1
|
Sadeghi MH, Radmehr S, Mohagheghzadeh N, Fathi J, Malekzadegan Y, Moghadam HZ. Innovative electrochemical biosensors for tuberculosis detection. Clin Chim Acta 2025; 574:120327. [PMID: 40286897 DOI: 10.1016/j.cca.2025.120327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Tuberculosis (TB) continues to pose a significant global health threat, highlighting the urgent need for the development of rapid, precise, and accessible diagnostic tools to effectively manage its transmission. Conventional diagnostic techniques, such as sputum microscopy and culture-based assays, face several drawbacks, including lengthy processing times, limited sensitivity, and the requirement for specialized laboratory facilities. In this landscape, electrochemical biosensors have emerged as promising alternatives, offering improved sensitivity, specificity, and rapid detection capabilities. This review presents a thorough overview of recent advancements in the development and application of innovative electrochemical biosensors for TB detection. It explores the integration of nanomaterials such as graphene, gold nanoparticles, and carbon nanotubes, focusing on their contributions to enhanced sensor performance in terms of signal amplification and biorecognition efficacy. By synthesizing current research and technological developments, this review emphasizes the considerable potential of electrochemical biosensors to transform TB diagnostics, ultimately assisting in better disease management and control strategies worldwide.
Collapse
Affiliation(s)
- Mohammad Hassan Sadeghi
- Medical Student, School of Medicine,Zahedan University of Medical Science, Sistanbaluchestan, Iran
| | - Safa Radmehr
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Mohagheghzadeh
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Iran
| | - Javad Fathi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Iran
| | - Yalda Malekzadegan
- Department of Microbiology and Parasitology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Hesam Zendehdel Moghadam
- Research and Technology Department, Iranian Academic Center for Education Culture and Research Kerman Branch, Iran.
| |
Collapse
|
2
|
Kwon KW, Choi E, Kim H, Kim HW, Choi S, Lee S, Ha SJ, Shin SJ. Adjunctive beneficial effect of c-di-GMP, a STING agonist, in enhancing protective efficacy of TLR4-adjuvanted tuberculosis subunit vaccine formulations. J Biomed Sci 2025; 32:52. [PMID: 40414893 DOI: 10.1186/s12929-025-01144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 05/06/2025] [Indexed: 05/27/2025] Open
Abstract
BACKGROUND Effective subunit vaccine development requires selecting appropriate adjuvant formulations to trigger desired adaptive immune responses. This study explores the immunogenicity and tuberculosis (TB) vaccine potential of antigens (Ags) combined with Toll-like receptor 4 (TLR4) adjuvants and a stimulator of interferon genes (STING) agonist. METHODS In this work, we investigated the combination of Ags with TLR4 adjuvants (monophosphoryl lipid A / dimethyldioctadecylammonium bromide; MPL/DDA or glucopyranosyl lipid adjuvant-stable emulsion; GLA-SE) and a STING agonist, c-di-GMP (CDG). Mice were immunized three times by intramuscular injections at 3-week intervals. The effects of integrating Ags in these adjuvant formulations on the immune response were evaluated, focusing on the generation of Th1-biased, polyfunctional Ag-specific CD4+ T cells and their localization in the lung and spleen. To assess protection, immunized mice were aerogenically challenged with either conventional or ultra-low doses of Mycobacterium tuberculosis (Mtb) 4 weeks after the last immunization. Subsequently, bacterial load and pulmonary inflammation were assessed. RESULTS Integrating ESAT6 Ag in TLR4 and CDG adjuvant formulations remarkably boosted Th1-biased, polyfunctional ESAT6-specific CD4+ T cells in the lungs and spleen, providing durable protection against Mtb infection. The inclusion of CDG promoted mucosal localization of ESAT6-specific CD4+ T cells resembling resident memory phenotypes in the lung parenchyma and increased Ag-specific CD4+ T cells in lung vasculature. Immunization with another vaccine Ag candidate, Ag85B, in GLA-SE plus CDG similarly increased Ag85B-specific CD4+ T cells in the spleen and both lung compartments. Following ultra-low dose Mtb challenge, ESAT6 or Ag85B/GLA-SE/CDG immunizations significantly reduced bacterial loads compared to non-, Bacillus Calmette-Guérin (BCG)-, and ESAT6 or Ag85B/GLA-SE-immunized groups. Importantly, the inclusion of CDG decreased killer cell lectin-like receptor subfamily G member 1 (KLRG1) expression among Ag-specific CD4+ T cells in the lung, correlating with enhanced lung-homing evidenced by expanded lung parenchyma Ag-specific CD4+ T cells, including less-differentiated Th1 cells. CONCLUSIONS This study highlights that CDG, when used in combination with TLR4 adjuvants, enhances long-term protective immunity, offering a promising strategy for subunit TB vaccine development.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hagyu Kim
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Hyeong Woo Kim
- Department of Microbiology and Convergence of Medical Science, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Sangwon Choi
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Seunghyun Lee
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
3
|
Divens AM, Ryan KJ, Sette A, Lindestam Arlehamn CS, Robinson CM. IL-27 signaling limits the diversity of antigen-specific T cells and interferes with protection induced by BCG vaccination. Tuberculosis (Edinb) 2025; 153:102641. [PMID: 40328205 DOI: 10.1016/j.tube.2025.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025]
Abstract
Tuberculosis (TB) is the leading cause of death due to a pathogen. The live-attenuated BCG vaccine is the only approved vaccine to prevent TB, but it fails to confer long-term protection. We hypothesize that the immunosuppressive cytokine IL-27 may contribute to the inefficacies of the BCG vaccine. IL-27 is elevated in neonates, the population most commonly administered BCG, and levels increase further upon vaccination. IL-27 interferes with the phagolysosomal pathway, suggesting it may limit the diversity of antigens processed and presented to T cells. We hypothesized that in the absence of IL-27 signaling, BCG vaccination induces antigen-specific T cells that recognize a greater number of antigens and provide enhanced protection during M. tuberculosis (Mtb) challenge. CD3+ T cells isolated from IL-27Rα KO mice vaccinated with BCG as neonates were more responsive to BCG and a Mtb peptide pool than T cells from vaccinated WT mice. Adoptive transfer of IL-27Rα KO T cells provided more consistent protection against Mtb than WT, but this was not observed in TCRα-/- mice. A principal component analysis suggested a more consistent multifunctional cytokine response was associated IL-27Rα KO T cells. These findings enhance our understanding of IL-27 during neonatal vaccination and development of protective immunity.
Collapse
Affiliation(s)
- Ashley M Divens
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kenneth J Ryan
- Department of Statistics, West Virginia University, Morgantown, WV, USA
| | - Alessandro Sette
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Cecilia S Lindestam Arlehamn
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, USA; Center for Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Cory M Robinson
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA; Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
4
|
Lukeman H, Al-Wassiti H, Fabb SA, Lim L, Wang T, Britton WJ, Steain M, Pouton CW, Triccas JA, Counoupas C. An LNP-mRNA vaccine modulates innate cell trafficking and promotes polyfunctional Th1 CD4 + T cell responses to enhance BCG-induced protective immunity against Mycobacterium tuberculosis. EBioMedicine 2025; 113:105599. [PMID: 39955975 PMCID: PMC11871481 DOI: 10.1016/j.ebiom.2025.105599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Mycobacterium tuberculosis remains the largest infectious cause of mortality worldwide, even with over a century of widespread administration of the only licenced tuberculosis (TB) vaccine, Bacillus Calmette-Guérin (BCG). mRNA technology remains an underexplored approach for combating chronic bacterial infections such as TB. METHODS We have developed a lipid nanoparticle (LNP)-mRNA vaccine, termed mRNACV2, encoding for the M. tuberculosis CysVac2 fusion protein, which we have previously formulated as an adjuvanted subunit vaccine. This LNP-mRNA vaccine was administered intramuscularly to female C57BL/6 mice as a standalone vaccine or as booster to BCG to assess immunogenicity and efficacy of the construct. FINDINGS Vaccination with mRNACV2 induced high frequencies of polyfunctional, antigen-specific Th1 CD4+ T cells in the blood and lungs, which was associated with the rapid recruitment of both innate and adaptive immune cells to lymph nodes draining the site of immunisation. mRNACV2 vaccination also provided significant pulmonary protection in M. tuberculosis-infected mice, reducing bacterial load and inflammatory infiltration in the lungs. Importantly, mRNACV2 enhanced immune responses and long-term protection when used to boost BCG-primed mice. INTERPRETATION These findings of a protective LNP-mRNA vaccine for TB highlight the potential of the LNP-mRNA platform for TB control and support further research to facilitate translation to humans. FUNDING This work was supported by the NHMRC Centre of Research Excellence in Tuberculosis Control to JAT and WJB (APP1153493), and MRFF mRNA Clinical Trial Enabling Infrastructure grant to CWP and HAW (MRFCTI000006).
Collapse
Affiliation(s)
- Hannah Lukeman
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Hareth Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - Trixie Wang
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, 3052, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID) and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia; Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
5
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
6
|
Szachniewicz MM, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Geluk A, Bouwstra JA, Ottenhoff THM. Cationic pH-sensitive liposome-based subunit tuberculosis vaccine induces protection in mice challenged with Mycobacterium tuberculosis. Eur J Pharm Biopharm 2024; 203:114437. [PMID: 39122053 DOI: 10.1016/j.ejpb.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants - CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB. In vitro in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. In vivo, the new vaccine administrated subcutaneously significantly reduced Mycobacterium tuberculosis (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine's effectiveness in terms of its capacity to induce polyfunctional CD4+ and CD8+ T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69+ B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.
Collapse
Affiliation(s)
- M M Szachniewicz
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands.
| | - S J F van den Eeden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K E van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K L M C Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - S van Veen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - A Geluk
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - T H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
7
|
Wang R, Oliveira LVN, Hester MM, Carlson D, Christensen D, Specht CA, Levitz SM. Protection against experimental cryptococcosis elicited by Cationic Adjuvant Formulation 01-adjuvanted subunit vaccines. PLoS Pathog 2024; 20:e1012220. [PMID: 38976694 PMCID: PMC11257399 DOI: 10.1371/journal.ppat.1012220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
The fungal infection, cryptococcosis, is responsible for >100,000 deaths annually. No licensed vaccines are available. We explored the efficacy and immune responses of subunit cryptococcal vaccines adjuvanted with Cationic Adjuvant Formulation 01 (CAF01). CAF01 promotes humoral and T helper (Th) 1 and Th17 immune responses and has been safely used in human vaccine trials. Four subcutaneous vaccines, each containing single recombinant Cryptococcus neoformans protein antigens, partially protected mice from experimental cryptococcosis. Protection increased, up to 100%, in mice that received bivalent and quadrivalent vaccine formulations. Vaccinated mice that received a pulmonary challenge with C. neoformans had an influx of leukocytes into the lung including robust numbers of polyfunctional CD4+ T cells which produced interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL)-17 upon ex vivo antigenic stimulation. Cytokine-producing lung CD8+ T cells were also found, albeit in lesser numbers. A significant, durable IFNγ response was observed in the lungs, spleen, and blood. Moreover, IFNγ secretion following ex vivo stimulation directly correlated with fungal control in the lungs. Thus, we have developed multivalent cryptococcal vaccines which protect mice from experimental cryptococcosis using an adjuvant which has been safely tested in humans. These preclinical studies suggest a path towards human cryptococcal vaccine trials.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | | | - Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
8
|
Wang R, Oliveira LVN, Hester MM, Carlson D, Christensen D, Specht CA, Levitz SM. Protection against experimental cryptococcosis elicited by Cationic Adjuvant Formulation 01-adjuvanted subunit vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591045. [PMID: 38712080 PMCID: PMC11071535 DOI: 10.1101/2024.04.24.591045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The fungal infection, cryptococcosis, is responsible for >100,000 deaths annually. No licensed vaccines are available. We explored the efficacy and immune responses of subunit cryptococcal vaccines adjuvanted with Cationic Adjuvant Formulation 01 (CAF01). CAF01 promotes humoral and T helper (Th) 1 and Th17 immune responses and has been safely used in human vaccine trials. Four subcutaneous vaccines, each containing single recombinant Cryptococcus neoformans protein antigens, partially protected mice from experimental cryptococcosis. Protection increased, up to 100%, in mice that received bivalent and quadrivalent vaccine formulations. Vaccinated mice that received a pulmonary challenge with C. neoformans had an influx of leukocytes into the lung including robust numbers of polyfunctional CD4+ T cells which produced Interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL)-17 upon ex vivo antigenic stimulation. Cytokine-producing lung CD8+ T cells were also found, albeit in lesser numbers. A significant, durable IFNγ response was observed in the lungs, spleen, and blood. Moreover, IFNγ secretion following ex vivo stimulation directly correlated with fungal clearance in the lungs. Thus, we have developed multivalent cryptococcal vaccines which protect mice from experimental cryptococcosis using an adjuvant which has been safely tested in humans. These preclinical studies suggest a path towards human cryptococcal vaccine trials.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lorena V. N. Oliveira
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maureen M. Hester
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Diana Carlson
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dennis Christensen
- Statens Serum Institut, Copenhagen, Denmark
- Present address: Croda Pharma, Diplomvej 381, Lyngby 2800, Denmark
| | - Charles A. Specht
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Stuart M. Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
9
|
Qin L, Zhang G, Wu Y, Yang Y, Zou Z. Intratumor injection of BCG Ag85A high-affinity peptides enhanced anti-tumor efficacy in PPD-positive melanoma. Cancer Immunol Immunother 2024; 73:103. [PMID: 38630135 PMCID: PMC11024071 DOI: 10.1007/s00262-024-03693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
As one of the scheduled immunization vaccines worldwide, virtually all individuals have been vaccinated with BCG vaccine. In order to verify the hypothesis that delivering BCG high-affinity peptides to tumor areas could activate the existing BCG memory T cells to attack tumor, we firstly predicted the HLA-A*0201 high-affinity peptides of BCG Ag85A protein (KLIANNTRV, GLPVEYLQV), and then, A375 melanoma cells and HLA-A*0201 PBMCs (from PPD-positive adults) were added to co-incubated with the predicted peptides in vitro. We found that the predicted BCG high-affinity peptides could be directly loaded onto the surface of tumor cells, enhancing the tumor-killing efficacy of PBMCs from PPD-positive volunteer. Then, we constructed PPD-positive mice model bearing B16F10 subcutaneous tumors and found that intratumor injection of BCG Ag85A high-affinity peptides (SGGANSPAL, YHPQQFVYAGAMSGLLD) enhanced the anti-tumor efficacy in PPD-positive melanoma mice. Along with the better anti-tumor efficacy, the expression of PDL1 on tumor cell surface was also increased, and stronger antitumor effects occurred when further combined with anti-PD1 antibody. For microenvironment analysis, the proportion of effector memory T cells was increased and the better treatment efficacy may be attributed to the elevated effector memory CD4 + T cells within the tumor. In conclusion, using the existing immune response of BCG vaccine by delivering high-affinity peptides of BCG to tumor area is a safe and promising therapy for cancer.
Collapse
Affiliation(s)
- Lanqun Qin
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Guiying Zhang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yirong Wu
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yueling Yang
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengyun Zou
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
- Department of the Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Kwon KW, Choi HG, Kim KS, Park SA, Kim HJ, Shin SJ. BCG-booster vaccination with HSP90-ESAT-6-HspX-RipA multivalent subunit vaccine confers durable protection against hypervirulent Mtb in mice. NPJ Vaccines 2024; 9:55. [PMID: 38459038 PMCID: PMC10923817 DOI: 10.1038/s41541-024-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
The quest for effective and enhanced multiantigenic tuberculosis (TB) subunit vaccine necessitates the induction of a protective pathogen-specific immune response while circumventing detrimental inflammation within the lung milieu. In line with this goal, we engineered a modified iteration of the quadrivalent vaccine, namely HSP90-ESAT-6-HspX-RipA (HEHR), which was coupled with the TLR4 adjuvant, CIA09A. The ensuing formulation was subjected to comprehensive assessment to gauge its protective efficacy against the hypervirulent Mycobacterium tuberculosis (Mtb) Haarlem clinical strain M2, following a BCG-prime boost regimen. Regardless of vaccination route, both intramuscular and subcutaneous administration with the HEHR vaccine exhibited remarkable protective efficacy in significantly reducing the Mtb bacterial burden and pulmonary inflammation. This underscores its notably superior protective potential compared to the BCG vaccine alone or a former prototype, the HSP90-E6 subunit vaccine. In addition, this superior protective efficacy was confirmed when testing a tag-free version of the HEHR vaccine. Furthermore, the protective immune determinant, represented by durable antigen-specific CD4+IFN-γ+IL-17A+ T-cells expressing a CXCR3+KLRG1- cell surface phenotype in the lung, was robustly induced in HEHR-boosted mice at 12 weeks post-challenge. Collectively, our data suggest that the BCG-prime HEHR boost vaccine regimen conferred improved and long-term protection against hypervirulent Mtb strain with robust antigen-specific Th1/Th17 responses.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, South Korea
| | - Han-Gyu Choi
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea
| | | | - Shin Ae Park
- R&D Center, EyeGene Inc., Goyang, 10551, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, and Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, South Korea.
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
11
|
Bradford SD, Ryan KJ, Divens AM, Povroznik JM, Bonigala S, Robinson CM. IL-27 alters inflammatory cytokine expression and limits protective immunity against Mycobacterium tuberculosis in a neonatal BCG vaccination model. Front Immunol 2024; 15:1217098. [PMID: 38390338 PMCID: PMC10881868 DOI: 10.3389/fimmu.2024.1217098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Background Efforts to control tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), have been hampered by the immense variability in protection from BCG vaccination. While BCG protects young children from some forms of TB disease, long-term protection against pulmonary disease is more limited, suggesting a poor memory response. New vaccines or vaccination strategies are required to have a realistic chance of eliminating TB disease. In TB endemic areas, routine immunization occurs during the neonatal period and as such, we hypothesized that inadequate protective immunity elicited by BCG vaccination could be the result of the unique early-life immune landscape. Interleukin (IL)-27 is a heterodimeric cytokine with immune suppressive activity that is elevated in the neonatal period. Objective We investigated the impact of IL-27 on regulation of immune responses during neonatal BCG vaccination and protection against Mtb. Methods Here, we used a novel model of neonatal vaccination and adult aerosol challenge that models the human timeline of vaccine delivery and disease transmission. Results Overall, we observed improved control of Mtb in mice unresponsive to IL-27 (IL-27Rα-/-) that was consistent with altered expression patterns of IFN-γ and IL-17 in the lungs. The balance of these cytokines with TNF-α expression may be key to effective bacterial clearance. Conclusions Our findings suggest the importance of evaluating new vaccines and approaches to combat TB in the neonatal population most likely to receive them as part of global vaccination campaigns. They further indicate that temporal strategies to antagonize IL-27 during early life vaccination may improve protection.
Collapse
Affiliation(s)
- Shelby D. Bradford
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Kenneth J. Ryan
- Department of Statistics, West Virginia University, Morgantown, WV, United States
| | - Ashley M. Divens
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Jessica M. Povroznik
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| | - Sunilkanth Bonigala
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Cory M. Robinson
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, United States
| |
Collapse
|
12
|
Lindgren H, Eneslätt K, Golovliov I, Gelhaus C, Sjöstedt A. Analyses of human immune responses to Francisella tularensis identify correlates of protection. Front Immunol 2023; 14:1238391. [PMID: 37781364 PMCID: PMC10540638 DOI: 10.3389/fimmu.2023.1238391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Francisella tularensis is the etiological agent of the potentially severe infection tularemia. An existing F: tularensis vaccine, the live vaccine strain (LVS), has been used to protect at-risk personnel, but it is not licensed in any country and it has limited efficacy. Therefore, there is a need of a new, efficacious vaccine. The aim of the study was to perform a detailed analysis of the characteristics of the human immune response to F. tularensis, since this will generate crucial knowledge required to develop new vaccine candidates. Nine individuals were administered the LVS vaccine and peripheral blood mononuclear cells (PBMC) were collected before and at four time points up to one year after vaccination. The properties of the PBMC were characterized by flow cytometry analysis of surface markers and intracellular cytokine staining. In addition, the cytokine content of supernatants from F. tularensis-infected PBMC cultures was determined and the protective properties of the supernatants investigated by adding them to cultures with infected monocyte-derived macrophages (MDM). Unlike before vaccination, PBMC collected at all four time points after vaccination demonstrated F. tularensis-specific cell proliferation, cytokine secretion and cytokine-expressing memory cells. A majority of 17 cytokines were secreted at higher levels by PBMC collected at all time points after vaccination than before vaccination. A discriminative analysis based on IFN-γ and IL-13 secretion correctly classified samples obtained before and after vaccination. Increased expression of IFN-γ, IL-2, and MIP-1β were observed at all time points after vaccination vs. before vaccination and the most significant changes occurred among the CD4 transient memory, CD8 effector memory, and CD8 transient memory T-cell populations. Growth restriction of the highly virulent F. tularensis strain SCHU S4 in MDM was conferred by supernatants and protection correlated to levels of IFN-γ, IL-2, TNF, and IL-17. The findings demonstrate that F. tularensis vaccination induces long-term T-cell reactivity, including TEM and TTM cell populations. Individual cytokine levels correlated with the degree of protection conferred by the supernatants. Identification of such memory T cells and effector mechanisms provide an improved understanding of the protective mechanisms against F. tularensis. mechanisms against F. tularensis.
Collapse
Affiliation(s)
- Helena Lindgren
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Kjell Eneslätt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Hildebrand RE, Hansen C, Kingstad-Bakke B, Wu CW, Suresh M, Talaat A. The Immunogenicity and Safety of Mycobacterium tuberculosis- mosR-Based Double Deletion Strain in Mice. Microorganisms 2023; 11:2105. [PMID: 37630665 PMCID: PMC10459135 DOI: 10.3390/microorganisms11082105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis) remains a significant global health threat, accounting for ~1.7 million deaths annually. The efficacy of the current vaccine, M. bovis BCG, ranges from 0 to 80% in children and does not prevent adulthood tuberculosis. We explored the immune profile and safety of a live-attenuated M. tuberculosis construct with double deletions of the mosR and echA7 genes, where previously, single mutations were protective against an M. tuberculosis aerosol challenge. Over 32 weeks post-vaccination (WPV), immunized mice with M. tuberculosisΔmosRΔechA7 (double mutant) were sacrificed to evaluate the vaccine persistence, histopathology, and immune responses. Interestingly, despite similar tissue colonization between the vaccine double mutant and wild-type M. tuberculosis, the vaccine construct showed a greater reaction to the ESAT-6, TB.10, and Ag85B antigens with peptide stimulation. Additionally, there was a greater number of antigen-specific CD4 T cells in the vaccine group, accompanied by significant polyfunctional T-cell responses not observed in the other groups. Histologically, mild but widely distributed inflammatory responses were recorded in the livers and lungs of the immunized animals at early timepoints, which turned into organized inflammatory foci via 32WPV, a pathology not observed in BCG-immunized mice. A lower double-mutant dose resulted in significantly less tissue colonization and less tissue inflammation. Overall, the double-mutant vaccine elicited robust immune responses dominated by antigen-specific CD4 T cells, but also triggered tissue damage and vaccine persistence. The findings highlight key features associated with the immunogenicity and safety of the examined vaccine construct that can benefit the future evaluation of other live vaccines.
Collapse
Affiliation(s)
- Rachel E. Hildebrand
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Chungyi Hansen
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Brock Kingstad-Bakke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Chia-Wei Wu
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Marulasiddappa Suresh
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
| | - Adel Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA; (R.E.H.); (C.H.); (B.K.-B.); (C.-W.W.); (M.S.)
- Vireo Vaccine International, Middleton, WI 53562, USA
| |
Collapse
|
14
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti DE, Scodeller EA, Guzmán CA. Protective Efficacy of a Mucosal Influenza Vaccine Formulation Based on the Recombinant Nucleoprotein Co-Administered with a TLR2/6 Agonist BPPcysMPEG. Pharmaceutics 2023; 15:pharmaceutics15030912. [PMID: 36986773 PMCID: PMC10057018 DOI: 10.3390/pharmaceutics15030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Current influenza vaccines target highly variable surface glycoproteins; thus, mismatches between vaccine strains and circulating strains often diminish vaccine protection. For this reason, there is still a critical need to develop effective influenza vaccines able to protect also against the drift and shift of different variants of influenza viruses. It has been demonstrated that influenza nucleoprotein (NP) is a strong candidate for a universal vaccine, which contributes to providing cross-protection in animal models. In this study, we developed an adjuvanted mucosal vaccine using the recombinant NP (rNP) and the TLR2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxyl-poly-ethylene-glycol (BPPcysMPEG). The vaccine efficacy was compared with that observed following parenteral vaccination of mice with the same formulation. Mice vaccinated with 2 doses of rNP alone or co-administered with BPPcysMPEG by the intranasal (i.n.) route showed enhanced antigen-specific humoral and cellular responses. Moreover, NP-specific humoral immune responses, characterized by significant NP-specific IgG and IgG subclass titers in sera and NP-specific IgA titers in mucosal territories, were remarkably increased in mice vaccinated with the adjuvanted formulation as compared with those of the non-adjuvanted vaccination group. The addition of BPPcysMPEG also improved NP-specific cellular responses in vaccinated mice, characterized by robust lymphoproliferation and mixed Th1/Th2/Th17 immune profiles. Finally, it is notable that the immune responses elicited by the novel formulation administered by the i.n. route were able to confer protection against the influenza H1N1 A/Puerto Rico/8/1934 virus.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
| | - Diego Esteban Cargnelutti
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Eduardo A. Scodeller
- Laboratorio de Inmunología y Desarrollo de Vacunas, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-CONICET, Universidad Nacional de Cuyo, Mendoza M5500, Argentina; (M.V.S.); (D.E.C.); (E.A.S.)
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; (T.E.); (K.S.)
- Correspondence: ; Tel.: +49-531-61814600; Fax: +49-531-618414699
| |
Collapse
|
15
|
Kalita E, Panda M, Rao A, Prajapati VK. Exploring the role of secretory proteins in the human infectious diseases diagnosis and therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:231-269. [PMID: 36707203 DOI: 10.1016/bs.apcsb.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Secretory proteins are playing important role during the host-pathogen interaction to develop the infection or protection into the cell. Pathogens developing infectious disease to human being are taken up by host macrophages or number of immune cells, play an important role in physiological, developmental and immunological function. At the same time, infectious agents are also secreting various proteins to neutralize the resistance caused by host cells and also helping the pathogens to develop the infection. Secretory proteins (secretome) are only developed at the time of host-pathogen interaction, therefore they become very important to develop the targeted and potential therapeutic strategies. Pathogen specific secretory proteins released during interaction with host cell provide opportunity to develop point of care and rapid diagnostic kits. Proteins secreted by pathogens at the time of interaction with host cell have also been found as immunogenic in nature and numbers of vaccines have been developed to control the spread of human infectious diseases. This chapter highlights the importance of secretory proteins in the development of diagnostic and therapeutic strategies to fight against human infectious diseases.
Collapse
Affiliation(s)
- Elora Kalita
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Mamta Panda
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Abhishek Rao
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
16
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
17
|
Matarazzo L, Bettencourt PJG. mRNA vaccines: a new opportunity for malaria, tuberculosis and HIV. Front Immunol 2023; 14:1172691. [PMID: 37168860 PMCID: PMC10166207 DOI: 10.3389/fimmu.2023.1172691] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
The success of the first licensed mRNA-based vaccines against COVID-19 has created a widespread interest on mRNA technology for vaccinology. As expected, the number of mRNA vaccines in preclinical and clinical development increased exponentially since 2020, including numerous improvements in mRNA formulation design, delivery methods and manufacturing processes. However, the technology faces challenges such as the cost of raw materials, the lack of standardization, and delivery optimization. MRNA technology may provide a solution to some of the emerging infectious diseases as well as the deadliest hard-to-treat infectious diseases malaria, tuberculosis, and human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), for which an effective vaccine, easily deployable to endemic areas is urgently needed. In this review, we discuss the functional structure, design, manufacturing processes and delivery methods of mRNA vaccines. We provide an up-to-date overview of the preclinical and clinical development of mRNA vaccines against infectious diseases, and discuss the immunogenicity, efficacy and correlates of protection of mRNA vaccines, with particular focus on research and development of mRNA vaccines against malaria, tuberculosis and HIV.
Collapse
Affiliation(s)
- Laura Matarazzo
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | - Paulo J. G. Bettencourt
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisboa, Portugal
- Faculty of Medicine, Universidade Católica Portuguesa, Rio de Mouro, Portugal
- *Correspondence: Paulo J. G. Bettencourt,
| |
Collapse
|
18
|
Arif S, Akhter M, Khaliq A, Akhtar MW. Fusion peptide constructs from antigens of M. tuberculosis producing high T-cell mediated immune response. PLoS One 2022; 17:e0271126. [PMID: 36174012 PMCID: PMC9521936 DOI: 10.1371/journal.pone.0271126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Non availability of effective anti-TB vaccine impedes TB control which remains a crucial global health issue. A fusion molecule based on immunogenic antigens specific to different growth phases of Mycobacterium tuberculosis can enhance T-cell responses required for developing a potent vaccine. In this study, six antigens including EspC, TB10.4, HspX, PPE57, CFP21 and Rv1352 were selected for constructing EspC-TB10.4 (bifu25), TnCFP21-Rv1352 (bifu29), HspX-EspC-TB10.4 (trifu37), HspX-TnCFP21-Rv1352 (trifu44) and HspX-EspC-TB10.4-PPE57 (tetrafu56) fusion proteins. Th1-cell epitopes of EspC, PPE57 and Rv1352 antigens were predicted for the first time using different in silico tools. The fusion molecule tetrafu56, which consisted of antigens from both the replicating and the dormant stages of Mtb, induced a release of 397 pg/mL of IFN-γ from PBMCs of the active TB patients. This response was comparable to the response obtained with cocktail of the component antigens (396 pg/mL) as well as to the total of the responses obtained separately for each of its component antigens (388 pg/mL). However, PBMCs from healthy samples in response to tetrafu56 showed IFN-γ release of only 26.0 pg/mL Thus a previous exposure of PBMCs to Mtb antigens in TB plasma samples resulted in 15-fold increase in IFN-γ response to tetrafu56 as compared to the PBMCs from the healthy controls. Hence, most of the T-cell epitopes of the individual antigens seem to be available for T-cell interactions in the form of the fusion. Further investigation in animal models should substantiate the immune efficacy of the fusion molecule. Thus, the fusion tetrafu56 seems to be a potential candidate for developing an effective multistage vaccine against TB.
Collapse
Affiliation(s)
- Shaista Arif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Mohsina Akhter
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Aasia Khaliq
- Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | | |
Collapse
|
19
|
Singh S, Saavedra-Avila NA, Tiwari S, Porcelli SA. A century of BCG vaccination: Immune mechanisms, animal models, non-traditional routes and implications for COVID-19. Front Immunol 2022; 13:959656. [PMID: 36091032 PMCID: PMC9459386 DOI: 10.3389/fimmu.2022.959656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
Bacillus Calmette-Guerin (BCG) has been used as a vaccine against tuberculosis since 1921 and remains the only currently approved vaccine for this infection. The recent discovery that BCG protects against initial infection, and not just against progression from latent to active disease, has significant implications for ongoing research into the immune mechanisms that are relevant to generate a solid host defense against Mycobacterium tuberculosis (Mtb). In this review, we first explore the different components of immunity that are augmented after BCG vaccination. Next, we summarize current efforts to improve the efficacy of BCG through the development of recombinant strains, heterologous prime-boost approaches and the deployment of non-traditional routes. These efforts have included the development of new recombinant BCG strains, and various strategies for expression of important antigens such as those deleted during the M. bovis attenuation process or antigens that are present only in Mtb. BCG is typically administered via the intradermal route, raising questions about whether this could account for its apparent failure to generate long-lasting immunological memory in the lungs and the inconsistent level of protection against pulmonary tuberculosis in adults. Recent years have seen a resurgence of interest in the mucosal and intravenous delivery routes as they have been shown to induce a better immune response both in the systemic and mucosal compartments. Finally, we discuss the potential benefits of the ability of BCG to confer trained immunity in a non-specific manner by broadly stimulating a host immunity resulting in a generalized survival benefit in neonates and the elderly, while potentially offering benefits for the control of new and emerging infectious diseases such as COVID-19. Given that BCG will likely continue to be widely used well into the future, it remains of critical importance to better understand the immune responses driven by it and how to leverage these for the design of improved vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Medicine, New York University School of Medicine, New York, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
- *Correspondence: Shivani Singh,
| | | | - Sangeeta Tiwari
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, Texas, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Singh S, Bolz M, Cornelius A, Desvignes L. Intravenous BCG driven antigen recognition in a murine tuberculosis model. Comp Immunol Microbiol Infect Dis 2022; 87:101838. [PMID: 35700556 DOI: 10.1016/j.cimid.2022.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Bacille Calmette-Guerin (BCG) is the only approved vaccine against tuberculosis but the subcutaneous route does not provide for the elimination of Mycobacterium tuberculosis (Mtb), thus highlighting the need for investigating other routes of administration. We used a unique set of 60 peptide pools with unprecedented coverage of the bacterium that had previously been used to study T cell responses in subjects latently infected with Mtb. We showed that intravenous BCG vaccination of C57BL/6 mice elicited a more robust IFN-γ response from splenocytes than the subcutaneous route, with the highest responses driven by the Ag85A/B and PE/PPE family epitopes, followed by TB10.4 and Esx-1. We then compared the spectrum of antigen recognition in BCG-naïve H37Rv-challenged and BCG-vaccinated H37Rv-challenged mice. Peptides belonging to TB10.4, ESAT-6, CFP-10, Ag85A/Ag85B, PE/PPE and Esx families up-regulated IFN-γ production in the lungs of BCG-naïve H37Rv-challenged mice but the response was much lower in the BCG-vaccinated group. Historically, a limited number of Mtb antigens have been used to study T cell responses in TB. The goal of using this 60-peptide assay was to define T cell responses in TB down to the epitope level. We envision that the use of broad antigen panels such as ours in conjunction with studies of bacterial load reduction will help delineate the protective efficacy of 'groups' of antigens.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care Medicine, USA.
| | - Miriam Bolz
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Amber Cornelius
- Division of Infectious Diseases and Immunology, Department of Medicine, USA
| | - Ludovic Desvignes
- Division of Infectious Diseases and Immunology, Department of Medicine, USA; Office of Science & Research, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
21
|
Ritter K, Rousseau J, Hölscher C. Interleukin-27 in Tuberculosis: A Sheep in Wolf’s Clothing? Front Immunol 2022; 12:810602. [PMID: 35116036 PMCID: PMC8803639 DOI: 10.3389/fimmu.2021.810602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
In tuberculosis (TB), protective inflammatory immune responses and the pathological sequelae of chronic inflammation significantly depend on a timely balance of cytokine expression. In contrast to other anti-inflammatory cytokines, interleukin (IL)-27 has fundamental effects in experimental Mycobacterium tuberculosis (Mtb) infection: the absence of IL-27-mediated signalling promotes a better control of mycobacterial growth on the one hand side but also leads to a chronic hyperinflammation and immunopathology later during infection. Hence, in the context of novel host-directed therapeutic approaches and vaccination strategies for the management of TB, the timely restricted blockade of IL-27 signalling may represent an advanced treatment option. In contrast, administration of IL-27 itself may allow to treat the immunopathological consequences of chronic TB. In both cases, a better knowledge of the cell type-specific and kinetic effects of IL-27 after Mtb infection is essential. This review summarizes IL-27-mediated mechanisms affecting protection and immunopathology in TB and discusses possible therapeutic applications.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, Borstel, Germany
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, Borstel, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, Borstel, Germany
- *Correspondence: Christoph Hölscher,
| |
Collapse
|
22
|
Kanaparthi KJ, Afroz S, Minhas G, Moitra A, Khan RA, Medikonda J, Naz S, Cholleti SN, Banerjee S, Khan N. Immunogenic profiling of Mycobacterium tuberculosis DosR protein Rv0569 reveals its ability to switch on Th1 based immunity. Immunol Lett 2022; 242:27-36. [PMID: 35007662 DOI: 10.1016/j.imlet.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a multifaceted bacterial pathogen known to infect more than 2 billion people globally. However, a majority of the individuals (>90%) show no overt clinical symptoms of active Tuberculosis (TB) and, it is reported that M.tb in these individuals resides in the latent form. Therefore, huge burden of latently infected population poses serious threat to human health. Inconsistent efficacy of BCG vaccine and poor understanding of latency-associated determinants contribute to the failure of combating M.tb. The discovery of DosR as the master regulator of dormancy, opened new avenues to understand the pathophysiology of the bacterium. Though the specific functions of various DosR genes are yet to be discovered, they have been reported as potent T-cell activators and could elicit strong protective immune responses. Rv0569 is a DosR-encoded conserved hypothetical protein overexpressed during dormancy. However, it is not clearly understood how this protein modulates the host immune response. In the present study, we have demonstrated that Rv0569 has a high antigenic index and induces enhanced secretion of Th1 cytokines IL-12p40 and TNF-α as compared to Th2 cytokine IL-10 in macrophages. Mechanistically, Rv0569 induced the transcription of these pro-inflammatory signatures through the activation of NF-κB pathway. Further, immunization of mice with DosR protein Rv0569 switched the immune response towards Th1-biased cytokine pattern, characterized by the enhanced production of IFN-γ, IL-12p40, and TNF-α. Rv0569 augmented the expansion of antigen-specific IFN-γ and IL-2 producing effector CD4+ and CD8+ T-cells which are hallmarks of Th1 biased protective immunity. Additionally, IgG2a/IgG1 and IgG2b/IgG1 ratio in the serum of immunized mice further confirmed the ability of Rv0569 to skew Th1 biased immune response. In conclusion, we emphasize that Rv0569 has the ability to generate signals to switch on Th1-dominated responses and further suggest that it could be a potential vaccine candidate against latent M.tb infection.
Collapse
Affiliation(s)
- Kala Jyothi Kanaparthi
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sumbul Afroz
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Gillipsie Minhas
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Anurupa Moitra
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Rafiq Ahmad Khan
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Jayashankar Medikonda
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Saima Naz
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sai Nikhith Cholleti
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India.; Department of Animal Biology, School of Life-Sciences, University of Hyderabad, Hyderabad-500046, Telangana, India..
| |
Collapse
|
23
|
Boosting BCG with recombinant influenza A virus tuberculosis vaccines increases pulmonary T cell responses but not protection against Mycobacterium tuberculosis infection. PLoS One 2021; 16:e0259829. [PMID: 34793507 PMCID: PMC8601556 DOI: 10.1371/journal.pone.0259829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/27/2021] [Indexed: 11/19/2022] Open
Abstract
The current Mycobacterium bovis BCG vaccine provides inconsistent protection against pulmonary infection with Mycobacterium tuberculosis. Immunity induced by subcutaneous immunization with BCG wanes and does not promote early recruitment of T cell to the lungs after M. tuberculosis infection. Delivery of Tuberculosis (TB) vaccines to the lungs may increase and prolong immunity at the primary site of M. tuberculosis infection. Pulmonary immunization with recombinant influenza A viruses (rIAVs) expressing an immune-dominant M. tuberculosis CD4+ T cell epitope (PR8-p25 and X31-p25) stimulates protective immunity against lung TB infection. Here, we investigated the potential use of rIAVs to improve the efficacy of BCG using simultaneous immunization (SIM) and prime-boost strategies. SIM with parenteral BCG and intranasal PR8-p25 resulted in equivalent protection to BCG alone against early, acute and chronic M. tuberculosis infection. Boosting BCG with rIAVs increased the frequency of IFN-γ-secreting specific T cells (p<0.001) and polyfunctional CD4+ T cells (p<0.05) in the lungs compared to the BCG alone, however, this did not result in a significant increase in protection against M. tuberculosis compared to BCG alone. Therefore, sequential pulmonary immunization with these rIAVs after BCG increased M. tuberculosis-specific memory T cell responses in the lung, but not protection against M. tuberculosis infection.
Collapse
|
24
|
Ahmad F, Umar MS, Khan N, Jamal F, Gupta P, Zubair S, Gupta UD, Owais M. Immunotherapy With 5, 15-DPP Mediates Macrophage M1 Polarization and Modulates Subsequent Mycobacterium tuberculosis Infectivity in rBCG30 Immunized Mice. Front Immunol 2021; 12:706727. [PMID: 34777338 PMCID: PMC8586420 DOI: 10.3389/fimmu.2021.706727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a significant and continuing problem worldwide, with a death toll of around 1.5 million human lives annually. BCG, the only vaccine against TB, offers a varied degree of protection among human subjects in different regions and races of the world. The majority of the population living near the tropics carries a varying degree of tolerance against BCG due to the widespread prevalence of non-tuberculous mycobacteria (NTM). Interestingly, ≈90% of the Mycobacterium tuberculosis (Mtb) infected population restrain the bacilli on its own, which strengthens the notion of empowering the host immune system to advance the protective efficacy of existing mycobacterial vaccines. In general, Mtb modulates IL-10/STAT3 signaling to skew host mononuclear phagocytes toward an alternatively activated, anti-inflammatory state that helps it thrive against hostile immune advances. We hypothesized that modulating the IL-10/STAT3 driven anti-inflammatory effects in mononuclear cells may improve the prophylactic ability of TB vaccines. This study investigated the immunotherapeutic ability of a porphyrin based small molecule inhibitor of IL-10/STAT3 axis, 5, 15-diphenyl porphyrin (DPP), in improving anti-TB immunity offered by second generation recombinant BCG30 (rBCG30-ARMF-II®) vaccine in mice. The DPP therapy potentiated vaccine induced anti-TB immunity by down-modulating anti-inflammatory responses, while simultaneously up-regulating pro-inflammatory immune effector responses in the immunized host. The employed DPP based immunotherapy led to the predominant activation/proliferation of pro-inflammatory monocytes/macrophages/DCs, the concerted expansion of CD4+/CD8+ effector and central memory T cells, alongside balanced Th17 and Treg cell amplification, and conferred augmented resistance to aerosol Mtb challenge in rBCG30 immunized BALB/c mice.
Collapse
Affiliation(s)
- Faraz Ahmad
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Nazoora Khan
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Fauzia Jamal
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Pushpa Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Umesh Datta Gupta
- Bio-Safety Level (BSL)-3 Animal Experimentation Facility, Indian Council of Medical Research (ICMR)-National Japanese Leprosy Mission for Asia (JALMA) Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Mohammad Owais
- Molecular Immunology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
25
|
Vasilyev K, Shurygina AP, Zabolotnykh N, Sergeeva M, Romanovskaya-Romanko E, Pulkina A, Buzitskaya J, Dogonadze MZ, Vinogradova TI, Stukova MA. Enhancement of the Local CD8 + T-Cellular Immune Response to Mycobacterium tuberculosis in BCG-Primed Mice after Intranasal Administration of Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens. Vaccines (Basel) 2021; 9:vaccines9111273. [PMID: 34835204 PMCID: PMC8626046 DOI: 10.3390/vaccines9111273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
BCG is the only licensed vaccine against Mycobacterium tuberculosis (M.tb) infection. Due to its intramuscular administration route, BCG is unable to induce a local protective immune response in the respiratory system. Moreover, BCG has a diminished ability to induce long-lived memory T-cells which are indispensable for antituberculosis protection. Recently we described the protective efficacy of new mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing TB10.4 and HspX proteins of M.tb within an NS1 influenza protein open reading frame. In the present work, the innate and adaptive immune response to immunization with the Flu/THSP and the immunological properties of vaccine candidate in the BCG-prime → Flu/THSP vector boost vaccination scheme are studied in mice. It was shown that the mucosal administration of Flu/THSP induces the incoming of interstitial macrophages in the lung tissue and stimulates the expression of co-stimulatory CD86 and CD83 molecules on antigen-presenting cells. The T-cellular immune response to Flu/THSP vector was mediated predominantly by the IFNγ-producing CD8+ lymphocytes. BCG-prime → Flu/THSP vector boost immunization scheme was shown to protect mice from severe lung injury caused by M.tb infection due to the enhanced T-cellular immune response, mediated by antigen-specific effector and central memory CD4+ and CD8+ T-lymphocytes.
Collapse
Affiliation(s)
- Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
- Correspondence:
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Mariia Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Anastasia Pulkina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Janna Buzitskaya
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| | - Marine Z. Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Tatiana I. Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, 191036 St. Petersburg, Russia; (N.Z.); (M.Z.D.); (T.I.V.)
| | - Marina A. Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197376 St. Petersburg, Russia; (A.-P.S.); (M.S.); (E.R.-R.); (A.P.); (J.B.); (M.A.S.)
| |
Collapse
|
26
|
Ritter K, Behrends J, Erdmann H, Rousseau J, Hölscher A, Volz J, Prinz I, Lindenstrøm T, Hölscher C. Interleukin-23 instructs protective multifunctional CD4 T cell responses after immunization with the Mycobacterium tuberculosis subunit vaccine H1 DDA/TDB independently of interleukin-17A. J Mol Med (Berl) 2021; 99:1585-1602. [PMID: 34351501 PMCID: PMC8541990 DOI: 10.1007/s00109-021-02100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-17A-producing T helper (Th)17 cells are increasingly being acknowledged to be associated with protective immunity to Mycobacterium tuberculosis (Mtb). Subunit vaccines potently promote protective immune responses against Mtb infection that correlate with an expansion of IL-23-dependent Th17 cells. Previous studies revealed that after vaccination, IL-23 is required for protection against challenge with Mtb but the underlying IL-23-dependent-and possibly IL-17A-mediated-mechanisms remain elusive. Therefore, we here analyzed the early outcome of Mtb infection in C57BL/6, IL-23p19-deficient (-/-), and IL-17A-/- mice after vaccination with the subunit vaccine H1-DDA/TDB to investigate the role of the IL-23-Th17 immune axis for the instruction of vaccine-induced protection. While in IL-23p19-/- mice the protective effect was reduced, protection after vaccination was maintained in IL-17A-/- animals for the course of infection of 6 weeks, indicating that after vaccination with H1-DDA/TDB early protection against Mtb is-although dependent on IL-23-not mediated by IL-17A. In contrast, IL-17A deficiency appears to have an impact on maintaining long-term protection. In fact, IL-23 instructed the vaccine-induced memory immunity in the lung, in particular the sustained expansion of tumor necrosis factor (TNF)+IL-2+ multifunctional T cells, independently of IL-17A. Altogether, a targeted induction of IL-23 during vaccination against Mtb might improve the magnitude and quality of vaccine-induced memory immune responses. KEY MESSAGES: After subunit Mtb vaccination with H1-DDA/TDB, IL-23 but not IL-17A contributes to vaccine-induced early protection against infection with Mtb. IL-17F does not compensate for IL-17A deficiency in terms of H1-DDA/TDB-induced protection against Mtb infection. IL 23 promotes the H1-DDA/TDB-induced accumulation of effector memory T cells independently of IL 17A. IL-23 arbitrates the induction of H1-specific IFN-γ-TNF+IL-2+ double-positive multifunctional CD4 T cells after subunit Mtb vaccination in an IL-17A-independent manner.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Core Unit, Research Center Borstel, Borstel, Germany
| | - Hanna Erdmann
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Jasmin Rousseau
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | | | - Johanna Volz
- Infection Immunology, Research Center Borstel, Borstel, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Center for Molecular Neurobiology Hamburg, Eppendorf University Medical Center, Hamburg, Germany
| | - Thomas Lindenstrøm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Qin S, Chen R, Jiang Y, Zhu H, Chen L, Chen Y, Shen M, Lin X. Multifunctional T cell response in active pulmonary tuberculosis patients. Int Immunopharmacol 2021; 99:107898. [PMID: 34333359 DOI: 10.1016/j.intimp.2021.107898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tuberculosis still threatens human health. We aimed to investigate the T cell immune status and the role of multifunctional T cells in pulmonary tuberculosis patients. METHODS Thirty active pulmonary tuberculosis (APTB) patients, 30 latent tuberculosis infection (LTBI) patients, 25 cured pulmonary tuberculosis (CPTB) patients and 25 healthy controls (HCs) enrolled in this study. Flow cytometer for detecting T cell phenotype and function. CBA Flex Set was used to measure chemokine. RESULTS Compared with HCs and LTBI patients, APTB patients had fewer CD4+ T and CD8+ T cells, but the expression of granzyme A, granzyme B and perforin on CD8+ T cells increased. Compared to LTBI and CPTB patients, Mycobacterium tuberculosis-specific CD8+ T cells in APTB patients appeared to be more differentiated CD45RA-CCR7- cells, and there were more multifunctional CD4+ T and CD8+ T cells. Importantly, the frequency of multifunctional CD4+ T cells in the pleural fluid of APTB patients was higher than that of peripheral blood. And the proportion of multifunctional CD4+ T cells expressing the migration receptor CXCR3 in the peripheral blood of APTB patients decreased, while the concentrations of its ligands, chemokine MIG, IP-10 and I-TAC increased significantly in plasma, especially in pleural fluid. CONCLUSIONS Decreased T lymphocytes in APTB patients may cause compensatory activation of CD8+ T cells. Multifunctional CD4+ T cells in peripheral blood could migrate to the lungs under the action of CXCR3 and associated chemokine. Multifunctional CD4+ T cells and Multifunctional CD8+ T cells were of great significance in monitoring disease treatment.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ruiqi Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yujie Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yanfan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Xiangyang Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
28
|
Park HS, Choi S, Back YW, Lee KI, Choi HG, Kim HJ. Mycobacterium tuberculosis RpfE-Induced Prostaglandin E2 in Dendritic Cells Induces Th1/Th17 Cell Differentiation. Int J Mol Sci 2021; 22:ijms22147535. [PMID: 34299161 PMCID: PMC8304802 DOI: 10.3390/ijms22147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.
Collapse
|
29
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
30
|
Morgan J, Muskat K, Tippalagama R, Sette A, Burel J, Lindestam Arlehamn CS. Classical CD4 T cells as the cornerstone of antimycobacterial immunity. Immunol Rev 2021; 301:10-29. [PMID: 33751597 PMCID: PMC8252593 DOI: 10.1111/imr.12963] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Tuberculosis is a significant health problem without an effective vaccine to combat it. A thorough understanding of the immune response and correlates of protection is needed to develop a more efficient vaccine. The immune response against Mycobacterium tuberculosis (Mtb) is complex and involves all aspects of the immune system, however, the optimal protective, non‐pathogenic T cell response against Mtb is still elusive. This review will focus on discussing CD4 T cell immunity against mycobacteria and its importance in Mtb infection with a primary focus on human studies. We will in particular discuss the large heterogeneity of immune cell subsets that have been revealed by recent immunological investigations at an unprecedented level of detail. These studies have identified specific classical CD4 T cell subsets important for immune responses against Mtb in various states of infection. We further discuss the functional attributes that have been linked to the various subsets such as upregulation of activation markers and cytokine production. Another important topic to be considered is the antigenic targets of Mtb‐specific immune responses, and how antigen reactivity is influenced by both disease state and environmental exposure(s). These are key points for both vaccines and immune diagnostics development. Ultimately, these factors are holistically considered in the definition and investigations of what are the correlates on protection and resolution of disease.
Collapse
Affiliation(s)
- Jeffrey Morgan
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kaylin Muskat
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rashmi Tippalagama
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julie Burel
- Center for Infectious Disease, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | |
Collapse
|
31
|
Ritter K, Rousseau J, Hölscher C. The Role of gp130 Cytokines in Tuberculosis. Cells 2020; 9:E2695. [PMID: 33334075 PMCID: PMC7765486 DOI: 10.3390/cells9122695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immune responses to Mycobacterium tuberculosis (Mtb) infection substantially depend on a delicate balance within cytokine networks. Thus, immunosuppressive therapy by cytokine blockers, as successfully used in the management of various chronic inflammatory diseases, is often connected with an increased risk for tuberculosis (TB) reactivation. Hence, identification of alternative therapeutics which allow the treatment of inflammatory diseases without compromising anti-mycobacterial immunity remains an important issue. On the other hand, in the context of novel therapeutic approaches for the management of TB, host-directed adjunct therapies, which combine administration of antibiotics with immunomodulatory drugs, play an increasingly important role, particularly to reduce the duration of treatment. In both respects, cytokines/cytokine receptors related to the common receptor subunit gp130 may serve as promising target candidates. Within the gp130 cytokine family, interleukin (IL)-6, IL-11 and IL-27 are most explored in the context of TB. This review summarizes the differential roles of these cytokines in protection and immunopathology during Mtb infection and discusses potential therapeutic implementations with respect to the aforementioned approaches.
Collapse
Affiliation(s)
- Kristina Ritter
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Jasmin Rousseau
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
| | - Christoph Hölscher
- Infection Immunology, Research Centre Borstel, D-23845 Borstel, Germany; (K.R.); (J.R.)
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Borstel-Lübeck-Riems, D-23845 Borstel, Germany
| |
Collapse
|
32
|
Ivanyi J. Tuberculosis vaccination needs to avoid 'decoy' immune reactions. Tuberculosis (Edinb) 2020; 126:102021. [PMID: 33254012 DOI: 10.1016/j.tube.2020.102021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022]
Abstract
Current search for a new effective vaccine against tuberculosis involves selected antigens, vectors and adjuvants. These are being evaluated usually by their booster inoculation following priming with Bacillus Calmette-Guerin. The purpose of this article is to point out, that despite being attenuated of virulence, priming with BCG may still involve immune mechanisms, which are not favourable for protection against active disease. It is postulated, that the responsible 'decoy' constituents selected during the evolution of pathogenic tubercle bacilli may be involved in the evasion from bactericidal host resistance and stimulate immune responses of a cytokine phenotype, which lead to the transition from latent closed granulomas to reactivation with infectious lung cavities. The decoy mechanisms appear as favourable for most infected subjects but leading in a minority of cases to pathology which can effectively transmit the infection. It is proposed that construction and development of new vaccine candidates could benefit from avoiding decoy-type immune mechanisms.
Collapse
Affiliation(s)
- Juraj Ivanyi
- Centre for Host-Microbiome Interactions, Guy's Campus of Kings College London, SE1, 1UL, United kingdom.
| |
Collapse
|
33
|
Fusion of Dendritic Cells Activating Rv2299c Protein Enhances the Protective Immunity of Ag85B-ESAT6 Vaccine Candidate against Tuberculosis. Pathogens 2020; 9:pathogens9110865. [PMID: 33105734 PMCID: PMC7690420 DOI: 10.3390/pathogens9110865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
In Mycobacterium tuberculosis infection, naïve T cells that encounter mycobacterial antigens through dendritic cells (DCs) induce various CD4+ T-cell responses; therefore, appropriate DC activation is the key for protective immunity against tuberculosis. We previously found that Rv2299c-matured DCs induce Th1 differentiation with bactericidal activity. In this study, to prove that Rv2299c could enhance the protective immunity of other vaccine candidates comprising T-cell-stimulating antigens, Ag85B-ESAT6, a well-known vaccine candidate, was selected as a fusion partner of Rv2299c. Recombinant Rv2299c-Ag85B-ESAT6 protein induced DC maturation and activation. Furthermore, fusion of Rv2299c enhanced the protective efficacy of the Ag85B-ESAT6 vaccine in a mouse model and significantly higher production of TNF-α and IL-2 was detected in the lungs, spleen, and lymph nodes of the group immunized with the Rv2299c-fused protein than with Ag85B-ESAT6. In addition, fusion of Rv2299c enhanced the Ag85B-ESAT6-mediated expansion of multifunctional CD4+ T cells. These data suggested that the DC-activating protein Rv2299c may potentiate the protective immunity of the vaccine candidate comprising T cell antigens.
Collapse
|
34
|
Artificially induced MAIT cells inhibit M. bovis BCG but not M. tuberculosis during in vivo pulmonary infection. Sci Rep 2020; 10:13579. [PMID: 32788608 PMCID: PMC7423888 DOI: 10.1038/s41598-020-70615-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022] Open
Abstract
There is significant interest in targeting MAIT cells with immunostimulatory agents to enhance immune responses. Mycobacterium tuberculosis (M. tb.) is a pervasive respiratory disease that could benefit from treatments that augment immunity. Here we investigate the role of MAIT cells in M. tb. infection and the potential for MAIT cell-targeted immunotherapy to control bacterial burdens. We find that MAIT cells fail to substantially accumulate in the lungs during murine pulmonary M. bovis BCG and M. tb. infections but this defect is overcome by intranasal installation of a TLR2/6 agonist and a MAIT cell antigen. Although artificially induced MAIT cells produce important cytokines in both infections, they control BCG but not M. tb. growth in the lungs. Correspondingly, M. tb.-infected mouse macrophages are relatively resistant to MAIT cell antimicrobial activities in vitro. Thus, MAIT cell antigen-mediated immunotherapy for M. tb. presents a complex challenge.
Collapse
|
35
|
Abreu R, Giri P, Quinn F. Host-Pathogen Interaction as a Novel Target for Host-Directed Therapies in Tuberculosis. Front Immunol 2020; 11:1553. [PMID: 32849525 PMCID: PMC7396704 DOI: 10.3389/fimmu.2020.01553] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) has been a transmittable human disease for many thousands of years, and M. tuberculosis is again the number one cause of death worldwide due to a single infectious agent. The intense 6- to 10-month process of multi-drug treatment, combined with the adverse side effects that can run the spectrum from gastrointestinal disturbances to liver toxicity or peripheral neuropathy are major obstacles to patient compliance and therapy completion. The consequent increase in multidrug resistant TB (MDR-TB) and extensively drug resistant TB (XDR-TB) cases requires that we increase our arsenal of effective drugs, particularly novel therapeutic approaches. Over the millennia, host and pathogen have evolved mechanisms and relationships that greatly influence the outcome of infection. Understanding these evolutionary interactions and their impact on bacterial clearance or host pathology will lead the way toward rational development of new therapeutics that favor enhancing a host protective response. These host-directed therapies have recently demonstrated promising results against M. tuberculosis, adding to the effectiveness of currently available anti-mycobacterial drugs that directly kill the organism or slow mycobacterial replication. Here we review the host-pathogen interactions during M. tuberculosis infection, describe how M. tuberculosis bacilli modulate and evade the host immune system, and discuss the currently available host-directed therapies that target these bacterial factors. Rather than provide an exhaustive description of M. tuberculosis virulence factors, which falls outside the scope of this review, we will instead focus on the host-pathogen interactions that lead to increased bacterial growth or host immune evasion, and that can be modulated by existing host-directed therapies.
Collapse
Affiliation(s)
| | | | - Fred Quinn
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| |
Collapse
|
36
|
Antigen-Specific IFN-γ/IL-17-Co-Producing CD4 + T-Cells Are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines (Basel) 2020; 8:vaccines8020300. [PMID: 32545304 PMCID: PMC7350228 DOI: 10.3390/vaccines8020300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.
Collapse
|
37
|
Kwon KW, Lee A, Larsen SE, Baldwin SL, Coler RN, Reed SG, Cho SN, Ha SJ, Shin SJ. Long-term protective efficacy with a BCG-prime ID93/GLA-SE boost regimen against the hyper-virulent Mycobacterium tuberculosis strain K in a mouse model. Sci Rep 2019; 9:15560. [PMID: 31664157 PMCID: PMC6820558 DOI: 10.1038/s41598-019-52146-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Since ID93/GLA-SE was developed as a targeted BCG-prime booster vaccine, in the present study, we evaluated the protective efficacy of ID93/GLA-SE as a boost to a BCG-prime against the hypervirulent Mycobacterium tuberculosis (Mtb) K challenge to provide further information on the development and application of this vaccine candidate. Boosting BCG with the ID93/GLA-SE vaccine significantly reduced bacterial burden at 16 weeks post-challenge while the BCG vaccine alone did not confer significant protection against Mtb K. The pathological analysis of the lung from the challenged mice also showed the remarkably protective boosting effect of ID93/GLA-SE on BCG-immunised animals. Moreover, qualitative and quantitative analysis of the immune responses following ID93/GLA-SE-immunisation demonstrated that ID93/GLA-SE was able to elicit robust and sustained Th1-biased antigen-specific multifunctional CD4+ T-cell responses up to 16 weeks post-challenge as well as a high magnitude of an antigen-specific IgG response. Our findings demonstrate that the ID93/GLA-SE vaccine candidate given as a BCG-prime boost regimen confers a high level of long-term protection against the hypervirulent Mtb Beijing infection. These findings will provide further and more feasible validation for the potential utility of this vaccine candidate particularly in East-Asian countries, with the predominance of the Beijing genotype, after BCG vaccination.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sasha E Larsen
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Susan L Baldwin
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Rhea N Coler
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA.,Department of Global Health, University of Washington, Seattle, USA.,PAI Life Sciences Inc., Seattle, USA
| | - Steven G Reed
- Infectious Disease Research Institute, 1616 Eastlake Ave E, Suite 400, Seattle, WA, 98102, USA
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
38
|
Pastore G, Carraro M, Pettini E, Nolfi E, Medaglini D, Ciabattini A. Optimized Protocol for the Detection of Multifunctional Epitope-Specific CD4 + T Cells Combining MHC-II Tetramer and Intracellular Cytokine Staining Technologies. Front Immunol 2019; 10:2304. [PMID: 31649661 PMCID: PMC6794358 DOI: 10.3389/fimmu.2019.02304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Analysis of multifunctional CD4+ T cells is fundamental for characterizing the immune responses to vaccination or infection. Major histocompatibility complex (MHC)/peptide tetramers represent a powerful technology for the detection of antigen-specific T cells by specific binding to their T-cell receptor, and their combination with functional assays is fundamental for characterizing the antigen-specific immune response. Here we optimized a protocol for the detection of multiple intracellular cytokines within epitope-specific CD4+ T cells identified by the MHC class II tetramer technology. The optimal procedure for assessing the functional activity of tetramer-binding CD4+ T cells was based on the simultaneous intracellular staining with both MHC tetramers and cytokine-specific antibodies upon in vitro restimulation of cells with the vaccine antigen. The protocol was selected among procedures that differently combine the steps of cellular restimulation and tetramer staining with intracellular cytokine labeling. This method can be applied to better understand the complex functional profile of CD4+ T-cell responses upon vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
39
|
Choi HH, Kwon KW, Han SJ, Kang SM, Choi E, Kim A, Cho SN, Shin SJ. PPE39 of the Mycobacterium tuberculosis strain Beijing/K induces Th1-cell polarization through dendritic cell maturation. J Cell Sci 2019; 132:jcs.228700. [PMID: 31371491 DOI: 10.1242/jcs.228700] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
In a previous study, we have identified MTBK_24820, the complete protein form of PPE39 in the hypervirulent Mycobacterium tuberculosis (Mtb) strain Beijing/K by using comparative genomic analysis. PPE39 exhibited vaccine potential against Mtb challenge in a murine model. Thus, in this present study, we characterize PPE39-induced immunological features by investigating the interaction of PPE39 with dendritic cells (DCs). PPE39-treated DCs display reduced dextran uptake and enhanced MHC-I, MHC-II, CD80 and CD86 expression, indicating that this PPE protein induces phenotypic DC maturation. In addition, PPE39-treated DCs produce TNF-α, IL-6 and IL-12p70 to a similar and/or greater extent than lipopolysaccharide-treated DCs in a dose-dependent manner. The activating effect of PPE39 on DCs was mediated by TLR4 through downstream MAPK and NF-κB signaling pathways. Moreover, PPE39-treated DCs promoted naïve CD4+ T-cell proliferation accompanied by remarkable increases of IFN-γ and IL-2 secretion levels, and an increase in the Th1-related transcription factor T-bet but not in Th2-associated expression of GATA-3, suggesting that PPE39 induces Th1-type T-cell responses through DC activation. Collectively, the results indicate that the complete form of PPE39 is a so-far-unknown TLR4 agonist that induces Th1-cell biased immune responses by interacting with DCs.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hong-Hee Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Seung Jung Han
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Eunsol Choi
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Ahreum Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sang-Nae Cho
- Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, South Korea .,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul 03722, South Korea
| |
Collapse
|
40
|
Masonou T, Hokey DA, Lahey T, Halliday A, Berrocal-Almanza LC, Wieland-Alter WF, Arbeit RD, Lalvani A, von Reyn CF. CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: A randomized, placebo-controlled trial. PLoS One 2019; 14:e0217091. [PMID: 31120957 PMCID: PMC6532882 DOI: 10.1371/journal.pone.0217091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/30/2019] [Indexed: 11/18/2022] Open
Abstract
Background DAR-901 is an inactivated whole cell tuberculosis booster vaccine, prepared using a new scalable, broth-grown method from the master cell bank of SRL172, a vaccine previously shown to prevent tuberculosis. This study examined whether DAR-901 (a) induces CD4+ T cell cytokine profiles previously proposed as correlates of protection and (b) has a specific vaccine-induced immunological signature compared to BCG or placebo. Methods We analysed CD4+ T cell cytokine immune responses from 10 DAR-901 recipients, 9 BCG recipients and 9 placebo recipients from the Phase I DAR-901 MDES trial. In that study, HIV-negative, IGRA-negative participants with prior BCG immunization were randomized (double-blind) to receive three intradermal injections of DAR-901 or saline placebo or two injections of saline placebo followed by an intradermal injection of BCG. Antigen-specific functional and phenotypic CD4+ T cell responses along with effector phenotype of responder cells were measured by intracellular cytokine staining. Results DAR-901 recipients exhibited increased DAR-901 antigen-specific polyfunctional or bifunctional T cell responses compared to baseline. Vaccine specific CD4+ IFNγ, IL2, TNFα and any cytokine responses peaked at 7 days post-dose 3. Th1 responses predominated, with most responder cells exhibiting a polyfunctional effector memory phenotype. BCG induced greater CD4+ T cell responses than placebo while the more modest DAR-901 responses did not differ from placebo. Neither DAR-901 nor BCG induced substantial or sustained Th17 /Th22 cytokine responses. Conclusion DAR-901, a TB booster vaccine grown from the master cell bank of SRL 172 which was shown to prevent TB, induced low magnitude polyfunctional effector memory CD4+ T cell responses. DAR-901 responses were lower than those induced by BCG, a vaccine that has been shown ineffective as a booster to prevent tuberculosis disease. These results suggest that induction of higher levels of CD4+ cytokine stimulation may not be a critical or pre-requisite characteristic for candidate TB vaccine boosters. Trial registration ClinicalTrials.gov NCT02063555.
Collapse
Affiliation(s)
- Tereza Masonou
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail: (TM); (AL); (CFvR)
| | | | - Timothy Lahey
- Larner College of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Alice Halliday
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Luis C. Berrocal-Almanza
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Robert D. Arbeit
- Tufts University School of Medicine, Boston, MA, United States of America
| | - Ajit Lalvani
- Tuberculosis Research Centre, Respiratory Infections Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- * E-mail: (TM); (AL); (CFvR)
| | - C. Fordham von Reyn
- Geisel School of Medicine, Hanover, NH, United States of America
- * E-mail: (TM); (AL); (CFvR)
| |
Collapse
|
41
|
Méndez‐Samperio P. Novel vaccination strategies and approaches against human tuberculosis. Scand J Immunol 2019; 90:e12774. [DOI: 10.1111/sji.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/24/2019] [Indexed: 12/31/2022]
|
42
|
Kwon KW, Choi HH, Han SJ, Kim JS, Kim WS, Kim H, Kim LH, Kang SM, Park J, Shin SJ. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates. FASEB J 2019; 33:6483-6496. [PMID: 30753099 DOI: 10.1096/fj.201802604r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacillus Calmette-Guerin vaccine confers insufficient pulmonary protection against tuberculosis (TB), particularly the Mycobacterium tuberculosis (Mtb) Beijing strain infection. Identification of vaccine antigens (Ags) by considering Mtb genetic diversity is crucial for the development of improved TB vaccine. MTBK_20640, a new Beijing genotype-specific proline-glutamic acid-family Ag, was identified by comparative genomic analysis. Its immunologic features were characterized by evaluating interactions with dendritic cells (DCs), and immunogenicity and vaccine efficacy were determined against highly virulent Mtb Beijing outbreak Korean Beijing (K) strain and HN878 strain in murine infection model. MTBK_20640 induced DCs via TLR2 and downstream MAPK and NF-κB signaling pathways, effectively promoting naive CD4-positive (CD4+) T-cell proliferation and IFN-γ production. Different IFN-γ response was observed in mice infected with Mtb K or reference H37Rv strain. Significant induction of T helper type 1 cell-polarized Ag-specific multifunctional CD4+ T cells and a marked Ag-specific IgG2c response were observed in mice immunized with MTBK_20640/glucopyranosyl lipid adjuvant-stable emulsion. The immunization conferred long-term protection against 2 Mtb Beijing outbreak strains, as evidenced by a significant reduction in colony-forming units in the lung and spleen and reduced lung inflammation. MTBK_20640 vaccination conferred long-term protection against highly virulent Mtb Beijing strains. MTBK_20640 may be developed into a novel Ag component in multisubunit TB vaccines in the future.-Kwon, K. W., Choi, H.-H., Han, S. J., Kim, J.-S., Kim, W. S., Kim, H., Kim, L.-H., Kang, S. M., Park, J., Shin, S. J. Vaccine efficacy of a Mycobacterium tuberculosis Beijing-specific proline-glutamic acid (PE) antigen against highly virulent outbreak isolates.
Collapse
Affiliation(s)
- Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Soon Myung Kang
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jaehun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
43
|
Satti I, McShane H. Current approaches toward identifying a correlate of immune protection from tuberculosis. Expert Rev Vaccines 2018; 18:43-59. [PMID: 30466332 DOI: 10.1080/14760584.2019.1552140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Mycobacterium tuberculosis kills more people than any other pathogen. Vaccination is the most cost-effective control measure for any infectious disease. Development of an effective vaccine against tuberculosis is hindered by the uncertain predictive value of preclinical animal models, incomplete understanding of protective immunity and lack of validated immune correlates of protection (COP). AREAS COVERED Here we review what is known about protective immunity against M.tb, the preclinical and clinical cohorts that can be utilized to identify COP, and COP that have been identified to date. EXPERT COMMENTARY The identification of COP would allow the rational design and development of vaccine candidates which can then be optimized and prioritized based on the induction of these immune responses. Once validated in field efficacy trials, such COP could potentially facilitate the development and licensure of vaccines, in combination with human efficacy data. The identification and validation of COP would represent a very significant advance in TB vaccine development. Every opportunity to collect samples and cohorts on which to cross-validate pre-existing COP and identify novel COP should be exploited. Furthermore, global cooperation and collaboration on such samples will ensure that the utility of such precious samples is fully exploited.
Collapse
Affiliation(s)
- Iman Satti
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Helen McShane
- a Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
44
|
Tang J, Cai Y, Liang J, Tan Z, Tang X, Zhang C, Cheng L, Zhou J, Wang H, Yam WC, Chen X, Wang H, Chen Z. In vivo electroporation of a codon-optimized BER opt DNA vaccine protects mice from pathogenic Mycobacterium tuberculosis aerosol challenge. Tuberculosis (Edinb) 2018; 113:65-75. [PMID: 30514515 DOI: 10.1016/j.tube.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 12/17/2022]
Abstract
DNA vaccines have been extensively studied as preventative and therapeutic interventions for various infectious diseases such as tuberculosis, HIV/AIDS and influenza. Despite promising progresses made, improving the immunogenicity of DNA vaccine remains a technical challenge for clinical development. In this study, we investigated a tuberculosis DNA vaccine BERopt, which contained a codon-optimized fusion immunogen Ag85B-ESAT-6-Rv2660c for enhanced mammalian cell expression and immunogenicity. BERopt immunization through in vivo electroporation in BALB/c mice induced surprisingly high frequencies of Ag85B tetramer+ CD8+ T cells in peripheral blood and IFN-γ-secreting CD8+ T cells in splenocytes. Meanwhile, the BERopt vaccine-induced long-lasting T cell immunity protected BALB/c mice from high dose viral challenge using a modified vaccinia virus Tiantan strain expressing mature Ag85B protein (MVTT-m85B) and the virulent M. tb H37Rv aerosol challenge. Since the BERopt DNA vaccine does not induce anti-vector immunity, the strong immunogenicity and protective efficacy of this novel DNA vaccine warrant its future development for M. tb prevention and immunotherapy to alleviate the global TB burden.
Collapse
Affiliation(s)
- Jiansong Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China; HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Yi Cai
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Jianguo Liang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Xian Tang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Chi Zhang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Lin Cheng
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Jingying Zhou
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Haibo Wang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, PR China
| | - Xinchun Chen
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China
| | - Hui Wang
- HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China.
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong SAR, PR China; HKU AIDS Institute Shenzhen Research Laboratory and Guangdong Key Laboratory for Emerging Infectious Disease, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, PR China.
| |
Collapse
|
45
|
The increased protection and pathology in Mycobacterium tuberculosis-infected IL-27R-alpha-deficient mice is supported by IL-17A and is associated with the IL-17A-induced expansion of multifunctional T cells. Mucosal Immunol 2018; 11:1168-1180. [PMID: 29728641 DOI: 10.1038/s41385-018-0026-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 02/04/2023]
Abstract
During Mycobacterium tuberculosis (Mtb) infection, mice lacking the IL-27R exhibit lower bacterial burdens but develop an immunopathological sequelae in comparison to wild-type mice. We here show that this phenotype correlates with an enhanced recruitment of antigen-specific CCR6+ CD4+ T cells and an increased frequency of IL-17A-producing CD4+ T cells. By comparing the outcome of Mtb infection in C57BL/6, IL-27R-deficient and IL-27R/IL-17A-double deficient mice, we observed that both the increased protection and elevated immunopathology are supported by IL-17A. Whereas IL-17A neither impacts the development of Tr1 cells nor the expression of PD1 and KLRG1 on T cells in IL-27R-deficient mice during infection, it regulates the presence of multifunctional T-cells in the lungs, co-expressing IFN-γ, IL-2 and TNF. Eventually, IL-17A supports Cxcl9, Cxcl10 and Cxcl13 expression and the granulomatous response in the lungs of infected IL-27R-deficient mice. Taken together, IL-17A contributes to protection in Mtb-infected IL-27R-deficient mice probably through a chemokine-mediated recruitment and strategic positioning of multifunctional T cells in granulomas. As IL-27 limits optimal antimycobacterial protection by inhibiting IL-17A production, blocking of IL-27R-mediated signaling may represent a strategy for improving vaccination and host-directed therapy in tuberculosis. However, because IL-27 also prevents IL-17A-mediated immunopathology, such intervention has to be tightly controlled.
Collapse
|
46
|
Muflihah H, Flórido M, Lin L, Xia Y, Triccas J, Stambas J, Britton W. Sequential pulmonary immunization with heterologous recombinant influenza A virus tuberculosis vaccines protects against murine M. tuberculosis infection. Vaccine 2018; 36:2462-2470. [DOI: 10.1016/j.vaccine.2018.03.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
|
47
|
van den Berg RA, De Mot L, Leroux-Roels G, Bechtold V, Clement F, Coccia M, Jongert E, Evans TG, Gillard P, van der Most RG. Adjuvant-Associated Peripheral Blood mRNA Profiles and Kinetics Induced by the Adjuvanted Recombinant Protein Candidate Tuberculosis Vaccine M72/AS01 in Bacillus Calmette-Guérin-Vaccinated Adults. Front Immunol 2018; 9:564. [PMID: 29632533 PMCID: PMC5879450 DOI: 10.3389/fimmu.2018.00564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
Systems biology has the potential to identify gene signatures associated with vaccine immunogenicity and protective efficacy. The main objective of this study was to identify optimal postvaccination time points for evaluating peripheral blood RNA expression profiles in relation to vaccine immunogenicity and potential efficacy in recipients of the candidate tuberculosis vaccine M72/AS01. In this phase II open-label study (NCT01669096; https://clinicaltrials.gov/), healthy Bacillus Calmette–Guérin-primed, HIV-negative adults were administered two doses (30 days apart) of M72/AS01. Twenty subjects completed the study and 18 subjects received two doses. Blood samples were collected pre-dose 1, pre-dose 2, and 1, 7, 10, 14, 17, and 30 days post-dose 2. RNA expression in whole blood (WB) and peripheral blood mononuclear cells (PBMCs) was quantified using microarray technology. Serum interferon-gamma responses and M72-specific CD4+ T cell responses to vaccination, and the observed safety profile were similar to previous trials. Two different approaches were utilized to analyze the RNA expression data. First, a kinetic analysis of RNA expression changes using blood transcription modules revealed early (1 day post-dose 2) activation of several pathways related to innate immune activation, both in WB and PBMC. Second, using a previously identified gene signature as a classifier, optimal postvaccination time points were identified. Since M72/AS01 efficacy remains to be established, a PBMC-derived gene signature associated with the protective efficacy of a similarly adjuvanted candidate malaria vaccine was used as a proxy for this purpose. This approach was based on the assumption that the AS01 adjuvant used in both studies could induce shared innate immune pathways. Subjects were classified as gene signature positive (GS+) or gene signature negative (GS−). Assignments of subjects to GS+ or GS− groups were confirmed by significant differences in RNA expression of the gene signature genes in PBMCs at 14 days post-dose 2 relative to prevaccination and in WB samples at 7, 10, 14, and 17 days post-dose 2 relative to prevaccination. Hence, in comparison with a prevaccination, 7, 10, 14, and 17 days postvaccination appeared to be suitable time points for identifying potentially clinically relevant transcriptome responses to M72/AS01 in WB samples.
Collapse
Affiliation(s)
| | | | - Geert Leroux-Roels
- Centre for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | - Frédéric Clement
- Centre for Vaccinology (CEVAC), Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Velasquez LN, Stüve P, Gentilini MV, Swallow M, Bartel J, Lycke NY, Barkan D, Martina M, Lujan HD, Kalay H, van Kooyk Y, Sparwasser TD, Berod L. Targeting Mycobacterium tuberculosis Antigens to Dendritic Cells via the DC-Specific-ICAM3-Grabbing-Nonintegrin Receptor Induces Strong T-Helper 1 Immune Responses. Front Immunol 2018; 9:471. [PMID: 29662482 PMCID: PMC5890140 DOI: 10.3389/fimmu.2018.00471] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Tuberculosis remains a major global health problem and efforts to develop a more effective vaccine have been unsuccessful so far. Targeting antigens (Ags) to dendritic cells (DCs) in vivo has emerged as a new promising vaccine strategy. In this approach, Ags are delivered directly to DCs via antibodies that bind to endocytic cell-surface receptors. Here, we explored DC-specific-ICAM3-grabbing-nonintegrin (DC-SIGN) targeting as a potential vaccine against tuberculosis. For this, we made use of the hSIGN mouse model that expresses human DC-SIGN under the control of the murine CD11c promoter. We show that in vitro and in vivo delivery of anti-DC-SIGN antibodies conjugated to Ag85B and peptide 25 of Ag85B in combination with anti-CD40, the fungal cell wall component zymosan, and the cholera toxin-derived fusion protein CTA1-DD induces strong Ag-specific CD4+ T-cell responses. Improved anti-mycobacterial immunity was accompanied by increased frequencies of Ag-specific IFN-γ+ IL-2+ TNF-α+ polyfunctional CD4+ T cells in vaccinated mice compared with controls. Taken together, in this study we provide the proof of concept that the human DC-SIGN receptor can be efficiently exploited for vaccine purposes to promote immunity against mycobacterial infections.
Collapse
Affiliation(s)
- Lis Noelia Velasquez
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maria Virginia Gentilini
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Maxine Swallow
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Judith Bartel
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Nils Yngve Lycke
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Barkan
- Koret School of Veterinary Medicine, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Mariana Martina
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hugo D Lujan
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Córdoba, Córdoba, Argentina
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Tim D Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| |
Collapse
|
49
|
Eneslätt K, Golovliov I, Rydén P, Sjöstedt A. Vaccine-Mediated Mechanisms Controlling Replication of Francisella tularensis in Human Peripheral Blood Mononuclear Cells Using a Co-culture System. Front Cell Infect Microbiol 2018; 8:27. [PMID: 29468144 PMCID: PMC5808333 DOI: 10.3389/fcimb.2018.00027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Cell-mediated immunity (CMI) is normally required for efficient protection against intracellular infections, however, identification of correlates is challenging and they are generally lacking. Francisella tularensis is a highly virulent, facultative intracellular bacterium and CMI is critically required for protection against the pathogen, but how this is effectuated in humans is poorly understood. To understand the protective mechanisms, we established an in vitro co-culture assay to identify how control of infection of F. tularensis is accomplished by human cells and hypothesized that the model will mimic in vivo immune mechanisms. Non-adherent peripheral blood mononuclear cells (PBMCs) were expanded with antigen and added to cultures with adherent PBMC infected with the human vaccine strain, LVS, or the highly virulent SCHU S4 strain. Intracellular numbers of F. tularensis was followed for 72 h and secreted and intracellular cytokines were analyzed. Addition of PBMC expanded from naïve individuals, i.e., those with no record of immunization to F. tularensis, generally resulted in little or no control of intracellular bacterial growth, whereas addition of PBMC from a majority of F. tularensis-immune individuals executed static and sometimes cidal effects on intracellular bacteria. Regardless of infecting strain, statistical differences between the two groups were significant, P < 0.05. Secretion of 11 cytokines was analyzed after 72 h of infection and significant differences with regard to secretion of IFN-γ, TNF, and MIP-1β was observed between immune and naïve individuals for LVS-infected cultures. Also, in LVS-infected cultures, CD4 T cells from vaccinees, but not CD8 T cells, showed significantly higher expression of IFN-γ, MIP-1β, TNF, and CD107a than cells from naïve individuals. The co-culture system appears to identify correlates of immunity that are relevant for the understanding of mechanisms of the protective host immunity to F. tularensis.
Collapse
Affiliation(s)
- Kjell Eneslätt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Igor Golovliov
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Clinical Bacteriology, and Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
50
|
Ahmad F, Zubair S, Gupta P, Gupta UD, Patel R, Owais M. Evaluation of Aggregated Ag85B Antigen for Its Biophysical Properties, Immunogenicity, and Vaccination Potential in a Murine Model of Tuberculosis Infection. Front Immunol 2017; 8:1608. [PMID: 29230211 PMCID: PMC5711810 DOI: 10.3389/fimmu.2017.01608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Protein aggregates have been reported to act as a reservoir that can release biologically active, native form of precursor protein. Keeping this fact into consideration, it is tempting to exploit protein aggregate-based antigen delivery system as a functional vaccine to expand desirable immunological response in the host. Herein, we explored the capacity of aggregated Ag85B of Mycobacterium tuberculosis (Mtb) to act as a prophylactic vaccine system that releases the precursor antigen in slow and sustained manner. Being particulate system with exposed hydrophobic residues, aggregated Ag85B is likely to be avidly taken up by both phagocytosis as well as fusion with plasma membrane of antigen presenting cells, leading to its direct delivery to their cytosol. Its unique ability to access cytosol of target cells is further evident from the fact that immunization with aggregated Ag85B led to the induction of Th1-dominant immune response along with upregulated expression of qualitatively superior polyfunctional T cells in the mice. Antibodies generated following immunization with aggregated antigen recognized both native and monomeric Ag85B released from protein aggregate. The implicated immunization strategy offers protection at par to that of established BCG vaccine with desirable central and effector memory responses against subsequent Mtb aerosol challenge. The study highlights the potential of aggregated Ag85B as promising antigen delivery system and paves the way to design better prophylactic regimes against various intracellular pathogens including Mtb.
Collapse
Affiliation(s)
- Faraz Ahmad
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Pushpa Gupta
- BSL-3 Experimental Animal Facility, Department of Animal Experimentation, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Umesh Datta Gupta
- BSL-3 Experimental Animal Facility, Department of Animal Experimentation, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Rakesh Patel
- Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Agra, India
| | - Mohammad Owais
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|