1
|
Li S, Bian X, Wang J, Wang D, Zhou J, Song J, Wang W, Han N, Zhou J, Li Y, Tao R, Zhu X, Fan B, Dong H, Zhang X, Li B. VP4-Specific IgA level as a correlate of neutralizing antibody and fecal shedding of porcine rotavirus infection. Vet Microbiol 2025; 304:110501. [PMID: 40179488 DOI: 10.1016/j.vetmic.2025.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/25/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025]
Abstract
Rotavirus (RV) causes diarrhea in children, infants, and young animals globally, with public health implications. Porcine rotavirus (PoRV) leads to economic losses in swine farming. Neutralizing antibodies (NAb) are vital for protecting piglets from intestinal infections. However, which serum and mucosal markers correlate with NAbs against PoRV and relate to post-infection fecal shedding remains unclear, crucial for pathogen-specific detection. We used indirect ELISA to measure IgG/IgA in sera, sIgA in colostrum from recovered pigs, and feces from diarrheal piglets against VP4*, VP7*, VP6, and NSP4*. Analyses showed specific IgA/sIgA levels correlated better with NAb titers than IgG. Among them, VP4*-specific IgA/sIgA had the highest positive correlation with NAb titers in sera (R = 0.848, P < 0.0001) and colostrum (R = 0.865, P < 0.0001). Also, VP4*-specific IgA/sIgA in sera (R= -0.446, P < 0.001) and feces (R= -0.497, P < 0.0001) had the strongest inverse relationship with viral RNA load. Piglet passive protection tests confirmed VP4*-specific IgA's high neutralizing capacity, highly correlated with NAb titers (R = 0.858, P < 0.0001), reducing viral shedding. In conclusion, mucosal IgA/sIgA responses to VP4 are important for PoRV diagnosis assays and vaccine efficacy evaluation.
Collapse
Affiliation(s)
- Sufen Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xianyu Bian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Jianxin Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Jiapeng Song
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Nan Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Yunchuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Ran Tao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Xuejiao Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China
| | - Hailong Dong
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agricultural and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, China; Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 210014, China.
| |
Collapse
|
2
|
Latifi T, Kachooei A, Jalilvand S, Zafarian S, Roohvand F, Shoja Z. Correlates of immune protection against human rotaviruses: natural infection and vaccination. Arch Virol 2024; 169:72. [PMID: 38459213 DOI: 10.1007/s00705-024-05975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024]
Abstract
Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.
Collapse
Affiliation(s)
- Tayebeh Latifi
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Atefeh Kachooei
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Zafarian
- Department of Microbial Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran.
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Tate JE, Cortese MM, Offit PA, Parashar UD. Rotavirus Vaccines. PLOTKIN'S VACCINES 2023:1005-1024.e11. [DOI: 10.1016/b978-0-323-79058-1.00053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Gandhar JS, De UK, Kala A, Malik YS, Yadav S, Paul BR, Dixit SK, Sircar S, Chaudhary P, Patra MK, Gaur GK. Efficacy of Microencapsulated Probiotic as Adjunct Therapy on Resolution of Diarrhea, Copper-Zinc Homeostasis, Immunoglobulins, and Inflammatory Markers in Serum of Spontaneous Rotavirus-Infected Diarrhoetic Calves. Probiotics Antimicrob Proteins 2022; 14:1054-1066. [PMID: 34676503 DOI: 10.1007/s12602-021-09862-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/25/2022]
Abstract
The objective of this study was to assess the efficacy of a microencapsulated probiotic as an adjunct therapy in rotavirus-positive diarrhea of neonatal calves that received supportive treatment or supportive along with microencapsulated probiotic treatment, for 5 days. We examined whether microencapsulated Lactobacillus acidophilus NCDC15 probiotic treatment in rotavirus-infected diarrhoetic calves led to faster resolution of diarrhea, amelioration of zinc-copper imbalance, improved the immunoglobulin A and immunoglobulin G, and decreased the inflammatory markers in serum. Calves with rotavirus-positive diarrhea < 4-week age and fecal scores ≥ 2 were randomly assigned into two groups. The supportive along with microencapsulated probiotic treatment significantly (p < 0.05) increased zinc and immunoglobulin A concentrations and decreased copper, tumor necrosis factor-α, and nitric oxide level in serum on days 3 and 5 from pretreatment values; the immunoglobulin G concentration was elevated (p < 0.05) on day 5. The mean resolution time of abnormal fecal score was 5.3 and 3.3 days in supportive treatment and supportive along with microencapsulated probiotic groups, respectively, in log-rank Mantel-Cox test. The calves in the supportive along with microencapsulated probiotic treatment group had faster resolution of diarrhea than supportive treatment group in Dunn's multiple comparisons test. This study demonstrates that supportive treatment along with microencapsulated probiotic administered to naturally rotavirus-infected diarrhoetic calves at onset of diarrhea led to faster resolution of diarrhea, improved zinc and immunoglobulin levels, and decreased the inflammatory parameters in serum of rotavirus-infected diarrhoetic calves.
Collapse
Affiliation(s)
- Jitendra Singh Gandhar
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Ujjwal Kumar De
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India.
| | - Anju Kala
- Division of Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Supriya Yadav
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Babul Rudra Paul
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shivendra Kumar Dixit
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Shubhankar Sircar
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Pallab Chaudhary
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Manas Kumar Patra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| | - Gyanendra Kumar Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122 (UP), India
| |
Collapse
|
5
|
Lee B, Colgate ER, Carmolli M, Dickson DM, Gullickson S, Diehl SA, Ara R, Alam M, Kibria G, Abdul Kader M, Afreen S, Ferdous T, Haque R, Kirkpatrick BD. Plasma VP8∗-Binding Antibodies in Rotavirus Infection and Oral Vaccination in Young Bangladeshi Children. J Pediatric Infect Dis Soc 2022; 11:127-133. [PMID: 34904667 PMCID: PMC9055852 DOI: 10.1093/jpids/piab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Despite the availability and success of live-attenuated oral vaccines, rotavirus (RV) remains the leading cause of pediatric gastroenteritis worldwide. Next-generation vaccines targeting RV VP8∗ are under evaluation, but the role of VP8∗-specific antibodies in human immunity to RV and their potential as immune correlates of protection remains underexplored. METHODS We measured plasma RV VP8∗-binding antibodies in 2 cohorts of young children in Dhaka, Bangladesh. Plasma from a cohort study of 137 unvaccinated children aged 6-24 months old hospitalized with acute gastroenteritis was assessed for VP8∗ antibody seropositivity. VP8∗ antibodies were compared with the current standard for RV immunity, total RV-specific IgA (RV-IgA). Additionally, VP8∗ antibody responses were measured as part of an immunogenicity trial of a monovalent, oral, live-attenuated RV vaccine (Rotarix). RESULTS Fewer children with acute RV gastroenteritis were seropositive for VP8∗-binding IgA or IgG antibodies at hospital admission compared with RV-IgA, suggesting that the absence of VP8∗-binding antibodies more accurately predicts susceptibility to RV gastroenteritis than RV-IgA in unvaccinated children. However, when present, these antibodies appeared insufficient to protect fully from disease and no threshold antibody level for protection was apparent. In vaccinated children, these antibodies were very poorly induced by Rotarix vaccine, suggesting that VP8∗-specific antibodies alone are not necessary for clinical protection following oral vaccination. CONCLUSIONS This work suggests that VP8∗-binding antibodies may not be sufficient or necessary for protection from RV gastroenteritis following prior RV infection or oral vaccination; the role of VP8∗ antibodies induced by parenteral vaccination with non-replicating vaccines remains to be determined.
Collapse
Affiliation(s)
- Benjamin Lee
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - E Ross Colgate
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Marya Carmolli
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Dorothy M Dickson
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Soyeon Gullickson
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Sean A Diehl
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - Rifat Ara
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Masud Alam
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Golam Kibria
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Md Abdul Kader
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sajia Afreen
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Tahsin Ferdous
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rashidul Haque
- Department of Parasitology and Emerging Infections, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Beth D Kirkpatrick
- Translational Global Infectious Diseases Research Center, University of Vermont Larner College of Medicine, Burlington, Vermont, USA.,Department of Microbiology and Molecular Genetics, University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| |
Collapse
|
6
|
Bennett A, Pollock L, Jere KC, Pitzer VE, Lopman B, Bar-Zeev N, Iturriza-Gomara M, Cunliffe NA. Duration and Density of Fecal Rotavirus Shedding in Vaccinated Malawian Children With Rotavirus Gastroenteritis. J Infect Dis 2021; 222:2035-2040. [PMID: 31834930 PMCID: PMC7661767 DOI: 10.1093/infdis/jiz612] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Quantifying rotavirus shedding among vaccinated individuals will aid understanding of vaccine indirect effects. Serial stool samples were collected from 196 children who presented with rotavirus gastroenteritis to health facilities in Blantyre, Malawi, and were tested for rotavirus using a VP6 semi-quantitative, real-time polymerase chain reaction. The median duration of fecal shedding was 28 days (95% CI, 19–28). The median copy numbers for peak shedding were 1.99 × 107 (interquartile range, 3.39 × 106 to 6.37 × 107). The fecal viral load was positively associated with disease severity and negatively associated with serum anti-rotavirus immunoglobin A. High and persistent rotavirus shedding among vaccinated children with breakthrough disease may contribute to ongoing transmission in this setting.
Collapse
Affiliation(s)
- Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Louisa Pollock
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Benjamin Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,International Vaccine Access Center, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
| | - Miren Iturriza-Gomara
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom.,National Institute for Health Research (NIHR) Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, United Kingdom
| | - Nigel A Cunliffe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Baker JM, Tate JE, Leon J, Haber MJ, Pitzer VE, Lopman BA. Postvaccination Serum Antirotavirus Immunoglobulin A as a Correlate of Protection Against Rotavirus Gastroenteritis Across Settings. J Infect Dis 2021; 222:309-318. [PMID: 32060525 DOI: 10.1093/infdis/jiaa068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A correlate of protection for rotavirus gastroenteritis would facilitate rapid assessment of vaccination strategies and the next generation of rotavirus vaccines. We aimed to quantify a threshold of postvaccine serum antirotavirus immunoglobulin A (IgA) as an individual-level immune correlate of protection against rotavirus gastroenteritis. METHODS Individual-level data on 5074 infants in 9 GlaxoSmithKline Rotarix Phase 2/3 clinical trials from 16 countries were pooled. Cox proportional hazard models were fit to estimate hazard ratios (HRs) describing the relationship between IgA thresholds and occurrence of rotavirus gastroenteritis. RESULTS Seroconversion (IgA ≥ 20 U/mL) conferred substantial protection against any and severe rotavirus gastroenteritis to age 1 year. In low child mortality settings, seroconversion provided near perfect protection against severe rotavirus gastroenteritis (HR, 0.04; 95% confidence interval [CI], .01-.31). In high child mortality settings, seroconversion dramatically reduced the risk of severe rotavirus gastroenteritis (HR, 0.46; 95% CI, .25-.86). As IgA threshold increased, risk of rotavirus gastroenteritis generally decreased. A given IgA threshold provided better protection in low compared to high child mortality settings. DISCUSSION Postvaccination antirotavirus IgA is a valuable correlate of protection against rotavirus gastroenteritis to age 1 year. Seroconversion provides an informative threshold for assessing rotavirus vaccine performance.
Collapse
Affiliation(s)
- Julia M Baker
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline E Tate
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Juan Leon
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Michael J Haber
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA.,Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
9
|
Lee B, Carmolli M, Dickson DM, Colgate ER, Diehl SA, Uddin MI, Islam S, Hossain M, Rafique TA, Bhuiyan TR, Alam M, Nayak U, Mychaleckyj JC, McNeal MM, Petri WA, Qadri F, Haque R, Kirkpatrick BD. Rotavirus-Specific Immunoglobulin A Responses Are Impaired and Serve as a Suboptimal Correlate of Protection Among Infants in Bangladesh. Clin Infect Dis 2019; 67:186-192. [PMID: 29394355 PMCID: PMC6030840 DOI: 10.1093/cid/ciy076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/27/2018] [Indexed: 01/04/2023] Open
Abstract
Background Rotavirus (RV)–specific immunoglobulin A (IgA) responses following oral RV vaccination are impaired in low-income countries, where the utility of RV-IgA as a correlate of protection (CoP) remains unclear. In a monovalent oral RV vaccine (Rotarix) efficacy trial among infants in Dhaka, Bangladesh, we identified factors associated with poor RV-IgA responses and explored the utility of RV-IgA as a CoP. Methods Infants were randomized to receive Rotarix or no Rotarix at 10 and 17 weeks of life and followed with active diarrheal surveillance. RV-IgA concentration, seroconversion, and seropositivity were determined at 18 weeks of life and analyzed for correlation(s) with rotavirus diarrhea (RVD) and for contribution to Rotarix vaccine effect. Results Among vaccinated infants, overall RV-IgA geometric mean concentration was 21 U/mL; only 27% seroconverted and 32% were seropositive after vaccination. Increased RV-specific maternal antibodies significantly impaired immunogenicity. Seroconversion was associated with reduced risk of RVD through 1 year of life, but RV-IgA seropositivity only explained 7.8% of the vaccine effect demonstrated by the clinical endpoint (RVD). Conclusions RV-IgA responses were low among infants in Bangladesh and were significantly impaired by maternal antibodies. RV-IgA is a suboptimal CoP in this setting; an improved CoP for RV in low-income countries is needed. Clinical Trials Registration NCT01375647.
Collapse
Affiliation(s)
- Benjamin Lee
- Department of Pediatrics, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
- Correspondence: B. Lee, University of Vermont Vaccine Testing Center, Department of Pediatrics, University of Vermont Larner College of Medicine, 89 Beaumont Ave, Given C219, Burlington, VT 05405 ()
| | - Marya Carmolli
- Department of Medicine, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
| | - Dorothy M Dickson
- Department of Medicine, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
| | - E Ross Colgate
- Department of Medicine, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
| | - Sean A Diehl
- Department of Medicine, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
| | | | - Shahidul Islam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Motaher Hossain
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | - Masud Alam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Uma Nayak
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics and Department of Public Health Sciences, University of Virginia, Charlottesville
| | - Monica M McNeal
- Laboratory of Specialized Clinical Studies, Cincinnati Children’s Hospital Medical Center, Ohio
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Beth D Kirkpatrick
- Department of Medicine, Vaccine Testing Center, University of Vermont Larner College of Medicine, Burlington
| |
Collapse
|
10
|
|
11
|
Lewnard JA, Lopman BA, Parashar UD, Bar-Zeev N, Samuel P, Guerrero ML, Ruiz-Palacios GM, Kang G, Pitzer VE. Naturally Acquired Immunity Against Rotavirus Infection and Gastroenteritis in Children: Paired Reanalyses of Birth Cohort Studies. J Infect Dis 2017; 216:317-326. [PMID: 28859432 PMCID: PMC5853322 DOI: 10.1093/infdis/jix310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/29/2017] [Indexed: 01/24/2023] Open
Abstract
Background Observational studies in socioeconomically distinct populations have yielded conflicting conclusions about the strength of naturally acquired immunity against rotavirus gastroenteritis (RVGE), mirroring vaccine underperformance in low-income countries. We revisited birth cohort studies to understand naturally acquired protection against rotavirus infection and RVGE. Methods We reanalyzed data from 200 Mexican and 373 Indian children followed from birth to 2 and 3 years of age, respectively. We reassessed protection against RVGE, decomposing the incidence rate into the rate of rotavirus infection and the risk of RVGE given infection, and tested for serum antibody correlates of protection using regression models. Results Risk for primary, secondary, and subsequent infections to cause RVGE decreased per log-month of age by 28% (95% confidence interval [CI], 12%-41%), 69% (95% CI, 30%-86%), and 64% (95% CI, -186% to 95%), respectively, in Mexico City, and by 10% (95% CI, -1% to 19%), 51% (95% CI, 41%-59%) and 67% (95% CI, 57%-75%), respectively, in Vellore. Elevated serum immunoglobulin A and immunoglobulin G titers were associated with partial protection against rotavirus infection. Associations between older age and reduced risk for RVGE or moderate-to-severe RVGE given infection persisted after controlling for antibody levels. Conclusions Dissimilar estimates of protection against RVGE may be due in part to age-related, antibody-independent risk for rotavirus infections to cause RVGE.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Umesh D Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naor Bar-Zeev
- Institute of Infection and Global Health, University of Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre
| | - Prasanna Samuel
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - M Lourdes Guerrero
- Instituto Nacional de Ciences Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Gagandeep Kang
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
12
|
Holmgren J, Parashar UD, Plotkin S, Louis J, Ng SP, Desauziers E, Picot V, Saadatian-Elahi M. Correlates of protection for enteric vaccines. Vaccine 2017; 35:3355-3363. [PMID: 28504192 PMCID: PMC11342448 DOI: 10.1016/j.vaccine.2017.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/04/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
An immunological Correlate of Protection (CoP) is an immune response that is statistically interrelated with protection. Identification of CoPs for enteric vaccines would help design studies to improve vaccine performance of licensed vaccines in low income settings, and would facilitate the testing of future vaccines in development that might be more affordable. CoPs are lacking today for most existing and investigational enteric vaccines. In order to share the latest information on CoPs for enteric vaccines and to discuss novel approaches to correlate mucosal immune responses in humans with protection, the Foundation Mérieux organized an international conference of experts where potential CoPs for vaccines were examined using case-studies for both bacterial and viral enteric pathogens. Experts on the panel concluded that to date, all established enteric vaccine CoPs, such as those for hepatitis A, Vi typhoid and poliovirus vaccines, are based on serological immune responses even though these may poorly reflect the relevant gut immune responses or predict protective efficacy. Known CoPs for cholera, norovirus and rotavirus could be considered as acceptable for comparisons of similarly composed vaccines while more work is still needed to establish CoPs for the remaining enteric pathogens and their candidate vaccines. Novel approaches to correlate human mucosal immune responses with protection include the investigation of gut-originating antibody-secreting cells (ASCs), B memory cells and follicular helper T cells from samples of peripheral blood during their recirculation.
Collapse
Affiliation(s)
- Jan Holmgren
- University of Gothenburg Vaccine Research Institute, Box 435, S-40530 Gothenburg, Sweden.
| | - Umesh D Parashar
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta GA, United States.
| | - Stanley Plotkin
- University of Pennsylvania and Vaxconsult, LLC, United States.
| | - Jacques Louis
- Fondation Mérieux, 17 rue Bourgelat, 69002 Lyon, France.
| | - Su-Peing Ng
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | - Eric Desauziers
- Sanofi Pasteur, Global Medical Affairs, 2 Avenue du Pont Pasteur, 69367 Lyon cedex 07, France.
| | | | - Mitra Saadatian-Elahi
- Hospices Civils de Lyon, Groupement Hospitalier Edouard Herriot, 5 Place d'Arsonval, 69437 Lyon cedex 03, France.
| |
Collapse
|
13
|
Wang Y, Vlasova A, Velasquez DE, Saif LJ, Kandasamy S, Kochba E, Levin Y, Jiang B. Skin Vaccination against Rotavirus Using Microneedles: Proof of Concept in Gnotobiotic Piglets. PLoS One 2016; 11:e0166038. [PMID: 27824918 PMCID: PMC5100943 DOI: 10.1371/journal.pone.0166038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/22/2016] [Indexed: 01/03/2023] Open
Abstract
Live-attenuated oral rotavirus (RV) vaccines have lower efficacy in low income countries, and additionally are associated with a rare but severe adverse event, intussusception. We have been pursuing the development of an inactivated rotavirus vaccine (IRV) using the human rotavirus strain CDC-9 (G1P[8]) through parenteral immunization and previously demonstrated dose sparing and enhanced immunogenicity of intradermal (ID) unadjuvanted IRV using a coated microneedle patch in comparison with intramuscular (IM) administration in mice. The aim of this study was to evaluate the immune response and protection against RV infection and diarrhea conferred by the administration of the ID unadjuvanted IRV using the microneedle device MicronJet600® in neonatal gnotobiotic (Gn) piglets challenged with virulent Wa G1P[8] human RV. Three doses of 5 μg IRV when administered intradermally and 5 μg IRV formulated with aluminum hydroxide [Al(OH)3] when administered intramuscularly induced comparable rotavirus-specific antibody titers of IgA, IgG, IgG avidity index and neutralizing activity in sera of neonatal piglets. Both IRV vaccination regimens protected against RV antigen shedding in stools, and reduced the cumulative diarrhea scores in the piglets. This study demonstrated that the ID and IM administrations of IRV are immunogenic and protective against RV-induced diarrhea in neonatal piglets. Our findings highlight the potential value of an adjuvant sparing effect of the IRV ID delivery route.
Collapse
Affiliation(s)
- Yuhuan Wang
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Anastasia Vlasova
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Daniel E. Velasquez
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Linda J. Saif
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Sukumar Kandasamy
- Food Animal Health Research Program, Ohio Agricultural Research & Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | | | - Yotam Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | - Baoming Jiang
- Gastroenteritis and Respiratory Viruses Laboratory Branch Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
14
|
Changes in the Interstitial Cells of Cajal and Immunity in Chronic Psychological Stress Rats and Therapeutic Effects of Acupuncture at the Zusanli Point (ST36). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1935372. [PMID: 27594888 PMCID: PMC4987473 DOI: 10.1155/2016/1935372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/03/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Now, chronic psychological stress (CPS) related diseases are increasing. Many CPS patients have gastrointestinal complaints, immune suppression, and immune imbalance. Increasing evidence is indicating that acupuncture (AP) at the Zusanli point (ST36) can alleviate functional gastrointestinal disorders (FGID), immune suppression, and immune imbalance. However, few studies have investigated the potential mechanisms. In this study, CPS rat models were established, and electroacupuncture (EA) at ST36 was done for CPS rats. Daily food intake, weight, intestinal sensitivity, the morphology of interstitial cell of Cajal (ICC) in the small intestine, and serum indexes were measured. The study found that, in CPS rats, EA at ST36 could improve food intake, weight, visceral hypersensitivity, and immunity; in CPS rats, in small intestine, the morphology of ICCs was abnormal and the number was decreased, which may be part causes of gastrointestinal motility dysfunction. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its repairing effects on ICCs damages; in CPS rats, there were immune suppression and immune imbalance, which may be part causes of visceral hypersensitivity. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its regulation on immunity.
Collapse
|
15
|
Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M, Egorov AI, Griffin SM, Heaney CD. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Environ Health Rep 2016; 3:322-34. [PMID: 27352014 PMCID: PMC5424709 DOI: 10.1007/s40572-016-0096-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates). RECENT FINDINGS We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed. We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.
Collapse
Affiliation(s)
- Natalie G Exum
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nora Pisanic
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Douglas A Granger
- Institute for Interdisciplinary Salivary Bioscience Research, University of California Irvine, Irvine, CA, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Acute and Chronic Care, School of Nursing, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kellogg J Schwab
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barbara Detrick
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Margaret Kosek
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrey I Egorov
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shannon M Griffin
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Christopher D Heaney
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Room W7033B, 615 North Wolfe Street, Baltimore, Maryland, 21205-2179, USA.
| |
Collapse
|
16
|
|
17
|
Hayashi M, Murakami T, Kuroda Y, Takai H, Ide H, Awang A, Suzuki T, Miyazaki A, Nagai M, Tsunemitsu H. Reinfection of adult cattle with rotavirus B during repeated outbreaks of epidemic diarrhea. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2016; 80:189-196. [PMID: 27408331 PMCID: PMC4924552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
Rotavirus B (RVB) infection in cattle is poorly understood. The objective of this study was to describe the epidemiological features of repeated outbreaks of epidemic diarrhea due to RVB infection in adult cattle on a large dairy farm complex in Japan. In October 2002, approximately 550 adult cows and approximately 450 in February 2005 had acute watery diarrhea at several farms on the complex. Four months before the first outbreak, RVB antibody-positive rates at subsequently affected farms were significantly lower than at non-affected farms (30% to 32% versus 61% to 67%). During the acute phase of both outbreaks, RVB antibody-positive rates in diarrheal cows tested were as low as 15% to 26%. Most of the farms affected in the second outbreak were also involved in the first outbreak. Some adult cows with RVB diarrhea in the first outbreak showed not only RVB seroresponse, but also RVB shedding in the second outbreak, although none of these cows developed diarrhea. Nucleotide sequences of the VP7 and VP4 genes revealed a close relationship between RVB strains in both outbreaks. Taken together, these results indicate that outbreaks of epidemic RVB diarrhea in adult cows might be influenced by herd immunity and could occur repeatedly at the same farms over several years. To our knowledge, this is the first report on repeated RVB infections in the same cattle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hiroshi Tsunemitsu
- Address all correspondence to Dr. Hiroshi Tsunemitsu; telephone: +81-11-851-2123; fax: +81-11-853-0767; e-mail:
| |
Collapse
|
18
|
Tate JE, Arora R, Bhan MK, Yewale V, Parashar UD, Kang G. Rotavirus disease and vaccines in India: a tremendous public health opportunity. Vaccine 2014; 32 Suppl 1:vii-xii. [PMID: 25091690 PMCID: PMC11976667 DOI: 10.1016/j.vaccine.2014.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Rashmi Arora
- Indian Council of Medical Research, New Delhi, India
| | | | - Vijay Yewale
- Indian Academy of Pediatrics, Mumbai, Maharashtra, India
| | | | | |
Collapse
|