. Integration of IL-15 renders Wyeth vaccinia avirulent in immunodeficient mice and enhances anti-vaccinia immune responses. Wyeth/IL-15/PA conferred sterile protection against a lethal challenge of B. anthracis Ames strain spores in rabbits. A single dose of Wyeth/IL-15/PA protected 33% of the vaccinated A/J mice against a lethal spore challenge 72 h later whereas a single dose of licensed anthrax vaccine protected only 10%. Our dual vaccine Wyeth/IL-15/PA remedies the inadequacies associated with the licensed vaccines, and the inherent ability of Wyeth vaccinia virus to be lyophilized without loss of potency makes it cold-chain independent, thus simplifying the logistics of storage, stockpiling, and field delivery in the event of a bioterror attack involving smallpox or anthrax.
Collapse
|
44
|
Dupuy LC, Richards MJ, Reed DS, Schmaljohn CS. Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine 2010; 28:7345-50. [PMID: 20851089 DOI: 10.1016/j.vaccine.2010.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022]
Abstract
A study to evaluate the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus (VEEV) DNA vaccine in an aerosol model of nonhuman primate infection was performed. Cynomolgus macaques vaccinated with a plasmid expressing the 26S structural genes of VEEV subtype IAB by particle-mediated epidermal delivery (PMED) developed virus-neutralizing antibodies. No serum viremia was detected in two out of three macaques vaccinated with the VEEV DNA after aerosol challenge with homologous virus, while one displayed a low viremia on a single day postchallenge. In contrast, all three macaques vaccinated with empty vector DNA developed a high viremia that persisted for at least 3 days after challenge. In addition, macaques vaccinated with the VEEV DNA had reduced febrile reactions, lymphopenia, and clinical signs of disease postchallenge as compared to negative control macaques. Therefore, although the sample size was small in this pilot study, these results indicate that a VEEV DNA vaccine administered by PMED can at least partially protect nonhuman primates against an aerosol VEEV challenge.
Collapse
Affiliation(s)
- Lesley C Dupuy
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA.
| | | | | | | |
Collapse
|
45
|
DNA vaccine expressing HIV-1 gp120/immunoglobulin fusion protein enhances cellular immunity. Vaccine 2010; 28:4920-7. [DOI: 10.1016/j.vaccine.2010.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 04/30/2010] [Accepted: 05/16/2010] [Indexed: 11/23/2022]
|