1
|
Fan Q, Wang H, Yuan S, Quan Y, Li R, Yi L, Jia A, Wang Y, Wang Y. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence 2025; 16:2467156. [PMID: 39977342 PMCID: PMC11845055 DOI: 10.1080/21505594.2025.2467156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Streptococcus suis, a zoonotic pathogen, is commonly found as a commensal bacterium in the respiratory tracts of pigs. Under specific conditions, it becomes invasive and enters the blood, causing severe systemic infections. For S. suis, effective acquisition of carbon sources in different host niches is necessary for its survival. However, as of now, our understanding of the metabolism of S. suis within the host is highly restricted. Pyruvate formate lyase (PFL) plays a crucial role in bacterial survival of in glucose-limited and hypoxic host tissues. Here, we investigated the physiological and metabolic functions of PFL PflB in S. suis and elucidated its pivotal role in regulating virulence within the mucosal and blood niches. We demonstrate that PflB is a key enzyme for S. suis to support mixed-acid fermentation under glucose-limited and hypoxic conditions. Additionally, PflB is involved in regulating S. suis morphology and stress tolerance, and its regulation of capsular polysaccharide content depends on dynamic carbon availability. We also found that PflB is associated with the capacity of S. suis to cause bacteremia and persist in the upper respiratory tract to induce persistent infection. Our results provide highly persuasive evidence for the relationship between metabolic regulation and the virulence of S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, P.R. China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| |
Collapse
|
2
|
Fan Q, Wang H, Wang Y, Yi L, Wang Y. Evaluation of the protective efficacy of three novel identified membrane associated proteins of Streptococcus suis serotype 2. Microb Pathog 2024; 193:106759. [PMID: 38906494 DOI: 10.1016/j.micpath.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Streptococcus suis is one of the major pathogens of pigs circulating worldwide, and the development of vaccines will help to effectively control streptococcosis in swine. In this study, we evaluated the potential of three membrane associated proteins, histidine kinase (HK), glycosyltransferase family 2 (Gtf-2) and phosphate binding protein (PsbP) of S. suis as subunit vaccines. Bioinformatics analysis shows that protein ABC is highly conserved in S. suis. To verify the protective effects of these proteins in animal models, recombinant protein HK, Gtf-2 and PsbP were used to immunize BALB/c mice separately. The results showed that these proteins immunization in mice can effectively induce strong humoral immune responses, protect mice from cytokine storms caused by S. suis infection, and have a significant protective effect against lethal doses of S. suis infection. Furthermore, antibodies with opsonic activity exist in the recombinant proteins antiserum to assist phagocytic cells in killing S. suis. Overall, these results indicated that these recombinant proteins all elicit good immune protective effect against S. suis infection and can be represent promising candidate antigens for subunit vaccines against S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
3
|
Li W, Yin F, Bu Z, Liu Y, Zhang Y, Chen X, Li S, Li L, Zhou R, Huang Q. An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine. J Microbiol Biotechnol 2022; 32:278-286. [PMID: 35283432 PMCID: PMC9628857 DOI: 10.4014/jmb.2107.07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.
Collapse
Affiliation(s)
- Wenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Shandong Vocational Animal Science and Veterinary College, Weifang, P.R. China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zixuan Bu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yongqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan 430070, P.R. China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China,Corresponding author Phone: +86-27-87281878 Fax: + 86-27-8728 2608 E-mail:
| |
Collapse
|
4
|
Comparative Exoproteome Analysis of Streptococcus suis Human Isolates. Microorganisms 2021; 9:microorganisms9061287. [PMID: 34204746 PMCID: PMC8231589 DOI: 10.3390/microorganisms9061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/23/2022] Open
Abstract
The swine pathogen Streptococcus suis is a Gram-positive bacterium which causes infections in pigs, with an impact in animal health and in the livestock industry, and it is also an important zoonotic agent. During the infection process, surface and secreted proteins are essential in the interaction between microorganisms and their hosts. Here, we report a comparative proteomic analysis of the proteins released to the extracellular milieu in six human clinical isolates belonging to the highly prevalent and virulent serotype 2. The total secreted content was precipitated and analyzed by GeLC-MS/MS. In the six strains, 144 proteins assigned to each of the categories of extracellular or surface proteins were identified, as well as 680 predicted cytoplasmic proteins, many of which are putative moonlighting proteins. Of the nine predicted signal peptide-I secreted proteins, seven had relevant antigenic potential when they were analyzed through bioinformatic analysis. This is the first work comparing the exoproteome fraction of several human isolates of this important pathogen.
Collapse
|
5
|
Guo G, Kong X, Wang Z, Li M, Tan Z, Zhang W. Evaluation of the immunogenicity and protective ability of a pili subunit, SBP2', of Streptococcus suis serotype 2. Res Vet Sci 2021; 137:201-207. [PMID: 34020335 DOI: 10.1016/j.rvsc.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Streptococcus suis is an important zoonotic pathogen that leads to huge economic losses in the swine industry. Because of the enormous genetic and phenotypic diversity within S. suis, it is necessary to develop effective vaccines to control this zoonotic pathogen. SBP2' is a major pili subunit in S. suis that belongs to an srtBCD pili cluster and has already been reported to be associated with the pathogenesis of this bacterium. In this study, we aimed to evaluate the immunogenicity and protective ability of SBP2'. The rSBP2' protein was expressed by an Escherichia coli expression system and emulsified with Montanide ISA 201 adjuvant to prepare the subunit vaccine. Through active immune assays, the results showed that rSBP2' exhibited good immunogenicity and could protect mice from a lethal dose challenge. Additionally, the qRT-PCR data showed that the transcription levels of cytokines associated with systemic symptoms caused by S. suis were decreased, indicating that immunization with rSBP2' could protect the host from cytokine storms caused by S. suis. Furthermore, the passive immune assay showed that the humoral immunity induced by rSBP2' played an important role against S. suis infection. Taken together, SBP2' could provide proper immune protection against S. suis challenge and could be a candidate for S. suis subunit vaccine. The results of this study could provide new ideas for the development of effective vaccines against S. suis.
Collapse
Affiliation(s)
- Genglin Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
| | - Xuewei Kong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Zhuohao Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Min Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China
| | - Zhongming Tan
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing, China.
| |
Collapse
|
6
|
Yi L, Du Y, Mao C, Li J, Jin M, Sun L, Wang Y. Immunogenicity and protective ability of RpoE against Streptococcus suis serotype 2. J Appl Microbiol 2020; 130:1075-1083. [PMID: 32996241 DOI: 10.1111/jam.14874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/13/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
AIMS RpoE is quite immunogenic and can be used as a candidate vaccine for Streptococcus suis infection via immunoproteomics as reported in our previous studies. In this study, we aimed to verify the immunogenicity of recombinant RpoE and its protective effect against of S. suis. METHODS AND RESULTS The RpoE protein was successfully expressed in Escherichia coli, and the purified recombinant protein was mixed with ISA206 to prepare an S. suis subunit vaccine. Mice were immunized with the RpoE subunit vaccine and then infected with the virulent S. suis strain ZY05719. Subunit vaccine-immunized mice achieved 50% protection, less pathological damage and less bacterial distribution in each organ compared with the control mice. Furthermore, in vitro culture, showed that mouse antisera significantly (P < 0·001) inhibited the growth of S. suis, and qRT-PCR results showed that RpoE successfully induced the up-regulation of IL-6 and TNF-α cytokines. CONCLUSIONS RpoE mice were vaccinated to obtain immune protection, which may be candidates for S. suis subunit vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY The results of this study will provide new ideas for the development of safe and effective recombinant subunits vaccines for S. suis.
Collapse
Affiliation(s)
- L Yi
- College of Life Science, Luoyang Normal University, Luoyang, China.,Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Y Du
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - C Mao
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - J Li
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - M Jin
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - L Sun
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Y Wang
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
7
|
Li Q, Lv Y, Li YA, Du Y, Guo W, Chu D, Wang X, Wang S, Shi H. Live attenuated Salmonella enterica serovar Choleraesuis vector delivering a conserved surface protein enolase induces high and broad protection against Streptococcus suis serotypes 2, 7, and 9 in mice. Vaccine 2020; 38:6904-6913. [PMID: 32907758 DOI: 10.1016/j.vaccine.2020.08.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/11/2020] [Accepted: 08/25/2020] [Indexed: 01/03/2023]
Abstract
Streptococcus suis, a major zoonotic pathogen in swine, can be classified into 35 serotypes. However, no universal vaccine against the multiple serotypes of S. suis is available, though some studies have shown homologous protection. Hence, developing an effective universal vaccine to protect pigs against multiple S. suis serotypes is necessary, or at the very least, to protect pigs against diseases caused by the dominant pathogenic serotypes. Enolase, a highly conserved surface protein, is present in all of the described S. suis serotypes. rSC0016 is an improved recombinant attenuated S. Choleraesuis vaccine vector, combining a sopB mutation with regulated delayed systems, achieving an adequate balance between host safety and immunogenicity. In order to develop a universal vaccine against the multiple serotypes of S. suis, a novel recombinant vaccine strain rSC0016 that carries a heterologous antigen enolase was developed in this study. According, it was found that the recombinant vaccine strain rSC0016(pS-Enolase) exhibited better colonization compared to the vaccine control strain rSC0018(pYA3493). In addition, a mouse model immunized with the strain rSC0016(pS-Enolase) elicited significant IgG antibody responses against both enolase and Salmonella antigens, while inducing good mucosal, humoral, and cellular immune responses against enolase. Finally, immunization with rSC0016(pS-Enolase) was shown to confer 100%, 80%, and 100% protection against the serotypes of SS2, SS7, and SS9, respectively, and significantly reduced histopathological lesions in mice. Overall, this study provides a promising universal vaccine candidate for use against the multiple serotypes of S. suis.
Collapse
Affiliation(s)
- Quan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yifan Lv
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yuanzhao Du
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Weiwei Guo
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China
| | - Dianfeng Chu
- Yebio Bioengineering Co., Ltd of Qingdao, Qingdao 266114, China.
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611-0880, USA.
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Key Laboratory of Animal Infectious Diseases, Ministry of Agriculture, Yangzhou University, China; Jiangsu Key Laboratory of Preventive Veterinary Medicine, Yangzhou University, China.
| |
Collapse
|
8
|
Galactose-1-phosphate uridyltransferase (GalT), an in vivo-induced antigen of Actinobacillus pleuropneumoniae serovar 5b strain L20, provided immunoprotection against serovar 1 strain MS71. PLoS One 2018; 13:e0198207. [PMID: 29856812 PMCID: PMC5983418 DOI: 10.1371/journal.pone.0198207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022] Open
Abstract
GALT is an important antigen of Actinobacillus pleuropneumoniae (APP), which was shown to provide partial protection against APP infection in a previous study in our lab. The main purpose of the present study is to investigate GALT induced cross-protection between different APP serotypes and elucidate key mechanisms of the immune response to GALT antigenic stimulation. Bioinformatic analysis demonstrated that galT is a highly conserved gene in APP, widely distributed across multiple pathogenic strains. Homologies between any two strains ranges from 78.9% to 100% regarding the galT locus. Indirect enzyme-linked immunosorbent assay (ELISA) confirmed that GALT specific antibodies could not be induced by inactivated APP L20 or MS71 whole cell bacterin preparations. A recombinant fusion GALT protein derived from APP L20, however has proven to be an effective cross-protective antigen against APP sevorar 1 MS71 (50%, 4/8) and APP sevorar 5b L20 (75%, 6/8). Histopathological examinations have confirmed that recombinant GALT vaccinated animals showed less severe pathological signs in lung tissues than negative controls after APP challenge. Immunohistochemical (IHC) analysis indicated that the infiltration of neutrophils in the negative group is significantly increased compared with that in the normal control (P<0.001) and that in surviving animals is decreased compared to the negative group. Anti-GALT antibodies were shown to mediate phagocytosis of neutrophils. After interaction with anti-GALT antibodies, survival rate of APP challenged vaccinated animals was significantly reduced (P<0.001). This study demonstrated that GALT is an effective cross-protective antigen, which could be used as a potential vaccine candidate against multiple APP serotypes.
Collapse
|
9
|
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine 2016; 34:6529-6538. [PMID: 27349838 DOI: 10.1016/j.vaccine.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
Abstract
Streptococcus suis is one of the common pathogens causing diseases in pigs and covers 35 serotypes with the type 2 strains being more pathogenic and zoonotic. Existing inactivated or subunit vaccines, in clinical use or under trial, could not provide cross protection against other serotypes. We identified a natural low-virulence S. suis type 5 strain XS045 as a live vaccine candidate because it is highly adhesive to the cultured HEp-2 cells, but with no apparent pathogenicity in mice and piglets. We further demonstrate that subcutaneous administration of the live XS045 strain to mice induced high antibody responses and was able to provide cross protection against challenges by a type 2 strain HA9801 (100% protection) and a type 9 strain JX13 (85% protection). Induction of high-titer antibodies with opsonizing activity as well as their cross-reactivity to surface proteins of the types 2 and 9 strains and anti-adhesion effect could be the mechanisms of cross protection. This is the first report that a live vaccine candidate S. suis type 5 strain could induce cross-protection against strains of types 2 and 9. This candidate strain is to be further examined for safety in pigs of different ages and breeds as well as for its protection against other serotypes or other strains of the type 2, a serotype of particular importance from public health concern.
Collapse
Affiliation(s)
- Xiaowu Jiang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yunkai Yang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Lexin Zhu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yuanxing Gu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Hongxia Shen
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Ying Shan
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xiaoliang Li
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jiusheng Wu
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Weihuan Fang
- Zhejiang University, Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
10
|
Gómez-Gascón L, Cardoso-Toset F, Tarradas C, Gómez-Laguna J, Maldonado A, Nielsen J, Olaya-Abril A, Rodríguez-Ortega MJ, Luque I. Characterization of the immune response and evaluation of the protective capacity of rSsnA against Streptococcus suis infection in pigs. Comp Immunol Microbiol Infect Dis 2016; 47:52-9. [PMID: 27477507 DOI: 10.1016/j.cimid.2016.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/06/2016] [Accepted: 06/03/2016] [Indexed: 11/29/2022]
Abstract
The efforts made to develop vaccines against Streptococcus suis have failed because of lack of common antigens cross-reactive against different serotypes of this species. The cell wall-anchored proteins can be good vaccine candidates due to their high expression and accessibility to antibodies, among these, a cell-wall protein, DNA-nuclease (SsnA), present in most of the S. suis serotypes and clinical isolates collected from infected pigs, was selected. An experimental challenge against S. suis serotype 2 in a pig model was used to validate the efficacy of recombinant SsnA combined with aluminium hydroxide plus Quil A as adjuvants, previously tested in mice by our research group with good results. In our study, clinical characteristics, bacterial load and spread, haematological and immunological parameters and the antibody response, including the opsonophagocytosis analysis of the sera were evaluated. Moreover the composition of peripheral blood leukocyte populations was studied in infected animals. The results show that the immunization of piglets with rSsnA elicits a significant humoral antibody response. However, the antibody response is not reflected in protection of pigs that are challenged with a virulent strain in our conventional vaccination model. Further studies are necessary to evaluate the use of rSsnA as a vaccine candidate for swine.
Collapse
Affiliation(s)
- Lidia Gómez-Gascón
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain.
| | - Fernando Cardoso-Toset
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain; CICAP-Food Research Centre, Córdoba, Pozoblanco,14400, Spain
| | - Carmen Tarradas
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | | | - Alfonso Maldonado
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Jens Nielsen
- Technical University of Denmark, National Veterinary Institute, Lindholm, Denmark
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Manuel J Rodríguez-Ortega
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| | - Inmaculada Luque
- Departamento de Sanidad Animal, Universidad de Córdoba, Campus de Excelencia Internacional CeiA3, 14071 Córdoba, Spain
| |
Collapse
|
11
|
Abstract
Streptococcus suis is a major swine pathogen and an emerging zoonotic agent of human meningitis and streptococcal toxic shock-like syndrome. S. suis is a well-encapsulated pathogen and multiple serotypes have been described based on the capsular polysaccharide antigenic diversity. In addition, high genotypic, phenotypic and geographic variability exits among strains within the same serotype. Besides, S. suis uses an arsenal of virulence factors to evade the host immune system. Together, these characteristics have challenged the development of efficacious vaccines to fight this important pathogen. In this careful and comprehensive review, clinical field information and experimental data have been compiled and compared for the first time to give a precise overview of the current status of vaccine development against S. suis. The candidate antigens and vaccine formulations under research are examined and the feasibility of reaching the goal of a "universal" cross-protective S. suis vaccine discussed.
Collapse
Affiliation(s)
- Mariela Segura
- a Laboratory of Immunology, Faculty of Veterinary Medicine , University of Montreal , Saint-Hyacinthe , Quebec , J2S 2M2 Canada
| |
Collapse
|