1
|
He Z, Li F, Liu M, Liao J, Guo C. Porcine Reproductive and Respiratory Syndrome Virus: Challenges and Advances in Vaccine Development. Vaccines (Basel) 2025; 13:260. [PMID: 40266104 PMCID: PMC11945896 DOI: 10.3390/vaccines13030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
Persistent infection of porcine reproductive and respiratory syndrome virus (PRRSV) significantly hampers both the quantity and quality of pork production in China. Although PRRSV is widely prevalent worldwide, the absence of effective vaccines has made it one of the major pathogens threatening the sustainable development of the global swine industry. Vaccination remains one of the most effective measures for controlling pathogen infections. However, the continuous genetic recombination and mutation of PRRSV demand more comprehensive strategies to address emerging threats, while ensuring the efficacy and safety of vaccines. This review provides an overview of the latest advances in PRRSV vaccine research, highlighting the importance of understanding the unique strengths and limitations of various vaccines in developing effective therapeutic approaches and vaccination strategies. Moreover, the development of adjuvants and antiviral drugs as adjuncts to combat PRRSV infection offers significant potential for enhancing disease control efforts. With the advancement of technologies such as proteolysis-targeting chimera (PROTAC) and mRNA, new avenues for controlling PRRSV and other pathogens are emerging, offering considerable hope. Ultimately, the goal of these vaccine developments is to alleviate the impact of PRRSV on animal health and the profitability of the swine industry.
Collapse
Affiliation(s)
| | | | | | | | - Chunhe Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (F.L.); (M.L.); (J.L.)
| |
Collapse
|
2
|
Wang H, Feng W. Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines. Vaccines (Basel) 2024; 12:1387. [PMID: 39772049 PMCID: PMC11679953 DOI: 10.3390/vaccines12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 01/05/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease. At present, various types of vaccine are available or being studied, including inactivated vaccines, modified live virus (MLV) vaccines, vector vaccines, subunit vaccines, DNA vaccines, RNA vaccines, etc. MLV vaccines have been widely used to control PRRSV infection for more than 30 years since they were first introduced in North America in 1994, and have shown a certain efficacy. However, there are safety and efficacy issues such as virulence reversion, recombination with field strains, and a lack of protection against heterologous strains, while other types of vaccine have their own advantages and disadvantages, making the eradication of PRRS a challenge. This article reviews the latest progress of these vaccines in the prevention and control of PRRS and provides scientific inspiration for developing new strategies for the next generation of PRRS vaccines.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Clinical Laboratory, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Wenhai Feng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Soil Microbiology, China Agricultural University, Beijing 100193, China
- Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Medina GN, Diaz San Segundo F. Virulence and Immune Evasion Strategies of FMDV: Implications for Vaccine Design. Vaccines (Basel) 2024; 12:1071. [PMID: 39340101 PMCID: PMC11436118 DOI: 10.3390/vaccines12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Foot-and-mouth disease (FMD) is globally recognized as a highly economically devastating and prioritized viral disease affecting livestock. Vaccination remains a crucial preventive measure against FMD. The improvement of current vaccine platforms could help control outbreaks, leading to the potential eradication of the disease. In this review, we describe the variances in virulence and immune responses among FMD-susceptible host species, specifically bovines and pigs, highlighting the details of host-pathogen interactions and their impact on the severity of the disease. This knowledge serves as an important foundation for translating our insights into the rational design of vaccines and countermeasure strategies, including the use of interferon as a biotherapeutic agent. Ultimately, in this review, we aim to bridge the gap between our understanding of FMDV biology and the practical approaches to control and potentially eradicate FMD.
Collapse
Affiliation(s)
- Gisselle N Medina
- National Bio and Agro-Defense Facility (NBAF), ARS, USDA, Manhattan, KS 66502, USA
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY 11957, USA
| | | |
Collapse
|
4
|
Hsu CY, Jang Y, Huang WR, Wang CY, Wen HW, Tsai PC, Yang CY, Munir M, Liu HJ. Development of Polycistronic Baculovirus Surface Display Vectors to Simultaneously Express Viral Proteins of Porcine Reproductive and Respiratory Syndrome and Analysis of Their Immunogenicity in Swine. Vaccines (Basel) 2023; 11:1666. [PMID: 38005998 PMCID: PMC10674950 DOI: 10.3390/vaccines11111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
To simultaneously express and improve expression levels of multiple viral proteins of a porcine reproductive and respiratory syndrome virus (PRRSV), polycistronic baculovirus surface display vectors were constructed and characterized. We engineered polycistronic baculovirus surface display vectors, namely, pBacDual Display EGFP(BacDD)-2GP2-2GP4 and pBacDD-4GP5N34A/N51A (mtGP5), which simultaneously express and display the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP4-gp64TM-CTD, and His-tagged mtGP5-gp64TM-CTD fusion proteins of PRRSV on cell membrane of Sf-9 cells. Specific pathogen-free (SPF) pigs were administered intramuscularly in 2 doses at 21 and 35 days of age with genetic recombinant baculoviruses-infected cells. Our results revealed a high level of ELISA-specific antibodies, neutralizing antibodies, IL-4, and IFN-γ in SPF pigs immunized with the developed PRRSV subunit vaccine. To further assess the co-expression efficiency of different gene combinations, pBacDD-GP2-GP3-2GP4 and pBacDD-2mtGP5-2M constructs were designed for the co-expression of the ectodomain of His-tagged GP2-gp64TM-CTD, His-tagged GP3-gp64TM-CTD, and His-tagged GP4-gp64TM-CTD proteins as well as the ectodomain of His-tagged mtGP5-gp64TM-CTD and His-tagged M-gp64TM-CTD fusion proteins of PRRSV. To develop an ELISA assay for detecting antibodies against PRRSV proteins, the sequences encoding the ectodomain of the GP2, GP3, GP4, mtGP5, and M of PRRSV were amplified and subcloned into the pET32a vector and expressed in E. coli. In this work, the optimum conditions for expressing PRRSV proteins were evaluated, and the results suggested that 4 × 105 of Sf-9 cells supplemented with 7% fetal bovine serum and infected with the recombinant baculoviruses at an MOI of 20 for three days showed a higher expression levels of the protein. Taken together, the polycistronic baculovirus surface display system is a useful tool to increase expression levels of viral proteins and to simultaneously express multiple viral proteins of PRRSV for the preparation of subunit vaccines.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Taichung 435, Taiwan;
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yun Jang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
| | - Wei-Ru Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan;
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK;
| | - Hung-Jen Liu
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan; (Y.J.); (W.-R.H.)
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Lao T, Avalos I, Rodríguez EM, Zamora Y, Rodriguez A, Ramón A, Alvarez Y, Cabrales A, Andújar I, González LJ, Puente P, García C, Gómez L, Valdés R, Estrada MP, Carpio Y. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS One 2023; 18:e0288006. [PMID: 37751460 PMCID: PMC10522030 DOI: 10.1371/journal.pone.0288006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/16/2023] [Indexed: 09/28/2023] Open
Abstract
Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.
Collapse
Affiliation(s)
- Thailin Lao
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ileanet Avalos
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Elsa María Rodríguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yasser Zamora
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Alianet Rodriguez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ailyn Ramón
- Center for Genetic Engineering and Biotechnology, Laboratory of Molecular Oncology, Havana, Cuba
| | - Yanitza Alvarez
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | - Ivan Andújar
- Center for Genetic Engineering and Biotechnology, Systems Biology, Havana, Cuba
| | | | - Pedro Puente
- Center for Genetic Engineering and Biotechnology, Animal housing, Havana, Cuba
| | - Cristina García
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Leonardo Gómez
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Rodolfo Valdés
- Center for Genetic Engineering and Biotechnology, Production Division, Havana, Cuba
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, Animal Biotechnology Department, Havana, Cuba
| |
Collapse
|
6
|
Wu K, Hu W, Zhou B, Li B, Li X, Yan Q, Chen W, Li Y, Ding H, Zhao M, Fan S, Yi L, Chen J. Immunogenicity and Immunoprotection of PCV2 Virus-like Particles Incorporating Dominant T and B Cell Antigenic Epitopes Paired with CD154 Molecules in Piglets and Mice. Int J Mol Sci 2022; 23:ijms232214126. [PMID: 36430608 PMCID: PMC9694800 DOI: 10.3390/ijms232214126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is capable of causing porcine circovirus-associated disease (PCVAD) and is one of the major threats to the global pig industry. The nucleocapsid protein Cap encoded by the PCV2 ORF2 gene is an ideal antigen for the development of PCV2 subunit vaccines, and its N-terminal nuclear localization sequence (NLS) structural domain is essential for the formation of self-assembling VLPs. In the present study, we systematically expressed and characterized full-length PCV2 Cap proteins fused to dominant T and B cell antigenic epitopes and porcine-derived CD154 molecules using baculovirus and found that the Cap proteins fusing epitopes were still capable of forming virus-like particles (VLPs). Both piglet and mice experiments showed that the Cap proteins fusing epitopes or paired with the molecular adjuvant CD154 were able to induce higher levels of humoral and cellular responses, particularly the secretion of PCV2-specific IFN-γ and IL-4. In addition, vaccination significantly reduced clinical signs and the viral load of PCV2 in the blood and tissues of challenged piglets. The results of the study provide new ideas for the development of a more efficient, safe and broad-spectrum next-generation PCV2 subunit vaccine.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bolun Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Quanhui Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85288017
| |
Collapse
|
7
|
Ávalos I, Lao T, Rodríguez EM, Zamora Y, Rodríguez A, Ramón A, Lemos G, Cabrales A, Bequet-Romero M, Casillas D, Andújar I, Espinosa LA, González LJ, Alvarez Y, Carpio Y, Estrada MP. Chimeric Antigen by the Fusion of SARS-CoV-2 Receptor Binding Domain with the Extracellular Domain of Human CD154: A Promising Improved Vaccine Candidate. Vaccines (Basel) 2022; 10:897. [PMID: 35746505 PMCID: PMC9228316 DOI: 10.3390/vaccines10060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
COVID-19 is a respiratory viral disease caused by a new coronavirus called SARS-CoV-2. This disease has spread rapidly worldwide with a high rate of morbidity and mortality. The receptor-binding domain (RBD) of protein spike (S) mediates the attachment of the virus to the host's cellular receptor. The RBD domain constitutes a very attractive target for subunit vaccine development due to its ability to induce a neutralizing antibody response against the virus. With the aim of boosting the immunogenicity of RBD, it was fused to the extracellular domain of CD154, an immune system modulator molecule. To obtain the chimeric protein, stable transduction of HEK-293 was carried out with recombinant lentivirus and polyclonal populations and cell clones were obtained. RBD-CD was purified from culture supernatant and further characterized by several techniques. RBD-CD immunogenicity evaluated in mice and non-human primates (NHP) indicated that recombinant protein was able to induce a specific and high IgG response after two doses. NHP sera also neutralize SARS-CoV-2 infection of Vero E6 cells. RBD-CD could improve the current vaccines against COVID-19, based in the enhancement of the host humoral and cellular response. Further experiments are necessary to confirm the utility of RBD-CD as a prophylactic vaccine and/or booster purpose.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yamila Carpio
- Center for Genetic Engineering and Biotechnology, CIGB, Ave. 31 E/158 y 190, Havana 10600, Cuba; (I.Á.); (T.L.); (E.M.R.); (Y.Z.); (A.R.); (A.R.); (G.L.); (A.C.); (M.B.-R.); (D.C.); (I.A.); (L.A.E.); (L.J.G.); (Y.A.)
| | - Mario Pablo Estrada
- Center for Genetic Engineering and Biotechnology, CIGB, Ave. 31 E/158 y 190, Havana 10600, Cuba; (I.Á.); (T.L.); (E.M.R.); (Y.Z.); (A.R.); (A.R.); (G.L.); (A.C.); (M.B.-R.); (D.C.); (I.A.); (L.A.E.); (L.J.G.); (Y.A.)
| |
Collapse
|
8
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
9
|
Suárez-Pedroso M, Sordo-Puga Y, Sosa-Teste I, Rodriguez-Molto MP, Naranjo-Valdés P, Sardina-González T, Santana-Rodríguez E, Montero-Espinosa C, Frías-Laporeaux MT, Fuentes-Rodríguez Y, Pérez-Pérez D, Oliva-Cárdenas A, Pereda CL, González-Fernández N, Bover-Fuentes E, Vargas-Hernández M, Duarte CA, Estrada-García MP. Novel chimeric E2CD154 subunit vaccine is safe and confers long lasting protection against classical swine fever virus. Vet Immunol Immunopathol 2021; 234:110222. [PMID: 33690056 DOI: 10.1016/j.vetimm.2021.110222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
E2CD154 is a vaccine candidate against classical swine fever (CSF) based on a chimeric protein composed of the E2 glycoprotein fused to porcine CD154 antigen, and formulated in the oil adjuvant Montanide™ ISA 50 V2. This vaccine confers early protection in pigs and prevents vertical transmission in pregnant sows. The objectives of this study were to assess the safety of this immunogen in piglets, to compare several doses of antigen in the formulation, and to study the duration of the immunity provided by this vaccine for up to 9 months. Three trials were conducted by immunizing pigs with a two-dose regime of the vaccine. Challenge experiments were carried out with the highly pathogenic Margarita strain. No local or systemic adverse effects were documented, and neither macroscopic nor microscopic pathological findings were observed in the vaccinated animals. The three antigen doses explored were safe and induced CSF protective neutralizing antibodies. The dose of 50 μg was selected for further development because it provided the best clinical and virological protection. Finally, this protective immunity was sustained for at least 9 months. This study demonstrates that E2CD154 vaccine is safe; defines a vaccine dose of 50 μg antigen, and evidences the capacity of this vaccine to confer long term protection from CSFV infection for up to 9 months post- vaccination. These findings complement previous data on the evaluation of this vaccine candidate, and suggest that E2CD154 is a promising alternative to modified live vaccines in CSF endemic areas.
Collapse
Affiliation(s)
- Marisela Suárez-Pedroso
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba.
| | - Yusmel Sordo-Puga
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Iliana Sosa-Teste
- Centro para la Producción de Animales de Laboratorio (CENPALAB), Centro de Toxicología Experimental (CETEX), Cuba
| | | | | | - Talía Sardina-González
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Elaine Santana-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos Montero-Espinosa
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | | | - Yohandy Fuentes-Rodríguez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Danny Pérez-Pérez
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Ayme Oliva-Cárdenas
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carmen Laura Pereda
- Centro Nacional de Sanidad Agropecuaria (CENSA), Apdo 10, San José de Las Lajas, Havana, Cuba
| | - Nemecio González-Fernández
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Eddy Bover-Fuentes
- Departamento de Desarrollo de Procesos, Centro de Ingeniería Genética y Biotecnología (CIGB), Camagüey, Cuba
| | - Milagros Vargas-Hernández
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Carlos A Duarte
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| | - Mario Pablo Estrada-García
- Departamento de Biotecnología Animal, Centro de Ingeniería Genética y Biotecnología (CIGB), Havana, Cuba
| |
Collapse
|
10
|
Porvac ® Subunit Vaccine E2-CD154 Induces Remarkable Rapid Protection against Classical Swine Fever Virus. Vaccines (Basel) 2021; 9:vaccines9020167. [PMID: 33671399 PMCID: PMC7922993 DOI: 10.3390/vaccines9020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/17/2022] Open
Abstract
Live attenuated C-strain classical swine fever vaccines provide early onset protection. These vaccines confer effective protection against the disease at 5–7 days post-vaccination. It was previously reported that intramuscular administration of the Porvac® vaccine protects against highly virulent classical swine fever virus (CSFV) “Margarita” strain as early as seven days post-vaccination. In order to identify how rapidly protection against CSFV is conferred after a single dose of the Porvac® subunit vaccine E2-CD154, 15 swine, vaccinated with a single dose of Porvac®, were challenged intranasally at five, three, and one day post-vaccination with 2 × 103 LD50 of the highly pathogenic Cuban “Margarita” strain of the classical swine fever virus. Another five animals were the negative control of the experiment. The results provided clinical and virological data confirming protection at five days post-vaccination. Classical swine fever (CSF)-specific IFNγ T cell responses were detected in vaccinated animals but not detected in unvaccinated control animals. These results provided the first data that a subunit protein vaccine demonstrates clinical and viral protection at five days post-vaccination, as modified live vaccines.
Collapse
|
11
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
12
|
Adjuvants for swine vaccines: Mechanisms of actions and adjuvant effects. Vaccine 2020; 38:6659-6681. [DOI: 10.1016/j.vaccine.2020.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
|
13
|
Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, S Almasoud A, Alharbi NK, Peng BH, Russell M, Li X, Tseng CTK. A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model. J Infect Dis 2020; 220:1558-1567. [PMID: 30911758 PMCID: PMC7107499 DOI: 10.1093/infdis/jiz137] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Background Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. Methods We extended and optimized our previous recombinant adenovirus 5 (rAd5)–based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. Results Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1– but not rAd5-S1/F/CD40L–immunized mice exhibited marked pulmonary perivascular hemorrhage post–MERS-CoV challenge despite the observed protection. Conclusions Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University
| | | | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman S Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bi-Hung Peng
- Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston
| | - Marsha Russell
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Xuguang Li
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston
| |
Collapse
|
14
|
Recombinant Porcine Reproductive and Respiratory Syndrome Virus Expressing Membrane-Bound Interleukin-15 as an Immunomodulatory Adjuvant Enhances NK and γδ T Cell Responses and Confers Heterologous Protection. J Virol 2018; 92:JVI.00007-18. [PMID: 29643245 DOI: 10.1128/jvi.00007-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Cytokines are often used as adjuvants to improve vaccine immunogenicity, since they are important in initiating and shaping the immune response. The available commercial modified live-attenuated vaccines (MLVs) against porcine reproductive and respiratory syndrome virus (PRRSV) are unable to mount sufficient heterologous protection, as they typically induce weak innate and inadequate T cell responses. In this study, we investigated the immunogenicity and vaccine efficacy of recombinant PRRSV MLVs incorporated with the porcine cytokine interleukin-15 (IL-15) or IL-18 gene fused to a glycosylphosphatidylinositol (GPI) modification signal that can anchor the cytokines to the cell membrane. We demonstrated that both cytokines were successfully expressed on the cell membrane of porcine alveolar macrophages after infection with recombinant MLVs. Pigs vaccinated with recombinant MLVs or the parental Suvaxyn MLV had significantly reduced lung lesions and viral RNA loads in the lungs after heterologous challenge with the PRRSV NADC20 strain. The recombinant MLVs SUV-IL-15 and SUV-IL-18 recovered the inhibition of the NK cell response seen with Suvaxyn MLV. The recombinant MLV SUV-IL-15 significantly increased the numbers of gamma interferon (IFN-γ)-producing cells in circulation at 49 days postvaccination (dpv), especially for IFN-γ-producing CD4- CD8+ T cells and γδ T cells, compared to the Suvaxyn MLV and SUV-IL-18. Additionally, MLV SUV-IL-15-vaccinated pigs also had elevated levels of γδ T cell responses observed at 7 dpv, 49 dpv, and 7 days postchallenge. These data demonstrate that the recombinant MLV expressing membrane-bound IL-15 enhances NK and T cell immune responses after vaccination and confers improved heterologous protection, although this was not statistically significant compared to the parental MLV.IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) has arguably been the most economically important global swine disease, causing immense economic losses worldwide. The available commercial modified live-attenuated vaccines (MLVs) against PRRS virus (PRRSV) are generally effective against only homologous or closely related virus strains but are ineffective against heterologous strains, partially due to the insufficient immune response induced by the vaccine virus. To improve the immunogenicity of MLVs, in this study, we present a novel approach of using porcine IL-15 or IL-18 as an adjuvant by directly incorporating its encoding gene into a PRRSV MLV and expressing it as an adjuvant. Importantly, we directed the expression of the incorporated cytokines to the cell membrane surface by fusing the genes with a membrane-targeting signal from CD59. The recombinant MLV virus expressing the membrane-bound IL-15 cytokine greatly enhanced NK cell and γδ T cell responses and also conferred improved protection against heterologous challenge with the PRRSV NADC20 strain.
Collapse
|
15
|
Charleston B, Graham SP. Recent advances in veterinary applications of structural vaccinology. Curr Opin Virol 2018; 29:33-38. [PMID: 29550741 PMCID: PMC5954236 DOI: 10.1016/j.coviro.2018.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/20/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
The deployment of effective veterinary vaccines has had a major impact on improving food security and consequently human health. Effective vaccines were essential for the global eradication of Rinderpest and the control and eradication of foot-and-mouth disease in some regions of the world. Effective vaccines also underpin the development of modern intensive food production systems such as poultry and aquaculture. However, for some high consequence diseases there are still significant challenges to develop effective vaccines. There is a strong track record in veterinary medicine of early adoption of new technologies to produce vaccines. Here we provide examples of new technologies to interrogate B cell responses and using structural biology to improve antigens.
Collapse
Affiliation(s)
- Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom.
| | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Guildford GU24 0NF, Surrey, United Kingdom
| |
Collapse
|
16
|
Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen. Biologicals 2018; 52:67-71. [DOI: 10.1016/j.biologicals.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 01/15/2023] Open
|
17
|
Muñoz-González S, Sordo Y, Pérez-Simó M, Suarez M, Canturri A, Rodriguez MP, Frías-Lepoureau MT, Domingo M, Estrada MP, Ganges L. Corrigendum to "Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows". Vet Microbiol 2017; 213:143-149. [PMID: 29126749 DOI: 10.1016/j.vetmic.2017.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Here we evaluated the effect of double vaccination with a novel subunit marker vaccine candidate based in the CSFV E2 glycoprotein fused to the porcine CD154 to prevent CSFV vertical transmission. A lentivirus-based gene delivery system was used to obtain a stable recombinant HEK 293 cell line for the expression of E2 fused to porcine CD154 molecule. Six pregnant sows were distributed in two groups and at 64days of gestation animals numbered 1-4 (group 1) were vaccinated via intramuscular inoculation with 50μg of E2-CD154 subunit vaccine. Animals from group 2 (numbered 5 and 6, control animals) were injected with PBS. Seventeen days later sows from group 1 were boosted with the same vaccine dose. Twenty-seven days after the first immunization, the sows were challenged with a virulent CSFV Margarita strain and clinical signs were registered. Samples were collected during the experiment and at necropsy to evaluate immune response and virological protection. Between 14 and 18days after challenge, the sows were euthanized, the foetuses were obtained and samples of sera and tissues were collected. E2-CD154 vaccinated animals remained clinically healthy until the end of the study; also, no adverse reaction was shown after vaccination. An effective boost effect in the neutralizing antibody response after the second immunization and viral challenge was observed and supports the virological protection detected in these animals after vaccination. Protection against CSFV vertical transmission was found in the 100% of serums samples from foetus of vaccinated sows. Only two out of 208 samples (0.96%) were positive with Ct value about 36 corresponding to one tonsil and one thymus, which may be non-infective viral particles. Besides, its DIVA potential and protection from vertical transmission, the novel CSFV E2 bound to CD154 subunit vaccine, is a promising alternative to the live-attenuated vaccine for developing countries.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Yusmel Sordo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marisela Suarez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Pilar Rodriguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba
| | | | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotecnology (CIGB), Havana, Cuba.
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
18
|
Suárez M, Sordo Y, Prieto Y, Rodríguez MP, Méndez L, Rodríguez EM, Rodríguez-Mallon A, Lorenzo E, Santana E, González N, Naranjo P, Frías MT, Carpio Y, Estrada MP. A single dose of the novel chimeric subunit vaccine E2-CD154 confers early full protection against classical swine fever virus. Vaccine 2017; 35:4437-4443. [DOI: 10.1016/j.vaccine.2017.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/18/2017] [Accepted: 05/07/2017] [Indexed: 01/07/2023]
|
19
|
Muñoz-González S, Sordo Y, Pérez-Simó M, Suárez M, Canturri A, Rodriguez MP, Frías-Lepoureau MT, Domingo M, Estrada MP, Ganges L. Efficacy of E2 glycoprotein fused to porcine CD154 as a novel chimeric subunit vaccine to prevent classical swine fever virus vertical transmission in pregnant sows. Vet Microbiol 2017. [PMID: 28622852 DOI: 10.1016/j.vetmic.2017.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we evaluated the effect of double vaccination with a novel subunit marker vaccine candidate based in the CSFV E2 glycoprotein fused to the porcine CD154 to prevent CSFV vertical transmission. A lentivirus-based gene delivery system was used to obtain a stable recombinant HEK 293 cell line for the expression of E2 fused to porcine CD154 molecule. Six pregnant sows were distributed in two groups and at 64days of gestation animals numbered 1-4 (group 1) were vaccinated via intramuscular inoculation with 50μg of E2-CD154 subunit vaccine. Animals from group 2 (numbered 5 and 6, control animals) were injected with PBS. Seventeen days later sows from group 1 were boosted with the same vaccine dose. Twenty-seven days after the first immunization, the sows were challenged with a virulent CSFV Margarita strain and clinical signs were registered. Samples were collected during the experiment and at necropsy to evaluate immune response and virological protection. Between 14 and 18days after challenge, the sows were euthanized, the foetuses were obtained and samples of sera and tissues were collected. E2-CD154 vaccinated animals remained clinically healthy until the end of the study; also, no adverse reaction was shown after vaccination. An effective boost effect in the neutralizing antibody response after the second immunization and viral challenge was observed and support the virological protection detected in these animals after vaccination. Protection against CSFV vertical transmission was found in the 100% of serums samples from foetus of vaccinated sows. Only two out of 208 samples (0.96%) were positive with Ct value about 36 corresponding to one tonsil and one thymus, which may be non-infective viral particles. Besides, its DIVA potential and protection from vertical transmission, the novel CSFV E2 bound to CD154 subunit vaccine, is a promising alternative to the live-attenuated vaccine for developing countries.
Collapse
Affiliation(s)
- Sara Muñoz-González
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Yusmel Sordo
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Marta Pérez-Simó
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marisela Suárez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Albert Canturri
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Maria Pilar Rodriguez
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Mariano Domingo
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mario Pablo Estrada
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
| | - Llilianne Ganges
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
20
|
Assessment of the efficacy of two novel DNA vaccine formulations against highly pathogenic Porcine Reproductive and Respiratory Syndrome Virus. Sci Rep 2017; 7:41886. [PMID: 28157199 PMCID: PMC5291100 DOI: 10.1038/srep41886] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023] Open
Abstract
Since May 2006, a highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) has emerged and prevailed in mainland China, affecting over 2 million pigs. Commercial PRRSV killed and modified live vaccines cannot provide complete protection against HP-PRRSV due to genetic variation. Development of more effective vaccines against the emerging HP-PRRSV is urgently required. In our previous studies, two formulations of DNA vaccines (pcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5) based on the HP-PRRSV were constructed and shown to induce enhanced humoral and cellular immune responses in mice. The objective of this study was to evaluate the immune response induced by these novel formulations in piglets. PcDNA3.1-PoIFN-λ1-SynORF5 and BPEI/PLGA-SynORF5 vaccines induced significantly enhanced GP5-specific antibody and PRRSV-specific neutralizing antibody in pigs compared with the pcDNA3.1-SynORF5 parental construct. Though IFN-γ levels and lymphocyte proliferation responses induced by the two DNA vaccine formulations were comparable to that induced by the pcDNA3.1-SynORF5 construct, each of the novel formulations provided efficient protection against challenge with HP-PRRSV. Non-severe clinical signs and rectal temperatures were observed in pigs immunized with BPEI/PLGA-SynORF5 compared with other groups. Thus, these novel DNA constructs may represent promising candidate vaccines against emerging HP-PRRSV.
Collapse
|
21
|
Xiang K, Ying G, Yan Z, Shanshan Y, Lei Z, Hongjun L, Maosheng S. Progress on adenovirus-vectored universal influenza vaccines. Hum Vaccin Immunother 2016; 11:1209-22. [PMID: 25876176 DOI: 10.1080/21645515.2015.1016674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Collapse
Key Words
- ADCC, antibody-dependent cell-mediated cytotoxicity
- APC, antigen-presenting cell
- Ad: adenovirus
- CAR, Coxsackie-Adenovirus Receptor
- CTLs, cytotoxic T lymphocytes
- DC, lung dendritic cells
- DVD, drug–vaccine duo
- FcγRs, Fc receptors for IgG
- HA, hemagglutinin
- HDAd, helper-dependent adenoviral
- HEK293, human embryonic kidney 293 cell
- HI, hemagglutination inhibition
- HLA, human leukocyte antigen
- IF-γ, interferon-γ
- IFV, Influenza virus
- IIVV, inactivated influenza virus vaccine
- IL-2, interleukin-2
- ITRs, inverted terminal repeats
- LAIV, live attenuated influenza vaccine
- M1, matrix protein 1
- M2, matrix protein 2
- MHC-I, major histocompatibility complex class I
- NA, neuraminidase
- NP, nucleoprotein
- RCA, replication competent adenovirus
- VAERD, vaccine-associated enhanced respiratory disease
- adenovirus vector
- broadly neutralizing antibodies
- cellular immunity
- flu, influenza
- hemagglutinin
- humoral immunity
- influenza
- mAbs, monoclonal antibodies
- mucosal immunity
- rAd, recombinant adenovirus
- universal vaccine
Collapse
Affiliation(s)
- Kui Xiang
- a Department of Molecular Biology; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming , Yunnan , PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In approaching the development of a veterinary vaccine, researchers must choose from a bewildering array of options that can be combined to enhance benefit. The choice and combination of options is not just driven by efficacy, but also consideration of the cost, practicality, and challenges faced in licensing the product. In this review we set out the different choices faced by veterinary vaccine developers, highlight some issues, and propose some pressing needs to be addressed.
Collapse
Affiliation(s)
- Mark A Chambers
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK.
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, Surrey, KT15 3NB, UK.
| | - Simon P Graham
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, GU2 7AL, UK
| |
Collapse
|
23
|
Generation of a soluble recombinant trimeric form of bovine CD40L and its potential use as a vaccine adjuvant in cows. Vet Immunol Immunopathol 2015; 168:1-13. [PMID: 26553560 DOI: 10.1016/j.vetimm.2015.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/11/2015] [Accepted: 09/22/2015] [Indexed: 11/24/2022]
Abstract
Vaccination is the most cost-effective way to control infectious diseases in cattle. However, many infectious diseases leading to severe economical losses worldwide still remain for which a really effective and safe vaccine is not available. These diseases are most often due to intracellular pathogens such as bacteria or viruses, which are, by their localization, protected from antibiotics and/or CD4(+) T cell-dependent humoral responses. We therefore postulated that strategies leading to induction of not only CD4(+) T cell responses but also CD8(+) cytotoxic T lymphocyte (CTL) responses against infected cells should be privileged in the development of new vaccines against problematic intracellular pathogens in bovines. CD40 signaling in antigen-presenting cells may lead to the induction of robust CD4-independent CTL responses and several studies, especially in mice, have used CD40 stimulation to promote CD8(+) T cell-mediated immunity. For example, we have recently shown that immunization of mice with heat-killed Staphylococcus aureus (HKSA) and agonistic anti-CD40 monoclonal antibodies elicits strong CTL responses capable of protecting mice from subsequent staphylococcal mastitis. Unfortunately, there is at present no tool available to efficiently stimulate CD40 in cattle. In this study, we therefore first produced a soluble recombinant trimeric form of the natural bovine CD40 ligand (sboCD40LT). We then observed that sboCD40LT was able to potently stimulate bovine cells in vitro. Finally, we provide evidence that immunization of cows with sboCD40LT combined with HKSA was able to significantly increase the number of both HKSA-specific CD4(+) and CD8(+) T cells in the draining lymph nodes. In conclusion, we suggest that this new molecular tool could help in the development of vaccine strategies against bovine diseases caused by intracellular pathogens.
Collapse
|
24
|
Renukaradhya GJ, Meng XJ, Calvert JG, Roof M, Lager KM. Live porcine reproductive and respiratory syndrome virus vaccines: Current status and future direction. Vaccine 2015; 33:4069-80. [PMID: 26148878 DOI: 10.1016/j.vaccine.2015.06.092] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) was reported in the late 1980s. PRRS still is a huge economic concern to the global pig industry with a current annual loss estimated at one billion US dollars in North America alone. It has been 20 years since the first modified live-attenuated PRRSV vaccine (PRRSV-MLV) became commercially available. PRRSV-MLVs provide homologous protection and help in reducing shedding of heterologous viruses, but they do not completely protect pigs against heterologous field strains. There have been many advances in understanding the biology and ecology of PRRSV; however, the complexities of virus-host interaction and PRRSV vaccinology are not yet completely understood leaving a significant gap for improving breadth of immunity against diverse PRRS isolates. This review provides insights on immunization efforts using infectious PRRSV-based vaccines since the 1990s, beginning with live PRRSV immunization, development and commercialization of PRRSV-MLV, and strategies to overcome the deficiencies of PRRSV-MLV through use of replicating viral vectors expressing multiple PRRSV membrane proteins. Finally, powerful reverse genetics systems (infectious cDNA clones) generated from more than 20 PRRSV isolates of both genotypes 1 and 2 viruses have provided a great resource for exploring many innovative strategies to improve the safety and cross-protective efficacy of live PRRSV vaccines. Examples include vaccines with diminished ability to down-regulate the immune system, positive and negative marker vaccines, multivalent vaccines incorporating antigens from other porcine pathogens, vaccines that carry their own cytokine adjuvants, and chimeric vaccine viruses with the potential for broad cross-protection against heterologous strains. To combat this devastating pig disease in the future, evaluation and commercialization of such improved live PRRSV vaccines is a shared goal among PRRSV researchers, pork producers and biologics companies.
Collapse
Affiliation(s)
- Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States.
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | | | - Michael Roof
- Boehringer Ingelheim Vetmedica, Inc., Ames, IA, United States
| | - Kelly M Lager
- Virus and Prion Research Unit, National Animal Disease Center, U.S. Department of Agriculture, Ames, IA, United States.
| |
Collapse
|
25
|
Targeting the HA2 subunit of influenza A virus hemagglutinin via CD40L provides universal protection against diverse subtypes. Mucosal Immunol 2015; 8:211-20. [PMID: 25052763 PMCID: PMC4269809 DOI: 10.1038/mi.2014.59] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 05/30/2014] [Indexed: 02/04/2023]
Abstract
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.
Collapse
|
26
|
Hashem AM, Gravel C, Chen Z, Yi Y, Tocchi M, Jaentschke B, Fan X, Li C, Rosu-Myles M, Pereboev A, He R, Wang J, Li X. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:722-34. [PMID: 24928989 DOI: 10.4049/jimmunol.1300093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L(-/-) and CD4(-/-)) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8(+) T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L(-/-) and CD4(-/-) mice revealed that the protection was indeed CD40L mediated but CD4(+) T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses.
Collapse
Affiliation(s)
- Anwar M Hashem
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Caroline Gravel
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Yinglei Yi
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Monika Tocchi
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bozena Jaentschke
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Xingliang Fan
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Changgui Li
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Michael Rosu-Myles
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Alexander Pereboev
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294; Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Runtao He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada; and
| | - Junzhi Wang
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China;
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
27
|
Yang M, Xiang Q, Zhang X, Li X, Sylla S, Ding Z. RNA interference targeting nucleocapsid protein inhibits porcine reproductive and respiratory syndrome virus replication in Marc-145 cells. J Microbiol 2014; 52:333-9. [PMID: 24682995 PMCID: PMC7090845 DOI: 10.1007/s12275-014-3419-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/28/2014] [Accepted: 03/12/2014] [Indexed: 01/16/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an important disease, which leads to severe economic losses in swine-producing areas of the world. However, current antiviral strategies cannot provide highly effective protection. In this study, three theoretically effective interference target sites (71–91, 144–164, 218–238) targeting the nucleocapsid (N) gene of PRRSV were designed and selected, and then three siRNA-expressing plasmids were constructed, respectively named p2.1-N71, p2.1-N144, and p2.1-N218. The recombinant siRNA-expressing plasmids were transfected into Marc-145 cells; then the cells were infected with PRRSV (JL07SW strain); finally, after incubation for 48 h, the antiviral activity of those siRNA-expressing plasmids in Marc-145 cells was assessed by cytopathic effects, virus titers, indirect immunofluorescence, and quantitative real-time PCR. Experimental results demonstrated that these three siRNA-expressing plasmids could effectively and significantly inhibit the replication of PRRSV by 93.2%, 83.6%, and 89.2% in Marc-145 cells, respectively. Among these three siRNA-expressing plasmids, p2.1-N71 was found to be most effective, while p2.1-N144 and p2.1-N218 displayed relatively weak inhibition of virus replication. The results indicated that siRNA-expressing plasmids targeting the N gene of PRRSV could significantly inhibit PRRSV replication in Marc-145 cells. Based on our experimental results and previous reports, the 71–91, 179–197, and 234–252 sites of the N gene are good choices to effectively inhibit the replication of PRRSV, and this RNA interference technique can be a potential anti-PRRSV strategy.
Collapse
Affiliation(s)
- Minnan Yang
- College of Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, P. R. China
| | | | | | | | | | | |
Collapse
|
28
|
Peng J, Wang J, Wu J, Du Y, Li J, Guo Z, Yu J, Xu S, Zhang Y, Sun W, Cong X, Shi J. Positive Inductive Effect of Swine Interleukin-4 on Immune Responses Elicited by Modified Live Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccine. Viral Immunol 2013; 26:404-14. [DOI: 10.1089/vim.2013.0040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun Peng
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jinbao Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiaqiang Wu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yijun Du
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Zhongkun Guo
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jiang Yu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Shaojian Xu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Yuyu Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Wenbo Sun
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Xiaoyan Cong
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| | - Jianli Shi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Jinan, China
| |
Collapse
|
29
|
Wang Y, Zhao H, Ma Z, Wang Y, Feng WH. CTLA4 mediated targeting enhances immunogenicity against PRRSV in a DNA prime/killed virus boost strategy. Vet Immunol Immunopathol 2013; 154:121-8. [DOI: 10.1016/j.vetimm.2013.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/27/2013] [Accepted: 05/14/2013] [Indexed: 11/28/2022]
|
30
|
Positive inductive effect of IL-18 on virus-specific immune responses induced by PRRSV-GP5 DNA vaccine in swine. Res Vet Sci 2013; 94:346-53. [DOI: 10.1016/j.rvsc.2012.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/27/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022]
|
31
|
Chen C, Li J, Bi Y, Yang L, Meng S, Zhou Y, Jia X, Meng S, Sun L, Liu W. Synthetic B- and T-cell epitope peptides of porcine reproductive and respiratory syndrome virus with Gp96 as adjuvant induced humoral and cell-mediated immunity. Vaccine 2013; 31:1838-47. [DOI: 10.1016/j.vaccine.2013.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 01/06/2013] [Accepted: 01/25/2013] [Indexed: 11/27/2022]
|
32
|
Roques E, Girard A, St-Louis MC, Massie B, Gagnon CA, Lessard M, Archambault D. Immunogenic and protective properties of GP5 and M structural proteins of porcine reproductive and respiratory syndrome virus expressed from replicating but nondisseminating adenovectors. Vet Res 2013; 44:17. [PMID: 23497101 PMCID: PMC3608016 DOI: 10.1186/1297-9716-44-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 02/13/2013] [Indexed: 02/08/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses in the porcine industry. Currently available commercial vaccines do not allow optimal and safe protection. In this study, replicating but nondisseminating adenovectors (rAdV) were used for the first time in pigs for vaccinal purposes. They were expressing the PRRSV matrix M protein in fusion with either the envelope GP5 wild-type protein (M-GP5) which carries the major neutralizing antibody (NAb)-inducing epitope or a mutant form of GP5 (M-GP5m) developed to theoretically increase the NAb immune response. Three groups of fourteen piglets were immunized both intramuscularly and intranasally at 3-week intervals with rAdV expressing the green fluorescent protein (GFP, used as a negative control), M-GP5 or M-GP5m. Two additional groups of pigs were primed with M-GP5m-expressing rAdV followed by a boost with bacterially-expressed recombinant wild-type GP5 or were immunized twice with a PRRSV inactivated commercial vaccine. The results show that the rAdV expressing the fusion proteins of interest induced systemic and mucosal PRRSV GP5-specific antibody response as determined in an ELISA. Moreover the prime with M-GP5m-expressing rAdV and boost with recombinant GP5 showed the highest antibody response against GP5. Following PRRSV experimental challenge, pigs immunized twice with rAdV expressing either M-GP5 or M-GP5m developed partial protection as shown by a decrease in viremia overtime. The lowest viremia levels and/or percentages of macroscopic lung lesions were obtained in pigs immunized twice with either the rAdV expressing M-GP5m or the PRRSV inactivated commercial vaccine.
Collapse
Affiliation(s)
- Elodie Roques
- Department of Biological Sciences, University of Québec at Montréal, Succursale Centre-Ville, P,O, Box 8888, Montréal, Québec, H3C 3P8, Canada.
| | | | | | | | | | | | | |
Collapse
|
33
|
Charerntantanakul W, Yamkanchoo S, Kasinrerk W. Plasmids expressing porcine interferon gamma up-regulate pro-inflammatory cytokine and co-stimulatory molecule expression which are suppressed by porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 2013; 153:107-17. [PMID: 23507439 DOI: 10.1016/j.vetimm.2013.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 02/08/2013] [Accepted: 02/18/2013] [Indexed: 01/15/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) suppresses the pro-inflammatory immune response following infection of myeloid antigen-presenting cells. A reduced pro-inflammatory immune response modulates PRRSV replication, clinical disease, and persistent infection of the virus. Numerous efforts have been made to enhance the pro-inflammatory immune response to PRRSV, but only a few attempts have so far elicited satisfactory results. The present study aims to evaluate in vitro the potential of plasmids expressing porcine interferon gamma (pcDNA-IFNγ) to enhance the expression of pro-inflammatory immune parameters in PRRSV-inoculated monocytes. Naïve blood monocytes from eight PRRSV-seronegative pigs were inoculated with PRRSV and subsequently transfected with pcDNA-IFNγ or pcDNA (empty plasmid vector) and stimulated with lipopolysaccharide (LPS). The mRNA expression levels of IFNγ, interleukin-1 beta (IL-1β), IL-10, IL-12p40, tumor necrosis factor alpha (TNFα), transforming growth factor beta (TGFβ), CD80, and CD86 were evaluated by real-time PCR. The IFNγ, IL-10, and TNFα protein production was determined by ELISA. Compared with PRRSV-inoculated monocyte control, transfection with pcDNA-IFNγ, but not pcDNA, significantly enhanced IFNγ, TNFα, CD80, and CD86 mRNA expression, and IFNγ and TNFα protein production. A slight increase in IL-1β and IL-12p40 mRNA expression was also observed. Neither pcDNA-IFNγ nor pcDNA transfection affected IL-10 and TGFβ expression. Our results thus suggest that pcDNA-IFNγ may be an effective immunostimulator for potentiating the pro-inflammatory immune response to PRRSV.
Collapse
|
34
|
Zhang X, Wang X, Mu L, Ding Z. Immune responses in pigs induced by recombinant DNA vaccine co-expressing swine IL-18 and membrane protein of porcine reproductive and respiratory syndrome virus. Int J Mol Sci 2012; 13:5715-5728. [PMID: 22754326 PMCID: PMC3382812 DOI: 10.3390/ijms13055715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/15/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
In this study, two DNA vaccines, which express the membrane (M) protein of porcine respiratory and reproductive syndrome virus (PRRSV) (pEGFP-M) and co-express both M and swine IL-18 (pEGFP-IL18-M), were constructed and their abilities to induce humoral and cellular responses in piglets were comparatively evaluated. Experimental results showed that both recombinant DNA vaccines could not elicit neutralizing antibodies in the immunized piglets. However, both DNA vaccines elicited Th1-biased cellular immune responses. Notably, pigs immunized with the plasmid pEGFP-IL18-M developed significantly higher levels of IFN-γ and IL-2 production response and stronger specific T-lymphocyte proliferation response than the pigs inoculated with the plasmids pEGFP-M and pEGFP-IL18 (P < 0.05). These results illustrated that co-expression of M and IL-18 proteins could significantly improve the potency of DNA vaccination on the activation of vaccine-induced virus-specific cell-mediated immune responses in pigs, which may be used as a strategy to develop a new generation of vaccines against highly pathogenic PRRSV.
Collapse
Affiliation(s)
- Xiaodong Zhang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Xiaoli Wang
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Lianzhi Mu
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| | - Zhuang Ding
- College of Animal Science and Veterinary Medicine, and Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China; E-Mails: (X.Z.); (X.W.); (L.M.)
| |
Collapse
|
35
|
Gp96 enhances the immunogenicity of subunit vaccine of porcine reproductive and respiratory syndrome virus. Virus Res 2012; 167:162-72. [PMID: 22561908 DOI: 10.1016/j.virusres.2012.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/22/2012] [Accepted: 04/26/2012] [Indexed: 01/26/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes significant economic losses in the pig industry worldwide. Currently available commercial vaccines provide limited protection due to delayed and weak cell-mediated immunity and neutralizing antibody production, thus the immunomodulators should be considered in order to improve the efficacy of PRRSV vaccines. Heat shock protein gp96 may be used as a modulator to enhance both innate and adaptive immune responses. In the present study, two multi-epitope subunit vaccines, named as Cp1 and Cp2, were designed based on the conserved B cell epitopes of viral proteins with the N-terminal 22-370 amino acids (aa) of porcine gp96 (Gp96N) chosen as the adjuvant. Immune responses elicited by the different combinations of Cp1/Cp2 and Gp96N were examined in mice and piglets. The results indicated that the group of Cp1/Cp2-Gp96N (CG) combination induced 3-4-fold higher titers of Cp1/Cp2-ELISA antibodies and neutralizing antibodies (NAs) in mice than the groups which received Cp1/Cp2 immunization alone or with Freund's adjuvant. Additionally, Gp96N significantly enhanced the levels of lymphocyte proliferative responses of splenocytes or peripheral blood mononuclear cells from vaccinated mice or piglets. The production of IFN-γ in mice splenocytes, TNF-α, IFN-γ, and IL-12 in sera of piglets were also remarkably increased with the treatment of Gp96N, while IL-4 was reduced by half and IL-10 was decreased to an undetectable level. These results suggest that the porcine Gp96N could effectively enhance the innate and adaptive immune responses of Cp1/Cp2 with a Th1-type bias. Therefore, the multi-epitope subunit vaccine Cp1/Cp2 co-administered with porcine Gp96N might potentially be a promising candidate vaccine for the prevention and control of PRRSV in pigs.
Collapse
|
36
|
Interaction between innate immunity and porcine reproductive and respiratory syndrome virus. Anim Health Res Rev 2012; 12:149-67. [PMID: 22152291 DOI: 10.1017/s1466252311000144] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity provides frontline antiviral protection and bridges adaptive immunity against virus infections. However, viruses can evade innate immune surveillance potentially causing chronic infections that may lead to pandemic diseases. Porcine reproductive and respiratory syndrome virus (PRRSV) is an example of an animal virus that has developed diverse mechanisms to evade porcine antiviral immune responses. Two decades after its discovery, PRRSV is still one of the most globally devastating viruses threatening the swine industry. In this review, we discuss the molecular and cellular composition of the mammalian innate antiviral immune system with emphasis on the porcine system. In particular, we focus on the interaction between PRRSV and porcine innate immunity at cellular and molecular levels. Strategies for targeting innate immune components and other host metabolic factors to induce ideal anti-PRRSV protection are also discussed.
Collapse
|
37
|
Auten MW, Huang W, Dai G, Ramsay AJ. CD40 ligand enhances immunogenicity of vector-based vaccines in immunocompetent and CD4+ T cell deficient individuals. Vaccine 2012; 30:2768-77. [PMID: 22349523 DOI: 10.1016/j.vaccine.2012.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 01/05/2012] [Accepted: 02/06/2012] [Indexed: 12/11/2022]
Abstract
Impairment of host immunity, particularly CD4+ T cell deficiency, presents significant complications for vaccine immunogenicity and efficacy. CD40 ligand (CD40L or CD154), a member of the tumor necrosis factor superfamily (TNFSF), is an important co-stimulatory molecule and, through interactions with its cognate receptor CD40, plays a pivotal role in the generation of host immune responses. Exploitation of CD40L and its receptor CD40 could provide a means to enhance and potentially restore protective immune responses in CD4+ T cell deficiency. To investigate the potential adjuvanticity of CD40L, we constructed recombinant plasmid DNA and adenoviral (Ad) vaccine vectors expressing murine CD40L and the mycobacterial protein antigen 85B (Ag85B). Co-immunization of mice with CD40L and Ag85B by intranasal or intramuscular prime-boosting led to route-dependent enhancement of the magnitude of vaccine-induced circulating and lung mucosal CD4+ and CD8+ T cell responses in both normal (CD4-replete) and CD4+ T cell deficient animals, including polyfunctional T cell responses. The presence of CD40L alone was insufficient to enhance or restore CD4+ T cell responses in CD4-ablated animals; however, in partially depleted animals, co-immunization with Ag85B and CD40L was capable of eliciting enhanced T cell responses, similar to those observed in normal animals, when compared to those given vaccine antigen alone. In summary, these findings show that CD40L has the capacity to enhance the magnitude of vaccine-induced polyfunctional T cell responses in CD4+ T cell deficient mice, and warrants further study as an adjuvant for immunization against opportunistic pathogens in individuals with CD4+ T cell deficiency.
Collapse
Affiliation(s)
- Matthew W Auten
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Charerntantanakul W. Porcine reproductive and respiratory syndrome virus vaccines: Immunogenicity, efficacy and safety aspects. World J Virol 2012; 1:23-30. [PMID: 24175208 PMCID: PMC3782261 DOI: 10.5501/wjv.v1.i1.23] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/21/2011] [Accepted: 09/29/2011] [Indexed: 02/05/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the leading cause of economic casualty in swine industry worldwide. The virus can cause reproductive failure, respiratory disease, and growth retardation in the pigs. This review deals with current status of commercial PRRS vaccines presently used to control PRRS. The review focuses on the immunogenicity, protective efficacy and safety aspects of the vaccines. Commercial PRRS modified-live virus (MLV) vaccine elicits delayed humoral and cell-mediated immune responses following vaccination. The vaccine confers late but effective protection against genetically homologous PRRSV, and partial protection against genetically heterologous virus. The MLV vaccine is of concern for its safety as the vaccine virus can revert to virulence and cause diseases. PRRS killed virus (KV) vaccine, on the other hand, is safe but confers limited protection against either homologous or heterologous virus. The KV vaccine yet helps reduce disease severity when administered to the PRRSV-infected pigs. Although efforts have been made to improve the immunogenicity, efficacy and safety of PRRS vaccines, a better vaccine is still needed in order to protect against PRRSV.
Collapse
Affiliation(s)
- Wasin Charerntantanakul
- Wasin Charerntantanakul, Research Laboratory for Immunity Enhancement in Humans and Domestic Animals, Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand
| |
Collapse
|
39
|
Vanhee M, Van Breedam W, Costers S, Geldhof M, Noppe Y, Nauwynck H. Characterization of antigenic regions in the porcine reproductive and respiratory syndrome virus by the use of peptide-specific serum antibodies. Vaccine 2011; 29:4794-804. [PMID: 21554913 DOI: 10.1016/j.vaccine.2011.04.071] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/12/2011] [Accepted: 04/19/2011] [Indexed: 12/22/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.
Collapse
Affiliation(s)
- Merijn Vanhee
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|