1
|
Zhu QX, Zhang YN, Zhang HQ, Leng C, Deng CL, Wang X, Li JJ, Ye XL, Zhang B, Li XD. A single dose recombinant AAV based CHIKV vaccine elicits robust and durable protective antibody responses in mice. PLoS Negl Trop Dis 2024; 18:e0012604. [PMID: 39495779 PMCID: PMC11563480 DOI: 10.1371/journal.pntd.0012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/14/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for Chikungunya fever, which is characterized by fever, rash, and debilitating polyarthralgia. Since its re-emergence in 2004, CHIKV has continued to spread to new regions and become a severe health threat to global public. Development of safe and single dose vaccines that provide durable protection is desirable to control the spread of virus. The recombinant adeno-associated virus (rAAV) vectors represent promising vaccine platform to provide prolonged protection with a single-dose immunization. In this study, we developed a rAAV capsid serotype 1 vector based CHIKV vaccine and evaluated its protection effect against CHIKV challenge. METHODOLOGY The recombinant AAV1 encoding the full-length structural proteins of CHIKV (named as rAAV1-CHIKV-SP) was generated in vitro by transfecting the plasmids of AAV helper-free system into HEK-293T cells. The safety and immunogenicity of rAAV1-CHIKV-SP were tested in 4-week-old C57BL/6 mice. The antibody responses of the mice receiving prime-boost or single-dose immunization of the vaccine were determined by ELISA and plaque reduction neutralizing test. The immunized mice were challenged with CHIKV to evaluate the protection effect of the vaccine. CONCLUSIONS The rAAV1-CHIKV-SP showed remarkable safety and immunogenicity in C57BL/6 mice. A single dose intramuscular injection of rAAV1-CHIKV-SP elicited high level and long-lasting antibody responses, and conferred complete protection against a heterologous CHIKV strain challenge. These results suggest rAAV1-CHIKV-SP represents a promising vaccine candidate against different CHIKV clades with a simplified immunization strategy.
Collapse
Affiliation(s)
- Qin-Xuan Zhu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing China
| | - Chao Leng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xin Wang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Jia-Jia Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Xiang-Li Ye
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
2
|
Shimoyama T, Oba M, Takemae H, Omatsu T, Tani H, Mizutani T. Potent immunogenicity and neutralization of recombinant adeno-associated virus expressing the glycoprotein of severe fever with thrombocytopenia virus. J Vet Med Sci 2024; 86:228-238. [PMID: 38143087 PMCID: PMC10898983 DOI: 10.1292/jvms.23-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.
Collapse
Affiliation(s)
- Toshiaki Shimoyama
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsutomu Omatsu
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Rak A, Isakova-Sivak I, Rudenko L. Nucleoprotein as a Promising Antigen for Broadly Protective Influenza Vaccines. Vaccines (Basel) 2023; 11:1747. [PMID: 38140152 PMCID: PMC10747533 DOI: 10.3390/vaccines11121747] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Annual vaccination is considered as the main preventive strategy against seasonal influenza. Due to the highly variable nature of major viral antigens, such as hemagglutinin (HA) and neuraminidase (NA), influenza vaccine strains should be regularly updated to antigenically match the circulating viruses. The influenza virus nucleoprotein (NP) is much more conserved than HA and NA, and thus seems to be a promising target for the design of improved influenza vaccines with broad cross-reactivity against antigenically diverse influenza viruses. Traditional subunit or recombinant protein influenza vaccines do not contain the NP antigen, whereas live-attenuated influenza vaccines (LAIVs) express the viral NP within infected cells, thus inducing strong NP-specific antibodies and T-cell responses. Many strategies have been explored to design broadly protective NP-based vaccines, mostly targeted at the T-cell mode of immunity. Although the NP is highly conserved, it still undergoes slow evolutionary changes due to selective immune pressure, meaning that the particular NP antigen selected for vaccine design may have a significant impact on the overall immunogenicity and efficacy of the vaccine candidate. In this review, we summarize existing data on the conservation of the influenza A viral nucleoprotein and review the results of preclinical and clinical trials of NP-targeting influenza vaccine prototypes, focusing on the ability of NP-specific immune responses to protect against diverse influenza viruses.
Collapse
Affiliation(s)
| | | | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (A.R.); (I.I.-S.)
| |
Collapse
|
4
|
Abstract
Undoubtedly, vaccination is one of the health interventions showing major impact on humankind. Vaccines remain one of the most effective and safest ways to tackle infections. The current coronavirus pandemic is not an exception, and we all hope that ongoing international efforts will succeed in developing a vaccine soon. In this scenario, the present work published in this edition of EMBO Molecular Medicine by Demminger and colleagues (Demminger et al, 2020) is timeliness to exemplify the steps needed to develop effective vaccines.
Collapse
Affiliation(s)
- Jose A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Demminger DE, Walz L, Dietert K, Hoffmann H, Planz O, Gruber AD, von Messling V, Wolff T. Adeno-associated virus-vectored influenza vaccine elicits neutralizing and Fcγ receptor-activating antibodies. EMBO Mol Med 2020; 12:e10938. [PMID: 32163240 PMCID: PMC7207162 DOI: 10.15252/emmm.201910938] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
The current seasonal inactivated influenza vaccine protects only against a narrow range of virus strains as it triggers a dominant antibody response toward the hypervariable hemagglutinin (HA) head region. The discovery of rare broadly protective antibodies against conserved regions in influenza virus proteins has propelled research on distinct antigens and delivery methods to efficiently induce broad immunity toward drifted or shifted virus strains. Here, we report that adeno‐associated virus (AAV) vectors expressing influenza virus HA or chimeric HA protected mice against homologous and heterologous virus challenges. Unexpectedly, immunization even with wild‐type HA induced antibodies recognizing the HA‐stalk and activating FcγR‐dependent responses indicating that AAV‐vectored expression balances HA head‐ and HA stalk‐specific humoral responses. Immunization with AAV‐HA partially protected also ferrets against a harsh virus challenge. Results from this study provide a rationale for further clinical development of AAV vectors as influenza vaccine platform, which could benefit from their approved use in human gene therapy.
Collapse
Affiliation(s)
- Daniel E Demminger
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| | - Lisa Walz
- Veterinary Medicine Division, Paul-Ehrlich-Institute, Langen, Germany
| | - Kristina Dietert
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | - Helen Hoffmann
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Achim D Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Berlin, Germany
| | | | - Thorsten Wolff
- Unit 17-Influenza and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
6
|
Paulk NK, Pekrun K, Charville GW, Maguire-Nguyen K, Wosczyna MN, Xu J, Zhang Y, Lisowski L, Yoo B, Vilches-Moure JG, Lee GK, Shrager JB, Rando TA, Kay MA. Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. Mol Ther Methods Clin Dev 2018; 10:144-155. [PMID: 30101152 PMCID: PMC6077147 DOI: 10.1016/j.omtm.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against existing muscle-tropic serotypes rAAV1, 6, and 8. We found that evolved variants NP22 and NP66 had significantly increased primary human and rhesus skeletal muscle fiber transduction from surgical explants ex vivo and in various primary and immortalized myogenic lines in vitro. Importantly, we demonstrated reduced seroreactivity compared to existing serotypes against normal human serum from 50 adult donors. These capsids represent powerful tools for human skeletal muscle expression and secretion of antibodies from passive vaccines.
Collapse
Affiliation(s)
- Nicole K. Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gregory W. Charville
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katie Maguire-Nguyen
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael N. Wosczyna
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jianpeng Xu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Leszek Lisowski
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bryan Yoo
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Gordon K. Lee
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University and VA Palo Alto Health Care System, Stanford, CA 94305, USA
| | - Thomas A. Rando
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
8
|
Anti-adenoviral Artificial MicroRNAs Expressed from AAV9 Vectors Inhibit Human Adenovirus Infection in Immunosuppressed Syrian Hamsters. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:300-316. [PMID: 28918031 PMCID: PMC5537171 DOI: 10.1016/j.omtn.2017.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.
Collapse
|
9
|
Abstract
Antigenic drift of seasonal influenza viruses and the occasional introduction of influenza viruses of novel subtypes into the human population complicate the timely production of effective vaccines that antigenically match the virus strains that cause epidemic or pandemic outbreaks. The development of game-changing vaccines that induce broadly protective immunity against a wide variety of influenza viruses is an unmet need, in which recombinant viral vectors may provide. Use of viral vectors allows the delivery of any influenza virus antigen, or derivative thereof, to the immune system, resulting in the optimal induction of virus-specific B- and T-cell responses against this antigen of choice. This systematic review discusses results obtained with vectored influenza virus vaccines and advantages and disadvantages of the currently available viral vectors.
Collapse
Affiliation(s)
- Rory D de Vries
- a Department of Viroscience , Erasmus MC , Rotterdam , The Netherlands
| | | |
Collapse
|
10
|
Singer J, Manzano-Szalai K, Fazekas J, Thell K, Bentley-Lukschal A, Stremnitzer C, Roth-Walter F, Weghofer M, Ritter M, Pino Tossi K, Hörer M, Michaelis U, Jensen-Jarolim E. Proof of concept study with an HER-2 mimotope anticancer vaccine deduced from a novel AAV-mimotope library platform. Oncoimmunology 2016; 5:e1171446. [PMID: 27622022 PMCID: PMC5006910 DOI: 10.1080/2162402x.2016.1171446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/17/2023] Open
Abstract
Background: Anticancer vaccines could represent a valuable complementary strategy to established therapies, especially in settings of early stage and minimal residual disease. HER-2 is an important target for immunotherapy and addressed by the monoclonal antibody trastuzumab. We have previously generated HER-2 mimotope peptides from phage display libraries. The synthesized peptides were coupled to carriers and applied for epitope-specific induction of trastuzumab-like IgG. For simplification and to avoid methodological limitations of synthesis and coupling chemistry, we herewith present a novel and optimized approach by using adeno-associated viruses (AAV) as effective and high-density mimotope-display system, which can be directly used for vaccination. Methods: An AAV capsid display library was constructed by genetically incorporating random peptides in a plasmid encoding the wild-type AAV2 capsid protein. AAV clones, expressing peptides specifically reactive to trastuzumab, were employed to immunize BALB/c mice. Antibody titers against human HER-2 were determined, and the isotype composition and functional properties of these were tested. Finally, prophylactically immunized mice were challenged with human HER-2 transfected mouse D2F2/E2 cells. Results: HER-2 mimotope AAV-vaccines induced antibodies specific to human HER-2. Two clones were selected for immunization of mice, which were subsequently grafted D2F2/E2 cells. Both mimotope AAV clones delayed the growth of tumors significantly, as compared to controls. Conclusion: In this study, a novel mimotope AAV-based platform was created allowing the isolation of mimotopes, which can be directly used as anticancer vaccines. The example of trastuzumab AAV-mimotopes demonstrates that this vaccine strategy could help to establish active immunotherapy for breast-cancer patients.
Collapse
Affiliation(s)
- Josef Singer
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria
| | - Krisztina Manzano-Szalai
- Biomedical International R+D GmbH, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Judit Fazekas
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| | - Kathrin Thell
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria
| | - Anna Bentley-Lukschal
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna , Vienna, Austria
| | - Caroline Stremnitzer
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna , Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna , Vienna, Austria
| | | | | | | | | | - Uwe Michaelis
- MediGene AG, Martinsried, Germany; ImevaX GmbH Munich, Germany
| | - Erika Jensen-Jarolim
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria; Biomedical International R+D GmbH, Vienna, Austria; Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, and University Vienna, Vienna, Austria
| |
Collapse
|
11
|
Zhang H, El Zowalaty ME. DNA-based influenza vaccines as immunoprophylactic agents toward universality. Future Microbiol 2015; 11:153-64. [PMID: 26673424 DOI: 10.2217/fmb.15.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Influenza is an illness of global public health concern. Influenza viruses have been responsible for several pandemics affecting humans. Current influenza vaccines have proved satisfactory safety; however, they have limitations and do not provide protection against unexpected emerging influenza virus strains. Therefore, there is an urgent need for alternative approaches to conventional influenza vaccines. The development of universal influenza vaccines will help alleviate the severity of influenza pandemics. Influenza DNA vaccines have been the subject of many studies over the past decades due to their ability to induce broad-based protective immune responses in various animal models. The present review highlights the recent advances in influenza DNA vaccine research and its potential as an affordable universal influenza vaccine.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Mohamed E El Zowalaty
- Biomedical Research Center, Vice President Office for Research, Qatar University, Doha 2713, Qatar
| |
Collapse
|
12
|
Broadly protective immunity against divergent influenza viruses by oral co-administration of Lactococcus lactis expressing nucleoprotein adjuvanted with cholera toxin B subunit in mice. Microb Cell Fact 2015; 14:111. [PMID: 26242406 PMCID: PMC4524015 DOI: 10.1186/s12934-015-0287-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Current influenza vaccines need to be annually reformulated to well match the predicated circulating strains. Thus, it is critical for developing a novel universal influenza vaccine that would be able to confer cross-protection against constantly emerging divergent influenza virus strains. Influenza virus A is a genus of the Orthomyxoviridae family of viruses. Influenza virus nucleoprotein (NP) is a structural protein which encapsidates the negative strand viral RNA, and anti-NP antibodies play role in cross-protective immunity. Lactococcus lactis (L. lactis) is an ideal vaccine delivery vehicle via oral administration route. However, L. lactis vectored vaccine exhibits poor immunogenicity without the use of mucosal adjuvant. To enhance the immunogenicity of L. lactis vectored vaccine, cholera toxin B (CTB) subunit, one of mucosal adjuvants, is a safe adjuvant for oral route, when combined with L. lactis vectored vaccine. In this study, we hypothesized that pNZ8008, a L. lactis expression plasmid, encoding NP antigen, would be able to elicit cross-protection with the use of CTB via oral administration route. RESULTS To construct L. lactis vectored vaccine, nucleoprotein (NP) gene of A/California/04/2009(H1N1) was sub-cloned into a L. lactis expression plasmid, pNZ8008. The expression of recombinant L. lactis/pNZ8008-NP was confirmed by Western blot, immunofluorescence assay and flow cytometric analysis. Further, immunogenicity of L. lactis/pNZ8008-NP alone or adjuvanted with cholera toxin B (CTB) subunit was evaluated in a mouse model via oral administration route. Antibodies responses were detected by ELISA. The result indicated that oral administration of L. lactis/pNZ8008-NP adjuvanted with CTB could elicit significant humoral and mucosal immune responses, as well as cellular immune response, compared with L. lactis/pNZ8008-NP alone. To further assess the cross-protective immunity of L. lactis/pNZ8008-NP adjuvanted with CTB, we used L. lactis/pNZ8110-pgsA-HA1 alone or adjuvanted with CTB as controls. Mice that received L. lactis/pNZ8008-NP adjuvanted with CTB were completely protected from homologous H1N1 virus and showed 80% protection against heterologous H3N2 or H5N1 virus, respectively. By contrast, L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB also conferred 100% protection against H5N1 virus infection, but indicated no cross-protection against H1N1 or H5N1 virus challenge. As controls, mice vaccinated orally with L. lactis/pNZ8008-NP alone or L. lactis/pNZ8110-pgsA-HA1 alone could not survive. CONCLUSION This study is the first to report the construction of recombinant L. lactis/pNZ8008-NP and investigate its immunogenicity with the use of CTB. Compared with L. lactis/pNZ8110-pgsA-HA1 adjuvanted with CTB, our data support 5 × 10(11) CFU of L. lactis/pNZ8008-NP adjuvanted with 1 µg of CTB is a better combination for universal influenza vaccines development that would provide cross-protective immunity against divergent influenza A viruses.
Collapse
|
13
|
Röger C, Pozzuto T, Klopfleisch R, Kurreck J, Pinkert S, Fechner H. Expression of an engineered soluble coxsackievirus and adenovirus receptor by a dimeric AAV9 vector inhibits adenovirus infection in mice. Gene Ther 2015; 22:458-66. [PMID: 25786873 DOI: 10.1038/gt.2015.19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/29/2015] [Indexed: 12/28/2022]
Abstract
Immunosuppressed (IS) patients, such as recipients of hematopoietic stem cell transplantation, occasionally develop severe and fatal adenovirus (Ad) infections. Here, we analyzed the potential of a virus receptor trap based on a soluble coxsackievirus and Ad receptor (sCAR) for inhibition of Ad infection. In vitro, a dimeric fusion protein, sCAR-Fc, consisting of the extracellular domain of CAR and the Fc portion of human IgG1 and a monomeric sCAR lacking the Fc domain, were expressed in cell culture. More sCAR was secreted into the cell culture supernatant than sCAR-Fc, but it had lower Ad neutralization activity than sCAR-Fc. Further investigations showed that sCAR-Fc reduced the Ad infection by a 100-fold and Ad-induced cytotoxicity by ~20-fold. Not only was Ad infection inhibited by sCAR-Fc applied prior to infection, it also inhibited infection when used to treat ongoing Ad infection. In vivo, sCAR-Fc was delivered to IS mice by an AAV9 vector, resulting in persistent and high (>40 μg ml(-1)) sCAR-Fc serum levels. The sCAR-Fc serum concentration was sufficient to significantly inhibit hepatic and cardiac wild-type Ad5 infection. Treatment with sCAR-Fc did not induce side effects. Thus, sCAR-Fc virus receptor trap may be a promising novel therapeutic for treatment of Ad infections.
Collapse
Affiliation(s)
- C Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - T Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - R Klopfleisch
- Department of Vetrinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Strasse 15, Berlin, Germany
| | - J Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - S Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - H Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| |
Collapse
|
14
|
Yang P, Wang W, Gu H, Li Z, Zhang K, Wang Z, Li R, Duan Y, Zhang S, Wang X. Protection against influenza H7N9 virus challenge with a recombinant NP–M1–HSP60 protein vaccine construct in BALB/c mice. Antiviral Res 2014; 111:1-7. [DOI: 10.1016/j.antiviral.2014.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023]
|
15
|
Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, Ruan L. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 2014; 468-470:265-273. [PMID: 25213406 DOI: 10.1016/j.virol.2014.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/11/2014] [Accepted: 08/09/2014] [Indexed: 12/16/2022]
Abstract
The highly conserved internal nucleoprotein (NP) is a promising antigen to develop a universal influenza A virus vaccine. In this study, mice were injected intramuscularly with Escherichia coli-derived NP protein alone or in combination with adjuvant alum (Al(OH)3), CpG or both. The results showed that the NP protein formulated with adjuvant was effective in inducing a protective immune response. Additionally, the adjuvant efficacy of Al(OH)3 was stronger than that of CpG. Optimal immune responses were observed in BALB/c mice immunized with a combination of NP protein plus Al(OH)3 and CpG. These mice also showed maximal resistance following challenge with influenza A virus PR8 strain. Most importantly, 10 µg NP formulated with Al(OH)3 and CpG induced higher protection than did 90 µg NP. These findings indicated that a combination of Al(OH)3 and CpG may be an efficient adjuvant in the NP formulation.
Collapse
Affiliation(s)
- Wenling Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Baoying Huang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Tao Jiang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiuping Wang
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Xiangrong Qi
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Wenjie Tan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China
| | - Li Ruan
- National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention (China CDC), 155# Chang Bai Road, Chang Ping District, Beijing 102206, China.
| |
Collapse
|
16
|
Nieto K, Salvetti A. AAV Vectors Vaccines Against Infectious Diseases. Front Immunol 2014; 5:5. [PMID: 24478774 PMCID: PMC3896988 DOI: 10.3389/fimmu.2014.00005] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
Since their discovery as a tool for gene transfer, vectors derived from the adeno-associated virus (AAV) have been used for gene therapy applications and attracted scientist to this field for their exceptional properties of efficiency of in vivo gene transfer and the level and duration of transgene expression. For many years, AAVs have been considered as low immunogenic vectors due to their ability to induce long-term expression of non-self-proteins in contrast to what has been observed with other viral vectors, such as adenovirus, for which strong immune responses against the same transgene products were documented. The perceived low immunogenicity likely explains why the use of AAV vectors for vaccination was not seriously considered before the early 2000s. Indeed, while analyses conducted using a variety of transgenes and animal species slowly changed the vision of immunological properties of AAVs, an increasing number of studies were also performed in the field of vaccination. Even if the comparison with other modes of vaccination was not systemically performed, the analyses conducted so far in the field of active immunotherapy strongly suggest that AAVs possess some interesting features to be used as tools to produce an efficient and sustained antibody response. In addition, recent studies also highlighted the potential of AAVs for passive immunotherapy. This review summarizes the main studies conducted to evaluate the potential of AAV vectors for vaccination against infectious agents and discusses their advantages and drawbacks. Altogether, the variety of studies conducted in this field contributes to the understanding of the immunological properties of this versatile virus and to the definition of its possible future applications.
Collapse
Affiliation(s)
- Karen Nieto
- Tumor Immunology Program (D030), German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Anna Salvetti
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université de Lyon , Lyon , France ; LabEx Ecofect, Université de Lyon , Lyon , France
| |
Collapse
|
17
|
Chahal PS, Schulze E, Tran R, Montes J, Kamen AA. Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery. J Virol Methods 2013; 196:163-73. [PMID: 24239634 PMCID: PMC7113661 DOI: 10.1016/j.jviromet.2013.10.038] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 10/11/2013] [Accepted: 10/29/2013] [Indexed: 01/29/2023]
Abstract
Transient transfection of HEK293 suspension cells efficiently produce AAV vectors. Nine different AAV serotypes were produced with yields of 1E+13 Vg/L. AAV2 and AAV6 produced in 3-L bioreactors gave yields comparable to shake-flasks. The process is cGMP compatible using serum-free media and HEK293 master cell bank. Industrialization of the process is possible for manufacturing AAV serotypes.
Adeno-associated virus (AAV) is being used successfully in gene therapy. Different serotypes of AAV target specific organs and tissues with high efficiency. There exists an increasing demand to manufacture various AAV serotypes in large quantities for pre-clinical and clinical trials. A generic and scalable method has been described in this study to efficiently produce AAV serotypes (AAV1-9) by transfection of a fully characterized cGMP HEK293SF cell line grown in suspension and serum-free medium. First, the production parameters were evaluated using AAV2 as a model serotype. Second, all nine AAV serotypes were produced successfully with yields of 1013 Vg/L cell culture. Subsequently, AAV2 and AAV6 serotypes were produced in 3-L controlled bioreactors where productions yielded up to 1013 Vg/L similar to the yields obtained in shake-flasks. For example, for AAV2 1013 Vg/L cell culture (6.8 × 1011 IVP/L) were measured between 48 and 64 h post transfection (hpt). During this period, the average cell specific AAV2 yields of 6800 Vg per cell and 460 IVP per cell were obtained with a Vg to IVP ratio of less than 20. Successful operations in bioreactors demonstrated the potential for scale-up and industrialization of this generic process for manufacturing AAV serotypes efficiently.
Collapse
Affiliation(s)
- Parminder Singh Chahal
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Erica Schulze
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Rosa Tran
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2
| | - Amine A Kamen
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, Canada H4P2R2.
| |
Collapse
|
18
|
Geisler A, Schön C, Größl T, Pinkert S, Stein EA, Kurreck J, Vetter R, Fechner H. Application of mutated miR-206 target sites enables skeletal muscle-specific silencing of transgene expression of cardiotropic AAV9 vectors. Mol Ther 2013; 21:924-33. [PMID: 23439498 PMCID: PMC3666623 DOI: 10.1038/mt.2012.276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/03/2012] [Indexed: 01/11/2023] Open
Abstract
Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206-mediated skeletal muscle-specific silencing of miR-206TS-bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1-mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3' portion of the miR-206, even enhanced the miR-206- mediated transgene repression. In vivo expression of m206TS-3G- and miR-122TS-containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs.
Collapse
Affiliation(s)
- Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Christian Schön
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Größl
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Elisabeth A Stein
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Roland Vetter
- Institute of Clinical Pharmacology & Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
19
|
Sage LK, Fox JM, Tompkins SM, Tripp RA. Subsisting H1N1 influenza memory responses are insufficient to protect from pandemic H1N1 influenza challenge in C57BL/6 mice. J Gen Virol 2013; 94:1701-1711. [PMID: 23580424 DOI: 10.1099/vir.0.049494-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2009 swine-origin pandemic H1N1 (pH1N1) influenza virus transmitted and caused disease in many individuals immune to pre-2009 H1N1 influenza virus. Whilst extensive studies on antibody-mediated pH1N1 cross-reactivity have been described, few studies have focused on influenza-specific memory T-cells. To address this, the immune response in pre-2009 H1N1 influenza-immune mice was evaluated after pH1N1 challenge and disease pathogenesis was determined. The results show that despite homology shared between pre-2009 H1N1 and pH1N1 strains, the effector memory T-cell response to pre-2009 H1N1 was generally ineffective, a finding that correlated with lung virus persistence. Additionally, pH1N1 challenge generated T-cells reactive to new pH1N1 epitopes. These studies highlight the importance of vaccinating against immunodominant T-cell epitopes to provide for a more effective strategy to control influenza virus through heterosubtypic immunity.
Collapse
Affiliation(s)
- Leo K Sage
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Julie M Fox
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Stephen M Tompkins
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| | - Ralph A Tripp
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, USA
| |
Collapse
|
20
|
Recombinant equine herpesvirus 1 (EHV-1) vaccine protects pigs against challenge with influenza A(H1N1)pmd09. Virus Res 2013; 173:371-6. [PMID: 23333290 DOI: 10.1016/j.virusres.2013.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/18/2022]
Abstract
Swine influenza virus (SIV) is not only an important respiratory pathogen in pigs but also a threat to human health. The pandemic influenza A(H1N1)pdm09 virus likely originated in swine through reassortment between a North American triple reassortant and Eurasian avian-like SIV. The North American triple reassortant virus harbors genes from avian, human and swine influenza viruses. An effective vaccine may protect the pork industry from economic losses and curb the development of new virus variants that may threaten public health. In the present study, we evaluated the efficacy of a recombinant equine herpesvirus type 1 (EHV-1) vaccine (rH_H1) expressing the hemagglutinin H1 of A(H1N1)pdm09 in the natural host. Our data shows that the engineered rH_H1 vaccine induces influenza virus-specific antibody responses in pigs and is able to protect at least partially against challenge infection: no clinical signs of disease were detected and virus replication was reduced as evidenced by decreased nasal virus shedding and faster virus clearance. Taken together, our results indicate that recombinant EHV-1 encoding H1 of A(H1N1)pdm09 may be a promising alternative for protection of pigs against infection with A(H1N1)pdm09 or other influenza viruses.
Collapse
|
21
|
Ploquin A, Szécsi J, Mathieu C, Guillaume V, Barateau V, Ong KC, Wong KT, Cosset FL, Horvat B, Salvetti A. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J Infect Dis 2012; 207:469-78. [PMID: 23175762 PMCID: PMC7107322 DOI: 10.1093/infdis/jis699] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are closely related, recently emerged paramyxoviruses that are capable of causing considerable morbidity and mortality in several mammalian species, including humans. Henipavirus-specific vaccines are still commercially unavailable, and development of novel antiviral strategies to prevent lethal infections due to henipaviruses is highly desirable. Here we describe the development of adeno-associated virus (AAV) vaccines expressing the NiV G protein. Characterization of these vaccines in mice demonstrated that a single intramuscular AAV injection was sufficient to induce a potent and long-lasting antibody response. Translational studies in hamsters further demonstrated that all vaccinated animals were protected against lethal challenge with NiV. In addition, this vaccine induced a cross-protective immune response that was able to protect 50% of the animals against a challenge by HeV. This study presents a new efficient vaccination strategy against henipaviruses and opens novel perspectives on the use of AAV vectors as vaccines against emergent diseases.
Collapse
Affiliation(s)
- Aurélie Ploquin
- INSERM U758, 2Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nieto K, Stahl-Hennig C, Leuchs B, Müller M, Gissmann L, Kleinschmidt JA. Intranasal vaccination with AAV5 and 9 vectors against human papillomavirus type 16 in rhesus macaques. Hum Gene Ther 2012; 23:733-41. [PMID: 22401308 DOI: 10.1089/hum.2011.202] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer is the second most common cancer in women worldwide. Persistent high-risk human papillomavirus (HPV) infection has been identified as the causative event for the development of this type of cancer. Recombinant adeno-associated viruses (rAAVs) are currently being developed and evaluated as vaccine vector. In previous work, we demonstrated that rAAVs administered intranasally in mice induced high titers and long-lasting neutralizing antibodies against HPV type 16 (HPV16). To extend this approach to a more human-related species, we immunized rhesus macaques (Macaca mulatta) with AAVs expressing an HPV16 L1 protein using rAAV5 and 9 vectors in an intranasal prophylactic setting. An rAAV5-L1 vector followed by a boost with rAAV9-L1 induced higher titers of L1-specific serum antibodies than a single rAAV5-L1 immunization. L1-specific antibodies elicited by AAV9 vector neutralized HPV16 pseudovirions and persisted for at least 7 months post immunization. Interestingly, nasal application of rAAV9 was immunogenic even in the presence of high AAV9 antibody titers, allowing reimmunization with the same serotype without prevention of the transgene expression. Two of six animals did not respond to AAV-mediated intranasal vaccination, although they were not tolerant, as both developed antibodies after intramuscular vaccination with HPV16 virus-like particles. These data clearly show the efficacy of an intranasal immunization using rAAV9-L1 vectors without the need of an adjuvant. We conclude from our results that rAAV9 vector is a promising candidate for a noninvasive nasal vaccination strategy.
Collapse
Affiliation(s)
- Karen Nieto
- Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Immune responses and protective efficacy of a recombinant swinepox virus expressing HA1 against swine H1N1 influenza virus in mice and pigs. Vaccine 2012; 30:3119-25. [PMID: 22391400 DOI: 10.1016/j.vaccine.2012.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/27/2012] [Accepted: 02/10/2012] [Indexed: 11/22/2022]
Abstract
Swine influenza virus (SIV) is not only an important respiratory pathogen in pigs but also a potent threat to human health. Although immunization with recombinant poxviruses expressing protective antigens as vaccines has been widely used for against many infectious diseases, development of recombinant swinepox virus (rSPV) vector for the purpose has been less successful. Here, we report the construction of a recombinant swinepox virus (rSPV-HA1) expressing hemagglutinin (HA1) of H1N1 SIV. Immune responses and protection efficacy of the vaccination vector were evaluated in both the mouse model and the natural host: pig. Prime and boost inoculations of rSPV-HA1 yielded high levels of neutralization antibody against SIV and elicited potent H1N1 SIV-specific IFN-γ response from T-lymphocytes. Complete protection of pigs against H1N1 SIV challenge was observed. No pigs showed evident systemic and local reactions to the vaccine and no SIV shedding was detected from pigs vaccinated with rSPV-HA1 after challenge. Our data demonstrated that the recombinant swinepox virus encoding HA1 of SIV H1N1 may serve as a promising SIV vaccine for protection against SIV infection.
Collapse
|
24
|
Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011; 2011:939860. [PMID: 22007149 PMCID: PMC3189652 DOI: 10.1155/2011/939860] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022] Open
Abstract
There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.
Collapse
|