1
|
Ho TL, Ahn SY, Ko EJ. Adjuvant potential of Peyssonnelia caulifera extract on the efficacy of an influenza vaccine in a murine model. Sci Rep 2024; 14:25353. [PMID: 39455811 PMCID: PMC11512024 DOI: 10.1038/s41598-024-76736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Natural adjuvants have recently garnered interest in the field of vaccinology as their immunostimulatory effects. In this study, we aimed to investigate the potential use of Peyssonnelia caulifera (PC), a marine alga, as a natural adjuvant for an inactivated split A/Puerto Rico/8/1934 H1N1 influenza vaccine (sPR8) in a murine model. We administered PC-adjuvanted vaccines to a murine model via intramuscular prime and boost vaccinations, and subsequently analyzed the induced immunological responses, particularly the production of antigen-specific IgG1 and IgG2a antibodies, memory T and B cell responses, and the protective efficacy against a lethal viral infection. PC extract significantly bolstered the vaccine efficacy, demonstrating balanced Th1/Th2 responses, increased memory T and B cell activities, and improved protection against viral infection. Notably, within 3 days post-vaccination, the PC adjuvant stimulated activation markers on dendritic cells (DCs) and macrophages at the inguinal lymph nodes (ILN), emphasizing its immunostimulatory capabilities. Furthermore, the safety profile of PC was confirmed, showing minimal local inflammation and no significant adverse effects post-vaccination. These findings contribute to our understanding of the immunomodulatory properties of natural adjuvants and suggest the promising roles of natural adjuvants in the development of more effective vaccines for infectious diseases.
Collapse
Affiliation(s)
- Thi Len Ho
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea
| | - So Yeon Ahn
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Eun-Ju Ko
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, Republic of Korea.
- Department of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea.
- Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
2
|
Pagh-Berendtsen N, Pavlovskyi A, Flores Téllez D, Egebjerg C, Kolmos MG, Justinussen J, Kornum BR. Downregulation of hypocretin/orexin after H1N1 Pandemrix vaccination of adolescent mice. Sleep 2024; 47:zsae014. [PMID: 38227834 DOI: 10.1093/sleep/zsae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Indexed: 01/18/2024] Open
Abstract
Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.
Collapse
Affiliation(s)
- Nicolai Pagh-Berendtsen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Artem Pavlovskyi
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Daniel Flores Téllez
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Christine Egebjerg
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Mie Gunni Kolmos
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Jessica Justinussen
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| | - Birgitte Rahbek Kornum
- Faculty of Health and Medical Sciences, Department of Neuroscience, University of Copenhagen, Denmark
| |
Collapse
|
3
|
A Self-Emulsified Adjuvant System Containing the Immune Potentiator Alpha Tocopherol Induces Higher Neutralizing Antibody Responses than a Squalene-Only Emulsion When Evaluated with a Recombinant Cytomegalovirus (CMV) Pentamer Antigen in Mice. Pharmaceutics 2023; 15:pharmaceutics15010238. [PMID: 36678865 PMCID: PMC9867524 DOI: 10.3390/pharmaceutics15010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The development of new vaccine adjuvants represents a key approach to improvingi the immune responses to recombinant vaccine antigens. Emulsion adjuvants, such as AS03 and MF59, in combination with influenza vaccines, have allowed antigen dose sparing, greater breadth of responses and fewer immunizations. It has been demonstrated previously that emulsion adjuvants can be prepared using a simple, low-shear process of self-emulsification (SE). The role of alpha tocopherol as an immune potentiator in emulsion adjuvants is clear from the success of AS03 in pandemic responses, both to influenza and COVID-19. Although it was a significant formulation challenge to include alpha tocopherol in an emulsion prepared by a low-shear process, the resultant self-emulsifying adjuvant system (SE-AS) showed a comparable effect to the established AS03 when used with a quadrivalent influenza vaccine (QIV). In this paper, we first optimized the SE-AS with alpha tocopherol to create SE-AS44, which allowed the emulsion to be sterile-filtered. Then, we compared the in vitro cell activation cytokine profile of SE-AS44 with the self-emulsifying adjuvant 160 (SEA160), a squalene-only adjuvant. In addition, we evaluated SE-AS44 and SEA160 competitively, in combination with a recombinant cytomegalovirus (CMV) pentamer antigen mouse.
Collapse
|
4
|
Abstract
Narcolepsy Type 1 (NT1) is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the lateral hypothalamus. Ample genetic and epidemiologic evidence point in the direction of a pathogenesis involving the immune system. Many autoantibodies have been detected in blood samples from NT1 patients, but none in a consistent manner. Importantly, T cells directed toward hypocretin/orexin neurons have been detected in samples from NT1 patients. However, it remains to be seen if these potentially autoreactive T cells are also present in the hypothalamus and if they are pathogenic. For this reason, NT1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, even though more and more results are pointing in that direction as will be described in this chapter. The autoimmune hypothesis has led to many attempts at slowing or stopping disease progression with immunomodulatory treatment, but so far the overall results have not been very encouraging. It is clear that more research into the pathogenesis of NT1 is needed to establish the precise role of the immune system in disease development.
Collapse
|
5
|
Misra RS, Nayak JL. The Importance of Vaccinating Children and Pregnant Women against Influenza Virus Infection. Pathogens 2019; 8:pathogens8040265. [PMID: 31779153 PMCID: PMC6963306 DOI: 10.3390/pathogens8040265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Influenza virus infection is responsible for significant morbidity and mortality in the pediatric and pregnant women populations, with deaths frequently caused by severe influenza-associated lower respiratory tract infection and acute respiratory distress syndrome (ARDS). An appropriate immune response requires controlling the viral infection through activation of antiviral defenses, which involves cells of the lung and immune system. High levels of viral infection or high levels of inflammation in the lower airways can contribute to ARDS. Pregnant women and young children, especially those born prematurely, may develop serious complications if infected with influenza virus. Vaccination against influenza will lead to lower infection rates and fewer complications, even if the vaccine is poorly matched to circulating viral strains, with maternal vaccination offering infants protection via antibody transmission through the placenta and breast milk. Despite the health benefits of the influenza vaccine, vaccination rates around the world remain well below targets. Trust in the use of vaccines among the public must be restored in order to increase vaccination rates and decrease the public health burden of influenza.
Collapse
Affiliation(s)
- Ravi S Misra
- Department of Pediatrics Division of Neonatology, The University of Rochester Medical Center, Rochester, NY 14623, USA
- Correspondence:
| | - Jennifer L Nayak
- Department of Pediatrics Division of Pediatric Infectious Diseases, The University of Rochester Medical Center, Rochester, NY 14623, USA;
| |
Collapse
|
6
|
Lodaya RN, Kanitkar AP, Friedrich K, Henson D, Yamagata R, Nuti S, Mallett CP, Bertholet S, Amiji MM, O'Hagan DT. Formulation Design, Optimization and In Vivo Evaluations of an α-Tocopherol-Containing Self-Emulsified Adjuvant System using Inactivated Influenza Vaccine. J Control Release 2019; 316:12-21. [PMID: 31678654 DOI: 10.1016/j.jconrel.2019.10.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 11/28/2022]
Abstract
α-Tocopherol has been used as an immune supplement in humans, as an emulsion adjuvant component in several veterinary vaccines as well as an immunomodulatory component of AS03, an emulsion adjuvant that was used in an H1N1 pandemic vaccine (Pandemrix). AS03 is manufactured using microfluidization and high-pressure homogenization. Such high energy and complex manufacturing processes make it difficult and expensive to produce emulsion adjuvants on a large scale, especially in developing countries. In this study we have explored simpler, comparatively inexpensive methods, to formulate emulsion adjuvants containing α-tocopherol, that have the potential to be made in any well-established scale-up facility. This might facilitate producing and stock-piling adjuvant doses and therefore aide in pandemic preparedness. We used design of experiment as a tool to explore incorporating α-tocopherol into self-emulsified systems containing squalene oil and polysorbate 80. We created novel self-emulsified adjuvant systems (SE-AS) and evaluated their potency in vivo in BALB/c mice with inactivated quadrivalent influenza vaccine (QIV) and tested the cellular and humoral immune responses against the four vaccine strains.
Collapse
Affiliation(s)
- Rushit N Lodaya
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA.
| | - Amey P Kanitkar
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | | | - Dawn Henson
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | - Ryan Yamagata
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | - Sandra Nuti
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | - Corey P Mallett
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | - Sylvie Bertholet
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA, 02115, USA
| | - Derek T O'Hagan
- GSK, Slaoui Centre for Vaccines Research, Rockville, MD, 20850, USA
| |
Collapse
|
7
|
Cohet C, van der Most R, Bauchau V, Bekkat-Berkani R, Doherty TM, Schuind A, Tavares Da Silva F, Rappuoli R, Garçon N, Innis BL. Safety of AS03-adjuvanted influenza vaccines: A review of the evidence. Vaccine 2019; 37:3006-3021. [DOI: 10.1016/j.vaccine.2019.04.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
|
8
|
Sasaki E, Momose H, Hiradate Y, Mizukami T, Hamaguchi I. Establishment of a novel safety assessment method for vaccine adjuvant development. Vaccine 2018; 36:7112-7118. [PMID: 30318166 DOI: 10.1016/j.vaccine.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/09/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Vaccines effectively prevent infectious diseases. Many types of vaccines against various pathogens that threaten humans are currently in widespread use. Recently, adjuvant adaptation has been attempted to activate innate immunity to enhance the effectiveness of vaccines. The effectiveness of adjuvants for vaccinations has been demonstrated in many animal models and clinical trials. Although a highly potent adjuvant tends to have high effectiveness, it also has the potential to increase the risk of side effects such as pain, edema, and fever. Indeed, highly effective adjuvants, such as poly(I:C), have not been clinically applied due to their high risks of toxicity in humans. Therefore, the task in the field of adjuvant development is to clinically apply highly effective and non- or low-toxic adjuvant-containing vaccines. To resolve this issue, it is essential to ensure a low risk of side effects and the high efficacy of an adjuvant in the early developmental phases. This review summarizes the theory and history of the current safety assessment methods for adjuvants, using the inactivated influenza vaccine as a model. Our novel method was developed as a system to judge the safety of a candidate compound using biomarkers identified by genomic technology and statistical tools. A systematic safety assessment tool for adjuvants would be of great use for predicting toxicity during novel adjuvant development, screening, and quality control.
Collapse
Affiliation(s)
- Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-Murayama, Tokyo 208-0011, Japan.
| |
Collapse
|
9
|
Sadam H, Pihlak A, Kivil A, Pihelgas S, Jaago M, Adler P, Vilo J, Vapalahti O, Neuman T, Lindholm D, Partinen M, Vaheri A, Palm K. Prostaglandin D2 Receptor DP1 Antibodies Predict Vaccine-induced and Spontaneous Narcolepsy Type 1: Large-scale Study of Antibody Profiling. EBioMedicine 2018; 29:47-59. [PMID: 29449194 PMCID: PMC5925455 DOI: 10.1016/j.ebiom.2018.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuropathological findings support an autoimmune etiology as an underlying factor for loss of orexin-producing neurons in spontaneous narcolepsy type 1 (narcolepsy with cataplexy; sNT1) as well as in Pandemrix influenza vaccine-induced narcolepsy type 1 (Pdmx-NT1). The precise molecular target or antigens for the immune response have, however, remained elusive. METHODS Here we have performed a comprehensive antigenic repertoire analysis of sera using the next-generation phage display method - mimotope variation analysis (MVA). Samples from 64 children and adolescents were analyzed: 10 with Pdmx-NT1, 6 with sNT1, 16 Pandemrix-vaccinated, 16 H1N1 infected, and 16 unvaccinated healthy individuals. The diagnosis of NT1 was defined by the American Academy of Sleep Medicine international criteria of sleep disorders v3. FINDINGS Our data showed that although the immunoprofiles toward vaccination were generally similar in study groups, there were also striking differences in immunoprofiles between sNT1 and Pdmx-NT1 groups as compared with controls. Prominent immune response was observed to a peptide epitope derived from prostaglandin D2 receptor (DP1), as well as peptides homologous to B cell lymphoma 6 protein. Further validation confirmed that these can act as true antigenic targets in discriminating NT1 diseased along with a novel epitope of hemagglutinin of H1N1 to delineate exposure to H1N1. INTERPRETATION We propose that DP1 is a novel molecular target of autoimmune response and presents a potential diagnostic biomarker for NT1. DP1 is involved in the regulation of non-rapid eye movement (NREM) sleep and thus alterations in its functions could contribute to the disturbed sleep regulation in NT1 that warrants further studies. Together our results also show that MVA is a helpful method for finding novel peptide antigens to classify human autoimmune diseases, possibly facilitating the design of better therapies.
Collapse
Affiliation(s)
- Helle Sadam
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Arno Pihlak
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia
| | - Anri Kivil
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia
| | | | | | - Priit Adler
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Jaak Vilo
- Institute of Computer Science, University of Tartu, Liivi 2-314, 50409 Tartu, Estonia; Quretec LLC, Ülikooli 6a, 51003 Tartu, Estonia
| | - Olli Vapalahti
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland; Department of Veterinary Biosciences, University of Helsinki, Agnes Sjöbergin Katu 2, 00014 University of Helsinki, Finland; Virology and Immunology, HUSLAB, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Toomas Neuman
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; IPDx Immunoprofiling Diagnostics GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Dan Lindholm
- Department of Biochemistry and Developmental Biology, Medicum, Haartmaninkatu 8, 00014 University of Helsinki, Finland; Minerva Foundation Medical Research Institute, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Partinen
- Finnish Narcolepsy Research Center, Helsinki Sleep Clinic, Vitalmed Research Center, Valimotie 21, 00380, Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, Haartmaninkatu 3, 00014 University of Helsinki, Finland
| | - Kaia Palm
- Protobios Llc, Mäealuse 4, 12618 Tallinn, Estonia; Department of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
10
|
Abstract
In spite of current influenza vaccines being immunogenic, evolution of the influenza virus can reduce efficacy and so influenza remains a major threat to public health. One approach to improve influenza vaccines is to include adjuvants; substances that boost the immune response. Adjuvants are particularly beneficial for influenza vaccines administered during a pandemic when a rapid response is required or for use in patients with impaired immune responses, such as infants and the elderly. This review outlines the current use of adjuvants in human influenza vaccines, including what they are, why they are used and what is known of their mechanism of action. To date, six adjuvants have been used in licensed human vaccines: Alum, MF59, AS03, AF03, virosomes and heat labile enterotoxin (LT). In general these adjuvants are safe and well tolerated, but there have been some rare adverse events when adjuvanted vaccines are used at a population level that may discourage the inclusion of adjuvants in influenza vaccines, for example the association of LT with Bell's Palsy. Improved understanding about the mechanisms of the immune response to vaccination and infection has led to advances in adjuvant technology and we describe the experimental adjuvants that have been tested in clinical trials for influenza but have not yet progressed to licensure. Adjuvants alone are not sufficient to improve influenza vaccine efficacy because they do not address the underlying problem of mismatches between circulating virus and the vaccine. However, they may contribute to improved efficacy of next-generation influenza vaccines and will most likely play a role in the development of effective universal influenza vaccines, though what that role will be remains to be seen.
Collapse
Affiliation(s)
- John S Tregoning
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ryan F Russell
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| | - Ekaterina Kinnear
- a Mucosal Infection and Immunity group, Section of Virology, Department of Medicine , St Mary's Campus, Imperial College London , UK
| |
Collapse
|
11
|
Wilkins AL, Kazmin D, Napolitani G, Clutterbuck EA, Pulendran B, Siegrist CA, Pollard AJ. AS03- and MF59-Adjuvanted Influenza Vaccines in Children. Front Immunol 2017; 8:1760. [PMID: 29326687 PMCID: PMC5733358 DOI: 10.3389/fimmu.2017.01760] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Influenza is a major cause of respiratory disease leading to hospitalization in young children. However, seasonal trivalent influenza vaccines (TIVs) have been shown to be ineffective and poorly immunogenic in this population. The development of live-attenuated influenza vaccines and adjuvanted vaccines are important advances in the prevention of influenza in young children. The oil-in-water emulsions MF59 and adjuvant systems 03 (AS03) have been used as adjuvants in both seasonal adjuvanted trivalent influenza vaccines (ATIVs) and pandemic monovalent influenza vaccines. Compared with non-adjuvanted vaccine responses, these vaccines induce a more robust and persistent antibody response for both homologous and heterologous influenza strains in infants and young children. Evidence of a significant improvement in vaccine efficacy with these adjuvanted vaccines resulted in the use of the monovalent (A/H1N1) AS03-adjuvanted vaccine in children in the 2009 influenza pandemic and the licensure of the seasonal MF59 ATIV for children aged 6 months to 2 years in Canada. The mechanism of action of MF59 and AS03 remains unclear. Adjuvants such as MF59 induce proinflammatory cytokines and chemokines, including CXCL10, but independently of type-1 interferon. This proinflammatory response is associated with improved recruitment, activation and maturation of antigen presenting cells at the injection site. In young children MF59 ATIV produced more homogenous and robust transcriptional responses, more similar to adult-like patterns, than did TIV. Early gene signatures characteristic of the innate immune response, which correlated with antibody titers were also identified. Differences were detected when comparing child and adult responses including opposite trends in gene set enrichment at day 3 postvaccination and, unlike adult data, a lack of correlation between magnitude of plasmablast response at day 7 and antibody titers at day 28 in children. These insights show the utility of novel approaches in understanding new adjuvants and their importance for developing improved influenza vaccines for children.
Collapse
Affiliation(s)
| | - Dmitri Kazmin
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Giorgio Napolitani
- Medical Research Council (MRC), Human Immunology Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Bali Pulendran
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
- Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pathology, and Microbiology & Immunology, Stanford University, Stanford, CA, United States
- Institute for Immunology, Transplantation and Infection, Stanford University, Stanford, CA, United States
| | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, The NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
12
|
Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev Vaccines 2017; 16:1141-1154. [PMID: 28925296 DOI: 10.1080/14760584.2017.1379396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of the currently available influenza vaccines are strong inducers of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered: Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have the potential to provide broad spectrum protection against influenza viruses. Expert commentary: Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines.
Collapse
Affiliation(s)
- Sai V Vemula
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Ekramy E Sayedahmed
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Suryaprakash Sambhara
- b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Suresh K Mittal
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
13
|
Morçӧl T, Hurst BL, Tarbet EB. Calcium phosphate nanoparticle (CaPNP) for dose-sparing of inactivated whole virus pandemic influenza A (H1N1) 2009 vaccine in mice. Vaccine 2017; 35:4569-4577. [PMID: 28716554 PMCID: PMC5562532 DOI: 10.1016/j.vaccine.2017.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/17/2017] [Accepted: 07/05/2017] [Indexed: 11/27/2022]
Abstract
The emergence of pandemic influenza strains, particularly the reemergence of the swine-derived influenza A (H1N1) in 2009, is reaffirmation that influenza viruses are very adaptable and influenza remains as a significant global public health treat. As recommended by the World Health Organization (WHO), the use of adjuvants is an attractive approach to improve vaccine efficacy and allow dose-sparing during an influenza emergency. In this study, we utilized CaPtivate Pharmaceutical's proprietary calcium phosphate nanoparticles (CaPNP) vaccine adjuvant and delivery platform to formulate an inactivated whole virus influenza A/CA/04/2009 (H1N1pdm) vaccine as a potential dose-sparing strategy. We evaluated the relative immunogenicity and the efficacy of the formulation in BALB/c mice following single intramuscularly administration of three different doses (0.3, 1, or 3µg based on HA content) of the vaccine in comparison to non-adjuvanted or alum-adjuvant vaccines. We showed that, addition of CaPNP in vaccine elicited significantly higher hemagglutination inhibition (HAI), virus neutralization (VN), and IgG antibody titers, at all dose levels, relative to the non-adjuvanted vaccine. In addition, the vaccine containing CaPNP provided equal protection with 1/3rd of the antigen dose as compared to the non-adjuvanted or alum-adjuvanted vaccines. Our data provided support to earlier studies indicating that CaPNP is an attractive vaccine adjuvant and delivery system and should play an important role in the development of safe and efficacious dose-sparing vaccines. Our findings also warrant further investigation to validate CaPNP's capacity as an alternative adjuvant to the ones currently licensed for influenza/pandemic influenza vaccination.
Collapse
Affiliation(s)
- Tülin Morçӧl
- CaPtivate Pharmaceuticals LLC, Doylestown, PA, USA.
| | - Brett L Hurst
- Institute for Antiviral Research, Utah State University, Logon, UT, USA
| | - E Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logon, UT, USA
| |
Collapse
|
14
|
Abstract
Adjuvants are substances added to vaccines to improve their immunogenicity. Used for more than 80 years, aluminum, the first adjuvant in human vaccines, proved insufficient to develop vaccines that could protect against new challenging pathogens such as HIV and malaria. New adjuvants and new combinations of adjuvants (Adjuvant Systems) have opened the door to the delivery of improved and new vaccines against re-emerging and difficult pathogens. Adjuvant Systems concept started through serendipity. The access to new developments in technology, microbiology and immunology have been instrumental for the dicephering of what they do and how they do it. This knowledge opens the door to more rational vaccine design with implications for developing new and better vaccines.
Collapse
|
15
|
Principi N, Senatore L, Esposito S. Protection of young children from influenza through universal vaccination. Hum Vaccin Immunother 2016; 11:2350-8. [PMID: 26090704 DOI: 10.1080/21645515.2015.1055428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Influenza is a very common disease among infants and young children, with a considerable clinical and socioeconomic impact. A significant number of health authorities presently recommend universal influenza vaccination for the pediatric population, but a large number of European health authorities is still reluctant to include influenza vaccination in their national vaccination programs. The reasons for this reluctance include the fact that the protection offered by the currently available vaccines is considered poor. This review shows that although future research could lead to an increase in the immunogenicity and potential efficacy of influenza vaccines, the available vaccines, even with their limits, assure sufficient protection in most subjects aged ≥ 6 months, thus reducing the total burden of influenza in young children and justifying the recommendation for the universal vaccination of the whole pediatric population. For younger subjects, the vaccination of their mother during pregnancy represents an efficacious strategy.
Collapse
Affiliation(s)
- Nicola Principi
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| | - Laura Senatore
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| | - Susanna Esposito
- a Pediatric Highly Intensive Care Unit; Department of Pathophysiology and Transplantation ; Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico ; Milan , Italy
| |
Collapse
|
16
|
Garcia-Sicilia J, Arístegui J, Omeñaca F, Carmona A, Tejedor JC, Merino JM, García-Corbeira P, Walravens K, Bambure V, Moris P, Caplanusi A, Gillard P, Dieussaert I. Safety and persistence of the humoral and cellular immune responses induced by 2 doses of an AS03-adjuvanted A(H1N1)pdm09 pandemic influenza vaccine administered to infants, children and adolescents: Two open, uncontrolled studies. Hum Vaccin Immunother 2016; 11:2359-69. [PMID: 26176592 PMCID: PMC4635840 DOI: 10.1080/21645515.2015.1063754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In children, 2 AS03-adjuvanted A(H1N1)pdm09 vaccine doses given 21 days apart were previously shown to induce a high humoral immune response and to have an acceptable safety profile up to 42 days following the first vaccination. Here, we analyzed the persistence data from 2 open-label studies, which assessed the safety, and humoral and cell-mediated immune responses induced by 2 doses of this vaccine. The first study was a phase II, randomized trial conducted in 104 children aged 6–35 months vaccinated with the A(H1N1)pdm09 vaccine containing 1.9 µg haemagglutinin antigen (HA) and AS03B (5.93 mg tocopherol) and the second study, a phase III, non-randomized trial conducted in 210 children and adolescents aged 3–17 years vaccinated with the A(H1N1)pdm09 vaccine containing 3.75 µg HA and AS03A (11.86 mg tocopherol). Approximately one year after the first dose, all children with available data were seropositive for haemagglutinin inhibition and neutralising antibody titres, but a decline in geometric mean antibody titres was noted. The vaccine induced a cell-mediated immune response in terms of antigen-specific CD4+ T-cells, which persisted up to one year post-vaccination. The vaccine did not raise any safety concern, though these trials were not designed to detect rare events. In conclusion, 2 doses of the AS03-adjuvanted A(H1N1)pdm09 vaccine at 2 different dosages had a clinically acceptable safety profile, and induced high and persistent humoral and cell-mediated immune responses in children aged 6–35 months and 3–17 years. These studies have been registered at www.clinicaltrials.gov NCT00971321 and NCT00964158.
Collapse
Affiliation(s)
| | | | - Félix Omeñaca
- a University Children Hospital La Paz ; Madrid , Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Carmona Martinez A, Salamanca de la Cueva I, Boutet P, Vanden Abeele C, Smolenov I, Devaster JM. A phase 1, open-label safety and immunogenicity study of an AS03-adjuvanted trivalent inactivated influenza vaccine in children aged 6 to 35 months. Hum Vaccin Immunother 2016; 10:1959-68. [PMID: 25424805 PMCID: PMC4186022 DOI: 10.4161/hv.28743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: There is a need for better vaccines and vaccine strategies to reduce the burden of influenza in very young children.
Methods: This phase 1, open-label study assessed the reactogenicity, safety, and immunogenicity of an inactivated trivalent influenza vaccine (TIV) containing low doses of hemagglutinin antigen (7.5 µg each strain), adjuvanted with a tocopherol-based oil-in-water emulsion Adjuvant System (AS03). Influenza vaccine-naïve children aged 6–35 months were sequentially enrolled to receive TIV-AS03D (1.48 mg tocopherol) or TIV-AS03C (2.97 mg tocopherol), then a 6-month booster of conventional TIV. The primary endpoint was the incidence of fever (axillary temperature >38 °C) for 7 days post-vaccination. Immune responses were assessed by hemagglutination-inhibition (HI) assay. Results: Forty children were sequentially enrolled into the TIV-AS03D or the TIV-AS03C group. Fever >38.0 °C was reported in 5/20 (25.0%) and 7/20 (35.0%) children after the first and second doses of TIV-AS03D, respectively, and in 7/20 (35.0%) children after 1 dose of TIV-AS03C; the latter fulfilled the holding rule for safety, and the second dose of TIV-AS03C was cancelled. HI immune responses exceeded adult European licensure criteria for the immunogenicity, and all children had HI antibody titers ≥ 1:40 after 1 dose of TIV booster against booster strains. Conclusions: One dose of primary vaccine containing a low dose of antigen and AS03 may be a possible influenza vaccination strategy for young children. The relatively high frequency of fever warrants further investigation, although the generalizability of the findings are uncertain given that many of the children had antibody evidence suggesting recent infection with A(H1N1)pdm09.
Collapse
|
18
|
McGuire A, Drummond M, Keeping S. Childhood and adolescent influenza vaccination in Europe: A review of current policies and recommendations for the future. Expert Rev Vaccines 2016; 15:659-70. [DOI: 10.1586/14760584.2016.1138861] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Izurieta P, Uy-Aragon MJ, Dramé M, Vaughn DW. Assessment of Prime-boost Vaccination Using an AS03B-adjuvanted Influenza A (H5N1) Vaccine: A Randomized Trial in Children of Three to Less Than Eighteen Years of Age. Pediatr Infect Dis J 2016; 35:e35-47. [PMID: 26551446 DOI: 10.1097/inf.0000000000000968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Heterologous prime-boost vaccination is a pandemic response strategy utilizing subtype-matched vaccine at pandemic onset followed by strain-matched vaccine once available. Persistence of immune response and safety of influenza A (H5N1) vaccine adjuvanted with adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion (AS03B) were evaluated. METHODS An open phase 3 active-controlled study (www.clinicaltrials.gov NCT01379937) assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005-H5N1-AS03B in children 3 to <18 years of age, given 6 months after 2-dose priming with A/Indonesia/05/2005-H5N1-AS03B (H5N1(2) -H5N1 group) compared with a single dose of A/turkey/Turkey/1/2005-H5N1-AS03B in unprimed subjects (hepatitis A vaccine (HAV)-H5N1 group). Hemagglutinin inhibition responses and microneutralization antibodies were assessed to 6 months after booster vaccination. RESULTS Hemagglutinin inhibition antibody responses against A/turkey/Turkey/1/2005-H5N1 were superior in the H5N1(2)-H5N1 versus the hepatitis A vaccine-H5N1 group overall and in each age strata (3 to <10 and 10 to <18 years). Anamnestic immune responses were demonstrated against vaccine-homologous/heterologous strains in the H5N1(2)-H5N1 group. Injection site pain and fever increased with consecutive doses for children <6 years (H5N1(2)-H5N1). Immune responses to vaccine-homologous/heterologous strains persisted to 6 months after booster vaccination in the H5N1(2)-H5N1 group. CONCLUSIONS Heterologous H5N1-AS03B-adjuvanted booster vaccination in children/adolescents was immunogenic for vaccine-homologous and heterologous strains following 2-dose priming, with immune persistence for at least 6 months. Prime-boost strategies using H5N1-AS03 could be effectively employed in this age group.
Collapse
Affiliation(s)
- Patricia Izurieta
- From the *GSK Vaccines, Wavre, Belgium; †Research Institute for Tropical Medicine, Muntinlupa City, Philippines; and ‡GSK Vaccines, King of Prussia, Pennsylvania
| | | | | | | |
Collapse
|
20
|
Halsey NA, Talaat KR, Greenbaum A, Mensah E, Dudley MZ, Proveaux T, Salmon DA. The safety of influenza vaccines in children: An Institute for Vaccine Safety white paper. Vaccine 2015; 33 Suppl 5:F1-F67. [PMID: 26822822 DOI: 10.1016/j.vaccine.2015.10.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/02/2015] [Accepted: 10/06/2015] [Indexed: 01/19/2023]
Abstract
Most influenza vaccines are generally safe, but influenza vaccines can cause rare serious adverse events. Some adverse events, such as fever and febrile seizures, are more common in children than adults. There can be differences in the safety of vaccines in different populations due to underlying differences in genetic predisposition to the adverse event. Live attenuated vaccines have not been studied adequately in children under 2 years of age to determine the risks of adverse events; more studies are needed to address this and several other priority safety issues with all influenza vaccines in children. All vaccines intended for use in children require safety testing in the target age group, especially in young children. Safety of one influenza vaccine in children should not be extrapolated to assumed safety of all influenza vaccines in children. The low rates of adverse events from influenza vaccines should not be a deterrent to the use of influenza vaccines because of the overwhelming evidence of the burden of disease due to influenza in children.
Collapse
Affiliation(s)
- Neal A Halsey
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States.
| | - Kawsar R Talaat
- Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Center for Immunization Research, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Adena Greenbaum
- Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eric Mensah
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Matthew Z Dudley
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tina Proveaux
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel A Salmon
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States; Institute for Vaccine Safety, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
21
|
Immunogenicity and Safety of a Trivalent Inactivated Influenza Vaccine in Children 6 Months to 17 Years of Age, Previously Vaccinated with an AS03-Adjuvanted A(H1N1)Pdm09 Vaccine: Two Open-label, Randomized Trials. Pediatr Infect Dis J 2015; 34:774-82. [PMID: 26069949 DOI: 10.1097/inf.0000000000000709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND During the influenza pandemic 2009-2010, an AS03-adjuvanted A(H1N1)pdm09 vaccine was used extensively in children 6 months of age and older, and during the 2010-2011 influenza season, the A(H1N1)pdm09 strain was included in the seasonal trivalent inactivated influenza vaccine (TIV) without adjuvant. We evaluated the immunogenicity and safety of TIV in children previously vaccinated with the AS03-adjuvanted A(H1N1)pdm09 vaccine. METHODS Healthy children were randomized (1:1) to receive TIV or a control vaccine. Children were aged 6 months to 9 years (n = 154) and adolescents 10-17 years (n = 77) when they received AS03-adjuvanted A(H1N1)pdm09 vaccine at least 6 months before study enrolment. Hemagglutination inhibition (HI) and neutralizing antibody responses against the A(H1N1)pdm09 strain were evaluated before (day 0) and at day 28 and month 6 after study vaccination. Reactogenicity was assessed during the 7 day postvaccination period, and safety was assessed for 6 months. RESULTS At day 0, >93.9% of all children had HI titers ≥1:40 for the A(H1N1)pdm09 strain, which increased to 100% at both day 28 and month 6 in the TIV group. Between days 0 and 28, HI antibody geometric mean titers against A(H1N1)pdm09 increased by 9-fold and 4-fold in children 6 months to 9 years of age and 10-17 years of age, respectively. CONCLUSION AS03-adjuvanted A(H1N1)pdm09 vaccine-induced robust immune responses in children that persisted into the next season, yet were still boosted by TIV containing A(H1N1)pdm09. The reactogenicity and safety profile of TIV did not appear compromised by prior receipt of AS03-adjuvanted A(H1N1)pdm09 vaccine.
Collapse
|
22
|
|
23
|
Svensson M, Ramelius A, Nilsson AL, Delli AJ, Elding Larsson H, Carlsson A, Forsander G, Ivarsson SA, Ludvigsson J, Kockum I, Marcus C, Samuelsson U, Örtqvist E, Lernmark Å. Antibodies to influenza virus A/H1N1 hemagglutinin in Type 1 diabetes children diagnosed before, during and after the SWEDISH A(H1N1)pdm09 vaccination campaign 2009-2010. Scand J Immunol 2014; 79:137-48. [PMID: 24313339 DOI: 10.1111/sji.12138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
We determined A/H1N1-hemagglutinin (HA) antibodies in relation to HLA-DQ genotypes and islet autoantibodies at clinical diagnosis in 1141 incident 0.7-to 18-year-old type 1 diabetes patients diagnosed April 2009-December 2010. Antibodies to (35) S-methionine-labelled A/H1N1 hemagglutinin were determined in a radiobinding assay in patients diagnosed before (n = 325), during (n = 355) and after (n = 461) the October 2009-March 2010 Swedish A(H1N1)pdm09 vaccination campaign, along with HLA-DQ genotypes and autoantibodies against GAD, insulin, IA-2 and ZnT8 transporter. Before vaccination, 0.6% patients had A/H1N1-HA antibodies compared with 40% during and 27% after vaccination (P < 0.0001). In children <3 years of age, A/H1N1-HA antibodies were found only during vaccination. The frequency of A/H1N1-HA antibodies during vaccination decreased after vaccination among the 3 < 6 (P = 0.006) and 13 < 18 (P = 0.001), but not among the 6 < 13-year-olds. HLA-DQ2/8 positive children <3 years decreased from 54% (15/28) before and 68% (19/28) during, to 30% (9/30) after vaccination (P = 0.014). Regardless of age, DQ2/2; 2/X (n = 177) patients had lower frequency (P = 0.020) and levels (P = 0.042) of A/H1N1-HA antibodies compared with non-DQ2/2; 2/X (n = 964) patients. GADA frequency was 50% before, 60% during and 51% after vaccination (P = 0.009). ZnT8QA frequency increased from 30% before to 34% during and 41% after vaccination (P = 0.002). Our findings suggest that young (<3 years) along with DQ2/2; 2/X patients were low responders to Pandemrix(®) . As the proportion of DQ2/8 patients <3 years of age decreased after vaccination and the frequencies of GADA and ZnT8QA were enhanced, it cannot be excluded that the vaccine affected clinical onset of type 1 diabetes.
Collapse
Affiliation(s)
- M Svensson
- Department of Clinical Sciences Malmö, Skåne University Hospital SUS, Lund University, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nolan T, Roy-Ghanta S, Montellano M, Weckx L, Ulloa-Gutierrez R, Lazcano-Ponce E, Kerdpanich A, Safadi MAP, Cruz-Valdez A, Litao S, Lim FS, de Los Santos AM, Weber MAR, Tinoco JC, Mezerville MHD, Faingezicht I, Kosuwon P, Lopez P, Borja-Tabora C, Li P, Durviaux S, Fries L, Dubin G, Breuer T, Innis BL, Vaughn DW. Relative efficacy of AS03-adjuvanted pandemic influenza A(H1N1) vaccine in children: results of a controlled, randomized efficacy trial. J Infect Dis 2014; 210:545-57. [PMID: 24652494 PMCID: PMC4111912 DOI: 10.1093/infdis/jiu173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background. The vaccine efficacy (VE) of 1 or 2 doses of AS03-adjuvanted influenza A(H1N1) vaccine relative to that of 2 doses of nonadjuvanted influenza A(H1N1) vaccine in children 6 months to <10 years of age in a multinational study conducted during 2010–2011. Methods. A total of 6145 children were randomly assigned at a ratio of 1:1:1 to receive 2 injections 21 days apart of A/California/7/2009(H1N1)-AS03 vaccine at dose 1 and saline placebo at dose 2, 2 doses 21 days apart of A/California/7/2009(H1N1)-AS03 vaccine (the Ad2 group), or 2 doses 21 days apart of nonadjuvanted A/California/7/2009(H1N1) vaccine (the NAd2 group). Active surveillance for influenza-like illnesses continued from days 14 to 385. Nose and throat samples obtained during influenza-like illnesses were tested for A/California/7/2009(H1N1), using reverse-transcriptase polymerase chain reaction. Immunogenicity, reactogenicity, and safety were assessed. Results. There were 23 cases of confirmed 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) infection for the primary relative VE analysis. The VE in the Ad2 group relative to that in the NAd2 group was 76.8% (95% confidence interval, 18.5%–93.4%). The benefit of the AS03 adjuvant was demonstrated in terms of the greater immunogenicity observed in the Ad2 group, compared with the NAd2 group. Conclusion. The 4–8-fold antigen-sparing adjuvanted pandemic influenza vaccine demonstrated superior and clinically important prevention of A(H1N1)pdm09 infection, compared with nonadjuvanted vaccine, with no observed increase in medically attended or serious adverse events. These data support the use of adjuvanted influenza vaccines during influenza pandemics. Clinical Trials Registration. NCT01051661.
Collapse
Affiliation(s)
- Terry Nolan
- Murdoch Children's Research Institute Melbourne School of Population and Global Health, University of Melbourne, Carlton, Australia
| | | | - May Montellano
- Department of Pediatrics, Mary Chiles General Hospital, Manila
| | - Lily Weckx
- Pediatric Infectious Diseases, Department of Pediatrics, Universidade Federal de São Paulo
| | | | | | - Angkool Kerdpanich
- Infectious Diseases Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok
| | - Marco Aurélio Palazzi Safadi
- Department of Pediatrics, Faculdade de Ciências Médicas da Santa Casa de São Paulo Associação Fundo de Incentivo à Pesquisa, São Paulo, Brazil
| | | | - Sandra Litao
- Department of Pediatrics, De La Salle Health Sciences Institute, Dasmariñas City
| | | | | | | | | | | | - Idis Faingezicht
- Instituto Costarricense de Investigaciones Clínicas, San José, Costa Rica
| | - Pensri Kosuwon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pio Lopez
- Centro de Estudios en Infectologia Pediatrica, Cali, Colombia
| | - Charissa Borja-Tabora
- Department of Health, Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Ping Li
- GlaxoSmithKline Vaccines, King of Prussia, Pennsylvania
| | | | | | - Gary Dubin
- GlaxoSmithKline Vaccines, King of Prussia, Pennsylvania
| | | | - Bruce L Innis
- GlaxoSmithKline Vaccines, King of Prussia, Pennsylvania
| | | |
Collapse
|
25
|
Fox CB, Haensler J. An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Rev Vaccines 2014; 12:747-58. [PMID: 23885820 DOI: 10.1586/14760584.2013.811188] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the exception of alum, emulsion-based vaccine adjuvants have been administered to far more people than any other adjuvant, especially since the 2009 H1N1 influenza pandemic. The number of clinical safety and immunogenicity evaluations of vaccines containing emulsion adjuvants has correspondingly mushroomed. In this review, the authors introduce emulsion adjuvant composition and history before detailing the most recent findings from clinical and postmarketing data regarding the effects of emulsion adjuvants on vaccine immunogenicity and safety, with emphasis on the most widely distributed emulsion adjuvants, MF59® and AS03. The authors also present a summary of other emulsion adjuvants in clinical development and indicate promising avenues for future emulsion-based adjuvant development. Overall, emulsion adjuvants have demonstrated potent adjuvant activity across a number of disease indications along with acceptable safety profiles.
Collapse
|
26
|
An observer-blind, randomized, multi-center trial assessing long-term safety and immunogenicity of AS03-adjuvanted or unadjuvanted H1N1/2009 influenza vaccines in children 10–17 years of age. Vaccine 2014; 32:1121-9. [DOI: 10.1016/j.vaccine.2013.11.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/27/2013] [Accepted: 11/06/2013] [Indexed: 11/20/2022]
|
27
|
Batista-Duharte A, Lastre M, Pérez O. Adyuvantes inmunológicos. Determinantes en el balance eficacia-toxicidad de las vacunas contemporáneas. Enferm Infecc Microbiol Clin 2014; 32:106-14. [DOI: 10.1016/j.eimc.2012.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/22/2012] [Accepted: 11/23/2012] [Indexed: 02/05/2023]
|
28
|
Walker WT, Faust SN. Monovalent inactivated split-virion AS03-adjuvanted pandemic influenza A (H1N1) vaccine. Expert Rev Vaccines 2014; 9:1385-98. [DOI: 10.1586/erv.10.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Pass RF, Nachman S, Flynn PM, Muresan P, Fenton T, Cunningham CK, Borkowsky W, McAuley JB, Spector SA, Petzold E, Levy W, Siberry GK, Handelsman E, Utech LJ, Weinberg A. Immunogenicity of Licensed Influenza A (H1N1) 2009 Monovalent Vaccines in HIV-Infected Children and Youth. J Pediatric Infect Dis Soc 2013; 2:352-60. [PMID: 24363932 PMCID: PMC3869470 DOI: 10.1093/jpids/pit040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 04/25/2013] [Indexed: 11/13/2022]
Abstract
BACKGROUND With the emergence of pandemic influenza A (pH1N1) in 2009, children and youth infected with human immunodeficiency virus (HIV) were vulnerable because of immunologic impairment and the greater virulence of this infection in young persons. METHODS A multicenter study of the immunogenicity of 3 licensed influenza A (H1N1) monovalent vaccines (1 live attenuated and 2 inactivated) was conducted in children and youth with perinatal HIV infection, most of whom were receiving ≥3 antiretroviral drugs, had CD4% ≥15, and plasma HIV RNA levels <400 copies/mL. Serum hemagglutinin inhibition assay (HAI) antibody levels were measured and correlated with baseline demographic and clinical variables. RESULTS One hundred forty-nine subjects were enrolled at 26 sites in the United States and Puerto Rico. Over 40% had baseline HAI titers ≥40. For subjects aged 6 months to <10 years, 79% and 68%, respectively, achieved a ≥40- and ≥4-fold rise in HAI titers after the second dose of vaccine. Three weeks after a single immunization with an inactivated vaccine, similar immunogenicity results were achieved in youth aged 10-24 years. With multivariable analysis, only Hispanic ethnicity and CD4% ≥15 were associated with achieving both HAI titer ≥40- and ≥4-fold rise in titer. CONCLUSIONS Although licensed pH1N1 vaccines produced HAI titers that were considered to be protective in the majority of HIV-infected children and youth, the proportion with titers ≥40- and ≥4-fold rise in titer was lower than expected for children without HIV infection. Vaccine immunogenicity was lower in HIV-infected children and youth with evidence of immune suppression.
Collapse
Affiliation(s)
- Robert F. Pass
- University of Alabama at Birmingham,Corresponding Author: Robert F. Pass, MD, UAB Department of Pediatrics, Children's of Alabama, 1600 7th Ave S, Ste 108, Birmingham, AL 35233. E-mail:
| | | | | | - Petronella Muresan
- Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | - Terence Fenton
- Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | | | | | | | - Stephen A. Spector
- University of California San Diego, La Jolla,Rady Children's Hospital, San Diego, California
| | | | - Wende Levy
- Social and Scientific Systems, Silver Spring
| | - George K. Siberry
- Pediatric Adolescent and Maternal AIDS Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Ed Handelsman
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - L. Jill Utech
- St Jude's Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|
30
|
Thompson MG, Sokolow LZ, Almendares O, Openo K, Farley MM, Meek J, Ray J, Kirley PD, Reingold A, Aragon D, Hancock E, Baumbach J, Schaffner W, Thomas A, Lynfield R, Ryan P, Monroe M, Cheng PY, Fry AM, Shay DK. Effectiveness of nonadjuvanted monovalent influenza A(H1N1)pdm09 vaccines for preventing reverse transcription polymerase chain reaction-confirmed pandemic influenza hospitalizations: case-control study of children and adults at 10 US influenza surveillance network sites. Clin Infect Dis 2013; 57:1587-92. [PMID: 23956169 PMCID: PMC7314184 DOI: 10.1093/cid/cit551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During 2009–2010, we examined 217 patients hospitalized with laboratory-confirmed pandemic influenza in 9 Influenza Hospitalization Surveillance Network sites and 413 age- and community-matched controls and found that a single dose of monovalent nonadjuvanted influenza A(H1N1)pdm09 vaccine was 50% (95% confidence interval, 13%–71%) effective in preventing hospitalization associated with A(H1N1)pdm09 virus infection.
Collapse
Affiliation(s)
- Mark G Thompson
- Influenza Division, Centers for Disease Control and Prevention
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England. Proc Natl Acad Sci U S A 2013; 110:13422-7. [PMID: 23882078 DOI: 10.1073/pnas.1303117110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the 2009 H1N1 pandemic, the United Kingdom experienced two waves of infection, the first in the late spring and the second in the autumn. Given the low level of susceptibility to the pandemic virus expected to be remaining in the population after the second wave, it was a surprise that a substantial third epidemic occurred in the UK population between November 2010 and February 2011, despite no evidence for any significant antigenic evolution of the pandemic virus. Here, we use a mathematical model of influenza transmission embedded within a Bayesian synthesis inferential framework to jointly analyze syndromic, virological, and serological surveillance data collected in England in 2009-2011 and thereby assess epidemiological mechanisms which might have generated the third wave. We find that substantially increased transmissibility of the H1N1pdm09 virus is required to reproduce the third wave, suggesting that the virus evolved and increased fitness in the human host by the end of 2010, or that the very cold weather experienced in the United Kingdom at that time enhanced transmission rates. We also find some evidence that the preexisting heterologous immunity which reduced attack rates in adults during 2009 had substantially decayed by the winter of 2010, thus increasing the susceptibility of the adult population to infection. Finally, our analysis suggests that a pandemic vaccination campaign targeting adults and school-age children could have mitigated or prevented the third wave even at moderate levels of coverage.
Collapse
|
32
|
Van Damme P, Kafeja F, Bambure V, Hanon E, Moris P, Roman F, Gillard P. Long-term persistence of humoral and cellular immune responses induced by an AS03A-adjuvanted H1N1 2009 influenza vaccine: an open-label, randomized study in adults aged 18-60 years and older. Hum Vaccin Immunother 2013; 9:1512-22. [PMID: 23571166 DOI: 10.4161/hv.24504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This manuscript presents data on the persistence of Hemagglutination Inhibition (HI) immune response against the A/California/7/2009 strain, six and 12 mo after adults received one dose (n = 138) or two doses (n = 102; 21 d apart) of a 3.75 µg Hemagglutinin antigen AS03-adjuvanted H1N1 2009 vaccine (NCT00968526). Two hundred forty subjects (18-60 y: 120;>60 y: 120) were vaccinated. Immunogenicity end points were based on the European licensure criteria for pandemic influenza vaccines. Exploratory analyses assessed the cell-mediated immune response (CMI) up to Month 12 and the influence of previous influenza vaccination on persistence of immune response. At Month 6, the CHMP criteria were met in subjects aged 18-60 y who received one or two vaccine doses and in subjects aged>60 y who received two vaccine doses. At Month 12, the CHMP criteria were met only in subjects aged 18-60 y who received two vaccine doses. Persistence of HI immune response against the vaccine strain was higher in subjects without prior influenza vaccination. Exploratory analyses showed that two doses of the H1N1 2009 vaccine induced persistence of H1N1-specific CD4+ T cells up to Month 6 and memory B cells up to Month 12. In conclusion, HI immune responses persisted up to 12 mo after vaccination with one-dose and two-dose regimens of the AS03-adjuvanted 3.75 µg HA H1N1 2009 pandemic influenza vaccine, although not all three CHMP guidance criteria for both groups were met at Month 6 and Month 12. The CD4+ T cell and B cell responses also persisted up to Month 12.
Collapse
Affiliation(s)
- Pierre Van Damme
- Vaccine and Infectious Disease Institute; Centre for the Evaluation of Vaccination; University of Antwerp; Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Nazareth I, Tavares F, Rosillon D, Haguinet F, Bauchau V. Safety of AS03-adjuvanted split-virion H1N1 (2009) pandemic influenza vaccine: a prospective cohort study. BMJ Open 2013. [PMID: 23388195 DOI: 10.1136/bmjopen‐2012‐001912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES To assess the safety of an AS03-adjuvanted split virion H1N1 (2009) vaccine (Pandemrix) in persons vaccinated during the national pandemic influenza vaccination campaign in the UK. DESIGN Prospective, cohort, observational, postauthorisation safety study. SETTING 87 general practices forming part of the Medical Research Council General Practice Research Framework and widely distributed throughout England. PARTICIPANTS A cohort of 9143 individuals aged 7 months to 97 years who received at least one dose of the AS03-adjuvanted H1N1 pandemic vaccine during the national pandemic influenza vaccination campaign in the UK was enrolled. 94% completed the 6-month follow-up. Exclusion criteria were previous vaccination with other H1N1 pandemic vaccine and any child in care. PRIMARY AND SECONDARY OUTCOME MEASURES Medically attended adverse events (MAEs) occurring within 31 days after any dose, serious adverse events (SAEs) and adverse events of special interest (AESIs) following vaccination were collected for all participants. Solicited adverse events (AEs) were assessed in a subset of participants. RESULTS MAEs were reported in 1219 participants and SAEs in 113 participants during the 31-day postvaccination period. The most frequently reported MAEs and SAEs were consistent with events expected to be reported during the winter season in this population: lower respiratory tract infections, asthma and pneumonia. The most commonly reported solicited AEs were irritability in young children aged <5 years (61.8%), muscle aches in children aged 5-17 years (61.9%) and adults (46.9%). 18 AESIs, experienced by 14 patients, met the criteria to be considered for the observed-to-expected analyses. AESIs above the expected number were neuritis (1 case within 31 days) and convulsions (8 cases within 181 days). There were 41 deaths during the 181-day period after vaccination, fewer than expected. CONCLUSIONS Results indicate that the AS03-adjuvanted H1N1 pandemic vaccine showed a clinically acceptable reactogenicity and safety profile in all age and risk groups studied. TRIAL REGISTRATION ClinicalTrials.gov, NCT00996853.
Collapse
Affiliation(s)
- Irwin Nazareth
- Department of Primary Care & Population Health, University College London Medical School, London, UK
| | | | | | | | | |
Collapse
|
34
|
Huntimer L, Ramer-Tait AE, Petersen LK, Ross KA, Walz KA, Wang C, Hostetter J, Narasimhan B, Wannemuehler MJ. Evaluation of biocompatibility and administration site reactogenicity of polyanhydride-particle-based platform for vaccine delivery. Adv Healthc Mater 2013. [PMID: 23184561 DOI: 10.1002/adhm.201200181] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Efficacy, purity, safety, and potency are important attributes of vaccines. Polyanhydride particles represent a novel class of vaccine adjuvants and delivery platforms that have demonstrated the ability to enhance the stability of protein antigens as well as elicit protective immunity against bacterial pathogens. This work aims to elucidate the biocompatibility, inflammatory reactions, and particle effects on mice injected with a 5 mg dose of polyanhydride nanoparticles via common parenteral routes (subcutaneous and intramuscular). Independent of polymer chemistry, nanoparticles more effectively disseminated away from the injection site as compared to microparticles, which exhibited a depot effect. Using fluorescent probes, the in vivo distribution of three formulations of nanoparticles, following subcutaneous administration, indicated migration away from the injection site. Less inflammation was observed at the injection sites of mice-administered nanoparticles as compared to Alum and incomplete Freund's adjuvant. Furthermore, histological evaluation revealed minimal adverse injection site reactions and minimal toxicological effects associated with the administration of nanoparticles at 30 days post-administration. Collectively, these results demonstrate that polyanhydride nanoparticles do not induce inflammation as a cumulative effect of particle persistence or degradation and are, therefore, a viable candidate for a vaccine delivery platform.
Collapse
Affiliation(s)
- Lucas Huntimer
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nazareth I, Tavares F, Rosillon D, Haguinet F, Bauchau V. Safety of AS03-adjuvanted split-virion H1N1 (2009) pandemic influenza vaccine: a prospective cohort study. BMJ Open 2013; 3:bmjopen-2012-001912. [PMID: 23388195 PMCID: PMC3586178 DOI: 10.1136/bmjopen-2012-001912] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To assess the safety of an AS03-adjuvanted split virion H1N1 (2009) vaccine (Pandemrix) in persons vaccinated during the national pandemic influenza vaccination campaign in the UK. DESIGN Prospective, cohort, observational, postauthorisation safety study. SETTING 87 general practices forming part of the Medical Research Council General Practice Research Framework and widely distributed throughout England. PARTICIPANTS A cohort of 9143 individuals aged 7 months to 97 years who received at least one dose of the AS03-adjuvanted H1N1 pandemic vaccine during the national pandemic influenza vaccination campaign in the UK was enrolled. 94% completed the 6-month follow-up. Exclusion criteria were previous vaccination with other H1N1 pandemic vaccine and any child in care. PRIMARY AND SECONDARY OUTCOME MEASURES Medically attended adverse events (MAEs) occurring within 31 days after any dose, serious adverse events (SAEs) and adverse events of special interest (AESIs) following vaccination were collected for all participants. Solicited adverse events (AEs) were assessed in a subset of participants. RESULTS MAEs were reported in 1219 participants and SAEs in 113 participants during the 31-day postvaccination period. The most frequently reported MAEs and SAEs were consistent with events expected to be reported during the winter season in this population: lower respiratory tract infections, asthma and pneumonia. The most commonly reported solicited AEs were irritability in young children aged <5 years (61.8%), muscle aches in children aged 5-17 years (61.9%) and adults (46.9%). 18 AESIs, experienced by 14 patients, met the criteria to be considered for the observed-to-expected analyses. AESIs above the expected number were neuritis (1 case within 31 days) and convulsions (8 cases within 181 days). There were 41 deaths during the 181-day period after vaccination, fewer than expected. CONCLUSIONS Results indicate that the AS03-adjuvanted H1N1 pandemic vaccine showed a clinically acceptable reactogenicity and safety profile in all age and risk groups studied. TRIAL REGISTRATION ClinicalTrials.gov, NCT00996853.
Collapse
Affiliation(s)
- Irwin Nazareth
- Department of Primary Care & Population Health, University College London Medical School, London, UK
| | | | | | | | | |
Collapse
|
36
|
Cerbino-Neto J, Santos ATDS, Gouvea MIFDS, Pedro RS, Ramos GV, Guaraldo L, Werneck GL. Comparison of adverse events following immunization with pandemic influenza A (H1N1)pdm09 vaccine with or without adjuvant among health professionals in Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 2012; 107:923-7. [DOI: 10.1590/s0074-02762012000700014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/09/2012] [Indexed: 11/21/2022] Open
|
37
|
Aljadhey H, Alyabsi M, Alrwisan A, Alqahtani N, Almutairi R, Al Tawil E, Adam M, Shakir S, Aljeraisy M, Al-Blowi A, Alkhashan H, Albogami Y, Murray MD. The safety of H1N1 vaccine in children in Saudi Arabia: a cohort study using modern technology in a developing country. Drug Saf 2012; 35:555-61. [PMID: 22671865 DOI: 10.2165/11597450-000000000-00000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND With its rapid introduction in 2009, concerns about the safety of the H1N1 vaccines have been raised. Data were especially limited on the pediatric safety of H1N1 vaccine in Saudi Arabia. OBJECTIVES The objectives of this study were to investigate the safety of the H1N1 vaccine (Pandemrix(®)) in children and examine the feasibility of obtaining information on possibly associated adverse reactions using mobile telephone contact with child caregivers. METHODS A cohort study was conducted in Riyadh, Saudi Arabia. Patients were included if they were aged between 6 and 18 years and had received one dose of the H1N1 vaccine. A control group involved children from the same school system who had not received the vaccine. Six months following vaccination, a clinical pharmacist called the caregiver of the child to ask about hospitalization, emergency room visits and events related to H1N1 vaccine administration using a standardized questionnaire. RESULTS Caregivers of 372 school-age children were contacted. The response rate was 97% (n = 359). A total of 169 children who received at least one dose of the H1N1 vaccine were compared with 190 children in the control group who had not received the vaccine. Controlling for age, sex, education and use of medications, the odds ratio (OR) of hospitalization or emergency room visits for children within the 6 months after vaccination relative to the unvaccinated children was 1.25 (95% CI 0.47, 3.35). The risk of influenza-like symptoms was significantly reduced in vaccinated children compared with unvaccinated children (OR 0.63; 95% CI 0.41, 0.99). CONCLUSION School-age children in Saudi Arabia who received the H1N1 vaccine did not have an increased risk of hospitalization or emergency room visits. Larger studies are needed to confirm these results. Proactive pharmacovigilance is important in assessing the safety of vaccines and other medications. It is feasible to collect information on adverse drug reactions using mobile telephones, a method that can be of benefit in both developed and developing countries.
Collapse
Affiliation(s)
- Hisham Aljadhey
- Medication Safety Research Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Esposito S, Tagliabue C, Tagliaferri L, Semino M, Longo M, Principi N. Preventing influenza in younger children. Clin Microbiol Infect 2012; 18 Suppl 5:42-9. [DOI: 10.1111/j.1469-0691.2012.03942.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Vesikari T, Pepin S, Kusters I, Hoffenbach A, Denis M. Assessment of squalene adjuvanted and non-adjuvanted vaccines against pandemic H1N1 influenza in children 6 months to 17 years of age. Hum Vaccin Immunother 2012; 8:1283-92. [PMID: 22906943 DOI: 10.4161/hv.21265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines were urgently needed in 2009 against A/H1N1 pandemic influenza. Based on the H5N1 experience, it was originally thought that 2 doses of an adjuvanted vaccine were needed for adequate immunogenicity. We tested H1N1 vaccines with or without AF03, a squalene-based adjuvant, in children. Two randomized, open-label, trials were conducted. Participants 3-17 y received two injections of 3.8 µg or 7.5 µg hemagglutinin (HA) with adjuvant or 15 µg HA without adjuvant. Participants aged 6-35 mo received two injections of 1.9 µg or 3.8 µg HA with full or half dose adjuvant or 7.5 µg HA without adjuvant. All subjects 3 to 17 y reached seroprotection (hemagglutination inhibition (HI) titer ≥ 40) after the first dose of the adjuvanted vaccine, and 94% and 98% in the 3-8 and 9-17 y groups respectively with the non-adjuvanted vaccine. In children aged 6-35 mo responses were modest after one dose, but after two doses virtually all children were seroprotected regardless of HA or adjuvant dose. In this age group, antibody titers were 5 to 7 times higher after adjuvanted than non-adjuvanted vaccine. The higher responses with the adjuvanted vaccine were also reflected as better antibody persistence. There was no clustering of adverse events that would be suggestive of a safety signal. While a single injection was sufficient in subjects from 3 y, in children aged 6-35 mo two injections of this A/H1N1 pandemic influenza vaccine were required. Formulation of this vaccine with adjuvant provided a significant advantage for immunogenicity in the latter age group.
Collapse
Affiliation(s)
- Timo Vesikari
- Vaccine Research Center, University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
40
|
Peeters M, Regner S, Vaman T, Devaster JM, Rombo L. Safety and immunogenicity of an AS03-adjuvanted A(H1N1)pmd09 vaccine administered simultaneously or sequentially with a seasonal trivalent vaccine in adults 61 years or older: data from two multicentre randomised trials. Vaccine 2012; 30:6483-91. [PMID: 22885014 DOI: 10.1016/j.vaccine.2012.07.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/23/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
During the 2009-2010 Northern Hemisphere influenza season, both seasonal and pandemic influenza vaccines were expected to be administered to elderly people, which is an important target group for influenza vaccination. Two multicentre randomised clinical studies were conducted in participants aged ≥61 years to assess the immunogenicity and reactogenicity following vaccination with two doses of an AS03-adjuvanted A(H1N1)pmd09 vaccine when either sequentially administered (21 days before first dose [N=73] or 21 days after second dose [N=72]) or co-administered (first dose [N=84] or second dose [N=84]) with a licensed trivalent seasonal influenza vaccine (TIV). Overall, 313 participants from 2 centres in Sweden (ClinicalTrials.gov, NCT00968890) and 6 centres in Germany (NCT00971425) were randomised to one of the four treatment groups. The AS03-adjuvanted A(H1N1)pmd09 vaccine elicited a good immune response against A(H1N1)pmd09-like virus in all treatment groups after the first and second dose, meeting and exceeding the European licensing criteria for pandemic influenza vaccines. After one dose of the AS03-adjuvanted A(H1N1)pmd09 vaccine, haemagglutination inhibition seroconversion rates ranged from 85% (95% confidence interval: 74-93%) to 93% (85-97%), seroprotection rates from 87% (76-94%) to 96% (90-99%) and geometric mean fold rise from 15 (11-19) to 20 (16-25). The haemagglutination inhibition immune responses to the AS03-adjuvanted A(H1N1)pmd09 vaccine seemed lower when TIV was administered 3 weeks before, while immune responses to TIV seemed not affected by either vaccination schedule. Solicited symptoms were more frequently reported following administration of the AS03-adjuvanted A(H1N1)pmd09 vaccine compared to TIV, but these were mainly mild to moderate in intensity and transient in the four treatment groups. These results suggest that sequential or co-administration of the AS03-adjuvanted A(H1N1)pmd09 vaccine and TIV induced a good immune response to both vaccines and had a clinically acceptable safety profile in people aged ≥61 years.
Collapse
|
41
|
Abstract
BACKGROUND The hemato-oncology community has been seriously concerned about the H1N1 pandemic of 2009. Here, we report on the evaluation of the immunogenicity and tolerability of H1N1v monovalent vaccines in young patients with cancer during this pandemic. PROCEDURE Between December 7, 2009 and February 26, 2010, 20 children receiving chemotherapy for solid tumors at the Institute of Hematology and Pediatric Oncology of Lyon, were immunized by 2 doses of either AS03-adjuvanted or nonadjuvanted vaccine. The level of specific antibodies was assessed at D21 and D42. RESULTS Seroconversion was observed in 13 of the 20 cases (65%), and 18 of 20 cases (90%) had protective titers after the 2 doses. Exploratory univariate analysis failed to show a significant influence of prevaccination lymphocyte counts on seroresponse rates. CONCLUSIONS These data suggest that H1N1v monovalent vaccines were well tolerated by young cancer patients while on chemotherapy and achieved protective immune response in most cases.
Collapse
|
42
|
A non-adjuvanted whole-virus H1N1 pandemic vaccine is well tolerated and highly immunogenic in children and adolescents and induces substantial immunological memory. Vaccine 2012; 30:5956-66. [PMID: 22846396 DOI: 10.1016/j.vaccine.2012.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/27/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022]
Abstract
This phase 1/2 open-label, randomized clinical study investigated the safety and immunogenicity of a non-adjuvanted, whole virus, Vero cell-derived H1N1 pandemic influenza vaccine (A/H1N1/California/07/2009) in children and adolescents (6 months to 17 years). Subjects were stratified by age (6-11 months, 12-35 months, 3-8 years, 9-17 years) to receive two vaccinations 21 days apart of either the 3.75 μg or 7.5 μg dose. A booster with a licensed trivalent seasonal (2010/2011) influenza vaccine was administered one year after the first vaccination to a subgroup that had previously received the 7.5 μg dose. A single vaccination with the 7.5 μg dose induced high seroprotection rates in all subjects, namely: 88.0% (9-17 years); 68.0% (3-8 years); 42.9% (12-35 months); and 50.0% (6-11 months). Following a second vaccination, seroprotection rates ranged from 84.2% to 100%. GMTs after two vaccinations with the 7.5 μg dose (as determined by HI) were also substantial: reaching 210.0 (9-17 years), 196.2 (3-8 years), 118.9 (12-35 months) and 99.6 (6-11 months). Antibody persistence was demonstrated at 6 months (GMTs ranging from 65.6 to 212.8 with the 7.5 μg dose) and at 12 months (GMTs ranging from 33.6 to 124.1 with the 7.5 μg dose) after primary vaccination. The booster vaccination induced a strong response to the A/California/07/2009 strain, reaching 100% seroprotection in all age groups, with GMTs ranging from 640.0 to 886.3. The vaccine was well tolerated, inducing low adverse reaction rates (overall fever rate: 6% after the first vaccination; 7% after the second vaccination), even in young children. These data confirm that the H1N1 whole-virus Vero cell-derived pandemic influenza vaccine is suitable for use in children and adolescents; a 2-dose primary vaccination induces a memory response in a naïve population that can be effectively boosted with the A/H1N1/California/07/2009 component of a seasonal influenza vaccine. ClinicalTrials.gov Identifier: NCT00976469.
Collapse
|
43
|
Effectiveness of the monovalent AS03-adjuvanted influenza A(H1N1)pdm09 vaccine against hospitalization in children because of influenza. Vaccine 2012; 30:5699-702. [PMID: 22819987 DOI: 10.1016/j.vaccine.2012.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022]
Abstract
We studied the effectiveness of the AS03-adjuvanted monovalent vaccine (Pandemrix(®)) for the prevention of severe pandemic influenza A(H1N1)pdm09 in children, in 2009. All children hospitalized for influenza-like illness in Stockholm County during the peak of the pandemic were included. We compared the frequency of vaccinated children between influenza A(H1N1)pdm09 PCR positive cases and PCR negative controls in a retrospective case-control study. 95 cases and 177 controls were identified. About half of the children in both groups were between 6 months and 2 years of age. Only 1/95 (1%) cases had been vaccinated more than 14 days prior to admission, compared to 23/177 controls (13%), corresponding to a vaccine effectiveness, adjusted for co-morbid conditions, of 91% (95% confidence interval [CI] 30-99). In contrast, the risk for being a case was significantly higher among children vaccinated between 1 and 14 days prior to hospitalization, than among those who were non-vaccinated 13/95 vs. 7/177 (OR 3.6, 95% CI 1.4-9.5). We conclude that a single dose of adjuvanted vaccine was highly protective against hospitalization for influenza A(H1N1)pdm09 in children 6 month to 17 years. The reason for the increased rate of hospitalizations with confirmed influenza in children just following immunization is unclear and should be studied further.
Collapse
|
44
|
Jackson LA, Chen WH, Stapleton JT, Dekker CL, Wald A, Brady RC, Edupuganti S, Winokur P, Mulligan MJ, Keyserling HL, Kotloff KL, Rouphael N, Noah DL, Hill H, Wolff MC. Immunogenicity and safety of varying dosages of a monovalent 2009 H1N1 influenza vaccine given with and without AS03 adjuvant system in healthy adults and older persons. J Infect Dis 2012; 206:811-20. [PMID: 22782949 DOI: 10.1093/infdis/jis427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Adjuvanted vaccines have the potential to improve influenza pandemic response. AS03 adjuvant has been shown to enhance the immune response to inactivated influenza vaccines. METHODS This trial was designed to evaluate the immunogenicity and safety of an inactivated 2009 H1N1 influenza vaccine at varying dosages of hemagglutinin with and without extemporaneously mixed AS03 adjuvant system in adults ≥ 18 years of age. Adults were randomized to receive 2 doses of 1 of 5 vaccine formulations (3.75 µg, 7.5 µg, or 15 µg with AS03 or 7.5 µg or 15 µg without adjuvant). RESULTS The study population included 544 persons <65 years of age and 245 persons ≥ 65 years of age. Local adverse events tended to be more frequent in the adjuvanted vaccine groups, but severe reactions were uncommon. In both age groups, hemagglutination inhibition antibody geometric mean titers after dose one were higher in the adjuvanted groups, compared with the 15 µg unadjuvanted group, and this difference was statistically significant for the comparison of the 15 µg adjuvanted group with the 15 µg unadjuvanted group. CONCLUSIONS AS03 adjuvant system improves the immune response to inactivated 2009 H1N1 influenza vaccine in both younger and older adults and is generally well tolerated. ClinicalTrials.gov NCT00963157.
Collapse
Affiliation(s)
- Lisa A Jackson
- Group Health Research Institute, Seattle, WA 98101, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dose-range study of MF59-adjuvanted versus nonadjuvanted monovalent A/H1N1 pandemic influenza vaccine in six- to less than thirty-six-month-old children. Pediatr Infect Dis J 2012; 31:e92-8. [PMID: 22481427 DOI: 10.1097/inf.0b013e318257644f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The successful vaccination of children 6 to 36 months of age against 2009 A/H1N1 influenza was essential to help reduce the burden of pandemic disease in both the pediatric and adult populations. OBJECTIVES We compared the immunogenicity and safety of 4 alternative monovalent vaccine formulations to identify which provided optimal levels of seroprotection according to the US and European Union (EU) licensure criteria. SUBJECTS AND METHODS A total of 654 healthy subjects (6 to <36 months old) were given 2 vaccine doses 3 weeks apart. Participants were assigned to 1 of the 4 immunization groups, receiving MF59-adjuvanted (Novartis Vaccines, Marburg, Germany) vaccine either containing 3.75 μg or 7.5 μg of A/H1N1 California/7/2009 antigen, or nonadjuvanted vaccine containing 7.5 μg or 15 μg of antigen. Antibody titers were assessed by hemagglutination inhibition assay 3 weeks, 3 months and 1 year after immunization. Vaccine safety was monitored throughout the study. RESULTS After 1 dose, both adjuvanted formulations met the US and EU criteria for seroconversion; the 15 μg nonadjuvanted vaccine met the EU criterion for seroconversion alone. The US and EU criteria for seroprotection were only met by adjuvanted groups. MF59-adjuvanted formulations alone resulted in clinically significant persisting antibody titers after 12 months. All vaccines were well tolerated. CONCLUSIONS A single dose of MF59-adjuvanted vaccine containing 3.75 μg A/H1N1 antigen was highly immunogenic, met both the US and EU licensure criteria and was well tolerated. These data support the suitability of this monovalent vaccine formulation for pandemic use in children 6 to <36 months of age.
Collapse
|
46
|
Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 2012; 11:349-66. [PMID: 22380826 DOI: 10.1586/erv.11.192] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AS03 is an Adjuvant System composed of α-tocopherol, squalene and polysorbate 80 in an oil-in-water emulsion. In various nonclinical and clinical studies, high levels of antigen-specific antibodies were obtained after administration of an AS03-adjuvanted vaccine, permitting antigen-sparing strategies. AS03 has been shown to enhance the vaccine antigen-specific adaptive response by activating the innate immune system locally and by increasing antigen uptake and presentation in draining lymph nodes, a process that is modulated by the presence of α-tocopherol in AS03. In nonclinical models of the AS03-adjuvanted prepandemic H5N1 influenza vaccine, increased levels of anti-influenza antibody afforded protection against disease and against virus replication of influenza strains homologous and heterologous to the vaccine strain. By incorporating AS03 in the pandemic H1N1/2009 vaccine, vaccine immunogenicity was increased compared with nonadjuvanted H1N1 vaccines. High H1N1/2009/AS03 vaccine effectiveness was demonstrated in several assessments in multiple populations. Altogether, the nonclinical and clinical data illustrate the ability of AS03 to induce superior adaptive responses against the vaccine antigen, principally in terms of antibody levels and immune memory. In general, these results support the concept of Adjuvant Systems as a plausible approach to develop new effective vaccines.
Collapse
|
47
|
Saitoh A, Nagai A, Tenjinbaru K, Li P, Vaughn DW, Roman F, Kato T. Safety and persistence of immunological response 6 months after intramuscular vaccination with an AS03-adjuvanted H1N1 2009 influenza vaccine: an open-label, randomized trial in Japanese children aged 6 months to 17 years. Hum Vaccin Immunother 2012; 8:749-58. [PMID: 22495117 DOI: 10.4161/hv.19684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This study evaluated the long-term persistence of immune response and safety of two doses of an A/California/7/2009 H1N1 pandemic influenza vaccine adjuvanted with AS03 (an α-tocopherol oil-in-water emulsion-based Adjuvant System) in Japanese children (NCT01001169). Sixty healthy subjects aged 6 mo-17 y were enrolled (1:1) into two study groups to receive 21 d apart, two doses of 1.9 µg haemagglutinin [HA]+AS03B (5.93 mg α-tocopherol) vaccine (6 mo-9 y) and 3.75 µg HA+AS03A (11.86 mg α-tocopherol) vaccine (10-17 y), respectively. Immunogenicity data (by haemagglutination inhibition [HI] and microneutralisation assays) to six months after the first vaccine dose are reported here. It was observed that following Dose 2, the HI immune response against the vaccine homologous strain induced by the two different dosages of the AS03-adjuvanted vaccine met and exceeded the US and European regulatory guidance criteria for pandemic influenza vaccines (seroprotection rate[SPR]/seroconversion rate[SCR]: 100%/100%; geometric mean fold rise GMFR: 146.8/57.1). Further, the immune response persisted for at least six months after the first vaccine dose wherein these regulatory criteria were still met (SPR: 100%/100%; SCR: 96.4%/89.7%; GMFR: 25.3/23.5). The neutralising antibody response was comparable to the HI immune response at Day 42 (vaccine response rate [VRR]: 100%/100%) and at Day 182 (VRR: 96.4%/82.8%). Overall, both vaccine dosages had a clinically acceptable safety profile. Thus, two doses of a 1.9 µg or 3.75 µg HA AS03-adjuvanted H1N1 2009 pandemic influenza vaccine in children aged 6 mo-17 y induced strong immune responses against the vaccine homologous strain that persisted for at least six months after the first vaccine dose.
Collapse
Affiliation(s)
- Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Langley JM, Scheifele DW, Quach C, Vanderkooi OG, Ward B, McNeil S, Dobson S, Kellner JD, Kuhn S, Kollman T, MacKinnon-Cameron D, Smith B, Li Y, Halperin SA. Safety and immunogenicity of 2010-2011 H1N12009-containing trivalent inactivated influenza vaccine in children 12-59 months of age previously given AS03-adjuvanted H1N12009 pandemic vaccine: a PHAC/CIHR Influenza Research Network (PCIRN) study. Vaccine 2012; 30:3389-94. [PMID: 22469860 DOI: 10.1016/j.vaccine.2012.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 02/11/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Concern arose in 2010 that reactogenicity, particularly febrile seizures, to influenza A/H1N1-containing 2010-2011 trivalent seasonal inactivated influenza vaccine (TIV) could occur in young children who had been previously immunized and/or infected with the pandemic strain. We conducted a pre-season study of 2010-2011 TIV safety and immunogenicity in children 12-59 months of age to inform public health decision making. METHODS Children immunized with 1 or 2 doses of the pandemic vaccine, with or without the 2009-10 TIV, received 1 or 2 doses of 2010-11 TIV in an observational, multicentre Canadian study. Standard safety monitoring was enhanced by a telephone call at ~24 h post-TIV when adverse events were expected to peak. Summary safety reports were rapidly reported to public health before the launch of public programs. TIV immunogenicity was assessed day 0, and 21 days after final vaccination. Clinical Trials Registration NCT01180621. RESULTS Among 207 children, a general adverse event was reported by 60.9% of children post-dose one and by 58.3% post-dose two. Only severe fever (>38.5°C) was more common in two-dose compared to one dose recipients (16.7%, n=4 v. 1.0%, n=2). At baseline 99.0% of participants had A/H1N1 hemagglutinin inhibition (HAI) titers ≥10, and 85.5% had a protective titer of ≥40 (95% CI 80.0, 90.0). Baseline geometric mean titers (GMT) were higher in recipients of a 2-dose schedule of pandemic vaccine compared to one-dose recipients: 153.1 (95% CI 126.2, 185.7) v. 78.8 ((58.1, 106.8, p<0.001). At 21 days, all regulatory criteria for influenza vaccine immunogenicity were exceeded for A/H1N1 and H3N2, but responses to the B antigen were poor. No correlations between reactogenicity and either baseline high influenza titers or serologic response to revaccination were evident. CONCLUSIONS Infants and toddlers who received AS03-adjuvanted A/H1N1 2009 vaccine up to 11 months earlier retained high titers in the subsequent season but re-exposure to A/H1N1 2009 antigen in TIV resulted in no unusual adverse effects and 100% were sero-protected for A/H1N1 after receipt of the 2010-11 TIV.
Collapse
Affiliation(s)
- Joanne M Langley
- Canadian Center for Vaccinology, Dalhousie University and IWK Health Centre Halifax, Halifax, Nova Scotia, B3K 6R8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nohynek H, Jokinen J, Partinen M, Vaarala O, Kirjavainen T, Sundman J, Himanen SL, Hublin C, Julkunen I, Olsén P, Saarenpää-Heikkilä O, Kilpi T. AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland. PLoS One 2012; 7:e33536. [PMID: 22470453 PMCID: PMC3314666 DOI: 10.1371/journal.pone.0033536] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
Background Narcolepsy is a chronic sleep disorder with strong genetic predisposition causing excessive daytime sleepiness and cataplexy. A sudden increase in childhood narcolepsy was observed in Finland soon after pandemic influenza epidemic and vaccination with ASO3-adjuvanted Pandemrix. No increase was observed in other age groups. Methods Retrospective cohort study. From January 1, 2009 to December 31, 2010 we retrospectively followed the cohort of all children living in Finland and born from January 1991 through December 2005. Vaccination data of the whole population was obtained from primary health care databases. All new cases with assigned ICD-10 code of narcolepsy were identified and the medical records reviewed by two experts to classify the diagnosis of narcolepsy according to the Brighton collaboration criteria. Onset of narcolepsy was defined as the first documented contact to health care because of excessive daytime sleepiness. The primary follow-up period was restricted to August 15, 2010, the day before media attention on post-vaccination narcolepsy started. Findings Vaccination coverage in the cohort was 75%. Of the 67 confirmed cases of narcolepsy, 46 vaccinated and 7 unvaccinated were included in the primary analysis. The incidence of narcolepsy was 9.0 in the vaccinated as compared to 0.7/100,000 person years in the unvaccinated individuals, the rate ratio being 12.7 (95% confidence interval 6.1–30.8). The vaccine-attributable risk of developing narcolepsy was 1∶16,000 vaccinated 4 to 19-year-olds (95% confidence interval 1∶13,000–1∶21,000). Conclusions Pandemrix vaccine contributed to the onset of narcolepsy among those 4 to 19 years old during the pandemic influenza in 2009–2010 in Finland. Further studies are needed to determine whether this observation exists in other populations and to elucidate potential underlying immunological mechanism. The role of the adjuvant in particular warrants further research before drawing conclusions about the use of adjuvanted pandemic vaccines in the future.
Collapse
Affiliation(s)
- Hanna Nohynek
- Department of Vaccines and Immune Protection, National Institute for Health and Welfare, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ikematsu H, Nagai H, Kawashima M, Kawakami Y, Tenjinbaru K, Li P, Walravens K, Gillard P, Roman F. Characterization and long-term persistence of immune response following two doses of an AS03A-adjuvanted H1N1 influenza vaccine in healthy Japanese adults. Hum Vaccin Immunother 2012; 8:260-6. [PMID: 22426369 PMCID: PMC3367709 DOI: 10.4161/hv.18469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background
Long-term persistence of immune response and safety of two doses of an A/California/07/2009 H1N1 pandemic influenza vaccine adjuvanted with AS03 (an α-tocopherol oil-in-water emulsion-based Adjuvant System) administered 21 d apart was evaluated in Japanese adults [NCT00989612].
Methods
One-hundred healthy subjects aged 20−64 y (stratified [1:1] into two age strata 20−40 y and 41−64 y) received 21 d apart, two doses of AS03-adjuvanted 3.75µg haemagglutinin (HA) H1N1 2009 vaccine. Immunogenicity data by haemagglutination inhibition (HI) assay six months after the first vaccine dose (Day 182) and microneutralization assay following each of the two vaccine doses (Days 21 and 42) and at Day 182 are reported here.
Results
Persistence of strong HI immune response was observed at Day 182 that met the US and European regulatory thresholds for pandemic influenza vaccines (seroprotection rate: 95%; seroconversion rate: 93%; geometric mean fold-rise: 20). The neutralizing antibody response against the A/Netherlands/602/2009 strain (antigenically similar to vaccine-strain) persisted for at least up to Day 182 (vaccine response rate: 76%; geometric mean titer: 114.4) and paralleled the HI immune response at all time points. No marked difference was observed in HI antibody persistence and neutralising antibody response between the two age strata. The vaccine had a clinically-acceptable safety profile.
Conclusion
Two priming doses of H1N1 2009 pandemic influenza vaccine induced an immune response persisting for at least six months after the first vaccine dose. This could be beneficial in evaluating the importance and effect of vaccination with this AS03-adjuvanted pandemic influenza vaccine.
Collapse
Affiliation(s)
- Hideyuki Ikematsu
- Department of Clinical Trials, Center for Advanced Medical Innovation, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|